
Installing VSIB/VSIC Test Software

Ari Mujunen, amn@kurp.hut.fi
Metsähovi Radio Observatory

19-Sep-2003

Abstract

This document describes the steps required to install the Debian/GNU/Linux
3.0 operating system to support using VSIB data acquisition board test pro-
grams.

Contents

1 Introduction 2

2 Installing “Mini-Linux” 2

3 Installing a Snapshot of “Full Linux” 4

4 Installing VSIB/VSIC Test Software 10

5 Setting up data RAID0 Disk Array 11

5.1 Creating Partitions on 2–4 Disks . 11

5.2 Edit/Check ’/etc/raidtab’ . 12

5.3 Initializing, Starting and Formatting ’/dev/md0’ 12

5.4 “Per-boot” usage steps . 13

5.5 Linux Disk Tuning . 14

5.6 Test Directory . 15

6 Performing VSIB/VSIC Tests 16

6.1 VSIC Modes . 16

6.2 Performing Tests . 16

1

1 Introduction

Please find below instructions how to use the two CD-R disks provided to set up
Linux on your nVidia PC.

The first CD-R disk contains a single-disk install of a “mini-Linux” system of De-
bian/GNU/Linux 3.0 (“woody”).

The second CD-R disk is a snapshot of our development environment computer
“remus.kurp.hut.fi”.

The idea is to install a "plain" Debian Linux 3.0 "woody" on the /dev/hda1 parti-
tion, but at the same time create an alternative boot partition on /dev/hda5. I.e:

/dev/hda1 – bootable mini system, used to re-install /dev/hda5 below

/dev/hda2 – swap partition, used by both bootable systems

(/dev/hda3 – extended partition, holds partitions 5 and above)

/dev/hda5 – the real VSIB development Linux system (expanded from ’remus.tgz’
on CD-R #2)

This dual-boot environment makes it easy to quickly install a "clone copy" of a
given system from a single tar file, like the supplied ’remus.tgz’.

2 Installing “Mini-Linux”

The “mini-Linux” system is installed using standard Debian installation tools. De-
bian has a _very_ extensive installation manual and it is available on the Debian
3.0 Mini-CD sent to you at:

mount /cdrom acroread
/cdrom/install/doc/install.en.pdf &

(You can also stick the CD-R into a Windows machine and locate the folders ’in-
stall’ and ’doc’ and double-click on ’install.en.pdf’ document.)

The document has lots of background information and you may want to print
all 112 pages, but for this install you’ll probably need Acroread pages 53–94 only,
covering Chapters 5–9.

If you haven’t used the ’cfdisk’ program before to create disk partitions you may
need its manual page which is available in text form at:

/cdrom/install/doc/cfdisk.txt

’cfdisk’ is menu-driven, though, so the only thing to beware is that you can move
between menu selections with left/right arrows only, not up/down. Up/down
is reserved for moving up and down in the list of partitions and free space, and
’Enter’ selects a menu choice.

First some hardware checks:

2

1. You need to ensure that your primary master disk, the system disk /dev/hda
is connected. This can be a smaller and slower disk than a 120GB IBM/Maxtor,
but such a large disk is ok, of course, too.

2. You need to temporarily connect a CD-ROM to primary slave or secondary
master. (Use whichever is cable-wise more convenient.)

Recently I’ve tried the so-called "Cable Select" jumpering in IDE drives. Against
my expectations, this jumpering scheme seems to work great! I.e. you can
jumper all your disks and CD-ROM drives with the setting "Cable Select" and
the drives will automatically be masters when at the far end of an IDE cable
and slaves when they are connected in the middle ribbon cable connector.
All my disks in my Asus nVidia are jumpered with "Cable Select".

3. Set the boot order in Asus/MSI//nVidia BIOS settings to be 1) floppy, 2)
CD-ROM, 3) IDE.

4. Boot the "mini Debian" CD-R. Press ’Enter’ to the first ’boot:’ prompt.

5. Start answering the installation questions. (I’ll switch now to the chapter and
section numbers of the installation PDF document.)

