
InfiniBandTM Architecture
Specification Volume 1

Release 1.2

Copyright © 1999, 2001, 2002, 2003, 2004 by InfiniBandSM Trade Association.
All rights reserved.

October 2004
Final Release

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 2 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LEGAL DISCLAIMER This IBTA specification provided “AS IS” and without
any warranty of any kind, including, without limita-
tion, any express or implied warranty of non-infringe-
ment, merchantability or fitness for a particular
purpose.

In no event shall IBTA or any member of IBTA be liable
for any direct, indirect, special, exemplary, punitive,
or consequential damages, including, without limita-
tion, lost profits, even if advised of the possibility of
such damages.

Table 1 Revision History

Revision Release Date

1.0 9/26/2000 Release 1.0

1.0.a 6/19/2001 Release 1.0 augmented with errata material. Updates only
correct errors - no additional features have been added.

1.1 11/06/2002 Release 1.0.a augmented with additional features. Revised
SA and CM Class with new version.

1.2 9/7/2004 Release 1.1 augmented with additional features (added
annexes A7 through A10). Incorporated errata.

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 3 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

TABLE OF CONTENTS

Chapter 1: Introduction...60
1.1 Acknowledgments... 60
1.2 InfiniBand Conceptual Overview... 62

1.2.1 The Problem ... 62
1.2.2 Features.. 63
1.2.3 Benefits ... 63

1.3 Scope.. 64
1.4 Document Organization .. 65

1.4.1 Series of Volumes... 65
1.4.2 Volume 1 Organization.. 66

1.5 Document Conventions .. 66
1.5.1 Byte Ordering.. 66
1.5.2 Numeric Values... 67

1.6 Disclaimer ... 68

Chapter 2: Glossary ..69

Chapter 3: Architectural Overview...86
3.1 Architecture Scope ... 87

3.1.1 Topologies & Components .. 88
3.2 Communication... 90

3.2.1 Queuing .. 90
3.2.2 Connections.. 94

3.3 Communications Stack ... 94
3.4 IBA Components... 95

3.4.1 Links & Repeaters... 95
3.4.2 Channel Adapters ... 96
3.4.3 Switches ... 97
3.4.4 Routers ... 98
3.4.5 Management Components.. 99

3.4.5.1 Subnet Managers .. 99
3.4.5.2 Subnet Management Agents... 100
3.4.5.3 General Service Agents .. 100

3.5 IBA Features... 101
3.5.1 Queue Pairs .. 101
3.5.2 Types of Service ... 101
3.5.3 Keys.. 103

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 4 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.5.4 Virtual Memory Addresses.. 105
3.5.5 Protection Domains... 105
3.5.6 Partitions... 106
3.5.7 Virtual Lanes ... 106
3.5.8 Quality of Service.. 107

3.5.8.1 Service Level... 108
3.5.8.2 SL to VL mapping.. 108
3.5.8.3 Partitions ... 108

3.5.9 Injection Rate Control ... 108
3.5.10 Addressing.. 109
3.5.11 Multicast...111

3.5.11.1 Multicast Example ... 112
3.5.11.2 Group Management .. 113
3.5.11.3 Multicast Prune.. 116

3.5.12 Verbs... 116
3.6 Channel & Memory Semantics ... 116

3.6.1 Communication Interface.. 117
3.6.2 IBA Transport Services ... 119

3.7 IBA Layered Architecture.. 123
3.7.1 Physical Layer... 123
3.7.2 Link Layer ... 124
3.7.3 Network Layer... 125
3.7.4 Transport Layer... 126
3.7.5 Upper Layer Protocols .. 128

3.7.5.1 Subnet Management ... 128
3.7.5.2 General Services... 129

3.8 IBA Transaction Flow.. 130
3.9 IBA Management Infrastructure.. 131

3.9.1 Management Datagrams .. 135
3.9.2 Management Methods .. 135

3.9.2.1 Gets & Sets ... 135
3.9.2.2 Traps and Notices ... 135
3.9.2.3 Sends .. 136
3.9.2.4 Reports.. 136

3.9.3 Management Interfaces .. 136
3.9.4 Subnet Management Interface.. 136

3.9.4.1 Fabric Initialization... 137
3.9.4.2 Directed Routes... 137

3.9.5 General Service Interface ... 138
3.9.5.1 Redirection .. 138

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 5 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.10 I/O Operation .. 138

Chapter 4: Addressing..141
4.1 Terminology And Concepts ... 142

4.1.1 GID Usage and Properties.. 143
4.1.2 Channel Adapter, Switch, and Router Addressing Rules.. 147
4.1.3 Local Identifiers... 147

Chapter 5: Data Packet Format ..150
5.1 Packet Types .. 150
5.2 Data Packet Format .. 151

5.2.1 Local Route Header (LRH) - 8 Bytes .. 154
5.2.2 Global Route Header (GRH) - 40 Bytes.. 154
5.2.3 Base Transport Header (BTH) - 12 Bytes... 155
5.2.4 Reliable Datagram Extended Transport Header (RDETH) - 4 Bytes 156
5.2.5 Datagram Extended Transport Header (DETH) - 8 Bytes.. 157
5.2.6 RDMA Extended Transport Header (RETH) - 16 Bytes.. 157
5.2.7 Atomic Extended Transport Header (AtomicETH) - 28 Bytes... 158
5.2.8 ACK Extended Transport Header (AETH) - 4 Bytes ... 159
5.2.9 Atomic ACK Extended Transport Header (AtomicAckETH) - 8 Bytes 159
5.2.10 Immediate Data Extended Transport Header (ImmDt) - 4 Bytes .. 160
5.2.11 INVALIDATE EXTENDED TRANSPORT HEADER (IETH) - 4 BYTES 160
5.2.12 Payload... 160
5.2.13 Invariant CRC ... 160
5.2.14 Variant CRC.. 161

5.3 Raw Packet Format .. 161
5.4 Packet Examples .. 161

Chapter 6: Physical Layer Interface...163
6.1 Overview... 163
6.2 Services provided by the Physical Layer. ... 163
6.3 Interface between physical and Link Layers. .. 164

6.3.1 Interface between physical receive and link receive... 164
6.3.1.1 Phy_link - Physical Link Status.. 164
6.3.1.2 L_Init_Train - Link Initiate Retraining... 164
6.3.1.3 rcv_stream - Receive Stream.. 165

6.3.2 Interface between physical Transmit and link Transmit. ... 165
6.3.2.1 Xmit_stream - Transmit Stream... 165
6.3.2.2 Xmit_Ready - Physical Transmitter Ready.. 165

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 6 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 7: Link Layer..167
7.1 Overview... 167

7.1.1 State Machine Conventions .. 167
7.2 Link States .. 168

7.2.1 LinkDown State ... 168
7.2.2 LinkInitialize State ... 168
7.2.3 LinkArm State.. 168
7.2.4 LinkActive State .. 169
7.2.5 LinkActDefer State .. 169
7.2.6 Management State Change Commands... 169
7.2.7 State Machine Terms .. 169

7.3 Packet Receiver States... 172
7.4 Data Packet Check ... 175
7.5 Link Packet Check .. 178
7.6 Virtual Lanes Mechanisms.. 180

7.6.1 VL identification .. 181
7.6.2 Number of VLs supported ... 182
7.6.3 Special VLs ... 182
7.6.4 Buffering and Flow Control For Data VLs ... 183
7.6.5 Service Level .. 185
7.6.6 VL Mapping Within a Subnet .. 186
7.6.7 Initialization and Configuration.. 188
7.6.8 VL Scheduling and Flow Control For VL15 and Flow Control Packets................................. 188
7.6.9 VL Arbitration and Prioritization .. 188

7.6.9.1 VL Arbitration When Only One Data VL Is Implemented 189
7.6.9.2 VL Arbitration When Multiple Data VL s Are Implemented.................................... 189

7.7 Local Route Header .. 192
7.7.1 Virtual Lane (VL) - 4 bits ... 193
7.7.2 Link Version (LVer) - 4 bits .. 193
7.7.3 Service Level (SL) - 4 bits... 193
7.7.4 Reserve - 2 bits... 194
7.7.5 Link Next Header (LNH) - 2 bits.. 194
7.7.6 Destination Local Identifier (DLID) - 16 bits .. 194
7.7.7 Reserve - 5 bits... 194
7.7.8 Packet Length (PktLen) - 11 bits... 194
7.7.9 Source Local Identifier (SLID) - 16 bits ... 195

7.8 CRCs .. 195
7.8.1 Invariant CRC (ICRC) - 4 Bytes.. 195
7.8.2 Variant CRC (VCRC) - 2 Bytes ... 197
7.8.3 Link Packet CRC (LPCRC) - 2 Bytes.. 198
7.8.4 CRC Calculation Samples .. 198

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 7 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.8.4.1 ICRC Generator .. 199
7.8.4.2 VCRC Generator ... 200
7.8.4.3 Sample Packets .. 200

7.9 Flow Control.. 209
7.9.1 Introduction ... 209
7.9.2 Flow Control Blocks .. 210
7.9.3 Relationship to Virtual Lanes .. 210
7.9.4 Flow Control Packet.. 210

7.9.4.1 Flow Control Packet Fields.. 211
7.9.4.2 Calculation of FCTBS.. 211
7.9.4.3 Calculation of FCCL .. 211
7.9.4.4 Transmission of Packets ... 212

7.10 IBA and Raw Packet Multicast.. 213
7.10.1 Overview... 213
7.10.2 IBA Unreliable Multicast Operational Rules .. 214
7.10.3 Raw Packet Multicast.. 217

7.10.3.1 Raw Multicast Operational Rules .. 217
7.10.4 Group Management .. 219

7.11 Subnet Multipathing .. 219
7.11.1 Multipathing Requirements on end node .. 219

7.12 Error detection and handling... 219
7.12.1 Error Detection.. 219
7.12.2 Error Recovery Procedures .. 221
7.12.3 Error Notification ... 221

Chapter 8: Network Layer...222
8.1 Overview... 222
8.2 Packet Routing ... 222

8.2.1 Overview.. 222
8.2.2 Global Fabric Characteristics.. 223

8.2.2.1 Inheritance of Subnet Requirements... 223
8.2.2.2 Packet Errors and Error Detection .. 223
8.2.2.3 Service Levels ... 223

8.2.3 Support for Multiple Global Paths ... 223
8.2.4 Global Multicast .. 225

8.3 Global Route Header .. 225
8.3.1 IP Version (IPVer) - 4 bits.. 225
8.3.2 Traffic Class (TClass) - 8 bits.. 225
8.3.3 Flow Label (FlowLabel) - 20 bits ... 226
8.3.4 Payload Length (PayLen) - 16 bits.. 226
8.3.5 Next Header (NxtHdr) - 8 bits ... 226
8.3.6 Hop Limit (HopLmt) - 8 bits ... 226

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 8 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8.3.7 Source Global Identifier (SGID) - 128 bits .. 226
8.3.8 Destination Global Identifier (DGID) - 128 bits.. 226

8.4 Global Route Header Usage...226
8.4.1 Global Route Header Generation ... 226
8.4.2 Global Route Header Modification .. 228
8.4.3 Global Route Header Verification.. 229

Chapter 9: Transport Layer ..230
9.1 Overview... 230
9.2 Base Transport Header... 234

9.2.1 Operation Code (OpCode).. 234
9.2.2 Reserved Transport Function OpCodes ... 237
9.2.3 Solicited Event (SE) - 1 bit .. 238
9.2.4 MigReq (M) - 1 Bit... 238
9.2.5 Pad Count (PadCnt) - 2 bits.. 238
9.2.6 Transport Header Version (TVer) - 4 bits .. 238
9.2.7 Partition Key (P_Key) - 16 bits.. 239
9.2.8 Destination QP (DestQP) - 24 bits .. 239
9.2.9 Reserve 8 (Resv8) - 8 bits .. 239
9.2.10 AckReq (A) - 1 Bit ... 239
9.2.11 Reserve 7 (resv7) - 7 bits.. 239
9.2.12 Packet Sequence Number (PSN) - 24 bits ... 239

9.3 Extended Transport Headers.. 240
9.3.1 Reliable Datagram Extended Transport Header (RDETH) - 4 Bytes 240

9.3.1.1 Reserve - 8 bits ... 240
9.3.1.2 End-to-End (EE) Context - 24 bits.. 240

9.3.2 Datagram Extended Transport Header (DETH) - 8 Bytes... 240
9.3.2.1 Q_Key - 32 bits.. 240
9.3.2.2 Reserve - 8 bits ... 240
9.3.2.3 Source QP (SrcQP) - 24 bits ... 240

9.3.3 RDMA Extended Transport Header (RETH) - 16 Bytes.. 241
9.3.3.1 Virtual Address (VA) - 64 bits .. 241
9.3.3.2 R_Key - 32 bits.. 241
9.3.3.3 DMA Length (DMAlen) - 32 bits .. 242

9.3.4 ATOMIC Extended Transport Header (AtomicETH) - 28 Bytes .. 242
9.3.4.1 Virtual Address (VA) - 64 bits .. 242
9.3.4.2 R_Key - 32 bits.. 242
9.3.4.3 Swap (Add) Data (SwapDt) - 64 bits ... 242
9.3.4.4 Compare Data (CmpDt) - 64 bits... 242

9.3.5 ACK Extended Transport Header (AETH) - 4 Bytes ... 243
9.3.5.1 Syndrome.. 243
9.3.5.2 Message Sequence Number (MSN) ... 243

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 9 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3.5.3 ATOMIC Acknowledge Extended Transport Header (AtomicAckETH) - 8 Bytes .. 243
9.3.5.4 Original Remote Data (OrigRemDt) - 64 bits... 243

9.3.6 Immediate Extended Transport Header (ImmDt) - 4 Bytes... 244
9.3.7 Invalidate Extended Transport Header (IETH) - 4 Bytes .. 244

9.3.7.1 R_Key - 32 bits.. 244
9.4 Transport Functions .. 244

9.4.1 SEND Operation .. 245
9.4.1.1 Send With Invalidate ... 249

9.4.2 RESYNC Operation .. 252
9.4.3 RDMA WRITE Operation ... 252
9.4.4 RDMA READ Operation... 256
9.4.5 ATOMIC Operations.. 260

9.4.5.1 Atomicity Guarantees .. 262
9.4.5.2 ATOMIC Acknowledgment Generation and Ordering Rules 263
9.4.5.3 Error Behavior ... 263

9.4.6 Reserved and Manufacturer Defined Transport Function OpCodes..................................... 268
9.5 Transaction Ordering .. 268
9.6 Packet Transport Header Validation ... 269

9.6.1 Validating Header Fields ... 272
9.6.1.1 BTH Checks .. 272
9.6.1.2 GRH Checks ... 274
9.6.1.3 RDETH Checks ... 277
9.6.1.4 DETH Checks.. 277
9.6.1.5 LRH Checks .. 278

9.7 Reliable Service.. 280
9.7.1 Packet Sequence Numbers (PSN) ... 282

9.7.1.1 PSN Model for Reliable Service .. 286
9.7.2 ACK/NAK Protocol .. 287
9.7.3 Requester: Generating Request Packets ... 289

9.7.3.1 Requester Side - Generating PSN .. 289
9.7.3.2 Requester - Special Rules for Reliable Datagram... 291
9.7.3.3 Requester - Generating Opcodes ... 292
9.7.3.4 Requester - Generating Payloads ... 293

9.7.4 Responder: Receiving Inbound Request Packets .. 294
9.7.4.1 Responder - Inbound Packet Validation .. 294

9.7.5 Responder: Generating Responses.. 306
9.7.5.1 Responder Side Behavior ... 306
9.7.5.2 AETH Format .. 324

9.7.6 Requester: Receiving Responses... 331
9.7.6.1 Validating Inbound Response Packets.. 331

9.7.7 Reliable Connections.. 341
9.7.7.1 Generating MSN Value.. 342
9.7.7.2 End-to-End (Message Level) Flow Control ... 347

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 10 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.8 Reliable Datagram .. 358
9.7.8.1 Reliable datagram Characteristics .. 359
9.7.8.2 Example RD Operations.. 362
9.7.8.3 Reliable Datagram Operations .. 367
9.7.8.4 Ordering Rules .. 367
9.7.8.5 Handling QP errors - RESYNC ... 368
9.7.8.6 Responder Generation of MSN... 373

9.8 Unreliable Service... 375
9.8.1 Validating and Executing Requests .. 375
9.8.2 Unreliable Connections... 379

9.8.2.1 Requester Behavior... 379
9.8.2.2 Responder Behavior.. 382

9.8.3 Unreliable Datagrams ... 389
9.8.3.1 Requester Behavior... 392
9.8.3.2 Responder Behavior.. 392

9.8.4 Raw datagrams... 394
9.8.4.1 Raw Datagram Packet Size .. 395

9.9 Error detection and handling... 396
9.9.1 Reporting Errors to the Verbs Layer ... 397
9.9.2 Requester Side Error Behavior ... 397

9.9.2.1 Requester Side Error Detection - Locally Detected Errors.................................... 397
9.9.2.2 Requester Side Error Detection - Remotely Detected Errors................................ 399
9.9.2.3 Summary - Requester Side Error Behavior... 399
9.9.2.4 Requester Side Error Response ... 403

9.9.3 Responder Side Behavior ... 408
9.9.3.1 Responder Side Error Response .. 412

9.10 Header and Data Field Source ...420
9.10.1 Field source when generating packets ... 420
9.10.2 Transport Connection Parameters.. 422
9.10.3 Packet Header and Data Field Validation ... 425

9.11 Static Rate Control .. 427
9.11.1 Static rate control for Heterogeneous Links .. 427

Chapter 10: Software Transport Interface...430
10.1 Overview... 430

10.1.1 Introduction ... 430
10.2 Managing HCA Resources ... 431

10.2.1 HCA .. 431
10.2.1.1 Opening an HCA ... 431
10.2.1.2 HCA Attributes... 432
10.2.1.3 Modifying HCA Attributes .. 432
10.2.1.4 Closing an HCA... 432

10.2.2 Addressing.. 432

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 11 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.2.2.1 Source Addressing .. 432
10.2.2.2 Destination Addressing ... 433

10.2.3 Protection Domains... 434
10.2.3.1 Allocating a Protection Domain ... 436
10.2.3.2 Deallocating a Protection Domain ... 436

10.2.4 Queue Pairs .. 436
10.2.4.1 Creating a Queue Pair... 437
10.2.4.2 Queue Pair Attributes .. 437
10.2.4.3 Modifying Queue Pair Attributes.. 437
10.2.4.4 Destroying a Queue Pair ... 438
10.2.4.5 Special QPs... 439

10.2.5 Q_Keys ... 439
10.2.6 Completion Queues .. 440

10.2.6.1 Creating a Completion Queue... 440
10.2.6.2 Completion Queue Attributes .. 441
10.2.6.3 Modifying Completion Queue Attributes.. 441
10.2.6.4 Destroying a Completion Queue ... 441

10.2.7 End-to-End Contexts... 441
10.2.7.1 Creating an EE Context... 442
10.2.7.2 EE Context Attributes .. 442
10.2.7.3 Modifying EE Context Attributes.. 443
10.2.7.4 Destroying an EE Context ... 443

10.2.8 Reliable Datagram Domains ... 443
10.2.8.1 Allocating A Reliable Datagram Domain ... 444
10.2.8.2 Deallocating A Reliable Datagram Domain ... 444

10.2.9 Shared Receive Queue... 444
10.2.9.1 Motivation for supporting SRQ .. 444
10.2.9.2 Shared Receive Queue Creation .. 445
10.2.9.3 Shared Receive Queue Modification... 445
10.2.9.4 Shared Receive Queue Destruction.. 447
10.2.9.5 SRQ States.. 447

10.2.10 InfiniBand Header Data and Sources ... 447
10.3 Resource States.. 451

10.3.1 Queue Pair and EE Context States... 451
10.3.1.1 Reset ... 453
10.3.1.2 Initialized (Init) ... 454
10.3.1.3 Ready to Receive (RTR) ... 455
10.3.1.4 Ready to Send (RTS) .. 456
10.3.1.5 Send Queue Drain (SQD) ... 457
10.3.1.6 Send Queue Error (SQEr) ... 459
10.3.1.7 Error .. 460

10.4 Automatic Path Migration.. 461
10.4.1 Path Migration State Diagram... 462

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 12 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.4.1.1 Migrated .. 463
10.4.1.2 Rearm.. 465
10.4.1.3 Armed.. 465

10.5 Multicast Services... 465
10.5.1 Multicast Groups and Multicast Message Reception .. 466

10.5.1.1 IBA Unreliable Multicast Reception ... 466
10.5.1.2 Raw Packet Multicast Reception... 467

10.5.2 Multicast Work Requests .. 467
10.5.2.1 IBA Unreliable Multicast Work Requests... 467
10.5.2.2 Raw Packet Multicast Work Requests .. 467

10.5.3 Multicast Destination Establishment ... 468
10.6 Memory Management... 468

10.6.1 Overview... 468
10.6.2 Memory Registration... 469

10.6.2.1 Memory Regions ... 470
10.6.2.2 Allocation of Memory Registration Resources .. 471
10.6.2.3 Memory Region Types .. 472

10.6.3 Access to Registered Memory .. 474
10.6.3.1 Local Access to Registered Memory... 474
10.6.3.2 Remote Access to Registered Memory... 474
10.6.3.3 Local Access Keys .. 475
10.6.3.4 Remote Access Keys .. 476
10.6.3.5 Protection Domains ... 477
10.6.3.6 Scope of Access.. 478
10.6.3.7 Fast Registration ... 478
10.6.3.8 Multiple Registration of Memory regions ... 479

10.6.4 Addressing Memory .. 479
10.6.4.1 Virtual Addresses (“Pointers”) ... 479
10.6.4.2 Virtual to physical translations... 480
10.6.4.3 Registration of virtually addressed regions ... 480
10.6.4.4 Registration of physically addressed regions .. 483
10.6.4.5 Memory Region Error Checking .. 484

10.6.5 Invalidation of Memory Regions.. 486
10.6.5.1 Invalidation Ordering ... 488

10.6.6 Deregistration of regions... 489
10.6.7 Memory Access Control.. 490

10.6.7.1 Local Access Control.. 490
10.6.7.2 Remote Access Control.. 491

10.7 Work Requests ... 504
10.7.1 Creating Work Requests... 505
10.7.2 Work Request Types... 505

10.7.2.1 Send/Receive .. 505
10.7.2.2 RDMA.. 506

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 13 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.7.2.3 Atomic Operations... 506
10.7.2.4 Bind Memory Windows.. 508
10.7.2.5 Local Invalidate ... 509
10.7.2.6 Fast Register Physical MR.. 509

10.7.3 Work Request Contents.. 509
10.7.3.1 Signaled Completions ... 509
10.7.3.2 Scatter/Gather ... 510

10.8 Work Request Processing Model.. 511
10.8.1 Overview... 511
10.8.2 Submitting Work Requests to a Work Queue ... 511

10.8.2.1 Submitting A List of Work Requests.. 513
10.8.3 Work Request Processing .. 514

10.8.3.1 Reliable Datagram Ordering Rules ... 515
10.8.3.2 Shared Receive Queue Ordering Rules.. 515
10.8.3.3 Send Queue Ordering Rules ... 516

10.8.4 Completion Processing... 518
10.8.5 Returning Completed Work Requests .. 519

10.8.5.1 Freed Resource Count .. 520
10.8.5.2 Completion Queue Errors.. 520

10.8.6 Unsignaled Completions... 521
10.8.7 Asynchronous Completion Notification ... 522

10.9 Partitioning.. 523
10.9.1 Introduction ... 524

10.9.1.1 Limited and Full Membership .. 524
10.9.1.2 Special P_Keys ... 524
10.9.1.3 Operation Across Subnets .. 525

10.9.2 The Partition Key Table (P_Key Table) ... 525
10.9.3 Partition Key Matching.. 526
10.9.4 Bad P_Key Trap and P_Key Violations Counter (Optional) .. 526
10.9.5 CI Partition Support... 527

10.9.5.1 EE Context (Reliable Datagram) Support ... 528
10.9.5.2 Partition Key Changes... 528

10.9.6 TCA Partition Support ... 529
10.9.7 Fabric Partition Support .. 529
10.9.8 Partition Enforcement on Management Queue Pairs ... 529
10.9.9 Related Enforcement of Management Message Checking... 530

10.10 Error Handling Semantics and Mechanisms... 530
10.10.1 Error Types ... 530
10.10.2 Error Handling Mechanisms.. 530

10.10.2.1 Immediate Errors... 530
10.10.2.2 Completion Errors ... 531
10.10.2.3 Asynchronous Errors... 531

10.10.3 Effects of Errors on QP Service Types ... 532

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 14 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.10.3.1 Reliable Connection QPs: ... 532
10.10.3.2 Reliable Datagram QPs:.. 534
10.10.3.3 Unreliable Connected QPs:... 537
10.10.3.4 Unreliable Datagram QPs: .. 538
10.10.3.5 Raw QPs: .. 540

10.10.4 Effects of Transport Layer Errors .. 541

Chapter 11: Software Transport Verbs...546
11.1 Verbs Introduction and Overview.. 546

11.1.1 Verb Extensions.. 546
11.1.2 Verb Classes... 547

11.1.2.1 Mandatory vs. Optional Verbs ... 547
11.1.2.2 Mandatory vs. Optional Verb Functionality.. 547
11.1.2.3 Consumer Accessibility ... 548

11.2 Transport Resource Management .. 550
11.2.1 HCA .. 550

11.2.1.1 Open HCA... 550
11.2.1.2 Query HCA.. 551
11.2.1.3 Modify HCA Attributes ... 556
11.2.1.4 Close HCA... 557
11.2.1.5 Allocate Protection Domain ... 557
11.2.1.6 Deallocate Protection Domain... 558
11.2.1.7 Allocate Reliable Datagram Domain ... 558
11.2.1.8 Deallocate Reliable Datagram Domain ... 559

11.2.2 Address Management Verbs... 559
11.2.2.1 Create Address Handle ... 559
11.2.2.2 Modify Address Handle ... 560
11.2.2.3 Query Address Handle .. 561
11.2.2.4 Destroy Address Handle ... 562

11.2.3 Shared Receive Queue... 563
11.2.3.1 Create Shared Receive Queue ... 563
11.2.3.2 Query Shared Receive Queue .. 564
11.2.3.3 Modify Shared Receive Queue ... 564
11.2.3.4 Destroy Shared Receive Queue.. 565

11.2.4 Queue Pair.. 566
11.2.4.1 Create Queue Pair .. 566
11.2.4.2 Modify Queue Pair... 568
11.2.4.3 Query Queue Pair ... 576
11.2.4.4 Destroy Queue Pair... 579

11.2.5 Get Special QP ... 580
11.2.6 Completion Queue.. 582

11.2.6.1 Create Completion Queue... 582
11.2.6.2 Query Completion Queue.. 583
11.2.6.3 Resize Completion Queue .. 583

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 15 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

11.2.6.4 Destroy Completion Queue ... 584
11.2.7 EE Context.. 584

11.2.7.1 Create EE Context .. 584
11.2.7.2 Modify EE Context Attributes .. 585
11.2.7.3 Query EE Context ... 590
11.2.7.4 Destroy EE Context... 592

