FABRIC A pilot study of distributed correlation

Huib Jan van Langevelde Ruud Oerlemans Sergei Pogrebenko and many other JIVErs...

Aim of the project

- Research the possibility of distributed correlation
 - $\boldsymbol{\cdot}$ Using the Grid for getting the CPU cycles
 - Can it be employed for the next generation VLBI correlation?
 - Exercise the advantages of software correlation
 - $\boldsymbol{\cdot}$ Using floating point accuracy and special filtering
 - Explore (push) the boundaries of the Grid paradigm
 - "Real time" applications, data transfer limitations
- To lead to a modest size demo
 - With some possible real applications:
 - Monitoring EVN network performance
 - Continuous available eVLBI network with few telescopes
 - Monitoring transient sources
 - ·Astrometry, possibly of spectral line sources
 - Special correlator modes: spacecraft navigation, pulsar gating
 - Test bed for broadband eVLBI research

Something to try on the roadmap for the next generation correlator, even if you do not believe it is the solution...

SCARIe FABRIC

- EC funded project EXPReS (03/2006)
 - To turn eVLBI into an operational system
 - Plus: Joint Research Activity: FABRIC
 - Future Arrays of Broadband Radio-telescopes on Internet Computing
 - \cdot One work-package on 4Gb/s data acquisition and transport
 - (Jodrell Bank, Metsahovi, Onsala, Bonn, ASTRON)
 - ·One work-package on distributed correlation (JIVE, PNSC Poznan)
- Dutch NWO funded project SCARIe (10/2006)
 - Software Correlator Architecture Research and Implementation for eVLBI
 - Use Dutch Grid with configurable high connectivity
 - Software correlation with data originating from JIVE
- Complementary projects with matching funding
 - International and national expertise from other partners
 - Poznan Supercomputer centre
 - SARA and University of Amsterdam
 - Total of 9 man year at JIVE, plus some matching from staff
 - plus similar amount at partners

Previous experience on Software correlation

- Builds on previous experience at JIVE
 - regular and automated network performance tests
 - Using Japanese software correlator from NICT
 - Huygens extreme narrow band correlation
 - Home grown superFX with sub-Hz resolution

//www.evlbi.org/tog/ftp_fringes/N06C1/spectra.htm

4/12

Basic idea

Radio telescope 1

Use the Grid for correlation

- CPU cycles on compute nodes
- The Net could be crossbar switch?

Correlation will be asynchronous

- Based on floating point arithmetic
- Portable code, standard environment

typical VLBI problems					
	N	N	data-rate	N	
description	telescopes	subbands	[Mb/s]	spect/prod	Tflops
1 Gb/s full array	16	16	1024	16	83.89
typical eVLBI continuum	8	8	128	16	2.62
typical spectral line	10	2	16	512	16.38
FABRIC demo	4	2	16	32	0.16
future VLBI	32	32	4096	256	21474.84

Rough estimate based on XF correlation

Work packages

- Grid resource allocation
 - Grid workflow management
 - Tool to allocate correlator resources and schedule correlation
 - Data flow from telescopes to appropriate correlator resources
 - Expertise from the Poznan group in Virtual Laboratories
 - Will this application fit on Grid?
 - As it is very data intensive
 - And time-critical if not real-time
- Software correlation
 - correlator algorithm design
 - High precision correlation on standard computing
 - Scalable to cluster computers
 - Portable for grid computers and interfaced to standard middleware
 - Interactive visualization and output definition
 - Collect & merge data in EVN archive
 - Standard format and proprietary rights

Workflow Management

huib 23/6/06

- Must interact with normal VLBI schedules
 - Divide data, route to compute nodes, setup correlation
 - Dynamic resource allocation, keep up with incoming data!

Ves	Scenario Submission Application - [Sample VLBI Experiment]	>
Eile	Edit Scenario View Help	
	Resource Info Resource type Radiotelescope Experiment Resource description RT4 Resource description RT4 Torun Radiotelescope - 32 meters Initial node INITial node <t< th=""><th></th></t<>	
	17 March 2006 (1) 13:2154 (MTH	01:00 🔆

Topology

\cdot Slice in time

- Every node gets an interval
 - A "new correlator" for every time slice
 - Employ clusters computers at nodes
- Minimizes total data transport
 - Bottleneck at compute node
 - Probably good connectivity at Grid nodes anyway
- Scales perfectly
 - Easily estimated how many nodes are needed
 - Works with heterogeneous nodes
- But leaves sorting to compute nodes
 - Memory access may limit effectiveness

Slice in baseline

- Assign a (or a range of) products to a certain node
 - E.g. two data streams meet in some place
- Transport Bottleneck at sources (telescopes)
 - Maybe curable with multicast transport mechanism which forks at network nodes
 - Some advantage when local nodes at telescopes
- Does not scale very simply
 - Simple schemes for ½N² nodes
 - Need to re-sort output
- But reduces the compute problem
 - Using the network as the cross-bar switch

Broadband software correlation

Better SNR than Mk4 hardware

Compare phases of MK4 and Huygens SW correlators, BW 16 MHz, Baseline GB-BR, Source DA193, S-band 210 seconds, 0.5 s integration per point,

64 spectral channels for MK4, 65 spectral channels SW. Bulk linear trend (common slope for both) removed, 10 degrees shift between curves applied for distinction. MK4 data - red, SFX data - blue

Software correlation

Working on benchmarking

- Single core processors so far
- Different CPU's available
- Already quite efficient
 - More work on memory performance
- Must deploy on cluster computers
- And then on Grid
- Organize the output to be used for astronomy