5. Booting the Installation System
5.1. Boot Parameter Arguments - none required
5.2. Booting from a CD-ROM - use this
5.3. Booting from Floppies
5.4. Booting From a Hard Disk
5.5. Booting from TFTP
5.6. Troubleshooting the Install Process
5.7. Introduction to ‘dbootstrap’
5.8. “Choose The Language” - ’en’, probably :-)
5.9. “Release Notes”
5.10. “Debian GNU/Linux Installation Main Menu”
5.11. “Configure the Keyboard” - qwerty/uk, probably
5.12. Last Chance!
6. Partitioning for Debian
6.1. Deciding on Debian Partitions and Sizes
6.2. The Directory Tree
6.3. PC Disk Limitations
6.4. Recommended Partitioning Scheme
6.5. Device Names in Linux
6.6. Debian Partitioning Programs
- use cfdisk (the default) to create:
/dev/hda1 primary 2000MB type Linux (83, the default)
/dev/hda2 primary 500MB type Linux swap (82)
/dev/hda5 logical 2000MB type Linux (83, the default)
/dev/hda6 logical 2000MB type Linux (83, the default)
6.7. “Initialize and Activate a Swap Partition”
- /dev/hda2, no need to check bad blocks
6.8. “Initialize a Linux Partition”
- /dev/hda1, no need to check bad blocks
- select in “Debian GNU/Linux Installa-
tion Main Menu” again the choice “Initialize a Linux Parti-
tion” /dev/hda5, mount as /s5 - re-
peat for /dev/hda6, mount as /s6
6.9. “Mount a Previously-Initialized Partition” - skipped
6.10. Mounting Partitions Not Supported by ‘dbootstrap’
7. Installing the Kernel and Base Operating System
7.1. “Install Kernel and Driver Modules” - from CD-
ROM (the default)
7.2. NFS
7.3. Network
7.4. NFS Root
7.5. “Configure PCMCIA Support” - skipped

3

7.6. “Configure Device Driver Modules” -
no need to add any modules, network boards are compiled-
in, ’Exit’
7.7. “Configure the Network” -
according to your network settings
7.8. “Install the Base System” - from CD-ROM
8. Booting Into Your New Debian System
8.1. “Make System Bootable” - yes, use MBR
8.2. The Moment of Truth
8.3. Debian Post-Boot (Base) Configuration
8.4. Configuring your Time Zone - use UTC
8.5. MD5 Passwords - no
8.6. Shadow Passwords - yes
8.7. Set the Root Password
8.8. Create an Ordinary User - perhaps ’pb’
8.9. Setting Up PPP - skip
8.10. Removing PCMCIA - remove
8.11. Configuring APT - use the only CD-ROM as APT source
8.12. Package Installation: Simple or Advanced - simple
8.13. Simple Package Selection --- The Task Installer -
select nothing, ’Finish’
8.14. Advanced Package Selection with ‘dselect’
8.15. Prompts During Software Installation
8.16. Log In
9. Next Steps and Where to Go From Here
9.1. If You Are New to Unix
9.2. Shutting Down the System
9.3. Orienting Yourself to Debian
9.4. Reactivating DOS and Windows
9.5. Further Reading and Information
9.6. Compiling a New Kernel - for info only

You should now have a bootable Debian 3.0 system without any frills, X Window
system etc. This system is used to extract the full development system snapshot
from the second CD-R.

3 Installing a Snapshot of “Full Linux”

The starting point is that your mini-Linux is up and networking works (if you plan
to use network) and it has the following partitions:

/dev/hda1 - mini-Linux ’/’

/dev/hda2 - swap

/dev/hda5 - full Linux ’/s5’

You still need the temporary CD-ROM drive and the mini-Linux has probably set
up the /dev/cdrom link to point to the correct /dev/hd{bcd} so that mounting the
2nd "snapshot" CD-R disk is easy (as ’root’ user) with:

mount /cdrom

Now you can simply change to the ’/s5’ directory (the one which will become ’/’
of the full Linux) and expand the snapshot of the full system with tar:

cd /s5
tar xvzpf /cdrom/remus.tgz

4

The names of files will be shown while expanding. When done, you need to change
computer name, network settings and similar in the ’/s5/...’ configuration files.

The ’/s5/etc/modules’ file lists only the following loadable device driver:

af_packet

If you network board is not a 3Com EtherLink III (3c59x, 3c90x) you may need to
copy its name from ’/etc/modules’. (It could be that your mini-Linux ’/etc/modules’
doesn’t list any network board driver if the kernel recognized the board because it
had the driver compiled in. The full Linux will need the name of network board
driver because all network drivers were compiled as loadable modules.)

The following is suggested as a good starting point. Edit with ’nano /s5/etc/modules’
the file to list the following loadable device driver:

af_packet
lp
serial
3c59x

Changing to use your mini-Linux user names and passwords with shadow pass-
words on:

cd /etc
cp -a passwd shadow group gshadow /s5/etc

Changing to use your mini-Linux network settings:

(still at ’cd /etc’)
cp -a /etc/network/interfaces /s5/etc/network/interfaces
cp -a resolv.conf hostname hosts networks networks /s5/etc

You will probably want to comment out servering the ’/i1’ RAID data directory
using NFS, at least initially:

nano -w /s5/etc/exports

(Put a ’#’ mark in the beginning of the single line.)

