
SPE Runtime Management Library

Version 1.1

CBEA JSRE Series
Cell Broadband Engine Architecture
Joint Software Reference
Environment Series

February 9, 2006

SPE Runtime Management Library, Version 1.1

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated,
Toshiba Corporation 2003, 2004, 2005, 2006

All Rights Reserved
Printed in the United States of America February 2006

The following are trademarks of International Business Machines Corporation in the United States, or
other countries, or both.

IBM PowerPC
IBM Logo PowerPC Architecture

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described
in this document are NOT intended for use in applications such as implantation, life support, or other
hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage.
The information contained in this document does not affect or change IBM product specifications or
warranties. Nothing in this document shall operate as an express or implied license or indemnity under
the intellectual property rights of IBM or third parties. All information contained in this document was
obtained in specific environments, and is presented as an illustration. The results obtained in other
operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS.
In no event will IBM be liable for damages arising directly or indirectly from any use of the information
contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com

The IBM semiconductor solutions home page can be found at ibm.com/chips

February 9, 2006

 i

SPE Runtime Management Library, Version 1.1

Table of Contents
About This Document ... ii
Audience.. ii
Version History.. ii
Related Documentation ... ii
Document Structure... ii

Overview ..1
SPE Thread Management Facilities ...2

spe_create_group ..2
spe_create_thread ...4
spe_get_affinity, spe_set_affinity...6
spe_get_context, spe_set_context...7
spe_get_event ...8
spe_get_group...10
spe_get_ls ...11
spe_get_ps_area..12
spe_get_priority, spe_set_priority, spe_get_policy ..14
spe_get_threads ..15
spe_group_defaults...16
spe_group_max...17
spe_kill..18
spe_open_image, spe_close_image ..19
spe_wait ..20

MFC Problem State Facilities...22
spe_mfc_get, spe_mfc_getb, spe_mfc_getf..22
spe_mfc_put, spe_mfc_putb, spe_mfc_putf...24
spe_mfc_read_tag_status..25
spe_read_out_mbox..26
spe_stat_in_mbox, spe_stat_out_mbox, spe_stat_out_intr_mbox ...27
spe_write_in_mbox ..28
spe_write_signal ...29

 ii

SPE Runtime Management Library, Version 1.1

About This Document
This document describes SPE Runtime Management Library. This library provides applications access to Synergistic
Processing Elements (SPEs) via a thread abstraction model in which SPE programs can be scheduled for execution on a
SPE thread.

Audience
The document is intended for system and application programmers wishing to develop Cell Broadband Engine (CBE)
applications that fully exploit the SPEs.

Version History
This section describes significant changes made to the SPE Runtime Management Library specification for each version
of this document.

Version Number & Date Changes

Version 1.0
October 31, 2005

Initial public release of the document.

Version 1.1
February 9, 2006

Changes include:
• Replaced spe_get_ps function with spe_get_ps_area.
• Added spe_mfc_get and spe_mfc_put functions
• Added spe_mfc_read_tag_status functions

Related Documentation
The following table provides a list of reference and supporting materials for the SPE Runtime Management Library
specification:

Document Title Version Date

Cell Broadband Engine Architecture 1.0 August 2005

Document Structure
This document contains the following major sections:

1. Overview

2. SPE Thread Management Facilities

3. MFC Problem State Facilities

 Overview 1

SPE Runtime Management Library, Version 1.1

Overview

The SPE Management Library consists of two sets of PPE functions:

 A set of PPE functions used to manage SPEs (Synergistic Processing Elements). These interfaces are similar to those

used to manage PPE threads on a POSIX compliant operating system.

 Another set of functions used to access MFC (Memory Flow Control) problem state facilities.

The SPE Management library introduces the following terminology.

SPE Thread An SPE thread is a thread of control that can be executed independently of the calling task. SPE
threads are created by calling spe_create_thread. SPE threads have a unique identifier, of type
speid_t, which can be used to query or set SPE thread attributes.

SPE Group An SPE group represents a collection of SPE threads that share scheduling attributes. Each SPE thread
belongs to exactly one SPE group. SPE groups are created by calling spe_create_group. SPE groups
have a unique identifier, of type spe_gid_t, which can be used to query or set SPE group attributes.

Library Name(s)

libspe

Header File(s)

<libspe.h>

 SPE Thread Management Facilities 2

SPE Runtime Management Library, Version 1.1

SPE Thread Management Facilities

spe_create_group

C Specification
#include <libspe.h>
#include <sched.h>
spe_gid_t spe_create_group (int policy, int priority, int spe_events)

Description
The spe_create_group function allocates a new SPE thread group. SPE thread groups define the scheduling policies and
priorities for a set of SPE threads. Each SPE thread belongs to exactly one group.

As an application creates SPE threads, the new threads are added to the designated SPE group. However the total number of
SPE threads in a group cannot exceed the group maximum, which is dependent upon scheduling policy, priority, and
availability of system resources. The spe_group_max function returns the maximum allowable number of SPE threads for a
group.

All runnable threads in an SPE group may be gang scheduled for execution. Gang scheduling permits low-latency interaction
among SPE threads in shared-memory parallel applications.