11.2.8 Memory Management ... 592
11.2.8.1 Allocate L_Key .. 593
11.2.8.2 Register Memory Region... 594
11.2.8.3 Register Physical Memory Region .. 595
11.2.8.4 Query Memory Region .. 597
11.2.8.5 Deregister Memory Region ... 598
11.2.8.6 Reregister Memory Region ... 599
11.2.8.7 Reregister Physical Memory Region ... 602
11.2.8.8 Register Shared Memory Region .. 605
11.2.8.9 Allocate Memory Window.. 606
11.2.8.10 Query Memory Window... 607
11.2.8.11 Bind Memory Window ... 607
11.2.8.12 Deallocate Memory Window.. 609

11.3 Multicast.. 610
11.3.1 Attach QP to Multicast Group ... 610
11.3.2 Detach QP from Multicast Group .. 611

11.4 Work Request Processing .. 612
11.4.1 Queue Pair Operations ... 612

11.4.1.1 Post Send Request ... 612
11.4.1.2 Post Receive Request... 621

11.4.2 Completion Queue Operations ... 623
11.4.2.1 Poll for Completion .. 623
11.4.2.2 Request Completion Notification ... 627

11.5 Event Handling ... 630
11.5.1 Set Completion Event Handler.. 630
11.5.2 Set Asynchronous Event Handler ... 631

11.6 Result Types ... 631
11.6.1 Immediate Return Results .. 631
11.6.2 Completion Return Status ... 634
11.6.3 Asynchronous Events ... 637

11.6.3.1 Affiliated Asynchronous Events... 637
11.6.3.2 Affiliated Asynchronous Errors .. 639
11.6.3.3 Unaffiliated Asynchronous Events... 640
11.6.3.4 Unaffiliated Asynchronous Errors.. 641

11.6.4 Verb Extension Summary ... 641

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 16 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 12: Communication Management..650
12.1 Overview... 650
12.2 Establishment ... 652

12.2.1 Quiet Time .. 653
12.3 Automatic Path Migration.. 653
12.4 Release... 654

12.4.1 Stale Connection... 654
12.5 Service Types ... 654

12.5.1 Supported Protocols ... 654
12.5.2 Connected Services.. 654
12.5.3 Unreliable Datagram Service .. 654
12.5.4 Reliable Datagram .. 655

12.6 Communication Management Messages.. 655
12.6.1 Required Messages.. 655
12.6.2 Conditionally Required Messages .. 657
12.6.3 Optional Messages ... 657
12.6.4 Message Usage.. 657
12.6.5 REQ - Request for Communication .. 659
12.6.6 MRA - Message Receipt Acknowledgment... 661
12.6.7 REJ - Reject.. 662

12.6.7.1 Example REJ message ... 664
12.6.7.2 Rejection Reason .. 665

12.6.8 REP - Reply to Request for Communication... 668
12.6.9 RTU - Ready To Use... 669
12.6.10 DREQ - Request for communication Release (Disconnection REQuest)............................. 669
12.6.11 DREP - Reply to Request for communication Release... 670

12.7 Message Field Details... 670
12.7.1 Local Communication ID... 673
12.7.2 Remote Communication ID... 674
12.7.3 ServiceID .. 674
12.7.4 Remote CM Response Timeout.. 674
12.7.5 Local CM Response Timeout.. 674
12.7.6 Transport Service Type... 674
12.7.7 Subnet Local ... 675
12.7.8 This Section Has Been Deleted.. 675
12.7.9 Local CA GUID ... 675
12.7.10 Local Port GID .. 675
12.7.11 Local Port LID ... 675
12.7.12 Local QPN .. 675
12.7.13 Local Q_Key ... 675
12.7.14 Local EECN .. 675

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 17 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.7.15 Remote EECN .. 676
12.7.16 Service Level .. 676
12.7.17 Traffic Class .. 676
12.7.18 Flow Label .. 676
12.7.19 Hop Limit... 676
12.7.20 Primary Remote Port GID... 676
12.7.21 Primary Remote Port LID.. 676
12.7.22 Alternate Remote Port GID... 676
12.7.23 Alternate Remote Port LID.. 676
12.7.24 Partition Key ... 676
12.7.25 Packet Rate .. 677
12.7.26 End-to-End Flow Control... 677
12.7.27 Max CM Retries .. 677
12.7.28 Path Packet Payload MTU.. 677
12.7.29 Responder Resources .. 677
12.7.30 Initiator Depth ... 677
12.7.31 Starting PSN ... 678
12.7.32 Service Timeout .. 678
12.7.33 Target ACK Delay ... 678
12.7.34 Local ACK Timeout ... 678
12.7.35 PrivateData ... 679
12.7.36 Failover Accepted ... 679
12.7.37 Remote QPN/EECN.. 679
12.7.38 Retry Count... 679
12.7.39 RNR Retry Count .. 679

12.8 Alternate Path Management ... 680
12.8.1 LAP - Load Alternate Path .. 681
12.8.2 APR - Alternate Path Response ... 682

12.8.2.1 AP Status... 683
12.9 State Transition Diagrams For Communication Establishment and Release.......................... 684

12.9.1 Diagram Description ... 684
12.9.2 Invalid State Input Handling .. 685
12.9.3 timeouts .. 685
12.9.4 State Diagram Notes... 686
12.9.5 Communication Establishment and Release - Active ... 687
12.9.6 Communication Establishment - Passive.. 688
12.9.7 State and Transition Definitions .. 689

12.9.7.1 Active States.. 689
12.9.7.2 Passive States... 691

12.9.8 State Details.. 693
12.9.8.1 Timeout ... 693
12.9.8.2 RTU Timeout ... 694

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 18 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.8.3 Established.. 694
12.9.8.4 TimeWait ... 694
12.9.8.5 Message Receipt Acknowledgment (MRA)... 695
12.9.8.6 Timeouts and Retries .. 696
12.9.8.7 REJ Retry .. 696
12.9.8.8 REJ Sent ... 697
12.9.8.9 REP Sent / MRA(REP) Received.. 697

12.9.9 Connection State... 697
12.10 Communication Establishment Ladder Diagrams... 698

12.10.1 Active Client to Passive Server - Both Client and Server Accept Communication 698
12.10.2 Active Client to Passive Server - Server Rejects Communication .. 699
12.10.3 Active Client to Passive Server - Client Rejects Communication ... 700
12.10.4 Peer to Peer - Both Accept Communication ... 701
12.10.5 Active Peer to Active Peer - Passive Rejects Communication ... 702
12.10.6 Active Peer to Active Peer - Active Rejects Communication ... 703
12.10.7 Active Client to Passive Server with Redirector - All Accept Communication....................... 704
12.10.8 Communication Release... 705

12.10.8.1 Disconnect Request .. 705
12.11 Service ID Resolution Protocol ... 705

12.11.1 SIDR_REQ - Service ID Resolution Request ... 706
12.11.1.1 RequestID ... 706
12.11.1.2 Partition Key .. 706
12.11.1.3 Service ID.. 706
12.11.1.4 Private Data... 706

12.11.2 SIDR_REP - Service ID Resolution Response ... 707
12.11.2.1 Status .. 707
12.11.2.2 QPN... 708
12.11.2.3 Q_Key ... 708

12.11.3 Path Information ... 708

Chapter 13: Management Model ..709
13.1 Introduction ... 709
13.2 Assumptions, and Scope .. 710

13.2.1 Assumptions ... 710
13.2.2 Scope.. 710

13.3 Managers, Agents, and Interfaces .. 713
13.3.1 Introduction ... 713
13.3.2 Required Managers and Agents ... 716

13.4 Management Datagrams .. 717
13.4.1 Conventions.. 717
13.4.2 Management Datagram Format.. 718
13.4.3 Management Datagram Fields.. 719

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 19 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.4.4 Management Classes ... 720
13.4.5 Management Class Methods .. 721
13.4.6 Management Messaging... 723

13.4.6.1 Methods and Message Sequencing .. 723
13.4.6.2 Timers and Timeouts... 727
13.4.6.3 Timeout/Timer Usage .. 730
13.4.6.4 TransactionID usage ... 731

13.4.7 Status Field ... 731
13.4.8 Management Class Attributes... 732

13.4.8.1 ClassPortInfo... 734
13.4.8.2 Notice .. 737
13.4.8.3 InformInfo .. 739

13.4.9 Traps... 741
13.4.10 Notice Queue.. 743
13.4.11 Event Forwarding.. 745

13.5 MAD Processing ... 749
13.5.1 MAD Interfaces ... 749

13.5.1.1 Processing Subnet Management Packets (SMPs) ... 751
13.5.1.2 Processing General Services Management Packets (GMPs)............................... 752

13.5.2 GSI Redirection... 753
13.5.3 MAD Validation ... 755

13.5.3.1 MAD Validation for Subnet Management MADs ... 755
13.5.3.2 Mad Validation for Subnet Administration and General Services.......................... 757
13.5.3.3 Consolidated MAD Validation Flow Diagrams... 759

13.5.4 Response Generation and Reversible Paths.. 768
13.5.4.1 Reversible Paths ... 768
13.5.4.2 Common Response Actions.. 768
13.5.4.3 Constructing a Response Without a GRH... 769
13.5.4.4 Constructing a Response With a GRH.. 769
13.5.4.5 Responses to MADs.. 769

13.6 Reliable Multi-Packet Transaction Protocol .. 770
13.6.1 Management Class Use of RMPP .. 771
13.6.2 RMPP Packet Formats ... 772

13.6.2.1 RMPP Header ... 772
13.6.2.2 Status Codes ... 773
13.6.2.3 DATA Packet ... 775
13.6.2.4 ACK Packet ... 776
13.6.2.5 ABORT and STOP Packets... 777

13.6.3 Timeouts ... 777
13.6.3.1 Response Timeout (Resp) .. 778
13.6.3.2 Total Transaction Timeout (Ttime)... 779

13.6.4 Ladder Diagram (Example)... 780
13.6.5 Flow Diagrams.. 782

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 20 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.6.5.1 Context State Variables ... 782
13.6.5.2 Context & Dispatching... 783
13.6.5.3 Common Termination Flow.. 785
13.6.5.4 Receiver Flow Diagram.. 785
13.6.5.5 Sender Main Flow Diagram... 788
13.6.5.6 Direction Switch... 790

13.6.6 Startup Scenarios.. 790
13.6.6.1 Receiver-Initiated Transfer ... 790
13.6.6.2 Sender-Initiated Transfer.. 792
13.6.6.3 Sender-Initiated Double-Sided Transfer ... 792

Chapter 14: Subnet Management...794
14.1 Subnet Management Model..794
14.2 Subnet Management Class ..794

14.2.1 Datagram Formats and Use.. 795
14.2.1.1 SMP Data Format - LID Routed .. 795
14.2.1.2 SMP Data Format - Directed Route .. 796

14.2.2 SMPs and Directed Route Algorithm .. 797
14.2.2.1 Outgoing Directed Route SMP Initialization .. 800
14.2.2.2 Outgoing Directed Route SMP handling by SMI ... 802
14.2.2.3 Returning Directed Route SMP Initialization ... 803
14.2.2.4 Returning Directed Route SMP handling by SMI .. 804

14.2.3 Methods .. 805
14.2.4 Management Key.. 806

14.2.4.1 Levels of Protection... 807
14.2.4.2 Lease Period ... 807
14.2.4.3 Notes on Expected Usage... 808
14.2.4.4 Update Procedure ... 809
14.2.4.5 Initialization.. 809
14.2.4.6 SMI .. 809

14.2.5 Attributes... 809
14.2.5.1 Notices and Traps ... 812
14.2.5.2 NodeDescription.. 818
14.2.5.3 NodeInfo.. 818
14.2.5.4 SwitchInfo.. 819
14.2.5.5 GUIDInfo ... 821
14.2.5.6 PortInfo.. 821
14.2.5.7 P_KeyTable ... 834
14.2.5.8 SLtoVLMappingTable .. 835
14.2.5.9 VLArbitrationTable ... 836
14.2.5.10 LinearForwardingTable.. 837
14.2.5.11 RandomForwardingTable .. 838
14.2.5.12 MulticastForwardingTable.. 838
14.2.5.13 SMInfo ... 840

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 21 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.14 VendorDiag.. 840
14.2.5.15 LedInfo .. 842

14.2.6 Subnet Management MAD Status... 842
14.2.6.1 Status Precedence .. 842
14.2.6.2 SMP Version Not Supported (status_field[4:2] = 0x1) ... 843
14.2.6.3 SMP Method Not Supported (status_field[4:2] = 0x2) ... 843
14.2.6.4 SMP Method/Attribute Combination Not Supported (status_field[4:2] = 0x3) 843
14.2.6.5 SMP AttributeModifier Errors (status_field[4:2] = 0x7) .. 845
14.2.6.6 SMP Attribute Component Errors (status_field[4:2] = 0x7) 847

14.3 Subnet Management Agent ..852
14.3.1 SubnGet() ... 853
14.3.2 SubnSet().. 853
14.3.3 SubnGetResp() ... 853
14.3.4 SubnTrap().. 854
14.3.5 SubnTrapRepress() .. 855
14.3.6 Port State Change... 855
14.3.7 P_Key Mismatch on Switch External Ports... 856
14.3.8 Transport Key Mismatch ... 856
14.3.9 M_Key mismatch .. 857
14.3.10 Link Layer Errors... 857
14.3.11 Change CapabilityMask .. 858
14.3.12 Change SystemImageGUID ... 858

14.4 Subnet Manager ... 859
14.4.1 SM State Machine... 860

14.4.1.1 Control Packets ... 861
14.4.1.2 Discovering State .. 862
14.4.1.3 Standby State .. 863
14.4.1.4 Not-Active State... 865
14.4.1.5 Master State .. 865

14.4.2 Subnet Discovery Actions ... 867
14.4.3 Initialization Actions .. 868
14.4.4 Node Reinitialization ... 871
14.4.5 Port State Transitions.. 877
14.4.6 Subnet Sweeping.. 878
14.4.7 Authentication ... 878
14.4.8 SM Disable Mechanism .. 879
14.4.9 In and Out of Service Traps .. 880
14.4.10 Multicast Group Create/Delete Traps.. 880
14.4.11 Client Reregistration ... 881

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 22 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 15: Subnet Administration ...882
15.1 Introduction and Overview .. 882

15.1.1 SA Function .. 882
15.1.2 Relationship Between SA and the SM.. 883
15.1.3 Overview... 883

15.2 SA MADs .. 883
15.2.1 SA MAD Format.. 883

15.2.1.1 SA Header... 884
15.2.1.2 SA Header Fields .. 884
15.2.1.3 SA-Specific ClassPortInfo:CapabilityMask Bits ... 884

15.2.2 Summary of Methods.. 885
15.2.3 Subnet Administration Status Values .. 886
15.2.4 Attributes and Attribute Tables .. 887

15.2.4.1 Embedded Attributes... 887
15.2.4.2 Record Identifier (RID) Fields.. 887
15.2.4.3 Tables .. 888

15.2.5 Attributes... 888
15.2.5.1 Summary of Attributes... 888
15.2.5.2 NodeRecord .. 891
15.2.5.3 PortInfoRecord .. 891
15.2.5.4 SLtoVLMappingTableRecord... 892
15.2.5.5 SwitchInfoRecord .. 892
15.2.5.6 LinearForwardingTableRecord .. 892
15.2.5.7 RandomForwardingTableRecord... 893
15.2.5.8 MulticastForwardingTableRecord .. 893
15.2.5.9 VLArbitrationTableRecord ... 893
15.2.5.10 SMInfoRecord ... 894
15.2.5.11 P_KeyTableRecord.. 894
15.2.5.12 InformInfoRecord... 894
15.2.5.13 LinkRecord .. 895
15.2.5.14 ServiceRecord... 895
15.2.5.15 ServiceAssociationRecord .. 899
15.2.5.16 PathRecord ... 899
15.2.5.17 MCMemberRecord .. 908
15.2.5.18 GuidInfoRecord ... 916
15.2.5.19 TraceRecord.. 916
15.2.5.20 MultiPathRecord.. 917

15.3 Reliable Multi-Packet Transaction Protocol .. 919
15.4 Operations .. 921

15.4.1 Restrictions on Access.. 921
15.4.1.1 Access Restrictions For PathRecords... 921
15.4.1.2 Access Restrictions For Other Attributes .. 922

15.4.2 Locating Subnet Administration .. 923

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 23 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.4.3 Event Forwarding Subsystem... 923
15.4.4 Administration Query Subsystem.. 923
15.4.5 SubnAdmGetTable() / SubnAdmGetTableResp() ... 925
15.4.6 SubnAdmGet() / SubnAdmGetResp(): Get an Attribute ... 926
15.4.7 SubnAdmSet(): Set an Attribute.. 927
15.4.8 SubnAdmDelete(): Delete an Attribute.. 927
15.4.9 SubnAdmGetTraceTable(): Trace a Path.. 928
15.4.10 SubnAdmGetMulti() / SubnAdmGetMultiResp(): Send & Receive Multiple Packets 929

Chapter 16: General Services...930
16.1 Performance Management ...930

16.1.1 MAD Format.. 931
16.1.1.1 Status Field.. 932

16.1.2 Methods .. 932
16.1.3 Mandatory Attributes... 932

16.1.3.1 ClassPortInfo... 933
16.1.3.2 PortSamplesControl .. 933
16.1.3.3 CounterSelect Values.. 940
16.1.3.4 PortSamplesResult.. 944
16.1.3.5 PortCounters ... 945
16.1.3.6 Typical Performance Attribute Use Model ... 949

16.1.4 Optional Attributes .. 950
16.1.4.1 PortRcvErrorDetails... 951
16.1.4.2 PortXmitDiscardDetails ... 953
16.1.4.3 PortOpRcvCounters .. 953
16.1.4.4 PortFlowCtlCounters ... 954
16.1.4.5 PortVLOpPackets.. 955
16.1.4.6 PortVLOpData ... 957
16.1.4.7 PortVLXmitFlowCtlUpdateErrors... 958
16.1.4.8 PortVLXmitWaitCounters .. 960
16.1.4.9 SwPortVLCongestion .. 962
16.1.4.10 PortSamplesResultExtended .. 963
16.1.4.11 PortCountersExtended .. 965

16.1.5 Performance Management Status .. 966
16.1.5.1 Mandatory PM Attribute Status.. 966
16.1.5.2 Optional PM Attribute Status ... 969

16.2 Baseboard Management .. 973
16.2.1 MAD Format.. 975

16.2.1.1 Status Field.. 976
16.2.2 Methods .. 976
16.2.3 Attributes... 978

16.2.3.1 ClassPortInfo... 980
16.2.3.2 Notice .. 980

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 24 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.3.3 BKeyInfo.. 982
16.2.3.4 IB-ML Attributes... 982

16.2.4 B_Key General Use .. 982
16.2.4.1 B_Key Assumptions .. 983
16.2.4.2 B_Key Protection Scope ... 983
16.2.4.3 B_Key Operation ... 984
16.2.4.4 B_Key Initialization .. 984
16.2.4.5 B_Key Recovery.. 984
16.2.4.6 Levels of Protection... 985

16.3 Device Management ... 985
16.3.1 MAD Format.. 987

16.3.1.1 Status Field.. 988
16.3.2 Methods .. 988
16.3.3 Attributes... 989

16.3.3.1 ClassPortInfo... 991
16.3.3.2 Notice .. 992
16.3.3.3 IOUnitInfo .. 992
16.3.3.4 IOControllerProfile... 993
16.3.3.5 ServiceEntries ... 995
16.3.3.6 DiagnosticTimeout... 996
16.3.3.7 PrepareToTest ... 996
16.3.3.8 TestDeviceOnce .. 996
16.3.3.9 TestDeviceLoop... 996
16.3.3.10 DiagCode .. 996

16.3.4 Device Diagnostic Framework .. 997
16.3.4.1 Behaviors .. 997

16.4 SNMP Tunneling... 998
16.4.1 MAD Format.. 999

16.4.1.1 Status Field.. 1000
16.4.2 Methods .. 1000
16.4.3 Attributes... 1001

16.4.3.1 ClassPortInfo... 1001
16.4.3.2 Obsolete Section ... 1002
16.4.3.3 PduInfo .. 1002

16.4.4 Operations .. 1002
16.4.4.1 SNMP Targets for Beyond the InfiniBand Endnode .. 1003
16.4.4.2 Trap Event Subscription .. 1004

16.5 Vendor-specific ... 1005
16.5.1 MAD Format.. 1005
16.5.2 Status Field ... 1007
16.5.3 Methods .. 1007
16.5.4 Attributes... 1007

16.5.4.1 ClassPortInfo... 1008

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 25 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.6 Application-specific ... 1008
16.6.1 MAD Format.. 1008

16.6.1.1 Status Field.. 1009
16.6.2 Methods .. 1009
16.6.3 Attributes... 1010

16.6.3.1 ClassPortInfo... 1010
16.7 Communication Management ... 1011

16.7.1 MAD Format.. 1011
16.7.1.1 Status Field.. 1012

16.7.2 Methods .. 1012
16.7.3 Attributes... 1012

16.7.3.1 ClassPortInfo... 1014

Chapter 17: Channel Adapters ...1016
17.1 Overview... 1016
17.2 Common Functional Requirements .. 1017

17.2.1 Multiple Ports per Channel Adapter .. 1017
17.2.1.1 Topologies Supported With Multi-Ported Channel Adapters 1018
17.2.1.2 Association of QPs with Ports ... 1020
17.2.1.3 Port Attributes and Functions .. 1021
17.2.1.4 Switching Packets through Multiple Ports ... 1023

17.2.2 Channel Adapter Attributes... 1023
17.2.3 Deadlock Prevention... 1028
17.2.4 Checking Incoming Packets.. 1029
17.2.5 Non-Volatile State ... 1029
17.2.6 Static Rate Control .. 1029
17.2.7 Management Messages.. 1030

17.2.7.1 Subnet Management ... 1031
17.2.7.2 General Services... 1031

17.2.8 Automatic Path Migration.. 1031
17.2.8.1 Automatic Path Migration Protocol .. 1032

17.3 Host Channel Adapter .. 1034
17.3.1 Loopback .. 1034

17.4 Target Channel Adapter ... 1035
17.4.1 Contrast to a Host Channel Adapter ... 1036

17.4.1.1 Memory Protection .. 1037
17.4.2 Device Administration ... 1037
17.4.3 Fabric Loopback ... 1038

Chapter 18: Switches ..1040
18.1 Overview... 1040

18.1.1 Switch Port 0... 1041

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 26 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18.2 Detailed Functional Requirements.. 1042
18.2.1 Attributes... 1042
18.2.2 Initialization ... 1044
18.2.3 Configuration ... 1044
18.2.4 Packet Relay Requirements ... 1044

18.2.4.1 Switch Ports .. 1045
18.2.4.2 Receiver Queuing.. 1046
18.2.4.3 Packet Relay ... 1048
18.2.4.4 Transmitter Queuing.. 1054
18.2.4.5 Packet Transmission ... 1056

18.2.5 Error Handling... 1056
18.2.5.1 Switch Ports .. 1057
18.2.5.2 Receiver Queuing.. 1057
18.2.5.3 Packet Relay ... 1057
18.2.5.4 Transmitter Queueing.. 1057
18.2.5.5 Packet Transmission ... 1058

18.2.6 Subnet Management Agent Requirements... 1058

Chapter 19: Routers ..1059
19.1 Overview... 1059
19.2 Detailed functional requirements .. 1060

19.2.1 Attributes... 1060
19.2.2 Initialization ... 1062
19.2.3 Configuration .. 1063
19.2.4 Packet Relay Model .. 1063

19.2.4.1 Path Selection ... 1064
19.2.4.2 Router Ports .. 1064
19.2.4.3 Receiver Queuing.. 1065
19.2.4.4 Packet Relay .. 1066
19.2.4.5 Transmitter Queuing.. 1067
19.2.4.6 Packet Transmission ... 1069

19.2.5 Error Handling... 1069
19.2.5.1 Router Ports Errors ... 1069
19.2.5.2 Receiver Queuing Errors... 1069
19.2.5.3 Packet Relay Errors .. 1070
19.2.5.4 Transmitter Queueing Errors ... 1070
19.2.5.5 Packet Transmission Errors .. 1070

19.2.6 Subnet Management Agent Requirements... 1071

Chapter 20: Volume 1 Compliance Summary...1072
20.1 Compliance Definition... 1072

20.1.1 Product Application ... 1072

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 27 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

20.2 Volume 1 Compliance Categories .. 1072
20.2.1 Volume 1 Compliance Qualifiers... 1073

20.2.1.1 Claiming Support for Optional Features .. 1074
20.2.1.2 Compliance Statements with Multiple Qualifiers ... 1076

20.2.2 Compliance Statement Lists ... 1076
20.2.2.1 Hypertext Links.. 1076
20.2.2.2 Compliance Statement Labels... 1076
20.2.2.3 Compliance Statement Titles... 1076

20.2.3 Common Requirements .. 1077
20.3 HCA-CI Compliance Category .. 1077
20.4 TCA Compliance Category ... 1093
20.5 Switch Compliance Category.. 1102
20.6 Router Compliance Category ... 1106
20.7 Subnet Manager Compliance Category...1110
20.8 Subnet Administration Compliance Category ..1112
20.9 Communication Manager Compliance Category ...1114
20.10 Performance Manager Compliance Category..1114
20.11 Vendor-Defined Manager Compliance Category ...1115
20.12 Optional Management Agent Compliance Category..1116
20.13 Common Port Requirements ...1117
20.14 Common MAD Requirements ..1119

Annex A1: I/O Infrastructure...1121
A1.1 Introduction...1121

A1.1.1 Purpose... 1121
A1.1.2 Glossary .. 1121

A1.2 Principles of I/O ..1122
A1.2.1 I/O Operation Overview... 1122
A1.2.2 Managed I/O Units .. 1124
A1.2.3 ROM Repository.. 1124
A1.2.4 I/O Device Drivers ... 1125

A1.2.4.1 Matching an I/O Controller with an I/O Device Driver...................................... 1125
A1.2.4.2 Using an I/O Controller .. 1127

A1.2.5 I/O Attachment .. 1129
A1.2.5.1 Direct attachment .. 1129
A1.2.5.2 Fabric Attachment ... 1129
A1.2.5.3 Power Management .. 1129

A1.3 I/O Management...1130
A1.3.1 I/O Device Resolution ... 1130

A1.3.1.1 Resolving A Path... 1130
A1.3.1.2 Persistent Information ... 1131

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 28 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A1.3.1.3 Configuration Changes.. 1131
A1.3.2 Retry-Backoff Policy.. 1134

A1.4 Impact of Partitions on I/O ..1134
A1.4.1 I/O Units and Partitions ... 1136
A1.4.2 Hosts and I/O Partitions .. 1136

A1.4.2.1 Query for Path ... 1137
A1.4.2.2 Query for Service .. 1137
A1.4.2.3 Query for List of I/O Units .. 1137

A1.5 Storage I/O ...1138
A1.5.1 IB Storage Concepts ... 1138
A1.5.2 Protocol Specific Fields ... 1138
A1.5.3 Storage Protocols.. 1139