You will want to use the ssh host keys of mini-Linux for your computer (and not
to use my ’remus’ computer keys) so you should replace the following:

cd /etc/ssh
cp -av ssh_host_* /s5/etc/ssh

It should copy six files, ’/etc/ssh/ssh_host{,rsa,dsa}_key{,.pub}’. You can easily
re-create them when you have rebooted to full Linux (for instance if you have
changed your computer name) by deleting the old files ’rm /etc/ssh/ssh_host_*’
and:

dpkg-reconfigure ssh

5

To change the keyboard layout of full Linux to match the setting you chose for
mini-Linux, please copy:

cp -a /etc/console/boottime.kmap.gz /s5/etc/console

Alternatively, when you have booted to full Linux, you can interactively select the
keymap from a set of menus with:

dpkg-reconfigure console-data

(The “dash” character ’-’ in the above is the key immediately to left of the right
side shift key in the default Finnish keyboard.)

So, for the final trick is to make both the mini-Linux and full Linux to appear
in both LILO boot menus, allowing booting either of the two. Your mini-Linux
’/etc/fstab’ is probably very similar to the following:

---/etc/fstab---
remus:~> cat /etc/fstab
/etc/fstab: static file system information.
<file system> <mount point> <type> <options> <dump> <pass>
/dev/hda1 / ext2 defaults,errors=remount-ro 0 1
/dev/hda2 none swap sw 0 0
proc /proc proc defaults 0 0
/dev/fd0 /floppy auto defaults,user,noauto 0 0
/dev/cdrom /cdrom iso9660 defaults,ro,user,noauto 0 0
Extra system
/dev/hda5 /s5 ext2 defaults 0 2

You will want a similar ’/etc/fstab’ on the full Linux, too, so the best option is to
copy yours and edit it:

cp /etc/fstab /s5/etc/fstab
nano -w /s5/etc/fstab

You need to swap the partitions ’hda1’ and ’hda5’ so that these lines:

< /dev/hda1 / ext2 defaults,errors=remount-ro 0 1
< /dev/hda5 /s5 ext2 defaults 0 2

> /dev/hda5 / ext2 defaults,errors=remount-ro 0 1
> /dev/hda1 /s1 ext2 defaults 0 2

(’nano’ editor may auto-wrap these long lines. Simply do the edits on a given line,
and finally backspace at the beginning of the wrapped continuation line to get it
back to the end of previous line.) So, now when the full system boots, it will mount
/dev/hda5 as its ’/’ file system. To get access to mini-Linux ’/’ file system files,
you will have to create the empty directory for mounting ’/s1’ under full Linux:

mkdir /s5/s1

(i.e. when /s5 boots as /, it will have a directory ’/s1’ which will be used to mount
the mini-Linux root/system partition /dev/hda1.)

The /s5/etc/fstab doesn’t yet list anything "fixed" about the RAID setup. Also, at
this stage, you can rename the following temporarily away:

6

mv /s5/etc/raidtab /s5/etc/raidtab.not-yet

This renaming is not absolutely necessary, since the raidtools2 exit gracefully with
error messages if RAID0 disks/partitions are not available.

The final step in getting two options in LILO boot menu is to edit ’/etc/lilo.conf’
file and its counterpart in the full system, ’/s5/etc/lilo.conf’. All edits happen at
the end of the existing files. The first is to reserve memory for the big physical
buffer:

Kernel command line options that apply to all installed im-
ages go
here. See: The ‘boot-prompt-HOWO’ and ‘kernel-
parameters.txt’ in
the Linux kernel ‘Documentation’ directory.
append=""
Take about 128MB; 90000*1000+2*128kB=22036 4kB pages => 23000
144000000 for 18MHz 32 track 2sec:
append="bigphysarea=36000"

Please ensure that this number is “36000” in both files. This sets aside 36000 4kB
pages of real physical memory which can be used by the ’vsib.o’ loadable VSIB
board device driver as "bigbuf", a large circular buffer for DMAing VSI data di-
rectly to PC memory.

The second is to add the ’image=’ section for the "other" Linux system in both
’/etc/lilo.conf’ and ’/s5/etc/lilo.conf’. After the fragment:

Boot up Linux by default.
default=Linux
image=/vmlinuz

label=Linux
read-only

initrd=/initrd.img
restricted
alias=1

add another:

image=/s5/vmlinuz

root=/dev/hda5
label=S5Linux
read-only

And for ’/s5/etc/lilo.conf’ add:

image=/s1/vmlinuz

root=/dev/hda1
label=S1Linux
read-only

Additionally, in ’/s5/etc/lilo.conf’ change the line (around line number 30):

7

root=/dev/hda1

to read:

root=/dev/hda5

The ’root=’ directive works differently depending on its location in /etc/lilo.conf.
The first one in the default file (around line 30) appears before any ’image=’ bootable
system directive. It thus becomes the global default for all subsequent ’image=’
sections. So you can have say "Linux", "LinuxOLD", "LinuxSpecial" different bootable
kernel images, all sharing the same root file system.

If you put ’root=’ after an ’image=’ directive, the setting only applies when booting
that system.