Parameters
policy Defines the scheduling class for SPE threads in a group. Accepted values are:
 SCHED_RR which indicates real-time round-robin scheduling.
 SCHED_FIFO which indicates real-time FIFO scheduling.
 SCHED_OTHER which is used for low priority tasks suitable for filling otherwise idle SPE cycles.
 The real-time scheduling policies SCHED_RR and SCHED_FIFO are available only to processes

with super-user privileges.
priority Defines the SPE group’s scheduling priority within the policy class. For the real-time policies

SCHED_RR and SCHED_FIFO, priority is a value in the range of 1 to 99. For interactive scheduling
(SCHED_OTHER) the priority is a value in the range 0 to 99. The priority for an SPE thread group can
be modified with spe_set_priority, or queried with spe_get_priority.

spe_events A non-zero value for this parameter allows the application to receive events for SPE threads in the
group. SPE events are conceptually similar to Linux signals, but differ as follows: SPE events are
queued, ensuring that if multiple events are generated, each will be delivered; SPE events are delivered
in the order received; SPE events have associated data, including the type of event and the SPE thread
id. The spe_get_event function can be called to wait for SPE events.

Return Value
On success, a positive non-zero identifier for a new SPE group is returned. On error, zero is returned and errno will be set to
indicate the error.

Possible errors include:

ENOMEM The SPE group could not be allocated due to lack of system resources.

ENOMEM The total number of SPE groups in the system has reached the system maximum value.

EINVAL The requested scheduling policy or priority was invalid.
EPERM

The process does not have sufficient privileges to create an SPE group with the requested
scheduling policy or priority.

ENOSYS

The SPE group could not be allocated due to lack of implementation support for the specified
scheduling priority or policy.

 SPE Thread Management Facilities 3

SPE Runtime Management Library, Version 1.1

See Also
spe_create_thread
spe_group_defaults
spe_group_max
spe_get_priority, spe_set_priority, spe_get_policy

 SPE Thread Management Facilities 4

SPE Runtime Management Library, Version 1.1

spe_create_thread

C Specification
#include <libspe.h>
speid_t spe_create_thread(spe_gid_t gid, spe_program_handle_t *spe_program_handle, void *argp, void *envp,
 unsigned long mask, int flags)

Description
spe_create_thread creates a new SPE thread of control that can be executed independently of the calling task. As an
application creates SPE threads, the threads are added to the designated SPE group. The total number of SPE threads in a
group cannot exceed the group maximum. The spe_group_max function returns the number of SPE threads allowed for the
group.

Parameters
gid Identifier of the SPE group that the new thread will belong to. SPE group identifiers are returned by

spe_create_group. The new SPE thread inherits scheduling attributes from the designated SPE
group. If gid is equal to SPE_DEF_GRP (0), then a new group is created with default scheduling
attributes, as set by calling spe_group_defaults.

spe_program_handle Indicates the program to be executed on the SPE. This is an opaque pointer to an SPE ELF image
which has already been loaded and mapped into system memory. This pointer is normally provided
as a symbol reference to an SPE ELF executable image which has been embedded into a PPE ELF
object and linked with the calling PPE program. This pointer can also be established dynamically by
loading a shared library containing an embedded SPE ELF executable, using dlopen(2) and
dlsym(2), or by using the spe_open_image function to load and map a raw SPE ELF executable.

argp

An (optional) pointer to application specific data, and is passed as the second parameter to the SPE
program.

envp

An (optional) pointer to environment specific data, and is passed as the third parameter to the SPE
program.

mask The processor affinity mask for the new thread. Each bit in the mask enables (1) or disables (0) thread
execution on a cpu. At least one bit in the affinity mask must be enabled. If equal to -1, the new thread
can be scheduled for execution on any processor. The affinity mask for an SPE thread can be changed
by calling spe_set_affinity, or queried by calling spe_get_affinity.
A bit-wise OR of modifiers that are applied when the new thread is created. The following values are
accepted:
 0 No modifiers are applied
 SPE_CFG_SIGNOTIFY1_OR Configure the Signal Notification 1 Register to be in “logical

OR” mode instead of the default “Overwrite” mode.
 SPE_CFG_SIGNOTIFY2_OR Configure the Signal Notification 1 Register to be in “logical

OR” mode instead of the default “Overwrite” mode.
SPE_MAP_PS Request permission for memory-mapped access to the SPE

thread’s problem state area(s). Direct access to problem state
is a real-time feature, and may only be available to programs
running with privileged authority (or in Linux, to processes
with access to CAP_RAW_IO; see capget(2) for details).

flags

SPE_USER_REGS Specifies that the SPE setup registers r3, r4, and r5 are
initialized with the 48 bytes pointed to by argp.

Return Value
On success, a positive non-zero identifier of the newly created SPE thread is returned. On error, 0 is returned and errno will
be set to indicate the error.

Possible errors include:

ENOMEM The SPE thread could not be allocated due to lack of system resources
EINVAL The value passed for mask or flags was invalid.

 SPE Thread Management Facilities 5

SPE Runtime Management Library, Version 1.1

EPERM

The process does not have permission to add threads to the designated SPE group, or to use
the SPU_MAP_PS setting.

ESRCH The SPE group could not be found.

See Also
spe_create_group
spe_get_group
spe_get_ls
spe_get_ps_area
spe_get_threads
spe_group_defaults
spe_group_max
spe_open_image, spe_close_image

 SPE Thread Management Facilities 6

SPE Runtime Management Library, Version 1.1

spe_get_affinity, spe_set_affinity

C Specification
#include <libspe.h>
int spe_get_affinity(speid_t speid, unsigned long *mask)
int spe_set_affinity(speid_t speid, unsigned long mask)

Description
The spe_get_affinity function returns the processor affinity mask for an SPE thread.

The spe_set_affinity function sets the processor affinity mask for an SPE thread.