Annex A2: Console Service Protocol ..1140
A2.1 Introduction...1140

A2.1.1 Glossary .. 1140
A2.1.2 Compliance ... 1141
A2.1.3 Overview ... 1141
A2.1.4 Goals... 1141

A2.2 The IB Console Abstraction..1142
A2.2.1 Console IO Controllers.. 1144
A2.2.2 Console Server Processes.. 1145

A2.3 Console Service Protocol ...1145
A2.3.1 Error Reporting.. 1150
A2.3.2 Console Device Enumeration.. 1151
A2.3.3 Capability Query.. 1153
A2.3.4 Session Establishment.. 1156
A2.3.5 Normal Operation.. 1159

A2.3.5.1 ASCII Text Streams ... 1160
A2.3.5.2 UTF-8 Text Streams .. 1160
A2.3.5.3 HTTP Console Support ... 1160

A2.3.6 Session Handoff and Maintenance ... 1161
A2.3.7 Connection Maintenance Messages ... 1168
A2.3.8 Service Connection and Session Termination... 1169

A2.4 Compliance Summary ..1171
A2.4.1 CSP Client Compliance Category ... 1171
A2.4.2 CSP Server Compliance Category.. 1171

Annex A3: Application Specific Identifiers ...1173
A3.1 Introduction...1173

A3.1.1 Glossary .. 1173

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 29 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.1.2 Compliance ... 1174
A3.2 Service ID ...1174

A3.2.1 Goals and Scope... 1174
A3.2.2 Principles of Service ID Usage.. 1175

A3.2.2.1 Background ... 1175
A3.2.2.2 Considerations .. 1177
A3.2.2.3 Assigning Service IDs ... 1179

A3.2.3 Service ID Structure .. 1181
A3.2.3.1 IBTA Assigned Service IDs.. 1181
A3.2.3.2 IETF Service IDs ... 1183
A3.2.3.3 Local OS Administered Service IDs .. 1183
A3.2.3.4 Externally Administrated Service IDs .. 1186

A3.2.4 Resolving Service Names ... 1187
A3.2.4.1 Service Advertisement .. 1187
A3.2.4.2 Multicast Query ... 1187
A3.2.4.3 Alternatives.. 1188

A3.3 I/O Controller Identification ...1189
A3.3.1 Vendor Information.. 1189
A3.3.2 Generic Information... 1189
A3.3.3 IBTA Protocols .. 1191
A3.3.4 Other Protocols ... 1191

A3.4 Service Names ...1191
A3.4.1 IBTA Service Names ... 1192
A3.4.2 I/O Service Records .. 1192
A3.4.3 ServiceRecord Attribute .. 1192

A3.5 Management Class Codes ...1192
A3.6 Queue Keys..1193
A3.7 Compliance Summary ..1194

A3.7.1 Service ID Administration.. 1194
A3.7.2 Service Application.. 1194
A3.7.3 Managed I/O Unit .. 1194

Annex A4: Sockets Direct Protocol (SDP) ..1195
A4.1 Introduction...1195

A4.1.1 Architectural Goals.. 1195
A4.1.2 Overview of the Byte-Stream Protocol .. 1196

A4.2 Glossary ...1198
A4.3 SDP message Formats ..1201

A4.3.1 Base Sockets Direct Header (BSDH).. 1201
A4.3.1.1 Message identifier (MID) ... 1201
A4.3.1.2 Flags.. 1203

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 30 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.1.3 Buffers (Bufs)... 1203
A4.3.1.4 Length (Len) .. 1204
A4.3.1.5 Message Sequence Number (MSeq) .. 1204
A4.3.1.6 Message Sequence Number Acknowledgement (MSeqAck).......................... 1204

A4.3.2 Connection Management Messages... 1204
A4.3.2.1 Hello Message (HH) .. 1204
A4.3.2.2 HelloAck Message (HAH).. 1208
A4.3.2.3 DisConn Message ... 1210
A4.3.2.4 AbortConn Message.. 1210

A4.3.3 Data Transfer and Flow Control Messages... 1211
A4.3.3.1 Data Message ... 1211
A4.3.3.2 SrcAvail Message (SrcAH) .. 1211
A4.3.3.3 SinkAvail Message (SinkAH)... 1212
A4.3.3.4 RDMA Messages .. 1213
A4.3.3.5 SendSm Message ... 1213
A4.3.3.6 RdmaWrCompl Message (RWCH).. 1213
A4.3.3.7 RdmaRdCompl Message (RRCH) .. 1214
A4.3.3.8 ModeChange Message (MCH).. 1214
A4.3.3.9 SrcAvailCancel Message... 1215
A4.3.3.10 SinkAvailCancel Message ... 1216
A4.3.3.11 SinkCancelAck Message... 1216

A4.3.4 Private Buffer Resizing Messages .. 1216
A4.3.4.1 ChRcvBuf Message (CRBH) ... 1216
A4.3.4.2 ChRcvBufAck Message (CRBAH)... 1216

A4.3.5 Socket Duplication Messages ... 1217
A4.3.5.1 SuspComm Message .. 1217
A4.3.5.2 SuspCommAck Message .. 1217

A4.4 Address Resolution ..1218
A4.5 Connection Management ...1218

A4.5.1 Connection Setup.. 1218
A4.5.1.1 InfiniBand Reliable Connection Setup... 1218
A4.5.1.2 Aborting Connection Setup ... 1221

A4.5.2 Automatic Path Migration .. 1221
A4.5.2.1 Determining Alternate Paths ... 1221
A4.5.2.2 Example Alternate Path Selection Procedure ... 1221
A4.5.2.3 Configuring Alternate Paths .. 1223

A4.5.3 Connection Teardown ... 1223
A4.5.3.1 Graceful Close.. 1223
A4.5.3.2 Abortive Close ... 1226

A4.6 Data Transfer Mechanisms...1227
A4.6.1 Bcopy .. 1228
A4.6.2 Read Zcopy... 1229
A4.6.3 Write Zcopy ... 1233

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 31 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.6.4 Transaction Mechanism .. 1235
A4.6.5 Miscellaneous Data Transfer Issues ... 1237

A4.6.5.1 Detecting Stale SinkAvail Advertisements... 1237
A4.6.5.2 Mechanisms For Forcing Bcopy.. 1238
A4.6.5.3 Processing Out-Of-Band Data... 1240
A4.6.5.4 SrcAvail Revocation .. 1240
A4.6.5.5 SinkAvail Revocation... 1242
A4.6.5.6 Buffering ULP Payload .. 1243

A4.7 Private Buffer Management..1244
A4.7.1 SDP Message Ordering .. 1245
A4.7.2 Send Credit Calculation .. 1245
A4.7.3 Initialization of Send Credit ... 1245
A4.7.4 Gratuitous Update Of The Remote Peer’s Send Credit .. 1246
A4.7.5 Use of Send Credits .. 1246
A4.7.6 Receive Buffer Resizing.. 1247

A4.7.6.1 Conflict Resolution .. 1248
A4.7.6.2 Flow Control Issues During Resizing .. 1248

A4.8 SDP Modes ..1248
A4.8.1 Buffered Mode... 1251
A4.8.2 Combined Mode.. 1251
A4.8.3 Pipelined Mode ... 1251

A4.9 SDP Mode Transitions..1253
A4.9.1 Transition From Combined Mode to Buffered Mode ... 1255
A4.9.2 Transition From Buffered Mode to Combined Mode ... 1255
A4.9.3 Transition From Combined Mode to Pipelined Mode.. 1255
A4.9.4 Transition From Pipelined Mode to Combined Mode.. 1256
A4.9.5 State Mode Transition Summary ... 1257

A4.10 Socket Duplication..1260
A4.10.1 Implementing Socket Duplication.. 1261

A4.10.1.1 Socket Duplication Procedure ... 1261
A4.10.1.2 Conflict Resolution .. 1263

A4.10.2 HCA Managed Failover... 1263
A4.11 InfiniBand Transport Layer Issues..1264

A4.11.1 InfiniBand Message Requirements ... 1264
A4.11.2 Solicited Events... 1264
A4.11.3 Keepalive Messages ... 1266

A4.12 SDP Compliance Category...1267

Annex A5: Booting Annex ..1270
A5.1 Introduction...1270

A5.1.1 Purpose... 1270

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 32 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.1.2 Glossary .. 1270
A5.1.3 Overview ... 1273
A5.1.4 Console ... 1276
A5.1.5 Storage Boot Method .. 1277
A5.1.6 Network Boot Method.. 1278
A5.1.7 Boot Environment.. 1279
A5.1.8 Managing the Behavior of a Booting Platform... 1280

A5.1.8.1 Boot Resolution Methods .. 1280
A5.1.8.2 ROM Repository.. 1281
A5.1.8.3 Boot Environment Extension ... 1281
A5.1.8.4 Proprietary Driver Load ... 1281

A5.1.9 Subnet Initialization ... 1281
A5.1.10 Boot/Reboot .. 1282

A5.2 BootManager ..1282
A5.2.1 General Operation... 1282
A5.2.2 Detecting New Boot Platforms .. 1284
A5.2.3 Multiple Boot Managers .. 1284
A5.2.4 Protecting the BtM_Key .. 1285
A5.2.5 Event Reporting .. 1285
A5.2.6 SA Advertisement ... 1285

A5.3 BootAgent...1286
A5.4 MAD Format ...1286

A5.4.1 Boot Management MAD Status... 1288
A5.4.2 MAD BtM_Key... 1289

A5.5 Boot Management Methods and Attributes ..1289
A5.6 Boot Management Attribute Definitions ..1293

A5.6.1 ClassPortInfo... 1295
A5.6.2 BtM_KeyInfo.. 1295

A5.6.2.1 BtM_Key General Use... 1296
A5.6.2.2 BtM_Key Assumptions .. 1297
A5.6.2.3 BtM_Key Operations ... 1297
A5.6.2.4 BtM_Key Initialization .. 1299
A5.6.2.5 BtM_Key Recovery.. 1299
A5.6.2.6 Lease Period ... 1300

A5.6.3 PlatformBootInfo Attribute ... 1301
A5.6.3.1 BootPlatformUUID... 1311
A5.6.3.2 PlatformInfo ... 1311
A5.6.3.3 Booting Platform Capability ... 1313
A5.6.3.4 Boot Record Locator Sources ... 1315
A5.6.3.5 Record Count .. 1317
A5.6.3.6 Deleting Persistent Records.. 1319
A5.6.3.7 Status Components ... 1319

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 33 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.4 PortBootInfo Attribute.. 1320
A5.6.4.1 BisPortPriority.. 1324
A5.6.4.2 RomPortPriority ... 1324
A5.6.4.3 ConsolePortPriority ... 1324
A5.6.4.4 IocPortPriority .. 1324
A5.6.4.5 NetworkBootPortPriority .. 1325
A5.6.4.6 Time-outs... 1325

A5.6.5 Persistent Locator Records... 1327
A5.6.5.1 Device-Service .. 1330
A5.6.5.2 IocGUID-SID ... 1331
A5.6.5.3 PortGID ... 1331
A5.6.5.4 Protocol ... 1331
A5.6.5.5 RecordFunction ... 1331

A5.6.6 Node Reboot ... 1334
A5.6.6.1 NodeReboot Attribute.. 1334
A5.6.6.2 Reboot Time Line .. 1335

A5.6.7 Traps and Notice Queues ... 1336
A5.6.7.1 Notice Attribute.. 1339
A5.6.7.2 TrapRepress.. 1346
A5.6.7.3 Trap Subscription / Reporting.. 1346

A5.6.8 InformInfo Attribute.. 1351
A5.7 Platforms Use of BIS ..1351

A5.7.1 BIS Usage Overview ... 1351
A5.7.2 PlatformBootInfo Source ... 1352
A5.7.3 PortBootInfo Source.. 1353
A5.7.4 Determining to use a BIS .. 1353
A5.7.5 Finding a BIS... 1353
A5.7.6 Selecting A BIS ... 1354
A5.7.7 Prioritizing Multiple BISs ... 1354
A5.7.8 Other Considerations .. 1355

A5.7.8.1 Reliable Multi-Packet Protocol .. 1355
A5.7.8.2 Port GID to LID Resolution.. 1355
A5.7.8.3 Reporting Failures ... 1356

A5.8 IB Network Booting...1356
A5.9 Retry Backoff ..1356
A5.10 IB Boot Process - Summary ...1357
A5.11 AdditionalInfo..1362

A5.11.1 SRP... 1363
A5.11.2 Console ... 1364

A5.12 ROM Repository ...1365
A5.12.1 Introduction ... 1365
A5.12.2 Overview of IOC Boot Driver Download.. 1366

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 34 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.3 ROM Repository Model... 1366
A5.12.4 Identifying a ROM Repository ... 1367
A5.12.5 ROM Repository Access Methods .. 1368
A5.12.6 ROM Repository Messages .. 1368
A5.12.7 Reading ROM Repository Information .. 1370
A5.12.8 IMAGE Descriptor ... 1375
A5.12.9 Reading an Image Descriptor ... 1377
A5.12.10 Reading an image ... 1380
A5.12.11 Adding and Updating an Image... 1383

A5.12.11.1 Initiating an Image Add Operation... 1383
A5.12.11.2 Initiating an Image Update .. 1386
A5.12.11.3 Writing Descriptor and Image Data ... 1391
A5.12.11.4 Deleting an Image ... 1395

A5.13 Compliance Summary ..1396
A5.13.1 Booting Specification Compliance Categories .. 1396
A5.13.2 BootAgent (BtA) Compliance Category... 1397
A5.13.3 BootManager (BtM) Compliance Category ... 1398
A5.13.4 Boot Platform (BtPlatform) Compliance Category... 1400
A5.13.5 ROM Repository Compliance Category .. 1401

Annex A6: Boot Information Service...1403
A6.1 Introduction...1403

A6.1.1 Glossary .. 1403
A6.1.2 Compliance ... 1403

A6.2 BIS Overview..1403
A6.2.1 BIS Operational Model .. 1405
A6.2.2 Relationship with other Management Classes .. 1407

A6.2.2.1 Boot Management ... 1407
A6.2.2.2 Subnet Administration ... 1407
A6.2.2.3 Subnet Management ... 1408
A6.2.2.4 Device Management ... 1408

A6.2.3 Characteristics .. 1408
A6.3 BIS Class Specification...1410

A6.3.1 Registration ... 1411
A6.3.2 BIS Query Operation... 1411
A6.3.3 BIS Data Formats.. 1413

A6.3.3.1 Reserved Fields .. 1414
A6.3.3.2 BIS Status Values .. 1414

A6.3.4 BIS Methods.. 1415
A6.3.4.1 Common Methods ... 1415
A6.3.4.2 Query Methods.. 1415
A6.3.4.3 Lost Messages .. 1417

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 35 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.5 Attributes ... 1417
A6.3.5.1 ClassPortInfo... 1418
A6.3.5.2 BootQueryInfo Attribute... 1418
A6.3.5.3 PlatformBootInfo Attribute ... 1425
A6.3.5.4 PortBootInfo Attribute .. 1426
A6.3.5.5 RomRepositoryLocatorRecord Attribute.. 1427
A6.3.5.6 ConsoleLocatorRecord Attribute ... 1427
A6.3.5.7 OsLocatorRecord Attribute.. 1429
A6.3.5.8 Protocol Field .. 1430

A6.4 Booting using Boot Information Records ..1431
A6.4.1 Overview ... 1431
A6.4.2 General Operation... 1432

A6.5 Compliance Summary ..1434

Annex A7: Configuration Management ...1436
A7.1 Introduction...1436

A7.1.1 Glossary .. 1437
A7.1.2 Compliance ... 1441

A7.2 Overview...1441
A7.2.1 Objective ... 1443
A7.2.2 Usage Model ... 1443
A7.2.3 Configuration Management Application .. 1445

A7.2.3.1 Passive Management .. 1445
A7.2.3.2 Active Management... 1446
A7.2.3.3 Multiple Managers ... 1446

A7.3 Configuration Management Operational Model..1449
A7.4 Configuration Management Characteristics ...1450

A7.4.1 Configuration Domain ... 1450
A7.4.2 Partition Usage.. 1451
A7.4.3 SA usage... 1452
A7.4.4 Manager Interaction .. 1452

A7.5 Configuration Management Operation ...1452
A7.5.1 Interaction with Subnet Manager .. 1453
A7.5.2 Initialization and SA Registration .. 1453
A7.5.3 Coherency between Configuration Managers... 1454
A7.5.4 Active vs. Passive Configuration Management... 1455
A7.5.5 Device Manager Operation ... 1456
A7.5.6 Protecting the Manager_Key... 1457
A7.5.7 I/O Unit Trap Forwarding... 1458

A7.5.7.1 Configuring IOUs for Traps.. 1458
A7.5.7.2 Trap Subscription / Reporting.. 1458
A7.5.7.3 Subscription Integrity ... 1461

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 36 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.5.7.4 Subscription Timeout... 1462
A7.5.7.5 Heartbeat... 1463

A7.5.8 Graceful Hot Removal... 1464
A7.5.9 Diagnostics.. 1468

A7.5.9.1 Diagnostic Framework... 1468
A7.5.9.2 Version 1 Diagnostics.. 1469
A7.5.9.3 7.5.9.3 Diagnostics under Passive Management .. 1470

A7.6 DevAdm Class Definition..1471
A7.6.1 Operation .. 1471

A7.6.1.1 Query... 1471
A7.6.1.2 Event Notification Subsystem.. 1472

A7.6.2 DevAdm Message Format .. 1479
A7.6.2.1 Reserved Fields .. 1481
A7.6.2.2 DevAdm Status Values .. 1481
A7.6.2.3 Methods... 1482
A7.6.2.4 RMPP Header ... 1482
A7.6.2.5 RequesterID .. 1483
A7.6.2.6 Component Mask .. 1484
A7.6.2.7 Lost Messages .. 1485

A7.6.3 Attributes ... 1485
A7.6.3.1 ClassPortInfo... 1486
A7.6.3.2 Notice .. 1487
A7.6.3.3 InformInfo .. 1490
A7.6.3.4 LogIn ... 1491
A7.6.3.5 S_KeyInfo.. 1494
A7.6.3.6 C_KeyInfo.. 1495
A7.6.3.7 RemovalReq.. 1497
A7.6.3.8 DiagNotice... 1499
A7.6.3.9 ResetNotice... 1501

A7.7 Compliance...1503
A7.7.1 Compliance Categories... 1503
A7.7.2 Configuration Manager Compliance Summary ... 1504
A7.7.3 I/O Client Compliance Summary... 1505
A7.7.4 Common Management Requirements .. 1506

Annex A8: Device Management ...1507
A8.1 Introduction...1507

A8.1.1 Glossary .. 1508
A8.1.2 Compliance ... 1508
A8.1.3 Goals and Objectives .. 1508

A8.2 Overview...1509
A8.2.1 Usage Model ... 1509

A8.2.1.1 Device Manager (DM) ... 1510

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 37 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.2.1.2 I/O Resource Manager .. 1512
A8.2.1.3 I/O Client ... 1512
A8.2.1.4 I/O Management Application ... 1513

A8.2.2 I/O Unit Model ... 1514
A8.2.3 Device Management Model .. 1516

A8.2.3.1 Authority .. 1518
A8.2.3.2 Device Information .. 1519
A8.2.3.3 Device Assignment.. 1521
A8.2.3.4 Physical Management ... 1525
A8.2.3.5 Device Diagnostics.. 1527

A8.2.4 Levels of Access ... 1528
A8.3 Device Mgt MAD Specification ...1530

A8.3.1 MAD Format.. 1530
A8.3.1.1 Class Version .. 1531
A8.3.1.2 Status Field.. 1535
A8.3.1.3 RMPP Header ... 1536
A8.3.1.4 Access_Key and KeyType... 1536
A8.3.1.5 Component Mask .. 1538

A8.3.2 Methods .. 1539
A8.3.3 Attributes ... 1540

A8.3.3.1 ClassPortInfo... 1544
A8.3.3.2 Notice .. 1545
A8.3.3.3 InformInfo .. 1557
A8.3.3.4 DA Info .. 1558
A8.3.3.5 IOUnitInfo .. 1559
A8.3.3.6 IOControllerProfile ... 1561
A8.3.3.7 ServiceRecord... 1564
A8.3.3.8 ProtocolRecord.. 1568
A8.3.3.9 SlotControlStatus... 1570
A8.3.3.10 Reset ... 1573
A8.3.3.11 ProductInfo .. 1574
A8.3.3.12 KeyInfo .. 1576
A8.3.3.13 IouResourceInfo .. 1582
A8.3.3.14 PlatformPoolRecord .. 1585
A8.3.3.15 ClientPoolRecord .. 1591
A8.3.3.16 KeyChange.. 1597
A8.3.3.17 DiagSession .. 1598
A8.3.3.18 DiagnosticTimeout... 1602
A8.3.3.19 TestDeviceOnce .. 1603
A8.3.3.20 TestDeviceLoop... 1604
A8.3.3.21 DiagCode .. 1605

A8.4 Resource Allocation Framework...1606
A8.4.1 QP Allocation .. 1606

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 38 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.4.2 Filtering Information .. 1608
A8.4.3 Restricting Access... 1610
A8.4.4 Consuming QPs .. 1612

A8.5 Device Diagnostic Framework..1614
A8.5.1 Behaviors .. 1616
A8.5.2 Preparing for Diagnostic Tests .. 1617
A8.5.3 Invoking Diagnostic Tests.. 1617

A8.6 IOC Graceful Hot Removal...1618
A8.6.1 Required Hot Plug Facilities.. 1619
A8.6.2 Operation .. 1620
A8.6.3 STATE DIAGRAM ... 1621
A8.6.4 I/O Module Indicators .. 1622

A8.6.4.1 LED Blink Rate Definitions .. 1623
A8.6.4.2 LED Color.. 1623

A8.7 Device Manager ...1623
A8.8 I/O Unit Implementation..1624
A8.9 Compliance...1625

A8.9.1 Compliance Categories... 1625
A8.9.2 Device Management Agent Compliance Summary .. 1625
A8.9.3 Common Management Requirements .. 1628

Annex A9: Verb Extensions Annex..1629
A9.1 Introduction...1629

A9.1.1 Overview ... 1629

Annex A10: Congestion Control ..1630
A10.1 Congestion Control in InfiniBand Networks ...1630

A10.1.1 Glossary .. 1630
A10.1.2 Congestion Overview .. 1632
A10.1.3 Congestion control Summary.. 1634

A10.1.3.1 Current Performance metrics .. 1635
A10.1.3.2 Operation with Rev 1.1 switches and Channel Adapters 1635

A10.2 Congestion Control Mechanism ...1636
A10.2.1 Switch Behavior .. 1636

A10.2.1.1 Congestion Detection .. 1636
A10.2.1.2 Congestion Marking .. 1638
A10.2.1.3 Congestion Log ... 1639
A10.2.1.4 Switch Performance counters for congestion.. 1640
A10.2.1.5 Switch Credit Starvation .. 1641

A10.2.2 CA Behavior .. 1642
A10.2.2.1 Injection rate control .. 1643
A10.2.2.2 CA Congestion Threshold Event Notification Log ... 1646

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 39 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2.2.3 CA Performance Counters .. 1647
A10.3 Packet Formats ..1647

A10.3.1 BTH: FECN and BECN locations .. 1647
A10.3.2 Congestion Notification Packet (CNP) format ... 1648

A10.4 Congestion Control Management...1649
A10.4.1 Congestion Control MAD Format .. 1649

A10.4.1.1 CC_Key ... 1650
A10.4.1.2 Congestion Control Log Data .. 1653
A10.4.1.3 CCMgt Data... 1653

A10.4.2 Methods .. 1653
A10.4.3 Attributes ... 1653

A10.4.3.1 ClassPortInfo... 1655
A10.4.3.2 Traps and Notices ... 1655
A10.4.3.3 CongestionInfo .. 1657
A10.4.3.4 CongestionKeyInfo .. 1657
A10.4.3.5 CongestionLog .. 1657
A10.4.3.6 SwitchCongestionSetting .. 1659
A10.4.3.7 SwitchPortCongestionSetting.. 1661
A10.4.3.8 CACongestionSetting .. 1662
A10.4.3.9 CongestionControlTable .. 1664
A10.4.3.10 TimeStamp .. 1666

A10.5 Congestion Management Performance Counters ..1666
A10.5.1 PortSamplesControl .. 1666
A10.5.2 Counter Select Values... 1667
A10.5.3 Optional Performance Management Attributes ... 1667
A10.5.4 PortRcvConCtrl ... 1668
A10.5.5 PortSLRcvFECN ... 1669
A10.5.6 PortSLRcvBECN... 1671
A10.5.7 PortXmitConCtrl .. 1673
A10.5.8 PortVLXmitTimeCong.. 1673

A10.6 Compliance Summary ..1675
A10.6.1 CCMgt Switch Compliance Category.. 1675
A10.6.2 CCMgt CA Compliance Category ... 1676

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 40 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIST OF FIGURES

Figure 1 IBA System Area Network.. 62
Figure 2 Single Host Environment.. 65
Figure 3 Byte Order for Multiple Byte Fields... 66
Figure 4 Byte Order Examples ... 67
Figure 5 Bit Order Examples .. 67
Figure 6 IBA System Area Network.. 87
Figure 7 IBA Network ... 88
Figure 8 IBA Network Components .. 89
Figure 9 IBA Subnet Components.. 89
Figure 10 Processor Node.. 90
Figure 11 Consumer Queuing Model ... 91
Figure 12 Work Queue Operations... 92
Figure 13 IBA Communication Stack...94
Figure 14 Channel Adapter .. 96
Figure 15 IBA Switch Elements .. 97
Figure 16 IBA Router Elements.. 98
Figure 17 Communication Interface ... 101
Figure 18 Virtual Lanes .. 107
Figure 19 Rate Matching Example ... 109
Figure 20 Simplified Address Resolution Process.. 111
Figure 21 Example Unreliable Multicast Operation .. 113
Figure 22 Connected Service ... 119
Figure 23 Datagram Service... 121
Figure 24 Reliable Datagram Service... 122
Figure 25 IBA Architecture Layers.. 123
Figure 26 IBA Packet Framing ... 124
Figure 27 IBA Data Packet Format...124
Figure 28 Segmentation of Data... 126
Figure 29 Upper Layers.. 128
Figure 30 Subnet Management Elements .. 129
Figure 31 General Services.. 130
Figure 32 Subnet Management Models ... 132
Figure 33 General Services Physical Model... 133
Figure 34 General Services Logical Models... 133
Figure 35 I/O Unit ... 139
Figure 36 IO Operation... 140
Figure 37 Reference IBA Address / Component Association... 141
Figure 38 Reference IBA Router Address Association... 142
Figure 39 Link-Local Unicast GID Format .. 144
Figure 40 Site-Local Unicast GID Format... 145
Figure 41 Unicast Global GID Format .. 145
Figure 42 Multicast GID Format ... 145