Now update the LILO boot tables for mini-Linux and /dev/hda1:

lilo

and when you have booted the new full Linux, say ’lilo’ again to update the tables
to match then active ’/etc/lilo.conf’ of the new system. The settings of the active
’/etc/lilo.conf’ when the command ’lilo’ is invoked become the new boot settings
for the whole hard disk ’/dev/hda’. Thus, if you say ’lilo’ while in full Linux, the
system booted by default becomes the full Linux system (and correspondingly if
you say ’lilo’ while in mini-Linux).

As both “lilo.conf” files have “their own” system listed in the first ’image=’ frag-
ment in the file, that system is booted by default (that is, when no Shift key is
pressed while the “LILO” prompt is present on-screen to get the boot menu). The
following could be used to name the system you want to boot by default:

Boot up Linux by default.
default=Linux

As this is commented out, both systems will boot up to the same Linux from which
the ’lilo’ updating was invoked, i.e. the system mentioned first in the “lilo.conf”
file.

To get the “other” Linux you need to press down any of Shift/Control/Alt when
you see the ’LILO’ prompt during booting. This will present a red arrow-key menu
of the available systems and lets you choose ’S5Linux’ (or ’S1Linux’) for booting.

Now it is time to test the dual-boot:

shutdown -r now

(Alternatively, you can just simply press ctrl-alt-del.)

When the ’LILO’ prompt appears, press Shift to see the LILO boot menu. Select
with arrow keys ’S5Linux’ and press enter. You should get a system with kernel
2.4.19-ac4. ’cat /proc/bigphysarea’ should print something in the style of:

8

remus:~# cat /proc/bigphysarea
Big physical area, size 144000 kB free list: used list:
number of blocks: 3 2
size of largest block: 3232 kB 140628 kB
total: 3240 kB 140760 kB

Now you can finalize the configuration by setting up NTP and mail server.

NTP changes the files ’/etc/default/ntp-servers’ and ’/etc/ntp.conf’ with menu-
based:

dpkg-reconfigure ntp-simple

Select a good NTP time server and let the system overwrite ’/etc/ntp.conf’ when
it asks for it. Next reboot will "step" the CMOS time to the value reported by the
NTP server and ’ntpd’ will keep the time in synch with the server. Timed starts
of VSIB software require a NTP server with approximately +/-200msec accuracy
compared to GPS time.

Mail handler uses the following files:

/etc/exim/exim.conf
/etc/mailname

and can be reconfigured with eximconfig:

remus:~# eximconfig
You already have an exim configuration. Continuing with eximcon-
fig will overwrite it. It will not keep any local modifica-
tions you have made. If that is not your inten-
tion, you should break out now. If you do con-
tinue, then your existing file will be re-
named with .O on the end. [---Press return---]
...
(4) Local delivery only: You are not on a network. Mail for lo-
cal users is delivered.
...
Select a number from 1 to 5, from the list above. En-
ter value (default=‘1’, ‘x’ to restart): 4

I think you will probably want no mail server but still need local (system) mails to
be delivered, probably to user ’pb’.

The following config files:

/etc/emacs21/site-start.d/00debian-vars.elc
/etc/emacs21/site-start.d/42hyperlatex.elc
/etc/xemacs21/site-start.d/00debian-vars.elc
/etc/xemacs21/site-start.d/42hyperlatex.elc

do contain the host name ’remus’ in them but I don’t know how to easily update
these (’dpkg-reconfigure emacs21’ maybe?) and I don’t think having ’remus’ there
is very dangerous.

Now the full Linux is running; remember to update LILO

lilo

so that it will default to booting to full and present the option ’S1Linux’ in LILO
boot menu for returning to mini-Linux for reloading the system.

9

4 Installing VSIB/VSIC Test Software

The final step in software installation is to expand the ’proj.tgz’ snapshot of my
’/home/amn/proj’ subdirectory structure to your home directory. I would do this
when logged in as a normal Linux user (not root) such as ’pb’. (I’m presuming
that you created yourself a normal user account in mini-Linux. ’pb’ will be used in
the remaining text as an example of the Linux user id used to perform VSIB/VSIC
tests.)