Parameters
speid Identifier of a specific SPE thread.

mask The affinity bitmap is represented by the value specified by mask. The least significant bit
corresponds to the first cpu on the system, while the most significant bit corresponds to the last cpu
on the system. A set bit corresponds to a legally schedulable processor while an unset bit
corresponds to an illegally schedulable processor. In other words, a thread is bound to and will only
run on cpu whose corresponding bit is set. Usually, all bits in the mask are set.

Return Value
On success, spe_get_affinity and spe_set_affinity return 0. On failure, -1 is returned and errno is set appropriately.
spe_get_affinity returns the affinity mask in the memory pointed to by the mask parameter.

Possible errors include:

EFAULT The supplied memory address for mask was invalid.
EINVAL The mask is invalid or cannot be applied.
ENOSYS The affinity setting operation is not supported by the implementation or environment.
ESRCH The specified SPE thread could not be found.

See Also
spe_create_thread
sched_setaffinity (2)

 SPE Thread Management Facilities 7

SPE Runtime Management Library, Version 1.1

spe_get_context, spe_set_context

C Specification
#include <libspe.h>
int spe_get_context(speid_t speid, struct spe_ucontext *uc)
int spe_set_context(speid_t speid, struct spe_ucontext *uc)

Description
The spe_get_context call returns the SPE user context for an SPE thread.
The spe_set_context call sets the SPE user context for an SPE thread.

Parameters
speid Specifies the SPE thread

uc Points to the SPE user context structure, allocated by the application, of type:

 struct spe_ucontext {
 struct unsigned int gprs[128][4];
 unsigned int fpcr[4];
 unsigned int decr;
 unsigned int decr_status;
 unsigned int npc;
 unsigned int tag_mask;
 unsigned int event_mask;
 unsigned int srr0;
 unsigned int _reserved[2];
 void *ls;
};

// 128 x 128-bit SPE GPRs
// Floating point cntl
// SPE decrementing ctr
// SPE decrementer status
// SPE next program counter
// DMA tag query mask
// Event query mask
// Machine status register
// Unused
// SPE local storage area

Return Value
On success, both spe_get_context and spe_set_context return 0. On failure, -1 is returned and errno is set appropriately.

Possible error include:

EFAULT The memory region pointed to by uc is invalid.
EINVAL The execution status of the specified SPE thread is inappropriate.
ENOSYS The operation is not supported by the implementation or environment.
EPERM

The caller does not have permission to query or set the user context for the specified SPE
thread.

ESRCH The specified SPE thread could not be found.

See Also
spe_kill
spe_create_thread
spe_wait
getcontext (2), setcontect (2)

 SPE Thread Management Facilities 8

SPE Runtime Management Library, Version 1.1

spe_get_event

C Specification
#include <libspe.h>
int spe_get_event (struct spe_event *pevents, int nevents, int timeout)

Description
spe_get_event polls or waits for events that may be generated by threads in an SPE group.

Parameters
pevents This specifies an array of SPE event structures of type:

 struct spe_event {
 spe_gid_t gid;
 int events;
 int revents;
 speid_t speid;
 unsigned long data;
};

// input, SPE group id
// input, requested event mask
// output, returned events
// output, returned speid
// output, returned data

 gid This field is an input parameter, specifying the SPE group to query events for.

 events

This field is an input parameter, specifying a bit-mask of the SPE events the
application is interested in.

revents

This field is an output parameter, filled in by the operating system with the events
that actually occurred, either of the type requested, or of one of the types
SPE_EVENT_ERR, SPE_EVENT_NVAL, or SPE_EVENT_THREAD_EXIT.

The following possible bits in the events and revents masks are defined in
<libspe.h>. (The SPE_EVENT_ERR and SPE_EVENT_NVAL bits are
meaningless in the events field, and will be set in the revents field whenever the
corresponding condition is true).

 SPE_EVENT_MAILBOX
SPE_EVENT_STOP
SPE_EVENT_TAG_GROUP
SPE_EVENT_DMA_ALIGNMENT
SPE_EVENT_SPE_ERROR
SPE_EVENT_SPE_DATA_SEGMENT
SPE_EVENT_SPE_DATA_STORAGE
SPE_EVENT_SPE_TRAPPED
SPE_EVENT_THREAD_EXIT
SPE_EVENT_ERR
SPE_EVENT_NVAL

// Interrupting mailbox data
// SPE ‘stop-and-signal’ data
// Tag group complete data
// A DMA alignment error
// An illegal instruction error
// A DMA segmentation error
// A DMA storage error
// SPE ‘halt’ instruction
// A thread has exited
// An error occurred
// Invalid request

 speid This field is an output parameter, filled in by the operating system to indicate the id
of the SPE thread that generated the event.

 data This field is an output parameter, filled in by the operating system to indicate the
SPE data associated with the event.

nevents This specifies the number of spe_event structures in the pevents array.

timeout This specified the timeout value in milliseconds. A negative value meains an infinite timeout. If
none of the events requested (and no error) had occurred any of the SPE groups, the operating
system waits for timeout milliseconds for one of these events to occur.

 SPE Thread Management Facilities 9

SPE Runtime Management Library, Version 1.1

Return Value
On success, a positive number is returned, where the number returned indicates the number of structures which have non-zero
revents fields (in other words, those with events or errors reported). A value of 0 indicates that the call timed out and no
events have been selected. On error, -1 is returned and errno is set appropriately.

Possible errors include:

EFAULT The array given as a parameter was not contained in the calling program’s address space.
EINVAL No SPE groups have yet been created.
EINTR A signal occurred before any requested event.
EPERM The current process does not have permission to get SPE events.