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 41 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 43 Multipath Identification Example... 148
Figure 44 IBA Messages and Packets ... 150
Figure 45 IBA Packet Overview.. 152
Figure 46 IBA Packet Structure .. 153
Figure 47 Raw Header (RWH) ...161
Figure 48 IBA Packet Examples... 162
Figure 49 Physical Functions and Physical/Link Interface ... 163
Figure 50 Link State Machine... 170
Figure 51 Packet Receiver State Machine ... 174
Figure 52 Data Packet Check machine .. 176
Figure 53 Link Packet Check machine ... 179
Figure 54 Local Route Header (LRH)... 193
Figure 55 CRC Calculation Order... 197
Figure 56 ICRC Generator ... 199
Figure 57 VCRC / FCCRC Generator .. 200
Figure 58 Local Packet Example.. 201
Figure 59 Global Packet Example .. 204
Figure 60 Flow Control Packet Format... 210
Figure 61 Example IBA Unreliable Multicast Operation ... 214
Figure 62 Packet Delivery within an end node ... 216
Figure 63 Example Raw Packet Multicast Operation ... 217
Figure 64 Global Route Header (GRH) .. 225
Figure 65 IBA Operation... 231
Figure 66 Base Transport Header (BTH) ... 234
Figure 67 Reliable Datagram Extended Transport Header (RDETH) .. 240
Figure 68 Datagram Extended Transport Header (DETH) ... 240
Figure 69 RDMA Extended Transport Header (RETH) .. 241
Figure 70 ATOMIC Extended Transport Header (AtomicETH) .. 242
Figure 71 Acknowledge Extended Transport Header (AETH)... 243
Figure 72 ATOMIC Acknowledge Extended Transport Header (AtomicAckETH) 243
Figure 73 Immediate Extended Transport Header (ImmDt) ... 244
Figure 74 Invalidate Extended Transport Header (IETH) ... 244
Figure 75 SEND Operation Example.. 247
Figure 76 RDMA WRITE Operation Example .. 254
Figure 77 RDMA READ Operation Example .. 257
Figure 78 ATOMIC Operation Example.. 262
Figure 79 Responder State Maintained for ATOMIC & RDMA READ Operations 265
Figure 80 Retrying ATOMIC Operations .. 267
Figure 81 Packet Header Validation Process... 271
Figure 82 Send-Receive Queues Related by PSN... 282
Figure 83 Duplicate Request Packets .. 283
Figure 84 Ghost Request Packet ...283
Figure 85 Lost Request Packet(s) .. 284
Figure 86 Valid and Invalid PSN Regions .. 285
Figure 87 Request/Response PSNs... 287
Figure 88 Inbound Request Packet Validation, RC mode .. 295
Figure 89 Inbound Request Packet Validation, RD mode .. 296
Figure 90 Example: PSNs for Response Messages .. 307

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 42 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 91 Requester Interpretation of Coalesced Acknowledges .. 309
Figure 92 Relaxed Ordering Rules for RDMA READs ... 312
Figure 93 Maintaining the Order of Responses to Duplicate Requests.. 314
Figure 94 Acknowledging a Duplicate SEND Request... 316
Figure 95 Acknowledging a Duplicate RDMA READ Request ... 318
Figure 96 Response Format for SENDs, RDMA WRITEs.. 322
Figure 97 Acknowledge Message Format for RDMA READ Requests .. 323
Figure 98 Response Packet PSN Regions... 333
Figure 99 Three PSN Paradigm ...335
Figure 100 Responder Initializes MSN to Zero... 344
Figure 101 Requester Behavior - Completing WQEs... 345
Figure 102 Limitation on Completing Send Queue WQEs ... 346
Figure 103 Requester End-to-End Credit Processes ... 351
Figure 104 Responder End-to-End Credit Initialization Process .. 352
Figure 105 Relating AETH values to the Send Queue ... 356
Figure 106 “Connectionless” QPs for Reliable Datagram Operation.. 363
Figure 107 Loss of synchronization of the EEC on Suspend ... 369
Figure 108 Requestor RESYNC flow chart .. 370
Figure 109 RESYNC detects unexpectedly complete message .. 371
Figure 110 RESYNC prevents corruption by delayed packets... 372
Figure 111 Responder use of MSN ..374
Figure 112 Unreliable Service: Inbound Packet Validation .. 378
Figure 113 Connectionless QPs for Unreliable Datagram Operation... 391
Figure 114 Raw Datagrams.. 394
Figure 115 Requester / Responder Error Detection ... 396
Figure 116 Requester Class A Fault Behavior ... 404
Figure 117 Requester Class B Fault Behavior ... 405
Figure 118 Requester Class D Fault Behavior ... 406
Figure 119 Transport Class A Responder Behavior ... 413
Figure 120 Responder Class B Fault Behavior .. 414
Figure 121 Transport Class C Receive Queue Behavior ... 415
Figure 122 Transport Class E Receive Queue Behavior.. 417
Figure 123 Transport Class F Receive Queue Behavior .. 418
Figure 124 QP/EE Context State Diagram ... 452
Figure 125 Path Migration State Diagram .. 463
Figure 126 Registered Virtual Buffer to Physical Page Relationship.. 480
Figure 127 Work Queue Abstraction ..512
Figure 128 Communication Management Entities.. 650
Figure 129 Sample Connection Establishment Sequence ... 652
Figure 130 Loading alternate path.. 681
Figure 131 Communication Establishment(Active Side) ... 687
Figure 132 Communication Establishment(Passive Side)... 688
Figure 133 MRA Example .. 695
Figure 134 Active/Passive, Both Accept...698
Figure 135 Active/Passive, Server Reject .. 699
Figure 136 Active/Passive, Client Reject.. 700
Figure 137 Active/Active, Both Accept ... 701
Figure 138 Active/Active, Passive Reject ...702

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 43 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 139 Active/Active, Active Reject .. 703
Figure 140 Redirection, Accepted .. 704
Figure 141 Disconnect Request ... 705
Figure 142 Management Model.. 713
Figure 143 Typical Subnet Manager/Agent Relationships ... 715
Figure 144 Typical General Services Management/Agent Relationship .. 716
Figure 145 MAD Base Format.. 719
Figure 146 Get() ... 724
Figure 147 Set().. 725
Figure 148 Trap().. 726
Figure 149 TrapRepress() .. 726
Figure 150 Forwarding Trap()s/Notices from the class manager ... 727
Figure 151 Subscribing and unsubscribing for forwarding ... 746
Figure 152 Forwarding Trap()s/Notices from the Class Manager .. 748
Figure 153 MAD Interface .. 750
Figure 154 GSI Redirection .. 754
Figure 155 LRH Check ... 760
Figure 156 BTH Check ... 760
Figure 157 BTH Check Extension .. 760
Figure 158 GRH Check .. 761
Figure 159 SMP Check 1 ... 761
Figure 160 SMP M_Key Check .. 762
Figure 161 SMP Check 2 ... 762
Figure 162 SMP - SM Check.. 763
Figure 163 SMP Direct Route Check 1 .. 763
Figure 164 SMP Direct Route Check 2 .. 764
Figure 165 SMP - Direct Route Check 3 .. 764
Figure 166 SMP Direct Route Check 4 .. 765
Figure 167 SMP Direct Route Check 5 .. 766
Figure 168 SMP - Direct Route Check 6 .. 766
Figure 169 GMP Check .. 767
Figure 170 RMPP Header Layout .. 772
Figure 171 RMPP DATA Packet Layout... 775
Figure 172 RMPP ACK Packet Layout... 776
Figure 173 RMPP ABORT & STOP Packet Layouts.. 777
Figure 174 RMPP Example .. 780
Figure 175 RMPP Window State Variable Relationships ... 783
Figure 176 RMPP Dispatcher... 784
Figure 177 RMPP Common Termination Flow... 785
Figure 178 RMPP Receiver Main Flow Diagram.. 786
Figure 179 RMPP Receiver Termination Flow ... 787
Figure 180 RMPP Sender Main Flow Diagram .. 789
Figure 181 RMPP Sender Direction Switch Flow Diagram .. 791
Figure 182 RMPP Receiver-Initiated Flow ... 792
Figure 183 SMP Format (LID Routed).. 795
Figure 184 SMP Format (Directed Route) .. 796
Figure 185 Complete route using directed routing ... 799
Figure 186 Loopback using directed routing .. 799

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 44 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 187 Pure directed route... 799
Figure 188 Directed route with LID-Routed part at the source ... 800
Figure 189 Directed route with LID-Routed part at the destination .. 800
Figure 190 DiagCode Fields... 833
Figure 191 Example of DiagCode Bits ... 834
Figure 192 MulticastForwardingTable Bit Layout ... 839
Figure 193 Index Forwarded Diagnostic Information.. 841
Figure 194 SMInfo State Transitions .. 861
Figure 195 Subnet Administration Format.. 884
Figure 196 SA-Created Multicast GID Format.. 912
Figure 197 SubnAdmGetTable() Example ... 926
Figure 198 Performance Management MAD Format ... 931
Figure 199 Baseboard Management Architecture.. 974
Figure 200 Baseboard Management MAD Format... 975
Figure 201 BM Initiated IB-ML Command .. 977
Figure 202 IB-ML Initiated Command...978
Figure 203 Architectural Model for an I/O Unit ... 987
Figure 204 Device Management MAD Format ... 987
Figure 205 SNMP Tunneling MAD Format... 999
Figure 206 This Figure is Obsolete and Has Been Deleted ... 1002
Figure 207 SNMP Proxy Agents...1003
Figure 208 SNMP PDU Segmentation ... 1004
Figure 209 Vendor MAD Format (Classes 0x09-0x0F) .. 1005
Figure 210 Vendor MAD Format (Classes 0x30-0x4F) .. 1006
Figure 211 Application MAD Format .. 1009
Figure 212 Communication Management MAD Format ... 1011
Figure 213 IBA Architecture Layers.. 1016
Figure 214 Multiport CA.. 1017
Figure 215 Multiport CA Architectural Layers... 1017
Figure 216 Multiported CAs Connected to Single Subnet .. 1018
Figure 217 Multiported CAs Connected to Multiple Subnets.. 1019
Figure 218 Fault Tolerant Connections to Independent Fabrics .. 1019
Figure 219 Fault Tolerant Connection to a Single Fabrics ... 1020
Figure 220 Multiported HCA with Direct Connections to TCAs .. 1020
Figure 221 Multiple Single Ported CAs with an Embedded Switch .. 1023
Figure 222 Automatic Path Migration State Machine (per QP) .. 1033
Figure 223 Generic I/O Node Model... 1035
Figure 224 Host Environment - Split Responsibility ... 1036
Figure 225 Target Environment - TCA Responsibility .. 1037
Figure 226 Reference of Routers Connecting Subnets.. 1059
Figure 227 Single System & Direct Attached I/O.. 1122
Figure 228 Multiple Systems .. 1123
Figure 229 Architectural Model for a Managed I/O Unit ... 1124
Figure 230 I/O Partitions... 1135
Figure 231 Schematic of IBA Console Abstraction... 1143
Figure 232 CSP Server Session State Diagram... 1148
Figure 233 CSP Client Session State Diagram .. 1149
Figure 234 Protocol Flow Diagram ...1149

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 45 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 235 Version Negotiation Diagram ... 1155
Figure 236 Suspend Example .. 1162
Figure 237 Resume Reject ... 1163
Figure 238 Handoff Example.. 1164
Figure 239 Ping Diagrams.. 1168
Figure 240 Session Termination by Server .. 1170
Figure 241 Session Termination by Client.. 1170
Figure 242 Typical Service Resolution for Host-based Services.. 1176
Figure 243 Typical Service Resolution for I/O Services ... 1177
Figure 244 General Service ID Structure ... 1181
Figure 245 IBTA Assigned Service IDs .. 1181
Figure 246 IETF Service IDs .. 1183
Figure 247 OS Administered Service IDs... 1183
Figure 248 Externally Administrated Service IDs ... 1186
Figure 249 Class/Subclass fields for External Protocols .. 1190
Figure 250 SDP Relation to IBA Architecture Layers ... 1197
Figure 251 Base Sockets Direct Header (BSDH)... 1201
Figure 252 Hello Header .. 1205
Figure 253 HelloAck Header .. 1208
Figure 254 SrcAvail Header (SrcAH).. 1211
Figure 255 SinkAvail Header (SinkAH) .. 1212
Figure 256 RdmaWrCompl Header (RWCH) ... 1213
Figure 257 RdmaRdCompl Header (RRCH) .. 1214
Figure 258 ModeChange Header (MCH) ... 1215
Figure 259 ChRcvBuf Header (CRBH)... 1216
Figure 260 ChRcvBufAck Header (CRBAH) .. 1217
Figure 261 SuspComm Header (SuspCH) ... 1217
Figure 262 Ladder Diagram for BCopy Mechanism ... 1228
Figure 263 Ladder Diagram for Read Zcopy Mechanism... 1232
Figure 264 Ladder Diagram for Write Zcopy Mechanism... 1235
Figure 265 Ladder Diagram of Transaction Mechanism .. 1236
Figure 266 Mode State Machine ..1253
Figure 267 Data Source Transition from Pipelined to Combined Mode 1258
Figure 268 Data Sink Transition from Pipelined to Combined Mode.. 1259
Figure 269 Booting Framework .. 1274
Figure 270 IB I/O Boot Model ... 1276
Figure 271 LAN Network Boot Model ... 1278
Figure 272 IB Network Boot Model...1279
Figure 273 BootManager/BtA Relationship .. 1283
Figure 274 Boot Management MAD ... 1286
Figure 275 Reboot Time Line ... 1336
Figure 276 Boot Management Trap Flow ... 1337
Figure 277 Boot Management Notice Flow .. 1338
Figure 278 Configuring the Boot Platform .. 1358
Figure 279 RomRepository Access .. 1360
Figure 280 Platform Boot Example...1361
Figure 281 Boot Platform to IOU Communication - Access OS Loader 1362
Figure 282 Ladder Diagram of Image Descriptor Read Operation... 1380

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 46 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 283 Ladder Diagram of Image Read Operation .. 1382
Figure 284 Handles Involved in an Image Add Operation.. 1385
Figure 285 Handles Involved in an Image Update in Non Retain Mode....................................... 1388
Figure 286 Handles Involved in an Image Update in Retain Mode .. 1389
Figure 287 Ladder Diagram of Image Write operation ... 1394
Figure 288 Booting Framework .. 1404
Figure 289 BIS Application Model .. 1406
Figure 290 BIS Components & Interfaces .. 1410
Figure 291 BIS MAD Structure ... 1413
Figure 292 Query Operation... 1416
Figure 293 Configuration Management Usage Model .. 1443
Figure 294 Configuration Management Functions and Relationships.. 1444
Figure 295 Multiple Configuration Group Example... 1447
Figure 296 Standby Configuration Manager Example.. 1448
Figure 297 Distributed Configuration Manager Example.. 1448
Figure 298 Configuration Management Operational Model.. 1449
Figure 299 Trap Subscription ... 1460
Figure 300 Trap Forwarding ... 1460
Figure 301 IOU Initiated Removal Process .. 1464
Figure 302 SW Initiated Removal Process... 1464
Figure 303 Diagnostic Usage Model .. 1468
Figure 304 Event Subscription ... 1474
Figure 305 Event Notification for Resource Allocation Change.. 1477
Figure 306 DevAdm MAD Format .. 1480
Figure 307 Device Management Usage Model .. 1510
Figure 308 Model for an I/O Unit .. 1515
Figure 309 I/O Components and Relationships.. 1517
Figure 310 Data Hierarchy ... 1520
Figure 311 Device Assignment Attributes .. 1521
Figure 312 Physical Management Attributes.. 1525
Figure 313 Example of IOU with Permanent IOCs... 1526
Figure 314 Example of IOU with Removable Modules... 1527
Figure 315 Diagnostic Usage Model .. 1528
Figure 316 Device Management MAD Format ... 1530
Figure 317 Service Object Tuple .. 1591
Figure 318 Allocating Resource Pools ... 1607
Figure 319 Connection Approval Decision Tree... 1611
Figure 320 Consuming QPs from Resource Pools... 1613
Figure 321 Graceful Removal State Diagram... 1622
Figure 322 Fabric Congestion .. 1633
Figure 323 Congestion Notification packet format.. 1648
Figure 324 Congestion Control MAD format .. 1649

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 47 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIST OF TABLES

Table 1 Revision History .. 2
Table 2 Service Types.. 102
Table 3 Multicast Address Scope... 146
Table 4 Local Route Header Fields.. 154
Table 5 Global Route Header Fields .. 155
Table 6 Base Transport Header Fields... 156
Table 7 Reliable Datagram Extended Transport Header Fields... 157
Table 8 Datagram Extended Transport Header Fields... 157
Table 9 RDMA Extended Transport Header Fields .. 158
Table 10 Atomic Extended Transport Header Fields.. 158
Table 11 ACK Extended Transport Header Fields ... 159
Table 12 Atomic ACK Extended Transport Header Fields ... 159
Table 13 Key Virtual Lane Characteristics ... 180
Table 14 VL Numbering and Inter-operability... 182
Table 15 Processing of Link Packets ... 184
Table 16 SLtoVLMappingTable Behavior ... 187
Table 17 Arbitration Rules for Devices with only one data VL.. 189
Table 18 Link Next Header Definition... 194
Table 19 Packet Size ... 195
Table 20 LRH ... 201
Table 21 BTH ... 201
Table 22 RETH... 202
Table 23 Payload ... 202
Table 24 Local Packet Byte Stream (before ICRC and VCRC).. 203
Table 25 Masked Byte Stream for ICRC Calculation ... 203
Table 26 Local Packet Byte Stream ... 204
Table 27 LRH ... 205
Table 28 GRH .. 205
Table 29 Global Packet Byte Stream (before ICRC and VCRC).. 206
Table 30 Masked Byte Stream for ICRC Calculation ... 207
Table 31 Global Packet Byte Stream ... 208
Table 32 Link Packet.. 208
Table 33 Link Packet Byte Stream ... 209
Table 34 Comparison of IBA Transport Service Types .. 232
Table 35 OpCode field ... 235
Table 36 Transport Functions Supported for Specific Transport Services 245
Table 37 Verification of Destination QP.. 273
Table 38 Verification of EE Context.. 277
Table 39 Requester’s Calculation of Next PSN.. 290

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 48 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 40 Schedule of Valid OpCode Sequences ... 293
Table 41 Summary: Responder Actions for Duplicate PSNs ... 300
Table 42 Schedule of Valid OpCode Sequences ... 302
Table 43 AETH Syndrome Field... 324
Table 44 NAK Codes.. 325
Table 45 Encoding for RNR NAK Timer Field .. 330
Table 46 Reliable Connected Service Characteristics ... 342
Table 47 End-to-End Flow Control Credit Encoding .. 354
Table 48 Reliable Datagram QP characteristics... 359
Table 49 Summary of Unreliable Connection Service Characteristics ... 379
Table 50 Requester’s Calculation of Next PSN.. 380
Table 51 Schedule of Valid OpCode Sequences ... 381
Table 52 Summary: Valid OpCode Sequences.. 386
Table 53 Unreliable Datagram QP characteristics ... 390
Table 54 Maximum Raw Datagram Packet Payload.. 395
Table 55 Software Error Types Detected by Transport Layer .. 397
Table 56 Requester Side Error Behavior ... 401
Table 57 Summary of Requester Fault Behavior Classes ... 403
Table 58 Responder Error Behavior Summary .. 409
Table 59 Summary of Responder Fault Class Behaviors .. 412
Table 60 Packet Fields and Parameters by Service .. 420
Table 61 Connection Parameters by Transport Service... 423
Table 62 Packet Fields Validation source by Service... 425
Table 63 Inter Packet Delay ... 428
Table 64 Packet Fields, Queue Parameters, and their Sources .. 448
Table 65 Legend for Table 64... 450
Table 66 Memory Region States Summary.. 473
Table 67 Memory Region State Transitions ... 473
Table 68 Non-Shared Memory Regions Invalidation and Fast-Registration Rules 488
Table 69 Type 1 Memory Windows States Summary... 494
Table 70 Type 2 Memory Windows States Summary... 494
Table 71 Type 2 Memory Windows State Transitions .. 495
Table 72 Post Send Bind WR Rules .. 501
Table 73 Type 2 Memory Window Invalidation Rules .. 501
Table 74 Type 2 Memory Window Access Rules ... 501
Table 75 Memory Windows Invalidation Rules .. 502
Table 76 Work Request Operation Ordering .. 518
Table 77 Ordering Rules Key ... 518
Table 78 Completion Error Handling for RC Send Queues.. 533
Table 79 Completion Error Handling for RC Receive Queues ... 533
Table 80 Completion Error Handling for RD Send Queues.. 535
Table 81 Completion Error Handling for RD Receive Queues ... 536
Table 82 Completion Error Handling for UC Send Queues.. 538
Table 83 Completion Error Handling for UC Receive Queues ... 538

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 49 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 84 Completion Error Handling for UD Send Queues.. 539
Table 85 Completion Error Handling for UD Receive Queues ... 539
Table 86 Completion Error Handling for Raw Datagram Send Queues 540
Table 87 Completion Error Handling for Raw Datagram Receive Queues 541
Table 88 Verbs Level Behavior for Requester Side Errors... 541
Table 89 Verbs Level Behavior for Responder Side Errors.. 544
Table 90 Verb Classes ... 548
Table 91 QP State Transition Properties .. 569
Table 92 EE Context State Transition Properties ... 586
Table 93 Operation Type Matrix ... 613
Table 94 Work Request Modifier Matrix ... 614
Table 95 Completion Error Types for Send Queues .. 624
Table 96 Completion Error Types for RQs or SRQs .. 625
Table 97 Datagram addressing information ... 627
Table 98 List of Extended Verbs and Optional Modifiers ... 642
Table 99 REQ Message Contents.. 660
Table 100 MRA Message Contents.. 662
Table 101 REJ Message Contents... 662
Table 102 Example REJ Message ... 664
Table 103 REP Message Contents .. 668
Table 104 RTU Message Contents .. 669
Table 105 DREQ Message Contents ... 670
Table 106 DREP Message Contents.. 670
Table 107 Message Field Origins... 670
Table 108 LAP Message Contents... 681
Table 109 APR Message Contents .. 682
Table 110 SIDR_REQ Message Contents ... 706
Table 111 SIDR_REP Message Contents.. 707
Table 112 Common MAD Fields .. 719
Table 113 Management Class Values.. 720
Table 114 Common Management Methods ... 722
Table 115 MAD Common Status Field Bit Values .. 732
Table 116 Attributes Common to Multiple Classes .. 734
Table 117 ClassPortInfo... 735
Table 118 Notice .. 737
Table 119 InformInfo .. 739
Table 120 Setting Report(Notice) MAD Fields ... 748
Table 121 Management Interfaces Summary .. 753
Table 122 SM MAD Sources and Destinations .. 756
Table 123 RMPP Header Fields... 773
Table 124 RMPPStatus Codes... 774
Table 125 SMP Fields (LID Routed) .. 796
Table 126 SMP Fields (Directed Route)... 797
Table 127 Subnet Management Methods .. 806

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 50 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 128 Protection Levels... 807
Table 129 Subnet Management Attributes (Summary) .. 810
Table 130 Subnet Management Attribute / Method Map.. 811
Table 131 Traps ... 812
Table 132 Notice DataDetails For Traps 64, 65, 66, and 67 .. 814
Table 133 Notice DataDetails For Trap 128 ... 814
Table 134 Notice DataDetails For Traps 129, 130 and 131 ... 814
Table 135 Notice DataDetails For Trap 144 ... 815
Table 136 Notice DataDetails For Trap 145 ... 815
Table 137 Notice DataDetails For Trap 256 ... 815
Table 138 Notice DataDetails For Traps 257 and 258 ... 816
Table 139 Notice DataDetails For Trap 259 ... 817
Table 140 NodeDescription.. 818
Table 141 NodeInfo.. 818
Table 142 SwitchInfo.. 819
Table 143 GUIDInfo ... 821
Table 144 GUID Block Element ... 821
Table 145 PortInfo.. 822
Table 146 Standard Encoding of DiagCode Bits 3-0 .. 833
Table 147 P_KeyTable ... 835
Table 148 P_Key Block Element.. 835
Table 149 SLtoVLMappingTable .. 835
Table 150 VLArbitrationTable ... 837
Table 151 VL/Weight Block Element .. 837
Table 152 LinearForwardingTable.. 837
Table 153 Port Block Element.. 837
Table 154 RandomForwardingTable .. 838
Table 155 LID/Port Block Element ... 838
Table 156 MulticastForwardingTable.. 839
Table 157 PortMask Block Element ... 840
Table 158 SMInfo ... 840
Table 159 VendorDiag.. 841
Table 160 LedInfo .. 842
Table 161 Status Precedence .. 843
Table 162 Version Errors in SMPs ... 843
Table 163 Subnet Management Attribute / Method Map Errors... 843
Table 164 SMP AttributeModifier Errors... 845
Table 165 Notice Attribute Component Errors ... 847
Table 166 NodeDescription Attribute Component Errors ... 847
Table 167 NodeInfo Attribute Component Errors ... 847
Table 168 SwitchInfo Attribute Component Errors ... 847
Table 169 GUIDInfo Attribute Component Errors... 848
Table 170 PortInfo (CA/Router/Switch Port0) Attribute Component Errors.................................... 848
Table 171 PortInfo (Switch External Port) Attribute Component Errors ... 849

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 51 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 172 P_Key Attribute Component Errors ... 850
Table 173 SLtoVLMappingTable Attribute Component Errors ... 851
Table 174 VLArbitrationTable Attribute Component Errors .. 851
Table 175 LinearForwardingTable Attribute Component Errors ... 851
Table 176 RandomForwardingTable Attribute Component Errors ... 852
Table 177 Multicast ForwardingTable Attribute Component Errors.. 852
Table 178 SMInfo Attribute Component Errors .. 852
Table 179 VendorDiag Attribute Component Errors... 852
Table 180 LedInfo Attribute Component Errors.. 852
Table 181 Vendor Specific Attribute ... 852
Table 182 SM Control Packets... 862
Table 183 Initialization.. 868
Table 184 PortInfo:InitType Interpretations .. 876
Table 185 Subnet Administration Fields... 884
Table 186 SA-Specific ClassPortInfo:CapabilityMask Bits ... 885
Table 187 Subnet Administration Methods .. 885
Table 188 SA MAD Class-Specific Status Encodings .. 886
Table 189 Subnet Administration Attributes (Summary) .. 888
Table 190 Subnet Administration Attribute / Method Map.. 890
Table 191 NodeRecord .. 891
Table 192 PortInfoRecord ... 891
Table 193 SLtoVLMappingTableRecord... 892
Table 194 SwitchInfoRecord .. 892
Table 195 LinearForwardingTableRecord .. 892
Table 196 RandomForwardingTableRecord... 893
Table 197 MulticastForwardingTableRecord .. 893
Table 198 VLArbitrationTableRecord ... 893
Table 199 SMInfoRecord ... 894
Table 200 P_KeyTableRecord.. 894
Table 201 InformInfoRecord... 894
Table 202 LinkRecord .. 895
Table 203 ServiceRecord... 895
Table 204 ServiceAssociationRecord .. 899
Table 205 PathRecord ... 899
Table 206 Example PathRecord Request MAD Header Fields.. 904
Table 207 Example PathRecord Request Data.. 905
Table 208 Example PathRecord Response MAD Header Fields... 906
Table 209 Example PathRecord Response Data... 907
Table 210 MCMemberRecord ..908
Table 211 GuidInfoRecord ... 916
Table 212 TraceRecord.. 916
Table 213 MultiPathRecord.. 917
Table 214 SubnAdmGetTable query for all NodeRecords with a specific NodeType..................... 925
Table 215 SubnAdmGet() query for a Particular NodeRecord... 927