The ’/home’ directory of the /dev/hda5 full Linux system is still empty, create a
home directory for the VSIB tester user:

mkdir /home/pb
chown pb.pb /home/pb

and then you can log in (probably in Alt-F2 another virtual console) as ’pb’. Mount1

the second snapshot CD-R again

mount /cdrom

and expand the ’proj.tgz’ archive:

tar xvzf /cdrom/proj.tgz

You should get the main development directory ’proj/vsib’ where all the current
development software is. The only exception is the ’/home/pb/proj/vsib/vsib’
special device file which can only be created as root and will be skipped by tar
when run as ’pb’. The ’root’ user has to do:

cd /home/pb/proj/vsib
rm vsib
mknod vsib c 254 0
chown root.pb vsib
chmod ug=rw vsib

to get:

remus:~# ls -l /home/pb/proj/vsib/vsib
crw-rw-r-- 1 root pb 254, 0 Nov 2 2001 /home/pb/proj/vsib/vsib

You can browse the files in the ’/home/pb/proj/vsib’ directory, the main files are:

vsib.c - Linux device driver

wr.c - write/read VSIB from command line

Makefile - this compiles the others

d32.c - dumps standard input in 32-bit bits
1The mount can fail if you don’t have the CD-ROM drive as primary slave, ’/dev/hdb’. In this case

replace the symbolic link ’/dev/cdrom’ by:

cd /dev
rm cdrom
ln -s hdx cdrom

where ’hdx’ is the name of your CD-ROM device, {hdb,hdc,hdd}.

10

5 Setting up data RAID0 Disk Array

Now it is time to prepare the RAID setup, for now I’d recommend three data
disks—RAID can be reformatted relatively easily for two or four disks, if needed.

You probably have to ’shutdown -h now’ to swap away the temporary CD-ROM
and to connect hdb/hdc/hdd disks. Boot again to ’Linux’ (if you remembered to
run ’lilo’ under the full system; or ’S5Linux’ if you forgot :-)

5.1 Creating Partitions on 2–4 Disks

Prepare three equal-sized partitions on hdb/hdc/hdd disks with ’cfdisk’:

cfdisk /dev/hdb
cfdisk /dev/hdc
cfdisk /dev/hdd

For each disk, you need to invoke:

[New]
[Primary]

largest size available
[Beginning]

[Type]
fd (enter the type code as hexadecimal ’fd’)

[Write]
yes

[Quit]

to create for every disk one ’/dev/hdx1’ partition, equal in size on each disk and as
large as possible. The type code ’fd’ means “Linux auto-detecting raid partition”.

Please check the partition sizes with

fdisk -l

For instance, my current hdb disk lists as follows:

remus:~# fdisk -l /dev/hdb
Disk /dev/hdb: 255 heads, 63 sectors, 15017 cylin-
ders Units = cylinders of 16065 * 512 bytes
Device Boot Start End Blocks Id System
/dev/hdb1 1 14945 120045681 fd Linux raid autodetect
/dev/hdb4 14946 15017 578340 83 Linux

I created the partition 1 with type code ’fd’ to be as large as could fit on the smallest
of my disks (hdc is a Maxtor and not IBM...) and created a "filler" /dev/hda4. (This
can probably later be used by higher-level software to store plain ASCII “book-
keeping” information files.)

If you have three IBMs you can just create three "as large as possible" partitions.
Use the "[Type]" menu item to change them to ’fd’, RAID autodetect.

If you end up with different-sized partitions, chances are that the motherboard
BIOS is doing the LBA translation in a different way for /dev/hd{a,b} (primary)

11

than for /dev/hd{c,d} (secondary). In this case, instead of accepting the default of
"largest size available", please specify a size like "120000M" or "115000M" manu-
ally; you should get equal-sized partitions in this case.

When you now have the partitions, please ensure you have the mount point (empty
directory) ’/i1’ for the future mount of raid0 large disk. (This is done only once and
is the same regardless if you use 2 or 3 or 4 disks.)

mkdir /i1

5.2 Edit/Check ’/etc/raidtab’

When the partitions have been created you can init the RAID combination disk
which becomes ’/dev/md0’. Take the /etc/raidtab into use:

mv /etc/raidtab.not-yet /etc/raidtab

(My standard raidtab should be just fine for three /dev/hd{bcd}1 partitions. You
can comment out the third disk or add a fourth with an editor like emacs.)

5.3 Initializing, Starting and Formatting ’/dev/md0’

Run

mkraid --force /dev/md0

to combine the partitions listed in /etc/raidtab into one large ’/dev/md0’. (It
will ask you again for another longer –force–force–force -style confirmation argu-
ment because this wipes out all data in partitions listed in /etc/raidtab for that
/dev/md0.)

After RAID creation you can do manually what the boot sequence does automati-
cally in the future:

raidstart -a

i.e. start all RAID setups in /etc/raidtab. This makes ’/dev/md0’ available. (It
will be automatically made available in subsequent boots to the full Linux system
with the ’/etc/raidtab’ file; so one alternative at this point is to just reboot.)

Format the large RAID disk /dev/md0 with

mke2fs -m0 /dev/md0

(’-m0’ leaves 0% for the root user, i.e. you as a normal user like ’pb’ can consume
all of the disk for test data.)

Ensure that a mount point for the data area has been created:

mkdir /i1

All right, now all "do once" setup steps have been completed. The steps in section
5.1 “Partitioning” need only to be performed once, when the disk is taken into use
for the very first time.