Linux Notes
If SPE-events are not enabled for an SPE group, then POSIX signals may be delivered to the application,
as follows:

SPE-event POSIX signal Default Action

SPE_EVENT_MAILBOX SIGSPE (SIGURG) ignore

SPE_EVENT_STOP SIGSPE ignore

SPE_EVENT_TAG_GROUP SIGSPE ignore

SPE_EVENT_DMA_ALIGNMENT SIGBUS dump

SPE_EVENT_INVALID_DMA_CMD SIGBUS dump

SPE_EVENT_SPE_ERROR SIGILL dump

SPE_EVENT_DATA_SEGMENT SIGSEGV dump

SPE_EVENT_DATA_STORAGE SIGSEGV dump

SPE_EVENT_TRAPPED SIGABRT dump

SPE_EVENT_THREAD_EXIT SIGCHLD ignore

See Also
spe_create_group
poll (2)

 SPE Thread Management Facilities 10

SPE Runtime Management Library, Version 1.1

spe_get_group

C Specification
#include <libspe.h>
spe_gid_t spe_get_group (speid_t speid)

Description
The spe_get_group function returns the SPE group identifier for the SPE thread, as indicated by speid.

Parameters
speid The identifier of a specific SPE thread.

Return Value
The SPE group identifier for an SPE thread, or 0 on failure.

Possible errors include:

ESRCH The specified SPE thread could not be found.

See Also
spe_create_group
spe_get_threads

 SPE Thread Management Facilities 11

SPE Runtime Management Library, Version 1.1

spe_get_ls

C Specification
#include <libspe.h>
void *spe_get_ls (speid_t speid)

Description
The spe_get_ls function returns the address of the local storage for the SPE thread indicated by speid.

Parameters
speid The identifier of a specific SPE thread.

Return Value
On success, a non-NULL pointer is returned. On failure, NULL is returned and errno is set appropriately.

Possible errors include:

ENOSYS Access to the local store of an SPE thread is not supported by the operating system.
ESRCH The specified SPE thread could not be found.

See Also
spe_create_group
spe_get_ps_area

 SPE Thread Management Facilities 12

SPE Runtime Management Library, Version 1.1

spe_get_ps_area

C Specification
#include <libspe.h>
void *spe_get_ps_area (speid_t speid, enum ps_area)

Description
The spe_get_ps_area function returns a pointer to the problem state area specified by ps_area for the SPE thread indicated
by speid. In order to obtain a problem state area pointer the specified SPE thread must have been created with the
SPE_MAP_PS flag set with sufficient privileges.

The problem state pointer can be used to directly access problem state features without having to make library system calls.
Problem state features include multi-source synchronization, proxy DMAs, mailboxes, and signal notifiers. In addition,
these pointers, along with local store pointers (see spe_get_ls), can be used to perform SPE to SPE communications via
mailboxes, DMA’s and signal notification.

Parameters
speid The identifier of a specific SPE thread.
ps_area The problem state area pointer to be granted access and returned. Possible problem state areas include:

 SPE_MSSYNC_AREA

Return a pointer to the specified SPE’s MFC multisource
synchronization register problem state area as defined by the
following structure:
 typedef struct spe_mssync_area {
 unsigned int MFC_MSSync;
 } spe_mssync_area_t;

 SPE_MFC_COMMAND_AREA Return a pointer to the specified SPE’s MFC command parameter
and command queue control area as defined by the following
structure:
 typedef struct spe_mfc_command_area {
 unsigned char reserved_0_3[4];
 unsigned int MFC_LSA;
 unsigned int MFC_EAH;
 unsigned int MFC_EAL;
 unsigned int MFC_Size_Tag;
 union {
 unsigned int MFC_ClassID_CMD;
 unsigned int MFC_CMDStatus;
 };
 unsigned char reserved_18_103[236];
 unsigned int MFC_QStatus;
 unsigned char reserved_108_203[252];
 unsigned int Prxy_QueryType;
 unsigned char reserved_208_21B[20];
 unsigned int Prxy_QueryMask;
 unsigned char reserved_220_22B[12];
 unsigned int Prxy_TagStatus;
 } spe_mfc_command_area_t;
Note: The MFC_EAH and MFC_EAL registers can be
simultaneously written using a 64-bit store. Likewise,
MFC_Size_Tag and MFC_ClassID_CMD registers can be
simultaneously written using a 64-bit store.

 SPE_CONTROL_AREA Return a pointer to the specified SPE’s SPU control area as
defined by the following structure:
 typedef struct spe_spu_control_area {
 unsigned char reserved_0_3[4];
 unsigned int SPU_Out_Mbox;
 unsigned char reserved_8_B[4];
 unsigned int SPU_In_Mbox;
 unsigned char reserved_10_13[4];

 SPE Thread Management Facilities 13

SPE Runtime Management Library, Version 1.1

 unsigned int SPU_Mbox_Stat;
 unsigned char reserved_18_1B[4];
 unsigned int SPU_RunCntl;
 unsigned char reserved_20_23[4];
 unsigned int SPU_Status;
 unsigned char reserved_28_33[12];
 unsigned int SPU_NPC;
 } spe_spu_control_area_t;
Note: Explicit programmer manipulation of the SPU run control is
highly discouraged.

 SPE_SIG_NOTIFY_1_AREA Return a pointer to the specified SPE’s signal notification area 1 as
defined by the following structure:
 typedef struct spe_sig_notify_1_area {
 unsigned char reserved_0_B[12];
 unsigned int SPU_Sig_Notify_1;
 } spe_sig_notify_1_area_t;

 SPE_SIG_NOTIFY_2_AREA Return a pointer to the specified SPE’s signal notification area 2 as
defined by the following structure:
 typedef struct spe_sig_notify_2_area {
 unsigned char reserved_0_B[12];
 unsigned int SPU_Sig_Notify_2;
 } spe_sig_notify_2_area_t;

Return Value
On success, a non-NULL pointer to the requested problem state area is returned. On failure, NULL is returned and errno is set
appropriately.