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 52 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 216 Performance Management MAD Fields .. 931
Table 217 Performance Management Status Field .. 932
Table 218 Performance Management Methods ... 932
Table 219 Mandatory Performance Management Attributes.. 932
Table 220 Mandatory Performance Management Attribute / Method Map 933
Table 221 Performance Management ClassPortInfo:CapabilityMask.. 933
Table 222 PortSamplesControl .. 934
Table 223 CounterSelect Values .. 941
Table 224 PortSamplesResult.. 944
Table 225 PortCounters ... 945
Table 226 Optional Performance Management Attributes ... 950
Table 227 Optional Performance Management Attribute / Method Map .. 951
Table 228 PortRcvErrorDetails... 951
Table 229 PortXmitDiscardDetails.. 953
Table 230 PortOpRcvCounters .. 953
Table 231 PortFlowCtlCounters ... 954
Table 232 PortVLOpPackets .. 955
Table 233 PortVLOpData ... 957
Table 234 PortVLXmitFlowCtlUpdateErrors... 958
Table 235 PortVLXmitWaitCounters... 960
Table 236 SwPortVLCongestion ..962
Table 237 PortSamplesResultExtended .. 963
Table 238 PortSamplesResultExtended .. 965
Table 239 Mandatory PM Attribute Status.. 967
Table 240 Valid Mandatory PM Method/Attribute Combinations .. 967
Table 241 PM AttributeModifier Errors ...968
Table 242 PerformanceSet(ClassPortInfo) Component Errors .. 968
Table 243 PerformanceSet(PortSamplesControl) Component Errors ... 968
Table 244 PerformanceSet(PortSamplesResult) Component Errors... 968
Table 245 PerformanceSet(PortCounters) Component Errors .. 969
Table 246 Optional PM Attribute Status ... 969
Table 247 Valid Optional PM Method/Attribute Combinations.. 969
Table 248 PM AttributeModifier Errors ... 970
Table 249 PerformanceSet(PortRcvErrorDetails) Component Errors .. 970
Table 250 PerformanceSet(PortXmitDiscardDetails) Component Errors....................................... 971
Table 251 PerformanceSet(PortOpRcvCounters) Component Errors ... 971
Table 252 PerformanceSet(PortFlowCtlCounters) Component Errors .. 971
Table 253 PerformanceSet(PortVLOpPackets) Component Errors ... 972
Table 254 PerformanceSet(PortVLOpData) Component Errors .. 972
Table 255 PerformanceSet(PortVLXmitFlowCtlUpdateErrors) Component Errors 972
Table 256 PerformanceSet(PortVLXmitWaitCounters) Component Errors.................................... 973
Table 257 PerformanceSet(PortVLXmitFlowCtlUpdateErrors) Component Errors 973
Table 258 Baseboard Management MAD Fields ... 975
Table 259 Baseboard Management Status Field ... 976

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 53 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 260 Baseboard Management Methods .. 976
Table 261 Baseboard Management Attributes... 978
Table 262 Baseboard Management Attribute / Method Map.. 979
Table 263 Baseboard Management ClassPortInfo:CapabilityMask ... 980
Table 264 Baseboard Management Traps ... 980
Table 265 Notice DataDetails For Trap 259 ... 981
Table 266 Notice DataDetails For Trap 260 ... 981
Table 267 BKeyInfo.. 982
Table 268 B_Key Protection Scope ... 983
Table 269 B_Key Check... 984
Table 270 Protection Levels... 985
Table 271 Device Management MAD Fields.. 987
Table 272 Device Management Status Field.. 988
Table 273 Device Management Methods... 989
Table 274 Device Management Attributes ... 989
Table 275 Device Management Attribute / Method Map .. 991
Table 276 Device Management ClassPortInfo:CapabilityMask.. 991
Table 277 Device Management Traps ... 992
Table 278 Notice DataDetails For Trap 514 ... 992
Table 279 IOUnitInfo .. 992
Table 280 IOControllerProfile... 993
Table 281 ServiceEntries ... 995
Table 282 DiagnosticTimeout... 996
Table 283 PrepareToTest ... 996
Table 284 TestDeviceOnce .. 996
Table 285 TestDeviceLoop... 996
Table 286 DiagCode .. 996
Table 287 SNMP Tunneling MAD Fields.. 999
Table 288 SNMP Tunneling Status Field.. 1000
Table 289 SNMP Tunneling Methods... 1000
Table 290 SNMP Tunneling Attributes ... 1001
Table 291 SNMP Tunneling Attribute / Method Map .. 1001
Table 292 SNMP Tunneling ClassPortInfo:CapabilityMask ... 1001
Table 293 PduInfo .. 1002
Table 294 Vendor MAD Fields (Classes 0x09-0x0F) ... 1005
Table 295 Vendor MAD Fields (Classes 0x30-0x4F) ... 1006
Table 296 Vendor Status Field ... 1007
Table 297 Vendor Class Methods .. 1007
Table 298 Vendor Class Attributes...1007
Table 299 Vendor Attribute / Method Map.. 1008
Table 300 Vendor ClassPortInfo:CapabilityMask ... 1008
Table 301 Application MAD Fields ... 1009
Table 302 Application Status Field ... 1009
Table 303 Application Class Methods .. 1009

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 54 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 304 Application Class Attributes... 1010
Table 305 Application Attribute / Method Map ... 1010
Table 306 Application ClassPortInfo:CapabilityMask ... 1010
Table 307 Communication Management MAD Fields.. 1011
Table 308 Communication Management Status Field.. 1012
Table 309 Communication Management Methods... 1012
Table 310 Communication Management Attributes ... 1013
Table 311 Communication Management Attribute / Method Map .. 1013
Table 312 Communication Management ClassPortInfo:CapabilityMask...................................... 1014
Table 313 Port Attributes & Functions.. 1021
Table 314 Channel Adapter Attributes ... 1025
Table 315 Static Rate Control IPD Values.. 1029
Table 316 Volume 1 Compliance Categories .. 1073
Table 317 Volume 1 Compliance Qualifiers ... 1074
Table 318 ASCII String Representations of DevMgt Components ... 1126
Table 319 Compatibility Strings.. 1126
Table 320 Console Protocol Messages.. 1147
Table 321 Console Protocol Error Actions ... 1150
Table 322 ErrorReport.. 1150
Table 323 ConsoleDeviceProfile .. 1151
Table 324 ConsoleCapabilityRecord.. 1152
Table 325 ConsoleDeviceProfileRequest... 1154
Table 326 ConsoleDeviceProfileReply... 1155
Table 327 ConsoleDeviceProfileReject .. 1156
Table 328 SessionInitRequest ... 1157
Table 329 SessionInitAck... 1157
Table 330 SessionInitNAK ... 1158
Table 331 ConsoleDataOut .. 1159
Table 332 ConsoleDataIn... 1159
Table 333 SessionSuspendRequest .. 1165
Table 334 SessionSuspendNAK .. 1165
Table 335 SessionSuspendAck ... 1166
Table 336 SessionResumeRequest... 1166
Table 337 SessionResumeAck .. 1167
Table 338 SessionResumeNAK... 1167
Table 339 PingRequest.. 1168
Table 340 PingResponse ... 1168
Table 341 SessionEndRequest.. 1169
Table 342 SessionTerminated Message .. 1169
Table 343 Service ID Categories and Characteristics.. 1179
Table 344 AGN Codes ... 1181
Table 345 IBTA Assigned Service IDs.. 1182
Table 346 I/O Category .. 1190
Table 347 IBTA Defined Protocols ... 1191

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 55 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 348 IBTA Service Names ... 1192
Table 349 Application Specific Management Class Codes .. 1193
Table 350 Privileged Q_Keys... 1193
Table 351 SDP Message Definitions.. 1202
Table 352 BSDH Flags... 1203
Table 353 Capabilities .. 1207
Table 354 Capabilities .. 1210
Table 355 MCH Mode Values...1215
Table 356 Mode Characteristics... 1250
Table 357 Summary of Permitted Actions By Mode Pair ... 1250
Table 358 Mode Master ... 1254
Table 359 Data Source Mode Transition Events .. 1260
Table 360 Data Sink Mode Transition Events .. 1260
Table 361 Boot Management MAD Components... 1287
Table 362 Boot Management Methods .. 1289
Table 363 BtA Method/Attribute Combinations .. 1290
Table 364 BtA Capability Requirements... 1291
Table 365 BootManager Method/Attribute Combinations .. 1293
Table 366 Boot Management Attribute Summary .. 1293
Table 367 Boot Management ClassPortInfo:CapabilityMask ... 1295
Table 368 BtM_KeyInfo Attribute ...1295
Table 369 BtM_Key Check... 1297
Table 370 PlatformBootInfo Attribute ... 1302
Table 371 PlatformInfo Elements ...1312
Table 372 PortBootInfo Attribute .. 1321
Table 373 RomRepositoryLocatorRecord Attribute.. 1327
Table 374 ConsoleLocatorRecord Attribute ... 1328
Table 375 OsLocatorRecord Attribute... 1329
Table 376 Protocol Component Bit Definitions... 1331
Table 377 NodeReboot Attribute..1334
Table 378 Notice Attribute.. 1339
Table 379 Boot Management Traps ... 1340
Table 380 Notice Details for Trap 0x0000 - KeyViolation .. 1341
Table 381 Notice Details for Trap 0x0100 - ChangeReport .. 1342
Table 382 Notice Details for Trap 0x0110 - StatusReport ... 1343
Table 383 Notice Details for Trap 0x0007 - Heartbeat ... 1345
Table 384 Privileged Traps... 1347
Table 385 InformInfo .. 1351
Table 386 General AdditionalInfo Element Definitions.. 1363
Table 387 SRP AdditionalInfo Elements .. 1363
Table 388 Console AdditionalInfo Elements... 1365
Table 389 ROM Repository Operation Codes.. 1368
Table 390 RepositoryInfoRequest Message .. 1370
Table 391 RepositoryInfoResponse Message ... 1370

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 56 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 392 Transaction Status Codes for All Transactions.. 1372
Table 393 Status Code Matrix .. 1374
Table 394 ROM Repository IDs ... 1375
Table 395 Image Descriptor Format... 1376
Table 396 IBTA Boot Image Types... 1377
Table 397 DescriptorReadRequest message .. 1379
Table 398 DescriptorReadResponse Message.. 1379
Table 399 ImageReadRequest Message... 1381
Table 400 ImageReadResponse Message .. 1382
Table 401 ImageAddRequest Message ... 1385
Table 402 ImageAddResponse Message .. 1386
Table 403 ImageUpdateRequest Message.. 1389
Table 404 ImageUpdateResponse Message ... 1391
Table 405 ImageWriteRequest Message ... 1392
Table 406 ImageWriteResponse Message .. 1392
Table 407 ImageDeleteRequest Message ... 1395
Table 408 ImageDeleteResponse Message .. 1395
Table 409 Booting Compliance Categories/Qualifiers.. 1396
Table 410 BIS MAD Components .. 1413
Table 411 BIS MAD Status Field Components... 1414
Table 412 BIS Methods.. 1415
Table 413 BIS Attributes .. 1417
Table 414 BIS Attribute / Method Map ... 1418
Table 415 BootQueryInfo Attribute...1418
Table 416 PlatformInfo Elements ...1424
Table 417 PlatformBootInfo Attribute ... 1425
Table 418 PortBootInfo Attribute .. 1426
Table 419 RomRepositoryLocatorRecord Attribute.. 1427
Table 420 ConsoleLocatorRecord Attribute ... 1428
Table 421 OsLocatorRecord Attribute.. 1429
Table 422 Protocol Component Bit Definitions... 1431
Table 423 Privileged Traps... 1459
Table 424 Device Administration MAD Fields .. 1480
Table 425 DevAdm MAD Status Field Values .. 1481
Table 426 DevAdm Methods..1482
Table 427 DevAdm Attributes .. 1485
Table 428 DevAdm Attribute / Method Map ... 1486
Table 429 Device Administration ClassPortInfo:CapabilityMask.. 1487
Table 430 Notice Component Values... 1488
Table 431 Generic DevAdm Events ... 1488
Table 432 Configuration Change Notice DataDetails... 1489
Table 433 IOC On-line Notice DataDetails... 1489
Table 434 IOC Off-line Notice DataDetails... 1489
Table 435 Resource Allocation Change Notice DataDetails .. 1490

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 57 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 436 Heartbeat Notice DataDetails .. 1490
Table 437 DevAdm LID Range Interpretation .. 1491
Table 438 LogIn Attribute ... 1492
Table 439 Context Change .. 1493
Table 440 S_KeyInfo Attribute ... 1495
Table 441 C_KeyInfo Attribute ... 1496
Table 442 RemovalReq Attribute ... 1497
Table 443 Removal/Diagnostic/Reset Priority .. 1499
Table 444 DiagNotice Attribute .. 1499
Table 445 ResetNotice Attribute .. 1501
Table 446 Configuration Management Compliance Categories/Qualifiers 1503
Table 447 Device Management MAD Fields.. 1531
Table 448 Class Version .. 1532
Table 449 DevMgt Backward Compatibility.. 1534
Table 450 Device Management Status Field.. 1535
Table 451 Device Management Methods... 1539
Table 452 Device Management Attributes ... 1540
Table 453 DevMgt Agent Attribute / Method Map .. 1542
Table 454 DM Attribute / Method Map ... 1543
Table 455 Device Management Agent ClassPortInfo:CapabilityMask ... 1544
Table 456 Device Manager ClassPortInfo:CapabilityMask .. 1545
Table 457 Notices for Device Management Traps ... 1547
Table 458 Notice 0x0000 DataDetails [MgrKey Violation].. 1548
Table 459 Notice 0x0001 DataDetails [SupvKey Violation].. 1549
Table 460 Notice 0x0002 DataDetails [Client Violation] ... 1550
Table 461 Notice 0x0003 DataDetails [DiagToken Violation] ... 1551
Table 462 Notice 0x0007 DataDetails [Heartbeat] ... 1552
Table 463 Notice 0x0008 DataDetails [StatusReport] .. 1552
Table 464 Notice 0x0010 DataDetails [IO Controller Change] ... 1553
Table 465 Notice 0x0011 DataDetails [ServiceRecord Change] .. 1554
Table 466 Notice 0x0018 DataDetails [Slot Status Change] .. 1555
Table 467 Notice 0x0020 DataDetails [IomRemoval]... 1555
Table 468 Notice 0x0801 DataDetails [DiagSessionState]... 1556
Table 469 Notice 0x0802 DataDetails [DiagSession Violation] .. 1556
Table 470 DAInfo Attribute ... 1558
Table 471 IOUnitInfo Attribute.. 1559
Table 472 IOControllerProfile... 1562
Table 473 ServiceRecord Attribute .. 1565
Table 474 ProtocolRecord Attribute ... 1568
Table 475 SlotControlStatus Attribute .. 1571
Table 476 Reset Attribute... 1573
Table 477 ProductInfo Attribute.. 1574
Table 478 ProductData Elements... 1575
Table 479 KeyInfo Attribute.. 1576

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 58 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 480 Manager_Key Check... 1578
Table 481 IouResourceInfo Attribute.. 1582
Table 482 PlatformPoolRecord Attribute.. 1586
Table 483 ClientPoolRecord Attribute .. 1592
Table 484 KeyChange Attribute ... 1598
Table 485 DiagSession .. 1598
Table 486 DiagnosticTimeout... 1602
Table 487 TestDeviceOnce .. 1603
Table 488 TestDeviceLoop... 1604
Table 489 DiagCode .. 1605
Table 490 I/O Module Status LED.. 1622
Table 491 Blink Rate Definitions .. 1623
Table 492 Device Management Compliance Qualifiers ... 1625
Table 493 BTH Header .. 1648
Table 494 Congestion Control MAD Fields .. 1650
Table 495 CC_Key Protection Scope... 1651
Table 496 CC_Key Check.. 1651
Table 497 Protection Levels... 1652
Table 498 Congestion Control Methods... 1653
Table 499 Congestion Control Attributes ... 1653
Table 500 Congestion Control Attribute / Method Map .. 1654
Table 501 Congestion Control ClassPortInfo:CapabilityMask.. 1655
Table 502 Congestion Control Traps.. 1655
Table 503 Notice details for Trap 0x0000 CC_KeyViolation... 1656
Table 504 CongestionInfo .. 1657
Table 505 CongestionKeyInfo .. 1657
Table 506 CongestionLog (switch)... 1658
Table 507 CongestionLogEvent (switch).. 1658
Table 508 CongestionLog (CA).. 1658
Table 509 CongestionLogEvent (CA)... 1659
Table 510 SwitchCongestionSetting .. 1660
Table 511 SwitchPortCongestionSetting Attribute ... 1661
Table 512 SwitchPortCongestionSettingElement... 1661
Table 513 CACongestionSetting .. 1662
Table 514 CACongestionEntry...1664
Table 515 CongestionControlTable .. 1664
Table 516 CongestionControlTableEntry.. 1666
Table 517 TimeStamp .. 1666
Table 518 Addition to PortSamplesControl .. 1667
Table 519 Additional CounterSelect Values ... 1667
Table 520 Additional Optional Performance Management Attributes .. 1667
Table 521 Additional Optional Performance Management Attribute / Method Map 1668
Table 522 PortRcvConCtrl ... 1669
Table 523 PortSLRcvFECN ... 1670

InfiniBandTM Architecture Release 1.2 October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 59 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 524 PortSLRcvBECN ... 1671
Table 525 PortXmitConCtrl .. 1673
Table 526 PortVLXmitTimeCong.. 1673

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 60 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 1: INTRODUCTION

This is Volume 1 of the InfiniBand Architecture specification. It is the first
in a series of documents that describe the architecture.

1.1 ACKNOWLEDGMENTS

The following persons were instrumental in the development of this
volume of the InfiniBand Architecture specification:

Steering Committee Members
Co-chairs:
Tom Bradicich Tom Macdonald
Members:
Jacqueline Balfour Ken Jansen John Pescatore
Kevin Deierling Michael Krause Jim Pinkerton
Balint Fleischer Todd Matters Martin Whittaker
Dr. Alfred Hartmann Ed Miller Bob Zak
David Heisey

Technical Working Group Members
Co-chairs:
Dwight Barron Paul Grun Jeff Hilland
Irv Robinson David Wooten
Members:
Dr. Alan Benner Dr. Alfred Hartmann Dr. Gregory F. Pfister
Mark Bradley Michael Krause Greg Still
Wolfgang Christl Bill Lynn Ken Ward
Diego Crupnicoff Ed Miller

Working Group Co-Chairs
Link Working Group (LWG):
Daniel Cassiday Michael Krause
Software Working Group (SWG):
Ed Miller Renato J. Recio Jim Pinkerton
Management Working Group (MgtWG):
David W. Abmayr Brian Forbes Jeff Hilland
Dr. Pankaj Mehra Dr. Gregory F. Pfister William H. Swortwood
Dr. Mazin Yousif
Application Working Group (AWG):
Dwight Barron William Futral Greg Pellegrino

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 61 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

David W. Abmayr
Dr. Ramon Acosta
Sesidhar Baddela
Dr. Alan Benner
Frank L. Berry
Bruce Beukema
Suri Brahmaroutu
David M. Brean
Tom Brey
John Carrier
Daniel Cassiday
Norman Chou
Ian Colloff
Joe Cowan
David Craddock
Olivier Crémel
Diego Crupnicoff
Paul Culley
Roger Cummings
George Dake
Ellen Deleganes
Kevin Deierling
Chunlei Dong
Scott Feller
Brian Forbes
Dan Fowler
Giles Frazier
Bill Futral
Dr. Freddy Gabbay
Narayanan Ganapathy
David Garcia
Nimrod Gindi
Dror Goldenberg
Nancy J. Golio
Paul Grun
James Hamrick
Dr. Alfred Hartmann
Yaron Haviv
Arel Hendel
Jeff Hilland
Michael Heumann
Jenwei Hsieh
Christopher J. Jackson
Jeff Jilg
Dave Kasberg
Vivek Kashyap
Dr. Ted Kim

Dr. Hiro Kishimoto
Michael Krause
Alan Langerman
James W. Livingston
Venitha L. Manter
Gunna Marripudi
Dr. Pankaj Mehra
Charles Monia
Jim Mott
Mark Myers
Neil MacLean
Tarl Neustaedter
Rahul Nim
Shravan Pargal
Joe Pelissier
Greg Pellegrino
Dr. Gregory F. Pfister
Jim Pinkerton
Vandana Rao
Renato J. Recio
Roger Ronald
William J. Rooney
Hal Rosenstock
Tom Ryle
Hide Senta
Michael Shinkarovsky
Cris Simpson
William Strahm
William H. Swortwood
Chris Szeto
Monika ten Bruggencate
Pat Thaler
Saeki Toshiaki
Franco Travastino
Dono Van-Mierop
Ken Ward
Kurt Ware
Tom Webber
Dong Wei
Jeff Young
Dr. Mazin Yousif

Contributors

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 62 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1.2 INFINIBAND CONCEPTUAL OVERVIEW

The InfiniBand Architecture Specification describes a first order intercon-
nect technology for interconnecting processor nodes and I/O nodes to
form a system area network. The architecture is independent of the host
operating system (OS) and processor platform.

Figure 1 IBA System Area Network

1.2.1 THE PROBLEM

Existing interconnect technologies have failed to keep pace with computer
evolution and the increased burden imposed on data servers, application
processing, and enterprise computing created by the popular success of
the internet. High-end computing concepts such as clustering, fail-safe,
and 24x7 availability demand greater capacity to move data between pro-
cessing nodes as well as between a processor node and I/O devices.
These trends require higher bandwidth and lower latencies, they are

Router

Drives

TCA

Controller

Storage
Subsystem

I/O
Chassis

SCSI

Ethernet Graphics

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

Fibre Channel
hub & FC
devices

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

Switch

T
C

A
IO

 M
od

ul
e

I/O
Chassis

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

T
C

A
IO

 M
od

ul
e

Switch

Processor Node
CPU CPU

Mem

CPU

HCA

Switch

Processor Node
CPU CPU

MemHCA

CPU

HCA

Other IB Subnets
WANs
LANs
Processor Nodes

Processor
SCSI

SCSI

SCSI

SCSI

SCSI

Mem

HCA = InfiniBand Channel Adapter in processor node
TCA = InfiniBand Channel Adapter in I/O node

Processor Node
CPU CPU

MemHCA

CPU

HCA

SwitchSwitchRAID Subsystem

TCA
Switch

Consoles

Switch

Fabric

Video

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 63 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

pushing more functionality down to the I/O device, and they are de-
manding greater protection, higher isolation, deterministic behavior, and a
higher quality of service than currently available.

1.2.2 FEATURES

InfiniBand Architecture (IBA) is designed around a point-to-point,
switched I/O fabric, whereby end node devices (which can range from
very inexpensive I/O devices like single chip SCSI or ethernet adapters to
very complex host computers) are interconnected by cascaded switch de-
vices. The physical properties of the IBA interconnect support two pre-
dominant environments, with bandwidth, distance and cost optimizations
appropriate for these environments:

• Module-to-module, as typified by computer systems that support
I/O module add-in slots

• Chassis-to-chassis, as typified by interconnecting computers, ex-
ternal storage systems, and external LAN/WAN access devices
(such as switches, hubs, and routers) in a data-center environ-
ment.

The IBA switched fabric provides a reliable transport mechanism where
messages are enqueued for delivery between end nodes. In general,
message content and meaning is not specified by InfiniBand Architecture,
but rather is left to the designers of end node devices and the processes
that are hosted on end node devices. IBA defines hardware transport pro-
tocols sufficient to support both reliable messaging (send/receive) and
memory manipulation semantics (e.g. remote DMA) without software in-
tervention in the data movement path. IBA defines protection and error
detection mechanisms that permit IBA transactions to originate and termi-
nate from either privileged kernel mode (to support legacy I/O and com-
munication needs) or user space (to support emerging interprocess
communication demands).

The IBA Specification also addresses the need for a rich manageability in-
frastructure to support interoperability between multiple generations of
IBA components from many vendors over time. This infrastructure pro-
vides ease of use and consistent behavior for high volume, cost sensitive
deployment environments. IBA also specifies interfaces for industry stan-
dard management that interoperate with enterprise class management
tools for configuration, asset management, error reporting, performance
metric collection, and topology management necessary for data center
deployment of IBA.

1.2.3 BENEFITS

For all of the revolutionary aspects of IBA, the architecture has been care-
fully designed to minimize disruption of prevailing market paradigms and
business practices. By simultaneously supporting board and chassis in-

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 64 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

terconnections, it is expected that vendors are able to adopt InfiniBand Ar-
chitecture technology for use in future generations of existing products,
within current business practices, to best support their customers needs.

IBA can support bandwidths that are anticipated to remain an order of
magnitude greater than prevailing I/O media (SCSI, Fibre Channel,
Ethernet). This ensures its role as the common interconnect for attaching
I/O media using these technologies. Reinforcing this point is IBA’s native
use of IPv6 headers, which supports extremely efficient junctions between
IBA fabrics and traditional internet and intranet infrastructures.

IBA supports implementations as simple as a single computer system,
and can be expanded to include: replication of components for increased
system reliability, cascaded switched fabric components, additional I/O
units for scalable I/O capacity and performance, additional host node
computing elements for scalable computing, or any combinations thereof.
InfiniBand Architecture is a revolutionary architecture that enables com-
puter systems to keep up with the ever increasing customer requirement
for increased scalability, increased bandwidth, decreased CPU utilization,
high availability, high isolation, and support for Internet technology.

Being designed as a first order network, IBA focuses on moving data in
and out of a node’s memory and is optimized for separate control and
memory interfaces. This permits hardware to be closely coupled or even
integrated with the node’s memory complex, removing any performance
barriers. IBA is flexible enough to be implemented as a second order net-
work permitting legacy and migration. Even when implemented as a
second order network, IBA’s memory optimization operation permits max-
imum available bandwidth utilization and increases CPU efficiency.

1.3 SCOPE

IBA supports a range of applications from being the backplane intercon-
nect of a single host, to a complex system area network consisting of mul-
tiple independent and clustered hosts and I/O components.

For the single host environments, as depicted in Figure 2, each IBA fabric
serves as a private I/O interconnect for its host and provides connectivity

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 65 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

between the host’s CPU/memory complex and a number of I/O modules.
For this environment, all devices are dedicated to the host.

Figure 2 Single Host Environment
On the other end of the scale is multiple host connectivity as depicted in
Figure 1. Here a single fabric or even multiple fabrics interconnect nu-
merous hosts and various I/O units. Some hosts might share I/O devices
and others do not. Interprocess communication between hosts becomes
a very significant objective. Trivial fabric management is no longer suffi-
cient as network administrators desire additional features to maintain sep-
aration and assure deterministic behavior.

The architecture not only specifies the mechanisms for I/O and interpro-
cess communication, but it also specifies an extensive set of management
mechanisms that are flexible enough to permit single host environments
with out undue burden and costly fabric managers and at the same time
support very complex system area networks (SAN) and feature rich fabric
management.