When you want to change the number of disks, you need to un-do ’umount /i1’,
’raidstop -a’, and then do again all the steps in 5.2 “Editing /etc/raidtab” and 5.3
“Initializing raid0”.

12

5.4 “Per-boot” usage steps

What follows are "after every boot" usage steps. They are currently packaged into
one “root-invokable” script.

Get back (as root) to the root home directory ’/root’:

cd
cat ./vsib

You will see the "typical" actions needed as root to load the device driver and to
mount the RAID disks.

#!/bin/sh
insmod /home/amn/proj/vsib/vsib.o bigbufsize=144000000
echo "" > /proc/sys/vm/bdflush
mount /dev/md0 /i1

’insmod’ loads the VSIB board device driver allocating 144000000 bytes for the
ring DMA buffer. You should use a number evenly divisible by 1000 (the check
is currently missing in ’vsib.c’). That 144MB is enough for 2 seconds of data at
18MHz 32 track mode.

’# echo "" > /proc/sys/vm/bdflush’ is a placeholder for the probable disk writing
tuning arguments—2.4.19 seems to like to write in _large_ chunks to disk with
long intervals between, but it still seems to work at 512Mbit/s. At 576Mbit/s (with
parity bits) I’ve experimented with extra settings, like the following:

echo "100 5000 640 2560 150 30000 5000 1884 2" > /proc/sys/vm/bdflush

The final ’mount /dev/md0 /i1’ just takes the data area into use. You can easily
run this after logging in as root in virtual console Alt-F1 by:

./vsib

It loads the driver and mounts the data disk. If you want the system to do this by
default in every boot, the simplest place in Debian (although probably going away
gradually) is to put a two-line script into the directory ’/etc/rc.boot’. Create the
following file:

----/etc/rc.boot/vsib---
#!/bin/sh
/root/vsib

and make it executable with

chmod a+x /etc/rc.boot/vsib

In this way the script proper is still in ’root’ user’s home directory where it is easily
edited if we need to tune buffer sizes etc.

13

5.5 Linux Disk Tuning

The default values for disk buffer management in Linux kernel “2.4.19-ac4-bigphysarea”
are the following:

remus:~/proj/vsib> cat /proc/sys/vm/bdflush
30 500 0 0 500 3000 60 20 0

The numbers mean:

1. nfract, default 30% (range 0–100%) - percentage of buffer cache dirty to acti-
vate bdflush

• keep relatively low for VSIB

2. ndirty, default 500 blocks (range 1–50000) - maximum number of dirty blocks
to write out per wake-cycle

• increase significantly for VSIB

3. dummy2 (old, withdrawn, use 0)

4. dummy3 (old, withdrawn, use 0)

5. interval, default 500 jiffies (0.5s) (range 100–1000000 (1–10000s)) - jiffies delay
between kupdate flushes

• keep relatively small for VSIB

6. age_buffer, default 3000 jiffies (30s) (range 0–1000000 (0–10000s)) - time for
normal buffer to age before we flush it

• perhaps even zero for VSIB (new dirty buffers immediately to disk)

7. nfract_sync, default 60% (range 0–100%) - percentage of buffer cache dirty to
activate bdflush synchronously

8. nfract_stop_bdflush, default 20% (range 0–100%) - percetange of buffer cache
dirty to stop bdflush

9. dummy5 (unused, use 0)

So, apparently every 0.5s (parameter 5, “interval”) ’kupdate’ activates to check
"old" (>30s, parameter 6, “age_buffer”) dirty buffers and write them out onto disk.
’kupdate’ seems to be targeted to take care of “old, scattered” changed disk blocks
whereas ’bdflush’ below takes care of “mass writes”.

On the other hand, the ’bdflush’ is activated based on consumption of buffer cache
memory. When over 30% (1, nfract) is dirty, wake up ’bdflush’ to write 500 blocks
(2, ndirty) or if more than 60% (7, nfract_sync) were dirty, write lots of blocks
forcing calling process to wait. When again below 20%, stop waking up ’bdflush’
(’kupdate’ writes out aging buffers).

The first item to change would probably be 2, “ndirty” with a significant increase
from 500 to, say, 5000 blocks, perhaps even more.

echo "30 5000 0 0 500 3000 60 20 0" > /proc/sys/vm/bdflush

14

5.6 Test Directory

I’ve been using a test directory called ’t’, create it as root and "donate" it to ’pb’:

mkdir /i1/t
chown pb.pb /i1/t

So now you can do all tests nicely as ’pb’ and need not worry about accidentally
messing up something as ’root’ in VSIB tests.

Log in in virtual console Alt-F2 as ’pb’ and:

cd proj/vsib

Finally, you can start doing those ’./wr 90000 1000 1 /i1/t/tref 1000 <vsib’ test
command lines.