Possible errors include:

EACCES Permission for direct access to the specified problem state area is denied or the SPE thread was
not created with memory-mapped problem state access.

EINVAL The specified problem state area is invalid.

ENOSYS Access to the specified problem area for the specified SPE thread is not supported by the
operating system.

ESRCH The specified SPE thread could not be found.

See Also
spe_create_thread
spe_get_ls

 SPE Thread Management Facilities 14

SPE Runtime Management Library, Version 1.1

spe_get_priority, spe_set_priority, spe_get_policy

C Specification
#include <libspe.h>
int spe_get_priority (spe_gid_t gid)

#include <libspe.h>
int spe_set_priority (spe_gid_t gid, int priority)

#include <libspe.h>
int spe_get_policy (spe_gid_t gid)

Description
The scheduling priority for the SPE thread group, as indicated by gid, is obtained by calling the spe_get_priority function, or
is set by calling the spe_set_priority function.

For the real-time policies SCHED_RR and SCHED_FIFO, priority is a value in the range of 1 to 99. Only the super-user
may modify real-time priorities. For SCHED_OTHER, priority is a value in the range 0 to 40. Only the super-user may raise
interactive priorities.

The scheduling policy class for an SPE group is queried by calling the spe_get_policy function.

Parameters
gid The identifier of a specific SPE group.
priority Specified the SPE thread group’s scheduling priority within the group’s scheduling policy class.

Return Value
On success, spe_get_priority returns a priority value of 0 to 99. On failure, spe_get_priority returns -1 and sets errno
appropriately.

On success, spe_set_priority returns zero. On failure, spe_set_priority returns -1 and sets errno appropriately.

On success, spe_get_policy returns a scheduling policy class value of SCHED_RR, SCHED_FIFO, or SCHED_OTHER.
On failure, spe_get_policy returns -1 and sets errno appropriately.

Possible errors include:

EINVAL The specified priority value is invalid.
EPERM The current process does not have permission to set the specified SPE thread group priority.
ESRCH The specified SPE thread group could not be found.

See Also
spe_create_group

 SPE Thread Management Facilities 15

SPE Runtime Management Library, Version 1.1

spe_get_threads

C Specification
#include <libspe.h>
int spe_get_threads (spe_gid_t gid, speid_t *spe_ids)

Description

spe_get_threads returns a list of SPE threads in a group, as indicated by gid, to the array pointed to by spe_ids.

The storage for the spe_ids array must be allocated and managed by the application. Further, the spe_ids array must be large
enough to accommodate the current number of SPE threads in the group. The number of SPE threads in a group can be
obtained by setting the spe_ids parameter to NULL.

Parameters
gid This is the identifier of the SPE group.

spe_ids This is a pointer to an array of speid_t values that will be filled in with the ids of the SPE threads in the group
specified by gid.

Return Value
On success, the number of SPE threads in the group is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

EFAULT The spe_ids array was contained within the calling program’s address space.
EPERM The current process does not have permission to query SPE threads for this group.
ESRCH The specified SPE thread group could not be found.

See Also
spe_create_group
spe_create_thread

 SPE Thread Management Facilities 16

SPE Runtime Management Library, Version 1.1

spe_group_defaults

C Specification
#include <libspe.h>
#include <sched.h>
int spe_group_defaults (int policy, int priority, int spe_events)

Description
spe_group_defaults changes the application defaults for SPE groups. When an application calls spe_create_thread and
designates an SPE group id equal to SPE_DEF_GRP (0), then a new group is created and the thread is added to the new
group. The group is created with default settings for memory access privileges and scheduling attributes. By calling
spe_group_defaults, the application can override the settings for these attributes.

The initial attribute values for SPE group 0 are defined as follows: the policy is set to SCHED_OTHER; the priority is set
to 0; and spe_events are disabled.

Parameters
policy This defines the scheduling class. Accepted values are:

 SCHED_RR which indicates real-time round-robin scheduling.
SCHED_FIFO which indicates real-time FIFO scheduling.
SCHED_OTHER which is used for low priority tasks suitable for filling otherwise idle SPE

cycles.
priority This defines the default scheduling priority. For the real-time policies SCHED_RR and

SCHED_FIFO, priority is a value in the range of 1 to 99. For interactive scheduling
(SCHED_OTHER) the priority is a value in the range 0 to 99.

spe_events A non-zero value for this parameter registers the application’s interest in SPE events for the group.

Return Value
On success, 0 is returned. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

EINVAL The specifiefied policy or priority value is invalid.

See Also
spe_create_group
spe_create_thread

 SPE Thread Management Facilities 17

SPE Runtime Management Library, Version 1.1

spe_group_max

C Specification
#include <libspe.h>
int spe_group_max (spe_gid_t gid)

Description
The spe_group_max function returns the maximum number of SPE threads that may be created for an SPE group, as
indicated by gid.

The total number of SPE threads in a group cannot exceed the group maximum, which is dependent upon the group’s
scheduling policy, priority, and availability of system resources.

Parameters
gid This is the identifier of the SPE group.

Return Value
On success, the maximum number of SPE threads allowed for the SPE group is return. On error, -1 is returned and errno is
set appropriately.

Possible errors include:

EPERM The calling process does not have privileges to query the SPE group.
ESRCH The specifiefied SPE group could not be found.