1.4 DOCUMENT ORGANIZATION

1.4.1 SERIES OF VOLUMES

There are two volumes that comprise the InfiniBand normative specifica-
tions suite:

Volume 1 - specifies the core InfiniBandTM Architecture. It provides nor-
mative information required for IBA operation for switches, routers, host
channel adapters for processor nodes, target channel adapters for I/O de-
vices, and management.

Processor Node
CPU CPUCPU

MemHCA

I/O
 ChassisSwitch

SCSI
Ethernet

Fibre Channel
hub & FC
devices

Graphics
Video

T
C

A
I/

O
 M

od
ul

e

T
C

A
I/

O
 M

od
ul

e

T
C

A
I/

O
 M

od
ul

e

T
C

A
I/

O
 M

od
ul

e

T
C

A

I/
O

 M
od

ul
e

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 66 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Volume 2 - specifies electrical & mechanical configurations. It specifies
requirements for a number of different physical media and signaling rates,
defines mechanical form factors, and specifies physical and chassis man-
agement requirements.

1.4.2 VOLUME 1 ORGANIZATION

1.5 DOCUMENT CONVENTIONS

1.5.1 BYTE ORDERING

This specification uses Big Endian byte ordering. For fields greater than
one byte in size this means that the most significant byte of each field is
transmitted first as illustrated in Figure 3.

Unless specifically stated otherwise, the text of this document lists fields
in the order of transmission. In most cases, multiple byte fields are aligned
to start or end on a 32-bit boundary. For clarity, certain figures show fields
ordered in 32 bit words. These words are in big endian format and imple-
mentations targeted for little endian processing need to pay particular at-
tention to byte ordering to assure correct operation since little endian
processing tends to place the least significant bytes in lower byte offsets.

Byte offset previous field

+0 Most Significant Byte

+1 Second Most Significant Byte

.

.

.

o
o
o

+n Least Significant Byte

Figure 3 Byte Order for Multiple Byte Fields

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 67 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 4 illustrates how numeric and bit significant fields should be inter-
preted.

Bit fields with other than byte granularity follow the same rules - that is, the
most significant bits of the field occupies the higher order bits of the lowest
byte offset with least significant bits being in the lowest byte offset as illus-
trated in Figure 5.

1.5.2 NUMERIC VALUES

Unless otherwise stated numerical values without qualifiers are decimal.
This document uses the following qualifiers:

• 0x prefixed to a hexadecimal value (e.g., 0x15F7)
• b’ prefixed to a binary value (e.g., b’0110)

bits b7 b0 b7 b0 b7 b0 b7 b0

Byte
Offset

Byte 0,4,8. Byte 1,5,9,... Byte 2,6,10,... Byte 3,7,11,...

0-3 b15 16-bit field b0 b15 16-bit field b0

4-7 b31 32-bit field b0

8-11 b7 1-byte b0 b23 24-bit field b0

12-15 b23 24-bit field b0 b7 1-byte b0

16-19 b47 48-bit field (high) b16

20-23 b15 48-bit field (low) b0 b47 48-bit field (high bytes) b32

24-27 b31 48-bit field (low bytes) b0

28-31 b63 64-bit field (high bytes) b32

32-35 b31 64-bit field (low bytes) b0

36-39 b127 128-bit field (highest bytes) b96

40-43 b95 b64

44-47 b63 b32

48-51 b31 128-bit field (lowest bytes) b0

Figure 4 Byte Order Examples

Previous
 Byte

First Byte Next Byte Following
 Byte

5-bit field 3-bit field 2-bit 6-bit field

b4 b3 b2 b1 b0 b2 b1 b0 b1 b0 b5 b4 b3 b2 b1 b0

4-bit field 12-bit field

b3 b2 b1 b0 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

14-bit field 2-bit

b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 b1 b0

Figure 5 Bit Order Examples

InfiniBandTM Architecture Release 1.2 Introduction October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 68 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An obvious exception are binary numbers used in figures and tables

In table headings a colon is used to specify a range of bits (e.g. Bits 7:0)
and table values in that column are binary numbers.

A dash between two numbers represents a range (e.g. 0-3 = zero to three)

Global IDs are 128-bit values specified in the format :
 value:value:value:value:value:value:value:value
Where each value represents a 4-digit hexadecimal number (e.g.,
FF02:0:0:0:0:0:0:1)

1.6 DISCLAIMER

Like any document, this specification is subject to errata for correctness,
clarity, and enhancements. The InfiniBandSM Trade Association hosts a
web site at http://www.InfiniBandTA.org. Please visit this site to check for
errata and updates to this specification.

http://www.infinibandta.org
http://www.infinibandta.org

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 69 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 2: GLOSSARY

Active Describes an entity initiating a communication establishment request
(e.g., TCP CONNECT).

Address Handle An object that contains the information necessary to transmit messages
to a remote port over Unreliable Datagram service.

Address Vector A collection of address and Path information specifying a remote port and
the parameters to be used when communicating with it.

AETH Ack Extended Transport Header

AM Attribute Modifier.

Asynchronous error A permanent error that cannot be reported through immediate or comple-
tion error handling mechanisms at the local end. Asynchronous errors
may be unaffiliated or may be affiliated with a specific Completion
Queue, Endport, or Queue Pair.

Attribute The collection of management data carried in a Management Datagram.

Automatic Path Migration The process in which a Channel Adapter, on a per-Queue Pair basis, sig-
nals another CA to cause Path Migration to a preset alternate Path. Auto-
matic Path Migration uses a bit in a request or response packet (MigReq)
to signal the other channel adapter to migrate to the predefined alternate
path.

B_Key See Baseboard Management Key.

Base LID The numerically lowest Local Identifier that refers to a Port. The Path Bits
of a Base LID are always zero.

Base Switch Port 0 A Switch Port 0 which is not an Endport.

Baseboard Managed Unit Any Unit which provides InfiniBand(TM) specification defined information
about itself by a Baseboard method MAD operation through the Infini-
BandTM link.

Baseboard Management
Key

A construct that is contained in IBA management datagrams to authenti-
cate that the sender is allowed to perform the requested operation.

Binding The act of associating a virtual address range in a specified Memory
Region with a Memory Window.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 70 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

BTH Base Transport Header.

CA See Channel Adapter.

Channel The association of two queue pairs for communication.

Channel Adapter Device that terminates a link and executes transport-level functions. One
of Host Channel Adapter or Target Channel Adapter.

Channel Interface The presentation of the channel to the Verbs Consumer as implemented
through the combination of the Host Channel Adapter, associated firm-
ware, and device driver software.

Channel, Reliable Datagram See Reliable Datagram Channel.

CI See Channel Interface.

Client The active entity in an active/passive communication establishment
exchange.

CM See Communication Manager.

CME Chassis Management Entity.

Communication Manager The software, hardware, or combination of the two that supports the
communication management mechanisms and protocols.

Completion Error Permanent interface or processing error reported through completion
status.

Completion Event Handler A handler that is invoked when the Consumer requests completion notifi-
cation and an entry is added to the completion queue associated with the
handler’s identifier.

Completion Queue A queue containing one or more Completion Queue Entries. Completion
Queues are internal to the Channel Interface, and are not visible to verb
consumers.

Completion Queue Entry The Channel Interface-internal representation of a Work Completion.

Component Mask A field in a Management Datagram used to indicate which components of
the MAD are to be considered in carrying out the operation. See Wild-
carding.

Connection An association between a pair of entities (e.g., processes) over one or
more Channels.

Consumer See Verbs Consumer.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 71 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CQE Completion Queue Entry, commonly pronounced “cookie”.

CRC Cyclic Redundancy Check.

Data Payload The data, not including any control or header information, carried in one
packet.

Data Segment A tuple in a Work Request that specifies a virtually contiguous buffer for
Host Channel Adapter access. Each Data Segment consists of a Virtual
Address, an associated Local Key or Remote Key, and a length.

DETH Datagram Extended Transport Header.

DGID Destination Global Identifier.

DLID Destination Local Identifier.

EEC See End to End Context.

EECN See End to End Context Number.

EE Context See End to End Context.

Endport A Port which can be a destination of LID-routed communication within the
same Subnet as the sender. All Channel Adapter ports on the subnet are
endports of that subnet, as is Port 0 of each Switch in the subnet. Switch
ports other than Port 0 may not be endports. When port is used without
qualification, it may be assumed to mean endport whenever the context
indicates that it is a destination of communication.

End to End Context The endpoint of a Reliable Datagram channel.

End to End Context Number Identifies a specific End to End Context within a Channel Adapter.

End to End Flow Control A mechanism to prevent a sender from transmitting messages during pe-
riods when receive buffers are not posted at the recipient.

Enhanced Switch Port 0 A Switch Port 0 which provides the functionality of a Target Channel
Adapter.

External Switch Port A physical Port on a Switch. See also Switch Port 0.

Fabric The collection of Links, Switches, and Routers that connects a set of
Channel Adapters.

Fast Register Physical MR A memory registration performed on an existing local L_Key, and any as-
sociated R_Key, through a Post Send Work Request.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 72 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Fast Register PMR Fast Register Physical MR.

Gb/s Giga-bits per second (109 bits per second)

GB/s Giga-bytes per second (109 bytes per second)

General Service Interface An interface providing management services (e.g., connection, perfor-
mance, diagnostics) other than subnet management.

GID See Global Identifier.

GID Index 0 The unicast GID referenced through index 0 of an endport’s GID Table,
based on the endport’s invariant manufacturer-assigned EUI-64.

GID Table A table containing one or more Global Identifiers by which an endport may
be referenced.

Global Identifier A 128-bit identifier used to identify an Endport or a multicast group. GIDs
are valid 128-bit IPv6 addresses (per RFC 2373) with additional proper-
ties / restrictions defined within IBA to facilitate efficient discovery, com-
munication, and routing.

Global Route Header Routing header present in InfiniBandTM Architecture packets targeted to
destinations outside the sender’s local subnet.

Globally Unique Identifier A number that uniquely identifies a device or component.

GMP General Management Packet.

GRH See Global Route Header.

GSI See General Service Interface.

GUID See Globally Unique Identifier.

HCA See Host Channel Adapter.

Host One or more Host Channel Adapters governed by a single memory/CPU
complex.

Host Channel Adapter A Channel Adapter that supports the Verbs interface.

IBA InfiniBandTM Architecture.

IB-ML InfiniBandTM Management Link.

ICRC See Invariant CRC.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 73 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Immediate Data Data contained in a Work Queue Element that is sent along with the pay-
load to the remote Channel Adapter and placed in a Receive Work Com-
pletion.

Immediate Error A permanent Interface Error reported through the verb status.

Initiator The source of requests.

Interface Error An error due to an invalid field in a Work Request.

Invalid Key See Key.

Invalidate Operation An operation that disables CI’s access to host memory through an L_Key
or R_Key, but retains L_Key or R_Key translation and protection
resources for use on future memory registrations.

Invariant CRC A CRC covering the fields in a packet that do not change from the source
to the destination.

I/O Input/Output.

I/O Controller One of the two architectural divisions of an I/O Unit. An I/O controller
(IOC) provides I/O services, while a Target Channel Adapter provides
transport services.

I/O Unit An I/O unit (IOU) provides I/O service(s). An I/O unit consists of one or
more I/O Controllers attached to the fabric through a single Target Chan-
nel Adapter.

I/O Virtual Address An address having no direct meaning to the Host processor, intended for
use only in describing a Local or Remote memory buffer to the Host
Channel Adapter.

IOC See I/O Controller.

IOU See I/O Unit.

IPv6 Internet Protocol, version 6

IPv6 Address A 128-bit address constructed in accordance with IETF RFC 2460 for
IPv6.

Key A construct used to limit access to one or more resources, similar to a
password. The following keys are defined by the InfiniBandTM Architec-
ture:

Baseboard Management Key

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 74 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Local Key

Management Key

Queue Key

Partition Key

Remote Key

Key Space Refers to whether the index portion of the L_Key and R_Key for a partic-
ular Memory Region have the same value or not. If they do, then they are
in the same Key Space. Otherwise they are in separate Key Spaces.

L_Key See Local Key.

LID See Local Identifier.

LID Mask Control A per-port value assigned by the Subnet Manager. The value of the LMC
specifies the number of Path Bits in the Local Identifier.

Link A full duplex transmission path between any two network fabric ele-
ments, such as Channel Adapters or Switches.

LMC See LID Mask Control.

Local Identifier An address assigned to a port by the Subnet Manager, unique within the
subnet, used for directing packets within the subnet. The Source and
Destination LIDs are present in the Local Route Header. A Local Identi-
fier is formed by the sum of the Base LID and the value of the Path Bits.

Local Invalidate An Invalidate Operation performed through the Send Queue: on a local
L_Key, R_Key, or Memory Region Handle that is associated with an MR;
or an R_Key or Memory Window Handle that is associated with a Type 2
Memory Window.

Local Key An opaque object, created by a verb, referring to a Memory Registration,
used with a Virtual Address to describe authorization for the HCA hard-
ware to access local memory. It may also be used by the HCA hardware
to identify the appropriate page tables for use in translating virtual to
physical addresses.

Local Route Header Routing header present in all InfiniBandTM Architecture packets, used for
routing through switches within a subnet.

Local Subnet The collection of links and Switches that connect the Channel Adapters
of a particular subnet.

LRH See Local Route Header.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 75 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

M_Key See Management Key.

MAD See Management Datagram.

Managed Unit A Unit which provides Vital Product Data about itself to an external entity,
and is managed by that entity.

Management Datagram Refers to the contents of an Unreliable Datagram packet used for com-
munication among HCAs, switches, routers, and TCAs to manage the
fabric. InfiniBandTM Architecture describes the format of a number of
these management commands.

Management Key A construct that is contained in IBA management datagrams to authenti-
cate the sender to the receiver.

Maximum Transfer Unit The maximum Packet Payload size, which may be 256, 512, 1024, 2048,
or 4096 bytes. See also MTU Capacity, Neighbor MTU, and Path Maxi-
mum Transfer Unit.

MB/s Mega-bytes per second (106 bytes per second)

Memory Protection At-
tributes

The access rights granted to Memory Regions.

Memory Region A virtually contiguous area of arbitrary size within a Consumer’s address
space that has been registered, enabling HCA local access and optional
remote access. See Memory Registration

Memory Region Handle An opaque object returned to the consumer when the consumer registers
a Memory Region. The Memory Region Handle is used to specify the
registered region to the memory management verbs.

Memory Registration The act of registering a host Memory Region for use by a consumer. The
memory registration operation returns a Memory Region Handle. The
process provides this with any reference to a virtual address within the
memory region.

Memory Window An allocated resource that enables remote access after being bound to a
specified area within an existing Memory Region. Each Memory Window
has an associated Window Handle, set of access privileges, and current
R_Key.

Message A transfer of information between two or more Channel Adapters that
consists of one or more packets.

Message-Level Flow Con-
trol

See End to End Flow Control.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 76 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Message Sequence
Number

A value returned as part of an acknowledgement by the responder to the
requestor, indicating the last message completed. Contrast Packet Se-
quence Number.

Modifiers In a verb definition, the list of input and output objects that specify how,
and on what, the verb is to be executed.

MR Memory Region

MSN See Message Sequence Number.

MTU See Maximum Transfer Unit.

MTUCap See MTU Capacity.

MTU Capacity The largest Maximum Transfer Unit that a port can support.

Multicast A facility by which a packet sent to a single address may be delivered to
multiple ports.

Multicast Identifier A Local Identifier or Global Identifier for a Multicast Group.

Multicast Group A collection of Endports that receive Multicast packets sent to a single
address.

MW Memory Window

Neighbor MTU The configured Maximum Transfer Unit for a Port, the value that specifies
the maximum packet payload that may be sent to, or received from, the
port at the other end of the Link.

NQ Notification Queue.

Out-of-band Management Management messages which traverse a transport other than the Infini-
BandTM fabric.

Outstanding 1) The state of a Work Request after it has been posted on a Work
Queue, but before the retrieval of the Work Completion by the con-
sumer.

2) The state of a packet that has been sent onto the fabric but has not
been acknowledged.

P_Key See Partition Key.

Packet The indivisible unit of IBA data transfer and routing, consisting of one or
more headers, a Packet Payload, and one or two CRCs.

Packet Payload The portion of a Packet between (not including) any Transport header(s)

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 77 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

and the CRCs at the end of each packet. The packet payload contains up
to 4096 bytes.

Packet Sequence Number A value carried in the Base Transport Header that allows the detection
and re-sending of lost packets.

Partition A collection of Channel Adapter ports that are allowed to communicate
with one another. Ports may be members of multiple partitions simulta-
neously. Ports in different partitions are unaware of each other’s pres-
ence insofar as possible.

Partition Key A value carried in packets and stored in Channel Adapters that is used to
determine membership in a partition.

Default Partition Key: A partition key special value providing Full mem-
bership in the default partition. See Partition Membership Type.

Invalid Partition Key: A special value that indicates that the Partition
Key Table entry does not contain a valid key.

Partition Key Table A table of partition keys present in each Port.

Partition Key Table Index
(P_Key_ix)

An index into the partition key table.

Partition Manager The entity that manages partition keys and membership.

Partition Membership Type The high-order bit of the partition key is used to record the type of mem-
bership in an Port’s partition table: 0 for Limited, 1 for Full. Limited mem-
bers cannot accept information from other Limited members, but
communication is allowed between every other combination of member-
ship types.

Passive Describes an entity waiting to receive a communication establishment
request (e.g., TCP LISTEN).

Path The collection of links, switches, and routers a message traverses from a
source Channel Adapter to a destination channel adapter. Within a sub-
net, a path is defined by the tuple <SLID, DLID, SL>.

Path Bits The portion of a Local Identifier that may be changed to vary the Path
through the subnet to a particular Port. If the Path Bits are zero, the Local
Identifier is equal to the Base LID. The number of Path Bits applicable to
a particular port is specified by the Subnet Manager through the LID Mask
Control value.

Path Maximum Transfer
Unit

The Maximum Transfer Unit supported along a Path from source to des-
tination. PMTU is described in terms of the payload size, and may be

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 78 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

256, 512, 1024, 2048, or 4096 bytes.

Path Migration The modification of the Path used by a connection.

PD See Protection Domain.

Peer 1) One of the agents in an active/active connection establishment ex-
change.

2) A generic term for the entity at the other end of a connection.

Pinning memory A function supplied by the OS which forces the memory region to be res-
ident and keeps the virtual-to-physical translations constant from the
HCA point of view.

PM See Partition Manager.

PMR Physical Memory Region

PMTU See Path Maximum Transfer Unit.

Port Location on a Channel Adapter or Switch to which a link connects. There
may be multiple ports on a single Channel Adapter, each with different
context information that must be maintained. Switches/switch elements
contain more than one port by definition.

Post To place a Work Request on a Work Queue.

Private Data A field present in Communication Management messages that is opaque
at all IBA layers. Consumers may use this field to “piggy-back” additional
information over the CM message exchange.

Processing Error A processing error is an error that occurs when the Host Channel
Adapter is performing the unit of work described by the Work Queue Ele-
ment and is unable to complete the request successfully due to an error
that is returned by the transport protocol.

Protection Domain A mechanism for associating Queue Pairs, Address Handles, Memory
Windows, and Memory Regions.

PSN See Packet Sequence Number.

Q_Key See Queue Key.

QoS See Quality of Service.

QP See Queue Pair.

Quality of Service Metrics that predict the behavior, reliability, speed, and latency of a given

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 79 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

network connection.

Queue Key A construct that is used to validate a remote sender’s right to access a
local Receive Queue for the Unreliable Datagram and Reliable Datagram
service types. If the Q_Key present in an incoming packet does not
match the value stored in the receiving QP, the packet shall be dropped.

Queue Pair Consists of a Send Work Queue and a Receive Work Queue. Send and
receive queues are always created as a pair and remain that way
throughout their lifetime. A Queue Pair is identified by its Queue Pair
Number.

Queue Pair Context The information that pertains to a particular Queue Pair, such as the cur-
rent Work Queue Elements, Packet Sequence Numbers, transmission
parameters, etc.

Queue Pair Handle An opaque object that refers to a specific Queue Pair. A Queue Pair Han-
dle is returned by the operation that creates the QP and is supplied as an
identifying parameter for other QP operations.

Queue Pair Number Identifies a specific Queue Pair within a Channel Adapter.

R_Key See Remote Key.

Raw Datagram A packet that contains an IBA Local Route Header, may contain an IBA
Global Route Header, but does not contain an IBA Transport header, and
is not handled by IBA transport services.

RC See Reliable Connection.

RD See Reliable Datagram.

RDC See Reliable Datagram Channel.

RDD See Reliable Datagram Domain.

RDETH Reliable Datagram Extended Transport Header.

RDMA See Remote Direct Memory Access.

Receive Queue One of the two queues associated with a Queue Pair. The receive queue
contains Work Queue Elements that describe where to place incoming
data.

Region Handle See Memory Region Handle.

Registered Memory A region of memory that has been through Memory Registration.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 80 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Registration See Memory Registration.

Registered memory region See Memory Region.

Reliable Connection A Transport Service Type in which a Queue Pair is associated with only
one other QP, such that messages transmitted by the send queue of one
QP are reliably delivered to receive queue of the other QP. As such, each
QP is said to be “connected” to the opposite QP.

Reliable Datagram A Transport Service Type in which a Queue Pair may communicate with
multiple other QPs over a Reliable Datagram Channel. A message trans-
mitted by an RD QP’s send queue will be reliably delivered to the receive
queue of the QP specified in the associated Work Request. Despite the
name, Reliable Datagram messages are not limited to a single packet.

Reliable Datagram Channel The association of two Reliable Datagram End to End Contexts. A Reli-
able Datagram channel may multiplex Reliable Datagrams from many
RD Queue Pairs.

Reliable Datagram Domain An association that defines which Reliable Datagram Queue Pairs may
use an End to End Context.

Reliable Multi-Packet
Protocol

A transaction protocol based on Management Datagrams supporting the
reliable transfer of amounts of data larger than that possible in a single
Management Datagram.

Remote Direct Memory Ac-
cess

Method of accessing memory on a remote system without interrupting
the processing of the CPU(s) on that system.

Remote Invalidate An Invalidate Operation performed on a local R_Key through an incoming
Send with Invalidate Message.

Remote Key An opaque object, created by a verb, referring to a Memory Region or
Memory Window, used with a Virtual Address to describe authorization
for the remote device to access local memory. It may also be used by the
HCA hardware to identify the appropriate page tables for use in translat-
ing virtual to physical addresses.

Reserved L_Key An L_Key that can be used by a privileged Consumer to provide the HCA
direct access to host physical addresses.

Retired The state of a Work Queue Element after the Host Channel Adapter
completes the operation specified by the WQE, but before the Work
Completion has been presented to the consumer.

RMPP See Reliable Multi-Packet Protocol.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 81 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RNR Nak Receiver Not Ready. A response signifying that the receiver is not cur-
rently able to accept the request, but may be able to do so in the future.

Router A device that transports packets between IBA subnets.

SA See Subnet Administration.

SAR Segmentation and Re-assembly.

Send Queue One of the two queues of a Queue Pair. The Send queue contains WQEs
that describe the data to be transmitted.

Server 1) The passive entity in a connection establishment exchange.

2) An entity (e.g., a process) that provides services in response to re-
quests from clients.

Service ID A value that allows a Communication Manager to associate an incoming
connection request with the entity providing the service. The Service ID
is similar to the TCP Port Number.

Service Level Value in the Local Route Header identifying the appropriate Virtual Lane
for a packet, enabling the implementation of differentiated services. While
the appropriate VL for a specific Service Level may differ over a packet’s
Path, the Service Level remains constant.

Service Type See Transport Service Type.

Signaled Completion A modifier used for Work Requests submitted to the Send Queue speci-
fying that a Work Completion shall be generated when the work
requested completes, whether successfully or in error.

SGID Source Global Identifier.

Shared Receive Queue The Shared Receive Queue contains WQEs that can be used to receive
incoming data on any QP that is associated with the Shared Receive
Queue.

SLID Source Local Identifier

SL See Service Level.

SM See Subnet Manager.

SMA See Subnet Management Agent.

SMP See Subnet Management Packet.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 82 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Solicited Event A facility by which a message sender may cause an event to be generated
at the recipient when the message is received.

SRQ Shared Receive Queue

Subnet A set of InfiniBandTM Architecture Ports, and associated links, that have a
common Subnet ID and are managed by a common Subnet Manager.
Subnets may be connected to each other through routers.

Subnet Administration The architectural construct that implements the interface for querying and
manipulating subnet management data.

Subnet Manager One of several entities involved in the configuration and control of the
subnet.

Master Subnet Manager: The subnet manager that is authoritative,
that has the reference configuration information for the subnet.

Standby Subnet Manager: A subnet manager that is currently quies-
cent, and not in the role of a master SM, by agency of the master SM.
Standby SMs are dormant managers.

Subnet Management Agent An entity present in all IBA Channel Adapters and Switches that pro-
cesses Subnet Management Packets from Subnet Manager(s).

Subnet Management Data Vital Product Data required by the Subnet Manager.

Subnet Management
Packet

The subclass of Management Datagrams used to manage the subnet.
SMPs travel exclusively over Virtual Lane 15 and are addressed exclu-
sively to Queue Pair Number 0.

Switch A device that routes packets from one link to another of the same Sub-
net, using the Destination Local Identifier field in the Local Route Header.

Switch Management Port A virtual port by which a Switch may be managed. See Switch Port 0.

Switch Port 0 An addressable virtual port by which a Switch may be managed. May be
one of Base Switch Port 0 or Endport.

TCA See Target Channel Adapter.

Target Channel Adapter A Channel Adapter typically used to support I/O devices. TCAs are not
required to support the Verbs interface. See also I/O Unit.

Transport Service Type Describes the reliability, sequencing, message size, and operation types
that will be used between the communicating Channel Adapters.

Transport service types that use the IBA transport:

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 83 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Reliable Connection
• Unreliable Connection
• Reliable Datagram
• Unreliable Datagram

Raw Datagram service does not use the IBA transport.

Type 1 Memory Window A Memory Window that is associated with a QP through the PD and
cannot be Invalidated.

Type 2 Memory Window A Memory Window that is either a Type 2A Memory Window or a Type
2B Memory Window.

Type 2A Memory Window A Memory Window that when bound is associated with a QP through the
QP Number and can be Invalidated.

Type 2B Memory Window A Memory Window that when bound is associated with a QP through the
QP Number and PD, and can be Invalidated.

UC See Unreliable Connection.

UD See Unreliable Datagram.

Unicast An identifier for a single port. A packet sent to a unicast address is deliv-
ered to the port identified by that address.

Unit One or more sets of processes and/or functions attached to the fabric by
one or more channel adapters. See Host and I/O Unit.

Unreliable Connection A Transport Service Type in which a Queue Pair is associated with only
one other QP, such that messages transmitted by the send queue of one
QP are, if delivered, delivered to the receive queue of the other QP. As
such, each QP is said to be “connected” to the opposite QP. Messages
with errors are not retried by the transport, and error handling must be
provided by a higher level protocol.