The command line means:

remus:~/proj/vsib>
./wr ./wr: needs at least blocksize total-
blocks ndirs { path%d blks }

• read and write 90000 bytes at a time (one Mark4 frame /w parity included,
32 tracks)

• 1000 total # of blocks

• using 1 directory/file name template

– the name being ’/i1/t/tref’

– and this name will receive 1000 blocks (of 90000 bytes each)

You can put a ’%d’ printf()-expression in name template and that will be replaced
by an incrementing number:

./wr 90000 10000 1 /i1/t/tref%04d 1000 <vsib

will write files:

/i1/t/tref0000
/i1/t/tref0001
/i1/t/tref0002
...
/i1/t/tref0009

with 1000 (90000 byte) blocks each until the total of 10000 blocks have been con-
sumed.

For calculating how many blocks to write it is easy to remember that highest-speed
tape data is 9000000 bits/s / 22500 bits/frame == 400 frames/s. Thus 32-track
(32*9==) 288Mbits/s data is 400 blocks per second (block size being 90000 bytes).
A typical recommended file size for this case would be 10 seconds, 4000 blocks,
resulting in about 360MB-sized files.

15

6 Performing VSIB/VSIC Tests

6.1 VSIC Modes

When VSIC JP2 “TEST/MODE” pins 1,3,5,7 are grounded, these four bits select
the operation mode of the VSIC board. The following table lists the selections
currently available.

JP2 "TEST/MODE" pin # 7531 -- 1==connect to GND

alt_VLBA_sampler: "0000";
VLBA_sampler: "0001";
alt_MK4_sampler: "0010"; -- not implemented yet
MK4_sampler: "0011"; -- not implemented yet
(vacant) "0100";
(vacant) "0101";
decrement_testmode: "0110"; -- decrementing 32-bit word
testmode: "0111"; -- VSI-H test pattern
MKIV_IOB: "1000"; -- Mk4 fmt headstack #1 (50-pin)
MKIV_IOB_no_parity: "1001";
MKIV_WDB: "1010"; -- Mk4 fmt headstack #2 (40-pin)
MKIV_WDB_no_parity: "1011";
VLBA_recorder: "1100";
VLBA_recorder_no_parity:"1101";
S2_sampler "1110";
milkingmachine: "1111";

The four pins 7-3-5-1 can be though as one hex digit, MSB–>LSB. These bits light
up LEDs in order D2-D3-D4-D5, MSB–>LSB.

6.2 Performing Tests

I’ll try to depict the procedure we have used for testing both VSIB and VSIC boards.
The “big picture” is as follows:

1. Get the nVidia PC up and running with those two CD-Rs, details in preced-
ing sections.

2. Connect a jumper wire between VSIB TEST header (JP2) pin 1 and GND (JP3)
to enable the Aux VSI connector (J3) to transmit the VSI-H test pattern at
50MHz clock rate.

3. Connect the Aux VSI connector (J3) to the Primary VSI connector (J2) with
the VSI cable. (“Loopback connection.”)

4. Capture reference data with the ’./wr’ command similar to the following:

./wr 90000 1000 1 /i1/t/tref 1000 <vsib

5. Provide a +4.5V..+5.0VDC supply to the VSIC power connector J3, GND goes
to silkscreen +3.3V and +4.5V..+5.0VDC to the label +4.4V. The board requires
approximately 1.2A when driving one output VSI connector. (Less than 1.5A
when driving two VSI output connectors simultaneously.) Verify that the
Xilinx loads its firmware from PROM when the RESET button S1 is pressed:
LED D6 "NO PGM" should blink briefly and then stay off.

16

6. Set up VSI test pattern mode "7" at "TEST/MODE" header JP2. Wire-wrap
pins 1,3,5 to GND (JP1) and verify that LEDs D1,D2,D3 light up. (Alterna-
tively, you may want to connect a codewheel switch to a short ribbon cable
and a 10-pin ribbon cable connector so that the common is a clip wire to GND
(JP1) and LSB goes to pin 1 or JP2, next to 3, next to 5, and the MSB goes to 7.)
This enables the VSIC to emit the VSI test pattern at 50MHz at both output
VSI connectors J1 and J2.

7. Detach the VSI cable from VSIB aux VSI connector and connect it to VSIC
VSI1 connector (J1). Capture data:

./wr 90000 1000 1 /i1/t/tvsic1-c1 1000 <vsib

8. Compare this data file with the reference data:

cmp -l /i1/t/tref /i1/t/tvsic1-c1 | less

9. If discrepancies are found, dump the data file with either hex dump:

hexdump /i1/t/tvsic1-c1 | less

and/or bit dump

./d32 < /i1/t/tvsic1-c1 | less

In bit dump stuck bits are easily identified by scrolling back and forth. The
bit order in dump is from VSI connector MSB (b31) to LSB (b0).