See Also
spe_create_group
spe_create_thread

 SPE Thread Management Facilities 18

SPE Runtime Management Library, Version 1.1

spe_kill

C Specification
#include <libspe.h>
#include <signal.h>
int spe_kill (speid_t speid, int signal)

Description
The spe_kill can be used to send a control signal to an SPE thread.

Parameters
speid The signal is delivered to the SPE thread identified.

signal This indicates the type of control signal to be delivered. It may be one of the following values:
 SIGKILL Kill the specified SPE thread.
 SIGSTOP Stop execution of the specified SPE thread.
 SIGCONT Resume execution of the specified SPE thread.

Return Value
On success, 0 is returned. On error, -1 is returned and errno is set appropriately.

Possible errors include:

ENOSYS The spe_kill operation is not supported by the implementation or environment.
EPERM

The calling process does not have permission to perform the kill action for the receiving SPE
thread.

ESRCH

The SPE thread does not exist. Note that a existing SPE thread might be a zombie, an SPE
thread which is already committed termination but yet had spe_wait called for it.

See Also
spe_create_thread
spe_wait
kill (2)

 SPE Thread Management Facilities 19

SPE Runtime Management Library, Version 1.1

spe_open_image, spe_close_image

C Specification
#include <libspe.h>
spe_program_handle_t *spe_open_image (const char * filename)

#include <libspe.h>
int spe_close_image (spe_program_handle_t *spe_program_handle)

Description
spe_open_image maps an SPE ELF executable indicated by filename into system memory and returns the mapped address
appropriate for use by the spe_create_thread API. It is often more convenient/appropriate to use the loading methodologies
where SPE ELF objects are converted to PPE static or shared libraries with symbols which will point to the SPE ELF objects
after these special libraries are loaded. These libraries are then linked with the associated PPE code to provide a direct symbol
reference to the SPE ELF object. The symbols in this scheme are equivalent to the address returned from the
spe_open_image function.

SPE ELF objects loaded using this function are not shared with other processes, but SPE ELF objects loaded using the other
scheme, mentioned above, can be shared if so desired.

spe_close_image unmaps an SPE ELF object that was previously mapped using spe_open_image.

Parameters
filename Specifies the filename of an SPE ELF executable to be loaded and mapped into system memory.

Return Values
On success, spe_open_image returns the address at which the specified SPE ELF object has been mapped. On failure, NULL
is returned and errno is set appropriately.

On success, spe_close_image returns 0. On failure, -1 is returned and errno is set appropriately.

Possible errors include:

EACCES The calling process does not have permission to access the specified file.
EFAULT

The filename parameter points to an address that was not contained is the calling process’s
addres space.

EINVAL

From spe_close_image, this indicates that the file, specified by filename, was not previously
mapped by a call to spe_open_image.

A number of other errno values could be returned by the open(2), fstat(2), mmap(2), munmap(2), or close(2)
system calls which may be utilized by the spe_open_image or spe_close_image functions.

See Also
spe_create_thread

 SPE Thread Management Facilities 20

SPE Runtime Management Library, Version 1.1

spe_wait

C Specification
#include <libspe.h>
#include <sys/wait.h>
int spe_wait (speid_t speid, int *status, int options)

Description
spe_wait suspends execution of the current process until the SPE thread specified by speid has exited. If the SPE thread has
already exited by the time of the call (a so-called “zombie” SPE thread), then the function returns immediately. Any system
resources used by the SPE thread are freed.

Parameters
speid Wait for the SPE thread identified.

options This parameter is an logical OR of zero or more of the following constants:
 WNOHANG Return immediately if the SPE thread has exited.

 WUNTRACED

Return if the SPE thread is stopped and its status has not been
reported.

status

If this value is non-NULL, spe_wait will store the SPE thread’s exit code at the address indicated by
status. This status can be evaluated with the following macros. Note: these macros take the stat
buffer, an int, as a parameter - not a pointer to the buffer!

 WIFEXITED(status) Is non-zero if the SPE thread exited normally.

WEXITSTATUS(status)

Evaluates to the least significant eight bits of the return code of the
SPE thread which terminated, which may have been set as the
argument to a call to exit() or as the argument for a return statement
in the main program. This macro can only be evaluated if
WIFEXITED returned non-zero.

 WIFSIGNALED(status)

Returns true if the SPE thread exited because of a signal which was
not caught.

WTERMSIG(status)

Returns the number of the signal that caused the SPE thread to
terminate. This macro can only be evaluated if WIFSIGNALED
returned non-zero.

WIFSTOPPED(status)

Returns true if the SPE thread which caused the return is currently
stopped; this is only possible if the call was done using
WUNTRACED.

WSTOPSIG(status)

Returns the number of the signal which caused the SPE thread to
stop. This macro can only be evaluated if WIFSTOPPED returned
non-zero.

Return Values
On success, 0 is returned. Zero is returned if WNOHANG was used and the SPE thread was available. On failure, -1 is
returned and errno is set appropriately.

Possible errors include:

ESRCH The specified SPE thread could not be found.

EINVAL The options parameter is invalid.
EFAULT status points to an address that was not contained in the calling process’s address space.
EPERM The calling process does not have permission to wait on the specified SPE thread.
EAGAIN

The wait queue was active at the time spe_wait was called, prohibiting additional waits, so
try again.