Unreliable Datagram A Transport Service Type in which a Queue Pair may transmit and
receive single-packet messages to/from any other QP. Ordering and
delivery are not guaranteed, and delivered packets may be dropped by
the receiver.

Unsignaled Completion A modifier used for Work Requests submitted to the Send Queue signify-
ing that a Work Completion is to be generated only if the requested
action completes in error.

Variant CRC A CRC covering all the fields of a packet, including those that may be
changed by Switches.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 84 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VCRC See Variant CRC.

Verbs An abstract description of the functionality of a Host Channel Adapter. An
operating system may expose some or all of the verb functionality
through its programming interface.

Verbs Consumer The direct user of the Verbs.

Virtual Lane A method of providing independent data streams on the same physical
link.

Vital Product Data Device-specific data to support management functions.

VL See Virtual Lane.

VPD See Vital Product Data.

WC See Work Completion.

Wildcarding Setting a Component Mask bit in a Management Datagram to 0, causing
that component's value to be ignored in carrying out the operation. Not all
management classes define a Component Mask and Component Mask is
only applicable to certain Method-Attribute combinations. An example of
a management class with a Component Mask is SubnAdm.

Window Handle An opaque object that identifies a Memory Window.

Work Completion The consumer-visible representation of a Completion Queue Entry. A
Work Completion may be obtained when a consumer polls a Completion
Queue.

Work Queue One of Send Queue or Receive Queue.

Work Queue Element The Host Channel Adapter’s internal representation of a Work Request.
The consumer does not have direct access to Work Queue Elements.

Work Queue Pair See Queue Pair.

Work Request The means by which a consumer requests the creation of a Work Queue
Element.

WQ See Work Queue.

WQE Work Queue Element, commonly pronounced “wookie”.

WQP See Work Queue Pair.

WR See Work Request.

InfiniBandTM Architecture Release 1.2 Glossary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 85 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 86 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 3: ARCHITECTURAL OVERVIEW

This chapter provides a top-down description of the InfiniBand Architec-
ture (IBA) features, capabilities, components, and elements and it de-
scribes various principles of operation. It is a high level overview intended
as an informative guide and thus certain details are intentionally excluded
for the purpose of clarity.

IBA defines a System Area Network (SAN) for connecting multiple inde-
pendent processor platforms (i.e., host processor nodes), I/O platforms,
and I/O devices (see Figure 6). The IBA SAN is a communications and
management infrastructure supporting both I/O and interprocessor com-
munications (IPC) for one or more computer systems. An IBA system can
range from a small server with one processor and a few I/O devices to a
massively parallel supercomputer installation with hundreds of processors
and thousands of I/O devices. Furthermore, the internet protocol (IP)
friendly nature of IBA allows bridging to an internet, intranet, or connection
to remote computer systems.

IBA defines a switched communications fabric allowing many devices to
concurrently communicate with high bandwidth and low latency in a pro-
tected, remotely managed environment. An endnode can communicate
over multiple IBA ports and can utilize multiple paths through the IBA
fabric. The multiplicity of IBA ports and paths through the network are ex-
ploited for both fault tolerance and increased data transfer bandwidth.

IBA hardware off-loads from the CPU much of the I/O communications op-
eration. This allows multiple concurrent communications without the tradi-
tional overhead associated with communicating protocols. The IBA SAN
provides its I/O and IPC clients zero processor-copy data transfers, with
no kernel involvement, and uses hardware to provide highly reliable, fault
tolerant communications.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 87 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 6 IBA System Area Network
An IBA System Area Network consists of processor nodes and I/O units
connected through an IBA fabric made up of cascaded switches and
routers.

IO units can range in complexity from single ASIC IBA attached devices
such as a SCSI or LAN adapter to large memory rich RAID subsystems
that rival a processor node in complexity.

3.1 ARCHITECTURE SCOPE

This volume of the InfiniBand Architecture Specification defines the inter-
connect fabric, routing elements, endnodes, management infrastructure,
and the communication formats and protocols. It does not specify I/O
commands or cluster services.

Router

Storage

TCA

Controller

Storage
Subsystem

I/O
Chassis

SCSI
Ethernet Graphics

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e

Fibre Channel
hub & FC
devices

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e

Switch

TC
A

IO
 M

od
ul

e

I/O
Chassis

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e

TC
A

IO
 M

od
ul

e
Switch

Processor Node
CPU CPU

Mem

CPU

HCA

Switch

Processor Node
CPU CPU

MemHCA

CPU

HCA

Other IB Subnets
WANs
LANs
Processor Nodes

Processor
SCSI

SCSI

SCSI

SCSI

SCSI

Mem

HCA = InfiniBand Channel Adapter in processor node
TCA = InfiniBand Channel Adapter in I/O node

Processor Node
CPU CPU

MemHCA

CPU

HCA

SwitchSwitchRAID Subsystem

TCA
Switch

Consoles

Switch

Fabric

Video

(Subnet)

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 88 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For example, consider an IBA SCSI adapter. IBA does not define the disk
I/O commands, how the SCSI adapter communicates with the disk, how
the operating system (OS) views the disk device, nor which node in the
cluster owns the disk adapter. IBA is an essential underpinning of each of
these operations, but does not directly define any of them. Instead, IBA
defines how data and commands can be transported between the I/O
driver on a processor node and the SCSI adapter.

IBA handles the data communications for I/O and IPC in a multi-computer
environment. It supports the high bandwidth and scalability required for
IO. It caters to the extremely low latency and low CPU overhead required
for IPC. With IBA, the OS can provide its clients with communication
mechanisms that bypass the OS kernel and directly access IBA network
communication hardware, enabling efficient message passing operation.
IBA is well suited to the latest computing models and will be a building
block for new forms of I/O and cluster communication. IBA allows I/O units
to communicate among themselves and with any or all of the processor
nodes in a system. Thus an I/O unit has the same communications capa-
bility as any processor node.

3.1.1 TOPOLOGIES & COMPONENTS

At a high level, IBA serves as an interconnect for endnodes as illustrated
in Figure 7. Each node can be a processor node, an I/O unit, and/or a
router to another network.

Figure 7 IBA Network

An IBA network is subdivided into subnets interconnected by routers as
illustrated in Figure 8. Endnodes may attach to a single subnet or multiple
subnets.

IBA Fabric

NodeNodeNode

Node
Node Node

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 89 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 8 IBA Network Components

An IBA subnet is composed of endnodes, switches, routers, and subnet
managers interconnected by links as illustrated in Figure 9. Each IBA de-
vice may attach to a single switch or multiple switches and/or directly with
each other1. Multiple links can exist between any two IBA devices.

Figure 9 IBA Subnet Components

1. Single endnode to endnode connection creates an independent subnet, with
no connectivity to the remainder of the IBA devices, in which case one of the two
interconnected endnodes functions as the subnet manager for that link.

OM10499

End
Node

IBA Subnet

IBA Subnet

IBA Subnet

IBA Subnet

Router

Router

End
Node

End
Node

End
Node

End
Node

End
NodeEnd

Node

End
NodeEnd

Node

End
Node

End
Node

End
Node

End
Node

Router

Switch

Switch

Subnet
Manager

Switch

Switch

Switch

End
Node

End
Node

End
Node

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 90 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The architecture is optimized for units that contain multiple independent
processes and threads (consumers) as illustrated in Figure 10. Each
channel adapter constitutes a node on the fabric. The architecture sup-
ports multiple channel adapters per unit with each channel adapter pro-
viding one or more ports that connect to the fabric, in which case the
processor node appears as multiple endnodes to the fabric.

Figure 10 Processor Node
In a processor node, the message and data service is an OS component
that is outside the scope of this document. This document specifies the
semantic interface between the message and data service and a channel
adapter. This semantic interface is referred to as IBA Verbs. Verbs de-
scribe the functions necessary to configure, manage, and operate a host
channel adapter. These verbs identify the appropriate parameters that
need to be included for each particular function. Verbs are not an API, but
provide the framework for the OSV to specify the API.

IBA is architected as a first order network and as such it defines the host
behavior (verbs) and defines memory operation such that the channel
adapter can be located as close to the memory complex as possible. It
provides independent direct access between consenting consumers re-
gardless of whether those consumers are I/O drivers and I/O controllers
or software processes communicating on a peer to peer basis. IBA pro-
vides both channel semantics (send and receive) and direct memory ac-
cess with a level of protection that prevents access by non participating
consumers.

3.2 COMMUNICATION

3.2.1 QUEUING

The foundation of IBA operation is the ability of a consumer to queue up
a set of instructions that the hardware executes. This facility is referred to
as a work queue. Work queues are always created in pairs, called a
Queue Pair (QP), one for send operations and one for receive operations.
In general, the send work queue holds instructions that cause data to be
transferred between the consumer’s memory and another consumer’s
memory, and the receive work queue holds instructions about where to
place data that is received from another consumer. The other consumer

Port

Processor Node

Message & Data Service

Channel Adapter

Port

(endnode)

Port

Channel Adapter

Port

(endnode)

Consumer Consumer Consumer Consumer

Verbs
Scope of
InfiniBand
Architecture

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 91 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

is referred to as a remote consumer even though it might be located on
the same node. IBA specifically describes the queuing relationship for a
Host Channel Adapter (HCA) but not the I/O unit because an I/O unit is
not necessarily subject to 2nd and 3rd party interoperability that is present
in a host environment (i.e., interoperability between the HCA vendor, the
OS vendor, and an IHV’s I/O driver or an ISV’s application using IPC). The
following describes the HCA queuing model.

The consumer submits a work request (WR), which causes an instruction
called a Work Queue Element (WQE) to be placed on the appropriate
work queue. The channel adapter executes WQEs in the order that they
were placed on the work queue. When the channel adapter completes a
WQE, a Completion Queue Element (CQE) is placed on a completion
queue2. Each CQE specifies all the information necessary for a work com-
pletion, and either contains that information directly or points to other
structures, for example, the associated WQE, that contain the information.

Figure 11 Consumer Queuing Model

Each consumer may have its own set of work queues, each pair of work
queues is independent from the others. Each consumer creates one or
more completion queues and associates each send and receive queue to
a particular completion queue. It is not necessary that both the send and
receive queue of a work queue pair use the same completion queue.

Because some work queues require an acknowledgment from the remote
node and some WQEs use multiple packets to transfer the data, the
channel adapter can have multiple WQEs in progress at the same time,
even from the same work queue. Thus the order in which CQEs are

2. WQEs and CQEs are not architected entities, only the Work Request verbs
are architected.

Work Queue

Work Queue

Completion Queue

WQE

WQEWQEWQEWQE

WQEWQE

Work Queue

CQECQECQECQE
Hardware

Consumer

Work
Completion

Work
Request

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 92 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

posted to the completion queue is not deterministic except that CQEs for
the same work queue are normally posted in the order that the corre-
sponding WQE was posted to the work queue3.

Figure 12 Work Queue Operations
There are three classes of send queue operations SEND, Remote
memory Access (RDMA), and MEMORY BINDING.

• For a SEND operation, the WQE specifies a block of data in the
consumer’s memory space for the hardware to send to the desti-
nation, letting a receive WQE already queued at the destination
specify where to place that data.

3. Receive completions for reliable datagram service are the exception because
concurrent reception on multiple EE contexts can result in out of order posting.

Send Queue

Receive Queue

Receive
Buffer

Read
Buffer

Data to
Write

Receive
Buffer

Receive
Buffer

Receive
Buffer

RDMA
Atomic

WQE

RDMA
Read
WQE

RDMA
Write
WQE

Consumer’s
Memory
Space

Work
Queue
Entry

Work
Queue
Entry

Work
Queue
Entry

Work
Queue
Entry

Data to
Send

Hardware

SEND
WQE

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 93 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• For an RDMA operation, the WQE also specifies the address in
the remote consumer’s memory. Thus an RDMA operation does
not need to involve the receive work queue of the destination4.
There are 3 types of RDMA operations, RDMA-WRITE, RDMA-
READ, and ATOMIC.

• The RDMA-WRITE operation stipulates that the hardware is
to transfer data from the consumer’s memory to the remote
consumer’s memory.

• The RDMA-READ operation stipulates that the hardware is to
transfer data from the remote memory to the consumer’s
memory.

• The ATOMIC operation stipulates that the hardware is to per-
form a read of a remote 64-bit memory location. The target re-
turns the value read, and conditionally modifies/replaces the
remote memory contents by writing an updated value back to
the same location.

• MEMORY BINDING instructs the hardware to alter memory regis-
tration relationships (see section 10.6.6.2). It associates (binds) a
Memory Window to a specified range within an existing Memory
Region. Memory binding allows a consumer to specify which por-
tions of registered memory it shares with other nodes (i.e., the
memory a remote node can access) and specifies read and write
permissions. The result produces a memory key (R_KEY) that
the consumer passes to remote nodes for their use in their RDMA
operations.

There is only one receive queue operation and it is to specify a receive
data buffer.

• A RECEIVE WQE specifies where the hardware is to place data
received from another consumer when that consumer executes a
SEND operation. Each time the remote consumer successfully
executes a SEND operation, the hardware takes the next entry
from the receive queue, places the received data in the memory
location specified in that receive WQE, and places a CQE on the
completion queue indicating to the consumer that the receive op-
eration has completed. Thus the execution of a SEND operation
causes a receive queue operation at the remote consumer.

Normally an RDMA operation does not consume a receive WQE at the
destination, but there is one exception. That is for an RDMA WRITE op-
eration which specifies immediate data. Immediate data is 32 bits of infor-
mation that is optionally provided in a SEND or RDMA WRITE instruction,
transferred as part of the operation, but instead of writing the immediate
data to memory, the data is treated as another piece of status information

4. RDMA Write with immediate data does involve the destination’s receive work
queue.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 94 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

and returned as a special field of the RECEIVE CQE status. This means
that an RDMA WRITE with immediate data will consume a RECEIVE
WQE at the destination.

3.2.2 CONNECTIONS

IBA supports both connection oriented and datagram service. For con-
nected service, each QP is associated with exactly one remote consumer.
In this case the QP context is configured with the identity of the remote
consumer’s queue pair. The remote consumer is identified by a port and
a QP number. The port is identified by a local ID (LID) and optionally a
Global ID (GID). During the communication establishment process, this
and other information is exchanged between the two nodes.

For datagram service, a QP is not tied to a single remote consumer, but
rather information in the WQE identifies the destination. A communication
setup process similar to the connection setup process needs to occur with
each destination to exchange that information.

3.3 COMMUNICATIONS STACK

The communication stack for IBA is illustrated in Figure 13. The architec-
ture provides a number of IBA transactions that a consumer can use to
execute a transaction with a remote consumer. The consumer posts work
queue elements (WQE) to the QP and the channel adapter interprets
each WQE to perform the operation.

Figure 13 IBA Communication Stack

CQE

Consumer Transactions,

PHY Layer

Packet

Physical Link
(Symbols)

Packet

(IBA Operations)
Consumer

WQE

Physical Link
(Symbols)

Packet

Channel
Adapter

Q
P

C
ha

nn
el

 A
da

pt
er

Send Rcv

Consumer

WQE
IBA Operations
(IBA Packets)

IBA Packets

Fabric

Link Layer

Network

Transport

Packet Relay

Port PortPort

CQE

Transport

 Layer

 Layer

Port

Q
P

Send Rcv

Transport

Operations, etc.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 95 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For Send Queue operations, the channel adapter interprets the WQE, cre-
ates a request message. segments the message into multiple packets if
necessary, adds the appropriate routing headers, and sends the packet
out the appropriate port.

The port logic transmits the packet over the link where switches and
routers relay the packet through the fabric to the destination.

When the destination receives a packet, the port logic validates the integ-
rity of the packet. The channel adapter associates the received packet
with a particular QP and uses the context of that QP to process the packet
and execute the operation. If necessary, the channel adapter creates a re-
sponse (acknowledgment) message and sends that message back to the
originator.

Reception of certain request messages cause the channel adapter to con-
sume a WQE from the receive queue. When it does, a CQE corre-
sponding to the consumed WQE is placed on the appropriate completion
queue, which causes a work completion to be issued to the consumer that
owns the QP.

3.4 IBA COMPONENTS

The devices in an IBA system are classified as:

• switches
• routers
• channel adapters
• repeaters
• links that interconnect switches, routers, repeaters, and channel

adapters
The management infrastructure includes:

• subnet managers
• general service agents

3.4.1 LINKS & REPEATERS

Links interconnect channel adapters, switches, repeaters, and routing de-
vices to form a fabric. A link can be a copper cable, an optical cable, or
printed circuit wiring on a backplane. Repeaters are transparent5 devices
that extend the range of a link. Volume 2 of InfiniBand Architecture spec-
ifies link and repeater requirements for various media types as well as de-
fines various module form factors for I/O devices. The architecture

5. Transparent in the sense repeaters only participate at the physical layer
protocol level and nodes are not aware of their presence.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 96 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

described in Volume 1 is independent of the type of link and the form
factor.

Links and repeaters are not directly addressable but the link status can be
determined via the device on each end of the link.

3.4.2 CHANNEL ADAPTERS

Channel adapters are the IBA devices in processor nodes and I/O units
that generate and consume packets. IBA defines two types of channel
adapters: Host Channel Adapter (HCA) and Target Channel Adapter
(TCA). The HCA provides a consumer interface providing the functions
specified by IBA verbs. IBA does not specify the semantics of the con-
sumer interface for a TCA.

A channel adapter is a programmable DMA engine with special protection
features that allow DMA operations to be initiated locally and remotely.

Figure 14 Channel Adapter
A channel adapter may have multiple ports. Each port of a channel
adapter is assigned a Local ID (LID) or a range of LIDs. Each port has its
own set of transmit and receive buffers such that each port is capable of
sending and receiving concurrently. Buffering is channeled through virtual
lanes (VL) where each VL has its own flow control.

The channel adapter provides a Memory Translation & Protection (MTP)
mechanism that translates virtual addresses to physical addresses and to
validate access rights. Specific memory management mechanisms are
not specified by this document, and requirements for such mechanisms
are not specified for TCAs.

Port Port Port

Memory

Channel Adapter

MTP

SMA

VL VL VL VL VL VL VL VL VL

Q
P

Q
P

Q
P

Q
P

Q
P

DMA

Transport

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 97 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The channel adapter provides multiple instances of the communication in-
terface to its consumer in the form of queue pairs (QP) comprised of a
send and receive work queue.

A subnet manager configures channel adapters with the local addresses
for each physical port, i.e., the port’s LID. The entity that communicates
with the subnet manager for the purpose of configuring the channel
adapter is referred to as the Subnet Management Agent (SMA).

Each channel adapter has a globally unique identifier (GUID) assigned by
the channel adapter vender. Since local IDs assigned by the subnet man-
ager are not persistent (i.e., might change from one power cycle to the
next), the channel adapter GUID (called Node GUID) becomes the pri-
mary object to use for persistent identification of a channel adapter. Addi-
tionally, each port has a Port GUID assigned by the channel adapter
vender.

3.4.3 SWITCHES

Switches primarily pass packets along based on the destination address
in the packet’s local route header.a switch also consumes and sources
packets required for managing the switch itself. Optionally, a switch port
may incorporate the properties of a physical TCA port.

IBA switches are the fundamental routing component for intra-subnet
routing (inter-subnet routing is provided by IBA routers). Switches inter-
connect links by relaying packets between the links.

Figure 15 IBA Switch Elements
Switches expose two or more ports between which packets are relayed.

Every destination within the subnet is configured with one or more unique
local identifiers (LIDs). Packets contain a destination address that speci-
fies the LID of the destination. From the point of view of a switch, the Des-
tination LID represents a path through the switch. Switch elements are
configured with forwarding tables. Individual packets are forwarded within
a switch to an outbound port or ports based on the packet’s Destination
LID and the Switch’s forwarding table.

Port Port Port

Switch

V
L

V
L

V
L

V
L

V
L

V
L

V
L

V
L

V
L

Packet Relay

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 98 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IBA switches support unicast forwarding and may support multicast for-
warding. Unicast is the delivery of a single packet to a single destination
and multicast is the ability of the fabric to deliver a single packet to multiple
destinations.

A subnet manager configures switches including loading their forwarding
tables.

To maximize availability, multiple paths between endnodes may be de-
ployed within the switch fabric. If multiple paths are available between
switches, the subnet manager can use these paths for redundancy or for
destination LID based load sharing. Where multiple paths exists, a subnet
manager can re-route packets around failed links by re-loading the for-
warding tables of switches in the affected area of the fabric.

3.4.4 ROUTERS

Like switches, routers do not generate nor consume packets (except for
management packets). They simply pass them along. Routers forward
packets based on the packet’s global route header and actually replaces
the packet’s local route header as the packet passes from subnet to
subnet.

IBA routers are the fundamental routing component for inter-subnet
routing (intra-subnet routing is provided by IBA switches). Routers inter-
connect subnets by relaying packets between the subnets.

Figure 16 IBA Router Elements
Routers expose one or more ports between which packets are relayed.
Routers could be embedded with other devices, such as channel adapters
or switches.

Routers are not completely transparent to the endnodes since the source
must specify the LID of the router and also provide the GID of the desti-
nation.

Port Port Port

Router

V
L

V
L

V
L

V
L

V
L

V
L

V
L

V
L

V
L

GRH Packet Relay

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 99 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each subnet is uniquely identified with a subnet ID known as the Subnet
Prefix. The subnet manager programs all ports (via the PortInfo attribute)
with the Subnet Prefix for that subnet. When combined with a Port GUID,
this combination becomes a port’s natural GID. Ports may have other lo-
cally administrated GIDs.

From the point of view of a router, the subnet prefix portion of a GID rep-
resents a path through the router. IPv6 specifies the protocol performed
between routers to derive their forwarding tables. Individual packets are
forwarded within a router to an outbound port or ports based on the
packet’s Destination GID and the router’s forwarding table.

Each router forwards the packet through the next subnet to another router
until the packet reaches the target subnet. The last router sends the
packet using the LID associated with the Destination GID as the Destina-
tion LID.

A subnet manager configures routers with information about the subnet
such as which VLs to use and partition information.

To maximize availability, multiple paths between subnets may be de-
ployed within the fabric. If multiple paths are available, routers might use
those paths for redundancy or for load sharing. Where multiple paths
exist, a router can re-route packets around failed subnets.

3.4.5 MANAGEMENT COMPONENTS

IBA management provides for a subnet manager and an infrastructure
that supports a number of general management services. The manage-
ment infrastructure requires a subnet management agent in each node
and defines a general service interface that allows additional general ser-
vices agents.

The architecture defines a common management datagram (MAD) mes-
sage structure for communicating between managers and management
agents.

3.4.5.1 SUBNET MANAGERS

A Subnet Manager (SM) is an entity attached to a subnet that is respon-
sible for configuring and managing switches, routers, and channel
adapters. A SM can be implemented with other devices, such as a
channel adapter or a switch.

IBA supports the notion of multiple subnet managers per subnet and
specifies how multiple subnet managers negotiate for one to become the
master SM. It does not prohibit other methods between cooperating SMs
for governing master/standby relationships

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 100 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The master SM:

• discovers the subnet topology,
• configures each channel adapter port with a range of LIDs, GIDs

subnet prefix, and P_Keys,
• configures each switch with a LID, the subnet prefix, and with its

forwarding database,
• maintains the endnode and service databases for the subnet and

thus provides a GUID to LID/GID resolution service as well as a
services directory.

3.4.5.2 SUBNET MANAGEMENT AGENTS

Each node provides a Subnet Management Agent (SMA) that the SM ac-
cess through a well known interface called the Subnet Management Inter-
face (SMI). SMI allows for both LID Routed packets and Directed Routed
packets. Directed routing provides the means to communicate before
switches and end nodes are configured. Only the SMI allows for directed
routed packets.

3.4.5.3 GENERAL SERVICE AGENTS

Each node may contain additional management agents referred to as
General Service Agents (GSA*) that can be accessed through a well
known interface called the General Service Interface (GSI). The GSI only
supports LID routing. The general service classes defined by IBA are:

• Subnet Administration (SA) - this is a service provided by the SM
that allows nodes to access information about the subnet to dis-
cover other nodes and services, to resolve paths, and to register
its services.

• Performance Management - monitors and reports well-defined
performance counters

• Baseboard Management - provides for chassis management us-
ing IB-ML as defined in Volume 2.

• SNMP Tunneling - provides SNMP functionality by defining the
method for sending and receiving SNMP messages.

• Vendor Defined - allows private extensions that a device vendor
may use to remotely configure and manage its devices.

• Communication Management (ComMgt) - Provides for connec-
tion establishment and other communication management func-
tions between endnodes.

• Device Management (DevMgt) - Provides I/O resource manage-
ment

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 101 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.5 IBA FEATURES

3.5.1 QUEUE PAIRS

The QP is the virtual interface that the hardware provides to an IBA con-
sumer and it provides a virtual communication port for the consumer. The
architecture supports up to 224 QPs per channel adapter and the opera-
tion on each QP is independent from the others. Each QP provides a high
degree of isolation and protection from other QP operations and other
consumers. Thus a QP can be considered a private resource assigned to
a single consumer. A consumer might consume multiple QPs as illus-
trated in Figure 17.

Figure 17 Communication Interface

The consumer creates this virtual communication port by allocating a QP
and specifying its class of service. Communication takes place between a
source QP and a destination QP. For connection oriented service, each
QP is tightly bound to exactly one other QP, usually on a different node.
The consumer initiates any communication establishment necessary to
bind the QP with the destination QP and configures the QP context with
certain information such as Destination LID, service level, and negotiated
operating limits.

The consumer posts work requests to a QP to invoke communication
through that QP.

3.5.2 TYPES OF SERVICE

Each QP is configured for a certain class of operation (referred to as ser-
vice type) based on how the sourcing and receiving QPs interact. Both the
source and destination QPs must be configured for the same service type.
Each service type is based on the following attributes.

Channel Adapter

Consumer
A

Consumer
B

QP QP QP

Node

S
en

d

S
en

d

S
en

d

R
ec

ei
ve

X Y Z

Physical
Link(s)
to Fabric

R
ec

ei
ve

R
ec

ei
ve

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 102 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Connection oriented versus datagram - For connection orient-
ed service, the QP is associated with exactly one other QP and
all work requests posted to the QP results in a message sent to
the established destination QP. Datagram operation allows a sin-
gle QP to be used to send and receive messages to/from any ap-
propriate QP on any node.

• Acknowledged versus unacknowledged - For acknowledged
service, a QP returns response messages when it receives re-
quest messages. Response messages might be positive ac-
knowledgment (ACK), negative acknowledgment (NAK), or
contain response data. Acknowledged service is referred to as re-
liable since the transport protocol guarantees un-corrupted data
delivery, in order, exactly once. Unacknowledged service is re-
ferred to as unreliable because the transport protocol does not
guarantee that all data is delivered. It does guarantee that all data
is delivered at most once, and delivered data is not corrupted.
Also there are certain cases where changes in fabric configura-
tion might cause data to be delivered out of order.

• IBA transport versus other transport - IBA transport services
define a specific transport protocol for channel based and memo-
ry based operations. IBA also supports using the channel adapter
as a data link engine to send raw packets between nodes which
is useful for supporting legacy protocol stacks and legacy net-
works.