10. When ’cmp’ delivers the same "tref" results, move the VSI cable to VSI2 con-
nector (J2) and repeat the test:

./wr 90000 1000 1 /i1/t/tvsic1-c2 1000 <vsib

11. Repeat the test for the second VSIC board you have built.

These steps have verified that the power supply regulators, Xilinx, PROM, XTAL,
and the LVDS transceivers are operating correctly. For all this to work you need to
setup ’wr.c’ to skip every other 32-bit VSI data word as (50MHz*4bytes*8bits)==1600Mbits/s.
(This is how ’wr.c’ is shipped on the “remus.tgz” CD-R disk.)

The next step is to verify that RS422 inputs work correctly. For this to work cor-
rectly you need to set ’wr.c’ to setup the VSIB board to capture every VSI 32-bit
word. This is performed as follows. Please make sure that your ’wr’ executable
in ’proj/vsib’ directory has been compiled with the following settings within the
’proj/vsib/wr.c’ source code.

---wr.c---
...
void
start_VSIB(void)
{

vsib_ioctl(VSIB_SET_MODE,
#if 1 <----------------- this is one

// 32-bit Mark5A. */
(VSIB_MODE_MODE(/*vsib_mode=>*/0)

#endif
#if 0 <----------------- this is zero

// 16-bit Mark5A. */
(VSIB_MODE_MODE(/*vsib_mode=>*/1)

#endif
#if 0 <----------------- this is zero

17

// 8-bit Mark5A. */
(VSIB_MODE_MODE(/*vsib_mode=>*/4)

#endif
| VSIB_MODE_RUN
| (0 ? VSIB_MODE_GIGABIT : 0) <---

zero
| (0 ? VSIB_MODE_EMBED_1PPS_MARKERS : 0) <---

zero
| (/*skip_samples=>*/0 & 0x0000ffff)) <---

zero
);

} /* start_VSIB */
...

That is, we will not use VSIB “gigabit mode” (delay aux VSI output 1pps by one
clock), will not change TOST data word to ’0xffffffff’ (the 32-bit VSI word which
was captured when 1pps input went high), and “skip_samples” will be zero, so
that VSIB does not skip any VSI words between saved VSI words.

Your ’wr.c’ source code probably contains "/*skip_samples=>*/1" in the above,
to allow capturing 50MHz VSI test data coming out of VSIB aux VSI connector
when TEST pin 1 is connected to GND. (50MHz*32bits == 1600Mbits/s, way too
much for even a short test run. When "/*skip_samples=>*/1", every other word
is skipped, 1600/2==800Mbits/s which is ok for nVidia to push into memory; the
disks won’t sustain it for longer than a few seconds, though.)

When you have finished editing ’wr.c’, say

make

To be absolutely sure you can say ’rm wr’ before saying ’make’.

Now you can perform Mk4 formatter tests like follows:

1. Connect Mk4 formatter headstack #2 40-pin outputs ("WDB") to VSIC input
connectors, even cable to IN#1 (J4) and odd to IN#2 (J5).

2. Enable a Mk4 mode at headstack #2. You need to set the formatter aux field to
enable Mk4 formatter to emit track numbers in frame headers. The following
FS commands seem to be able to setup this:

form=a,8
form4=/con 202
form4=/aux 0x1234 0x5678

You can select the data rate by changing the ’8’ in the above (8–>9 MHz per
track, 288Mbits/s total) to, say, ’16’ for 576Mbit/s output per each 32-track
headstack. The separate ’form4=/aux’ command is apparently required for
the formatter to emit track numbers in headers; the track numbers are set up
as a by-product of setting up the fixed auxiliary field.

3. Select VSIC mode "A", that is, GND pins 3 and 7 of "TEST/MODE" header
JP2. (LEDs D2 and D4 should be on.)

4. Capture some data:

./wr 90000 1000 1 /i1/t/tmk4h2-c1 1000 <vsib

5. Bit-dump the data to be able to see track numbers in the dump:

18

./d32 < /i1/t/tmk4h2-c1 | less -N

6. As you can see, most of the frame header bits are the same for every track,
you’ll see rows of ’1 1 1 1 ...’ and ’0 0 0 0 ...’. However, the track-specific track
number can be found, MSB first, starting from bit row 39:

39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
41 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
42 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0
43 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1
44 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

tr#33 31 29 27 25 23 21 19 17 15 13 11 09 07 05 03

32 30 28 26 24 22 20 18 16 14 12 10 08 06 04 02

Again, this part will reveal both stuck bits and shorts to adjacent bits.

7. Repeat the test for another VSIC.

8. You can make the 50-pin - to - 40-pin conversion cables to test the headstack
#1 connection. (Wires 41–50 are not connected.) Then if you set VSIC mode
"8" (only pin 7 of "TEST/MODE" to GND) you will be able to capture similar
data from Mk4 formatter headstack #1 "IOB" connectors.

19