 SPE Thread Management Facilities 21

SPE Runtime Management Library, Version 1.1

See Also
spe_create_thread

 MFC Problem State Facilities 22

SPE Runtime Management Library, Version 1.1

MFC Problem State Facilities
In the event that direct problem state access is not available (see spe_get_ps_area), the following functions described in this
section will provide indirect access to the set of problem state facilities. These functions are guaranteed to be thread safe.

spe_mfc_get, spe_mfc_getb, spe_mfc_getf

C Specification
#include <libspe.h>
int spe_mfc_get(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int rid)

#include <libspe.h>
int spe_mfc_getb(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int
rid)

#include <libspe.h>
int spe_mfc_getf(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int
rid)

Description
The spe_mfc_get function places a get DMA command on the proxy command queue of the SPE thread specified by speid.
The get command transfers size bytes of data starting at the effective address specified by ea to the local store address
specified by ls. The DMA is identified by the tag id specified by tag and performed according transfer class and replacement
class specified by tid and rid respectively.

The spe_mfc_getb function is identical to spe_mfc_get except that it places a getb (get with barrier) DMA command on the
proxy command queue. The barrier form ensures that this command and all sequence commands with the same tag identifier
as this command are locally ordered with respect to all previously issued commands with the same tag group and command
queue.

The spe_mfc_getf function is identical to spe_mfc_get except that it places a getf (get with fence) DMA command on the
proxy command queue. The fence form ensure that this command is locally ordered with respect to all previously issued
commands with the same tag group and command queue.

The caller of these functions must ensure that the address alignments and transfer size is in accordance with the limitation
and restrictions of the Cell Broadband Engine Architecture.

Parameters
speid Specifies the SPE thread whose proxy command queue the get command is to be placed into.

ls Specifies the starting local store destination address.

ea Specifies the starting effective address source address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag id used to identify the DMA command.

tid Specifies the transfer class identifier of the DMA command.

rid Specifies the replacement class identifier of the DMA command.

Return Values
On success, spe_mfc_get, spe_mfc_getb and spe_mfc_getf return 0. On failure, -1 is returned.

 MFC Problem State Facilities 23

SPE Runtime Management Library, Version 1.1

See Also
spe_create_thread
spe_get_ps_area
spe_mfc_put, spe_mfc_putb, spu_mfc_putf
spe_mfc_read_tag_status

 MFC Problem State Facilities 24

SPE Runtime Management Library, Version 1.1

spe_mfc_put, spe_mfc_putb, spe_mfc_putf

C Specification
#include <libspe.h>
int spe_mfc_put(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int rid)

#include <libspe.h>
int spe_mfc_putb(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int
rid)

#include <libspe.h>
int spe_mfc_putf(speid_t speid, unsigned int ls, void *ea, unsigned int size, unsigned int tag, unsigned int tid, unsigned int
rid)

Description
The spe_mfc_put function places a get DMA command on the proxy command queue of the SPE thread specified by speid.
The put command transfers size bytes of data starting at the local store address specified by ls to the effective address
specified by ea. The DMA is identified by the tag id specified by tag and performed according transfer class and replacement
class specified by tid and rid respectively.

The spe_mfc_putb function is identical to spe_mfc_put except that it places a puttb (put with barrier) DMA command on
the proxy command queue. The barrier form ensures that this command and all sequence commands with the same tag
identifier as this command are locally ordered with respect to all previously issued commands with the same tag group and
command queue.

The spe_mfc_puttf function is identical to spe_mfc_put except that it places a putf (put with fence) DMA command on the
proxy command queue. The fence form ensures that this command is locally ordered with respect to all previously issued
commands with the same tag group and command queue.

The caller of these functions must ensure that the address alignments and transfer size is in accordance with the limitation
and restrictions of the Cell Broadband Engine Architecture.

Parameters
speid Specifies the SPE thread whose proxy command queue the put command is to be placed into.

ls Specifies the starting local store source address.

ea Specifies the starting effective address destination address.

size Specifies the size, in bytes, to be transferred.

tag Specifies the tag id used to identify the DMA command.

tid Specifies the transfer class identifier of the DMA command.

rid Specifies the replacement class identifier of the DMA command.

Return Values
On success, spe_mfc_put, spe_mfc_putb and spe_mfc_putf return 0. On failure, -1 is returned.

See Also
spe_create_thread
spe_get_ps_area
spe_mfc_get, spe_mfc_getb, spu_mfc_getf
spe_mfc_read_tag_status

 MFC Problem State Facilities 25

SPE Runtime Management Library, Version 1.1

spe_mfc_read_tag_status

C Specification
#include <libspe.h>
int spe_mfc_read_tag_status_all(speid_t speid, unsigned int mask)

#include <libspe.h>
int spe_mfc_read_tag_status_any(speid_t speid, unsigned int mask)

#include <libspe.h>
int spe_mfc_read_tag_status_immediate(speid_t speid, unsigned int mask)

Description
The spe_mfc_read_tag_status_all function suspends execution until all DMA commands in the tag groups enabled by the
mask parameter have no outstanding DMAs in the proxy command queue of the SPE thread specified by speid. The masked
tag status is returned.

The spe_mfc_read_tag_status_any function suspends execution until any DMA commands in the tag groups enabled by the
mask parameter have no outstanding DMAs in the proxy command queue of the SPE thread specified by speid. The masked
tag status is returned.

The spe_mfc_read_tag_status_immediate function returns the tag status for the tag groups specified by the mask
parameter for the proxy command queue of the SPE thread specified by the speid.

Parameters
speid Specifies the SPE thread whose proxy command queue status is to be read.

Return Values
On success, spe_mfc_read_tag_status_all, spe_mfc_read_tag_status_any, spe_mfc_read_tag_status_immediate
returns the current tag status. On failure, -1 is returned.

See Also
spe_mfc_get, spe_mfc_getb, spe_mfc_getf
spe_mfc_put, spu_mfc_putb, spu_mfc_putf

 MFC Problem State Facilities 26

SPE Runtime Management Library, Version 1.1

spe_read_out_mbox

C Specification
#include <libspe.h>
unsigned int spe_read_out_mbox(speid_t speid)

Description
The spe_read_out_mbox function returns the contents of the SPU outbound mailbox for the SPE thread whose problem
state address is spe_ps_addr. This read is non-blocking and will return -1 if no mailbox data is available.

spe_stat_out_mbox can be called to ensure that data is available prior to reading the outbound mailbox.

Parameters
speid Specifies the SPE thread whose outbound mailbox is to be read.

Return Values
On success, spe_read_out_mbox returns the next 32-bit mailbox message. On failure, -1 is returned.

See Also
spe_stat_in_mbox, spe_stat_out_mbox, spe_stat_out_intr_mbox
spe_write_in_mbox
read (2)

 MFC Problem State Facilities 27

SPE Runtime Management Library, Version 1.1

spe_stat_in_mbox, spe_stat_out_mbox, spe_stat_out_intr_mbox

C Specification
#include <libspe.h>
int spe_stat_in_mbox(speid_t speid)

#include <libspe.h>
int spe_stat_out_mbox(speid_t speid)

#include <libspe.h>
int spe_stat_out_intr_mbox(speid_t speid)

Description
The spe_stat_in_mbox function fetches the status of the SPU inbound mailbox for the SPE thread whose problem state
address is spe_ps_addr. 0 is return if the mailbox is full. A non-zero value specifies the number of available (32-bit)
mailbox entries.

The spe_stat_out_mbox function fetches the status of the SPU outbound mailbox for the SPE thread whose problem state
address is spe_ps_addr. 0 is return if the mailbox is empty. A non-zero value specifies the number of 32-bit unread mailbox
entries.

The spe_stat_out_intr_mbox function fetches the status of the SPU outbound interrupt mailbox for the SPE thread whose
problem state address is spe_ps_addr. 0 is return if the mailbox is empty. A non-zero value specifies the number of 32-bit
unread mailbox entries.

Parameters
speid Specifies the SPE thread whose mailbox status is to be read.

Return Values
On success, spe_stat_in_mbox, spe_stat_out_mbox, and spe_stat_out_intr_mbox return the current status of the inbound,
outbound and outbound interrupting mailbox, respectively. On failure, -1 is returned.

See Also
spe_read_out_mbox
spe_write_in_mbox
read (2)

 MFC Problem State Facilities 28

SPE Runtime Management Library, Version 1.1

spe_write_in_mbox

C Specification
#include <libspe.h>
int spe_write_in_mbox(speid_t speid, unsigned int data)

Description
The spe_write_in_mbox function places the 32-bit message specified by data into the SPU inbound mailbox for the SPE
thread whose problem state address is spe_ps_addr.

If the mailbox is full, then spe_write_in_mbox can overwrite the last entry in the mailbox. spe_stat_in_mbox can be called
to ensure that space is available prior to writing to the inbound mailbox.

Parameters
speid Specifies the SPE thread whose outbound mailbox is to be read.

data 32-bit message to be written into the SPE’s inbound mailbox.

Return Values
On success, spe_write_in_mbox returns 0. On failure, -1 is returned.

See Also
spe_read_out_mbox
spe_stat_in_mbox. Spe_stat_out_mbox, spe_stat_out_intr_mbox
write (2)

 MFC Problem State Facilities 29

SPE Runtime Management Library, Version 1.1

spe_write_signal

C Specification
#include <libspe.h>
int spe_write_signal(speid_t speid, unsigned int signal_reg, unsigned int data)

Description
The spe_write_signal function writes data to the signal notification register specified by signal_reg of the SPE thread
whose problem state address is spe_ps_addr.

Parameters
speid Specifies the SPE thread whose signal register is to be written to.

signal_reg Specified the signal notification register to be written. Valid signal notification registers are:
 SPE_SIG_NOTIFY_REG_1 SPE signal notification register 1
 SPE_SIG_NOTIFY_REG_2 SPE signal notification register 2
data The 32-bit data to be written to the specified signal notification register.

Return Values
On success, spe_write_signal returns 0. On failure, -1 is returned.

See Also
spe_get_ps_area
spe_write_in_mbox

	
	 About This Document
	Audience
	Version History
	Related Documentation
	Document Structure

	
	Overview
	 SPE Thread Management Facilities
	spe_create_group
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_create_thread
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_affinity, spe_set_affinity
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_context, spe_set_context
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_event
	C Specification
	Description
	Parameters
	Return Value
	Linux Notes
	See Also

	 spe_get_group
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_ls
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_ps_area
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_priority, spe_set_priority, spe_get_policy
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_get_threads
	C Specification
	Parameters
	Return Value
	See Also

	 spe_group_defaults
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_group_max
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_kill
	C Specification
	Description
	Parameters
	Return Value
	See Also

	 spe_open_image, spe_close_image
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_wait
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 MFC Problem State Facilities
	spe_mfc_get, spe_mfc_getb, spe_mfc_getf
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_mfc_put, spe_mfc_putb, spe_mfc_putf
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_mfc_read_tag_status
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_read_out_mbox
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_stat_in_mbox, spe_stat_out_mbox, spe_stat_out_intr_mbox
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_write_in_mbox
	C Specification
	Description
	Parameters
	Return Values
	See Also

	 spe_write_signal
	C Specification
	Description
	Parameters
	Return Values
	See Also