The service types defined by IBA are specified in Table 2

Certain IBA operations are valid only over certain classes of service. A QP
rejects a WQE for an operation that is not valid for the configured class of
service.

Connection oriented service requires that the consumer initiate a commu-
nication establishment procedure (connection setup) with the target node
to associate the QPs and establish QP context prior to any QP operation.
Actually, all service classes except for raw datagram need some form of

Table 2 Service Types

Service Type Connection
Oriented Acknowledged Transport

Reliable Connection yes Yes IBA

Unreliable Connection yes no IBA

Reliable Datagram no Yes IBA

Unreliable Datagram no no IBA

RAW Datagram no no Raw

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 103 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

communication setup to associate queue pairs. For reliable datagram ser-
vice, the node performs a communication establishment process to asso-
ciate an end-to end (EE) context (explained later) with each target node.
All QPs configured for Reliable Datagram service use established EE con-
texts and the work request specifies which EE context to use for that op-
eration.

Raw Datagrams are similar to unreliable datagrams, except that the
source QP does not know the identity of the QP that will receive and pro-
cess the message. Raw datagrams allow for routers that forward raw da-
tagram packets to non IBA destinations on a disparate fabric (such as a
LAN or WAN) that has no equivalent of a QP. There are two types of raw
datagrams, IPv6 and Ethertype. IPv6 raw datagrams contain a global
routing header and the packet payload contains a transport protocol ser-
vice data unit as identified in the global routing header. An Ethertype raw
datagram contains an Ethernet Type field and the packet payload contains
a transport protocol service data unit as identified in the Ethernet Type
field.

IBA defines both channel (send/receive) and memory (RDMA) semantics.
Raw datagram and Unreliable Datagram services do not support memory
semantics.

3.5.3 KEYS

IBA uses various keys to provide isolation and protection. Keys are values
assigned by an administrative entity that are used in messages in various
ways. The keys themselves do not provide security since the keys are
available in messages that cross the fabric and thus any entity that can
get to the interior of the fabric can ascertain key values. IBA does place
restrictions on how applications can access certain keys.

The keys are:

• Management Key (M_Key): Enforces the control of a master subnet
manager. Administered by the subnet manager and used in certain
subnet management packets. Each channel adapter port has a
M_Key that the SM sets and then enables. The SM may assign a dif-
ferent key to each port. Once enabled, the port rejects certain man-
agement packets that do not contain the programmed M_Key. Thus
only a SM with the programed M_Key can alter a node’s fabric con-
figuration. The SM can prevent the port’s M_Key from being read as
long as the SM is active. The port maintains a time-out such that the
port reverts to an unmanaged state if the SM fails. There is one
M_Key for a switch.

• Baseboard Management Key (B_Key): Enforces the control of a
subnet baseboard manager. Administered by the subnet baseboard
manager and used in certain MADs. Each channel adapter port has a

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 104 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

B_Key that the baseboard manager sets. The baseboard manager
may assign a different key to each port. Once enabled, the port re-
jects certain management packets that do not contain the pro-
grammed B_Key. Thus only a baseboard manager with the
programed B_Key can alter a node’s baseboard configuration. The
baseboard manager can prevent the port’s B_Key from being read as
long as the baseboard manager is active. The port maintains a time-
out such that the port reverts to an unmanaged state if the baseboard
manager fails. There is one B_Key for a switch.

• Partition Key (P_Key): Enforces membership. Administered through
the subnet manager by the partition manager (PM). Each channel
adapter port contains a table of partition keys which is setup by the
PM. QPs are required to be configured for the same partition to com-
municate (except QP0, QP1, and ports configured for raw data-
grams) and thus the P_Key is carried in every IB transport packet.
Part of the communication establishment process determines which
P_Key that a particular QP or EEC uses. An EEC contains the P_Key
for Reliable Datagram service and a QP context contains the P_Key
for the other IBA transport types. The P_Key in the QP or EEC is
placed in each packet sent, and compared with the P_Key in each
packet received. Received packets whose P_Key comparison fails
are rejected. Each switch has one P_Key table for management mes-
sages and may optionally support partition enforcement tables that
filter packets based on their P_Key.

• Queue Key (Q_Key): Enforces access rights for reliable and unreli-
able datagram service (RAW datagram service type not included).
Administered by the channel adapter. During communication estab-
lishment for datagram service, nodes exchange Q_Keys for particular
queue pairs and a node uses the value it was passed for a remote
QP in all packets it sends to that remote QP. Likewise, the remote
node uses the Q_Key it was provided. Receipt of a packet with a dif-
ferent Q_Key than the one the node provided to the remote queue
pair means that packet is not valid and thus rejected.

Q_Keys with the most significant bit set are considered controlled
Q_Keys (such as the GSI Q_Key) and a HCA does not allow a con-
sumer to arbitrarily specify a controlled Q_Key. An attempt to send a
controlled Q_Key results in using the Q_Key in the QP context. Thus
the OS maintains control since it can configure the QP context for the
controlled Q_Key for privileged consumers.

• Memory Keys (L_Key and R_Key): Enables the use of virtual ad-
dresses and provides the consumer with a mechanism to control ac-
cess to its memory. These keys are administered by the channel
adapter through a registration process. The consumer registers a re-
gion of memory with the channel adapter and receives an L_Key and
R_Key. The consumer uses the L_Key in work requests to describe
local memory to the QP and passes the R_Key to a remote consumer

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 105 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

for use in RDMA operations. When a consumer queues up a RDMA
operation it specifies the R_Key passed to it from the remote con-
sumer and the R_Key is included in the RDMA request packet to the
original channel adapter. The R_Key validates the sender’s right to
access the destination’s memory and provides the destination chan-
nel adapter with the means to translate the virtual address to a physi-
cal address.

3.5.4 VIRTUAL MEMORY ADDRESSES

IBA is optimized for virtual addressing. That is, an IBA consumer uses vir-
tual addresses in work requests and the channel adapter is able to con-
vert the virtual address to physical address as necessary. For this to
happen, each consumer registers regions of virtual memory with the
channel adapter and the channel adapter returns 2 memory handles
called L_Key and R_Key to the consumer. The consumer then uses the
L_key in each work request that requires a memory access to that region.
See Section 3.5.3 for description of L_Key usage.

Memory Registration provides mechanisms that allow IBA consumers to
de-scribe a set of virtually contiguous memory locations or a set of phys-
ically contiguous memory locations to allow the HCA to access the
memory as a virtually contiguous buffer using virtual addresses.

IBA also supports remote memory access (RDMA) that permits a remote
consumer to access that registered memory. For RDMA, the consumer
passes the R_KEY and a virtual address of a buffer in that memory region
to another consumer. That remote consumer supplies that R_Key in its
RDMA WQEs that will access memory in the original node. See Section
3.5.3 for detailed description of R_Key usage.

3.5.5 PROTECTION DOMAINS

Not only does memory registration allow the use of virtual memory ad-
dressing, but it also provides an increased level of protection against in-
advertent and unauthorized access.

Since a consumer might communicate with many different destinations
but not wish to let all those destinations have the same access to its reg-
istered memory, IBA provides protection domains. Protection domains
allow a consumer to control which set of its Memory Regions and Memory
Windows can be accessed by which set of its QPs.

Before a consumer allocates a QP or registers memory, it creates one or
more protection domains. QPs are allocated to, and memory registered
to, a protection domain. L_Keys and R_Keys for a particular memory do-
main are only valid on QPs created for the same protection domain.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 106 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.5.6 PARTITIONS

Partitioning enforces isolation among systems sharing an InfiniBand
fabric. Partitioning is not related to boundaries established by subnets,
switches, or routers. Rather a partition describes a set of endnodes within
the fabric that may communicate.

Each port of an endnode is a member of at least one partition and may be
a member of multiple partitions. A partition manager assigns partition keys
(P_Keys) to each channel adapter port. Each P_Key represents a parti-
tion. Each QP6 and EE context is assigned to a partition and uses that
P_Key in all packets it sends and inspects the P_Key in all packets it re-
ceives. Reception of an Invalid P_Key causes the packet to be discarded.

Switches and routers may optionally be used to enforce partitioning. In
this case the partition manager programs the switch or router with P_Key
information and when the switch or router detects a packet with an invalid
P_Key, it discards the packet.

3.5.7 VIRTUAL LANES

Virtual lanes (VL) provide a mechanism for creating multiple virtual links
within a single physical link. A virtual lane represents a set of transmit and
receive buffers in a port. All ports support VL15 which is reserved exclu-
sively for subnet management. There are 15 other VLs (VL0 to VL14)
called data VLs and all ports support at least one data VL (VL0) and may
provide VL1 to VLn-1, where n is the number of data VLs the port supports).

The actual data VLs that a port uses is configured by the SM and is based
on the Service Level (SL) field in the packet. The default is to use VL0 until
the SM determines the number of VLs that are supported by both ends of
the link and programs the port’s SL to VL mapping table.

6. Except QP0, QP1, and QPs configured for Raw Datagrams type of
service.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 107 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The port maintains separate flow control over each data VL such that ex-
cessive traffic on one VL does not block traffic on another VL.

Figure 18 Virtual Lanes
VL assignment exists only between ports at each end of a link and VL as-
signment on one link is independent of assignments on other links.

Each packet has a SL which is specified in the packet header. As a packet
traverses the fabric, its SL determines which VL will be used on each link.
Each port maintains a table of SL to VL mapping such that a packet is sent
on the appropriate VL.

When the ports at each end of a link support a different number of data
VLs, the port with the higher number degrades to the number supported
by the other port. Thus for ports that only support a single data VL, all data
traffic defaults to VL0.

3.5.8 QUALITY OF SERVICE

IBA provides several mechanisms that permit a subnet manager to ad-
minister various quality of service guarantees for both connected and con-
nectionless services. These mechanisms are Service Level, Service
Level to Virtual Lane Mapping, and Partitions. IBA does not define quality
of service (QoS) levels (e.g., best effort).

Queues
Send

Receive

Send

Receive

Send

Receive

Receive

Transmitter

Receiver

VL 15

VL 14

VL 1

VL 0

Management
VL

Data
VLs

Port

Transmitter

Receiver

Ph
ys

ic
al

 L
in

k

Queues
Send

Receive

Send

Receive

Send

Receive

Receive

Receiver

VL 15

VL 14

VL 1

VL 0

Port

Send

Send

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 108 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.5.8.1 SERVICE LEVEL

IBA defines a Service Level (SL) attribute that permits a packet to operate
at one of 16 service levels. The definition and purpose of each service
level is outside the scope of the architecture and left as a fabric adminis-
tration policy. Thus the assignment of service levels is a function of each
node’s communication manager and its negotiation with a subnet man-
ager.

3.5.8.2 SL TO VL MAPPING

Another IBA mechanisms that is tied to service levels is virtual lanes.
Each packet identifies its SL and as the packet traverses the fabric, the
packet’s SL determines which VL is used on the next link. To this end,
each port (switches, routers, endnodes) has a SL to VL mapping table that
is configured by subnet management. Naturally, for all links that terminate
at a port that only supports one data VL, all SLs map to VL0. Otherwise,
subnet management policy determines the mapping of each SL to an
available VL.

Packets addressed to QP0 are Subnet Management Packets (SMP) and
exclusively use VL15 and their SL is ignored. VL15 (the management VL)
is not a data VL and is not used for packets not addressed to QP0.

3.5.8.3 PARTITIONS

Another IBA mechanism that can be tied to service levels is partitioning.
Fabric administration can assign certain SLs for particular partitions. This
allows the SM to isolate traffic flows between those partitions and even if
both partitions operate at the same QoS level, each partition can be guar-
anteed its fair share of bandwidth regardless of whether nodes in other
partitions misbehave or are over subscribed.

3.5.9 INJECTION RATE CONTROL
IBA defines a number of different link bit rates. The lowest bit rate of 2.5
Gb/sec is referred to as a 1x (times one) link. Other link rates are
10Gb/sec (4x) and 30 Gb/sec (1x2). To support multiple link speeds within
a fabric, IBA defines a Static Rate Control mechanism that prevents a port
with a high speed link from overrunning the capacity of a port with a lower
speed link.

As part of the path resolution process, the SubnAdm:PathRecord pro-
vides the node with MTU and rate information for the path. Path informa-
tion is used since either a switch port or the endnode could be the limiting
factor.

The example in Figure 19 illustrates that port A with a 12x link speed has
the potential for injecting traffic at 3 times the capacity of port B and 12
times the capacity of ports C, D, or E. Additionally port B has the potential

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 109 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

for injecting traffic at 4 times the capacity of port C, D, or E. Since traffic
tends to be bursty, every time port A sends to one of the other ports, the
fabric has a high probability of congesting. Link flow control keeps the
fabric from losing packets due to that congestion, but the back pressure
will effect other paths that otherwise would not be congested.

IBA solves this problem by defining a static rate control mechanism for
ports that operate at link speeds greater than 1x.

Figure 19 Rate Matching Example

Each destination has a time-out value associated with it and that time-out
value is based on the ratio between the source and destination bit rates.
When the source and destination bit rates are equal, the time-out values
is 0 (not needed). Otherwise when the port transmits a packet to a desti-
nation, it puts that destination LID and a time-out value in its static rate
control table. The port removes the entry after the time-out period expires.
While the entry remains in the table, the port does not send any more
packets to that destination (i.e., defers to traffic for other destinations not
in the table). When there is no entry in the table, the port transmits the
packet by placing it on the appropriate VL output queue.

3.5.10 ADDRESSING

Each endnode contains one or more channel adapters and each channel
adapter contains one or more ports. Additionally each channel adapter
contains a number of queue pairs (QP).

Each QP has a queue pair number (QPN) assigned by the channel
adapter which uniquely identifies the QP within the channel adapter.
There are two well-known QPs for each port (QP0 and QP1) and all other
QPs are configured for operation through a particular port. For reliable da-
tagram service, it is the EE context rather than the QP context that deter-
mines the port.

4x

End
Node A

12x

End
Node

B

End
NodeD

End
Node

End
Node

C

E

1x

1x

Fabric 1x

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 110 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Packets other than raw datagrams contain the QPN of the destination QP.
When the channel adapter receives a packet, it uses the context of the
destination QPN (and EE context for reliable datagram) to process the
packet.

Each port has a Local ID (LID) assigned by the local subnet manager (i.e.,
the subnet manager for the subnet). Within the subnet, LIDs are unique.
Switches use the LID to route packets within the subnet. The local subnet
manager configures routing tables in switches based on LIDs and where
that port is located with respect to the specific switch. Each packet con-
tains a Source LID (SLID) that identifies the port that injected the packet
into the subnet and a Destination LID (DLID) that identifies the port where
the fabric is to deliver the packet.

IBA also provides for multiple virtual ports within a physical port by de-
fining a LID Mask Control (LMC). The LMC specifies the number of least
significant bits of the LID that a physical port masks (ignores) when vali-
dating that a packet DLID matches its assigned LID. Those bits are not ig-
nored by switches, therefore the subnet manager can program different
paths through the fabric based on those least significant bits. Thus the
port appears to be 2LMC ports for the purpose of routing across the fabric.

Each port also has at least one Global ID (GID) that is in the format of an
IPv6 address. GIDs are globally unique. Each packet optionally contains
a Global Route Header (GRH) specifying a Source GID (SGID) that iden-
tifies the port that injected the packet into the fabric and a Destination GID
(DGID) that identifies the port where the fabric is to deliver the packet.
Routers use the GRH to route packets between subnets. Switches ignore
the GRH.

Each channel adapter has a Globally Unique Identifier (GUID) called the
Node GUID assigned by the channel adapter vendor. Each of its ports has
a Port GUID also assigned by the channel adapter vendor. The Port GUID
combined with the local subnet prefix becomes a port’s default GID.

Subnet administration provides a GUID to LID/GID resolution service.
Thus a node can persistently identify another node by remembering a
Node or Port GUID.

The address of a QP is the combination of the port address (GID + LID)
and the QPN. To communicate with a QP requires a vector of information
including the port address (LID and/or GID), QPN, service level, path
MTU, and possibly other information. This information can be obtained by
a path query request addressed to Subnet Administration.

Service IDs are used to resolve QPs. Some Service IDs are well known
(i.e., certain functions have a predetermined Service ID) and some are ad-
vertised in an I/O controller’s Service Entries list. The subnet manager

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 111 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

provides the GUID to GID/LID resolution, but the target provides a Service
ID to QP resolution as part of the communication management process.

In general, the target node of a Request for Communication message
uses the Service ID to direct the request to the entity who decides whether
to proceed with communication establishment. If the decision is affirma-
tive, the target returns the information necessary to establish communica-
tion, which includes the QPN plus other information specific to the
transport service type.

A simplified address resolution process is illustrated in Figure 20.

Figure 20 Simplified Address Resolution Process
In the illustration, the target is an I/O controller where the initiator learns
the Service ID by querying the IOC for a list of I/O protocols supported.
The second path resolution is only necessary if the service being estab-
lished uses different path characteristics (SL, QoS, MTU, etc.) than the
management MADs.

3.5.11 MULTICAST

Multicast is a one-to-many / many-to-many communication paradigm de-
signed to simplify and improve the efficiency of communication between
a set of endnodes.

Each multicast group is identified by a unique GID. A node joins and
leaves a multicast group through a management action where the node
supplies the LID for each port that will participate. This information is dis-
tributed to the switches. Each switch is configured with routing information
for the multicast traffic which specifies all of the ports where the packet
needs to travel. Care is taken to assure there are no loops (i.e., a single

Subnet
Administration Initiator

Target
Node

GetPathRecord(A)

GetPathRecord
List of Protocol+ServiceID

Response (QPN)

Connect (ServiceID)

GetUnitInfo

LID(A)

SL, etc.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 112 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

spanning tree such that a packet is not forwarded to a switch that already
processed that packet).

The node uses the multicast LID and GID in all packets it sends to that
multicast group. When a switch receives a multicast packet (i.e., a packet
with a multicast LID in the packet’s DLID field) it replicates the packet and
sends it out to each of the designated ports except the arrival port. In this
fashion, each cascaded switch replicates the packet such that the packet
arrives only once at every subscribed endnode.

The channel adapter may limit the number of QPs that can register for the
same multicast address. The channel adapter distributes multicast
packets to QPs registered for that multicast address. A single QP can be
registered for multiple addresses for the same port but if a consumer
wishes to receive multicast traffic on multiple ports it needs a different QP
for each port. The channel adapter recognizes a multicast packet by the
packet’s DLID or by the special value in the packet’s Destination QP field
and routes the packet to the QPs registered for that address and port.
Note that the Destination QP field in a multicast packet is not a QPN.

3.5.11.1 MULTICAST EXAMPLE

Figure 21 illustrates an example unreliable multicast IBA operation:

• A packet with PSN = 1129 is received on an IBA routing element
(switch or router) port.

• The switching / routing element examines the packet header and
extracts the DLID / multicast GID to determine if it corresponds to
a multicast group. An implementation may maintain this data as
part of its internal route table, e.g. a bit-mask which corresponds
to the output ports this packet should be forwarded.

• Switches or routers replicate the packet (implementation depen-
dent) and forwards the packet onto the output port(s)

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 113 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• .

3.5.11.2 GROUP MANAGEMENT

IBA does not define the multicast group management protocol to imple-
ment join and leave operations. However, the management interface and
associated MADs to implement a multicast group protocol is specified.
While these mechanisms are part of the Subnet Administration (SA),
some actions are implicitly performed by the Subnet Manager (SM). For
the following discussion, the term multicast management entity is used to
describe the SA/SM expected responsibility with respect to multicast man-
agement. Refer to the Subnet Administration attributes of Multicast
Member Record for more information.

3.5.11.2.1 MULTICAST GROUP CREATE

The multicast group creation is an explicit operation in IBA, in order to pro-
vide a single control of group characteristics and allow members to join
subversively. The group has to be created by the multicast management
entity before a join can be successful:

1) An (administrative) application defines (or determines) a target multi-
cast group address (GID). It specifies particular group characteristics
(PMTU, P-Key, etc.) and creates the multicast group by invoking a

Endnode
Se

nd
Re

ce
iv

e

Se
nd

Re
ce

iv
e

QP0 QP1
Se

nd
Re

ce
iv

e
QP2

HCA or TCA

PortPort

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

Router decodes inbound packet header (GRH) IPv6
multicast address to determine target output ports.

Packet is replicated and forwarded to each output port.

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

 IBA Router

Port Port

PortPort

Port Port

Port

Port

Control QPs

Endnode

Port

Endnode

Port
Endnode

Port

Endnode

Port

Endnode

Port

Switch decodes inbound packet
header (LRH) DLID to determine tar-
get output ports. Packet is replicated
and forwarded to each output port.

Next Subnets

PKT #1129

PKT #1129
PKT #1129

PKT #1129
PKT #1129

PKT #1129

PKT #1129 PKT #1129

PKT #1129

PKT #1129

Figure 21 Example Unreliable Multicast Operation

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 114 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

multicast group create to the multicast management entity. This appli-
cation may request a specific multicast GID or have one allocated for
it.

2) The multicast management entity may notify appropriate routers on
the subnet of the new group which is being created (not defined in
IBA V 1.1). The router protocol should determine whether this mul-
ticast group is in operation within another subnet. If so the router re-
turns the PMTU of the existing multicast group to determine whether
the create is allowed or not.

3) The multicast management entity maps the multicast group address
to a multicast LID.

3.5.11.2.2 MULTICAST GROUP JOIN

The multicast group join algorithm (applies to IBA unreliable datagram
multicast groups) is defined as follows:

1) Application defines or determines the target multicast group address
and invokes a multicast join operation.

2) The underlying join implementation determines if the associated
endnode is participating in the multicast group. If it is, the application
establishes a new local QP and performs the steps required to join
this group. If not, the application invokes the management interface
to communicate with the multicast group management entity.

3) The multicast management entity performs the following steps upon
receiving a join request:

a) Validate the multicast group address - fail join operation if invalid.

b) Validate the requested PMTU - fail join operation if invalid.

c) Verify the switch attached to the endnode is capable of multicast
operation. The switch either supports multicast operation via
packet replication or it can be configured to send all multicast
packets to the endnode-attached port.

d) If the multicast group address is currently in operation within this
subnet, take the following actions:

i) Verify all switches and routers which are participating in this
multicast group can support the requested PMTU. If they can-
not, the join operation fails.

ii) Each multicast group is implemented by defining a logical
routing tree across the participating switches. Rebuild / modi-
fy the routing tree to include the new endnode. The multicast
management entity informs fabric management to update the
associated route forwarding tables within all switches and
routers to reflect this new topology.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 115 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

e) If the multicast group address is not operating within this subnet,
take the following steps.

i) Inform each router within this subnet of the join operation. The
router protocol should determine whether this multicast group
is in operation within another subnet. If so, the router returns
the PMTU of the existing multicast group to determine wheth-
er the create and subsequent join operation is allowed or not.

ii) Map the multicast group address to an unused multicast LID.
iii) Establish a multicast routing tree and update the associated

switch and router route forwarding tables accordingly.
iv) Create the group and assign the PMTU to the multicast

group.
v) Return the multicast LID and associated group characteristics

to the endnode and allow multicast operations to be initiated.
f) Each router within this subnet is informed of successful multicast

join operation. Routers invoke the appropriate multicast group
management operations to add this subnet as participating in the
associated multicast group. This protocol is outside the IBA spec-
ification.

4) Add the member to the group.

3.5.11.2.3 MULTICAST GROUP LEAVE

When an application leaves a multicast group, the following algorithm is
used:

1) The application’s QP is removed as a target for the multicast group. If
there are QPs still participating in this multicast group, no further ac-
tion is required.

2) If there are no more QPs on this port participating within the multicast
group, the leave implementation informs the multicast management
entity that this endnode is no longer participating in this multicast
group. The multicast management entity takes the following step:

a) Update the switch and router route forwarding table(s) to effec-
tively remove this endnode as a target for packets associated
with this multicast group.

b) Remove the member from the group.

3.5.11.2.4 MULTICAST GROUP DELETE

When an (administrative) application deems there is no need for a multi-
cast group or there are no other endnodes participating in a multicast
group, the multicast group may be deleted. Upon receiving the delete re-
quest, the multicast management entity takes the following steps:

1) Unmap the multicast LID from the multicast group address.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 116 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) Inform each router within this subnet that this subnet is no longer par-
ticipating in the associated multicast group.

3.5.11.3 MULTICAST PRUNE

To improve fabric efficiency, the multicast group management entity
should periodically verify that all endnodes and routers participating within
a multicast group are still participating and if they are not, it should prune
them from the multicast group by performing the multicast group leave al-
gorithm. The verification period is outside the scope of IBA.

3.5.12 VERBS

IBA describes the service interface between a host channel adapter and
the operating system by a set of semantics called Verbs. Verbs describe
operations that take place between a host channel adapter and its oper-
ating system based on a particular queuing model for submitting work re-
quests to the channel adapter and returning completion status.

The intent of Verbs is not to specify an API, but rather to describe the in-
terface sufficiently permitting OS venders to define appropriate APIs that
take advantage of the architecture.

Verbs describe the parameters necessary for configuring and managing
the channel adapter, allocating (creating and destroying) queue pairs,
configuring QP operation, posting work requests to the QP, getting com-
pletion status from the completion queue.

3.6 CHANNEL & MEMORY SEMANTICS

IBA communications provide the user with both channel semantics and
memory semantics since both are useful for I/O and IPC. Channel seman-
tics, sometimes called Send/Receive, refers to the communication style
used in a classic I/O channel – one party pushes the data and the desti-
nation party determines the final destination of the data. The message
transmitted on the wire only names the destination’s QP, the message
does not describe where in the destination consumer’s memory space the
message content will be written.

With memory semantics the initiating party directly reads or writes the vir-
tual address space of a remote node. The remote party needs only com-
municate the location of the buffer; it is not involved with the actual
transfer of the data.

A typical I/O transaction might use a combination of channel and memory
semantics. For example, a host process might initiate an I/O operation by
using channel semantics to send a disk write command to an I/O device.
The I/O device examines the command and uses memory semantics to
read the data buffer directly from the memory space of the processor

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 117 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

node. After the operation is completed, the I/O unit then uses channel se-
mantics to push an I/O completion message back to the processor node.

3.6.1 COMMUNICATION INTERFACE

“Channel adapter” is the term that identifies the hardware that connects a
node to the IBA fabric (and includes any supporting software). The
channel adapter for a processor node is called a “host channel adapter”
(HCA) and a channel adapter in an I/O node is a “target channel adapter”
(TCA). A consumer communicates through one or more “queue pairs”
(QP). An HCA typically supports hundreds or thousands of QPs while a
TCA might support less than ten QPs.

It is the QP that is the communication interface. The user initiates work re-
quests (WR) that causes work items, called WQEs, to be placed onto the
queues and the channel adapter executes the work item.

Specifically, the operations supported for Send Queues are:

• Send Buffer -- a channel semantic operation to push a local buff-
er to a remote QP’s receive buffer. The Send WR includes a gath-
er list to combine data from several virtually contiguous local
buffer segments into a single message that is pushed to a remote
QP’s Receive Buffer. The local buffer’s virtual addresses must be
in the address space of the consumer that created the local QP.

• RDMA Read -- a memory semantic operation to read a virtually
contiguous buffer on a remote node. The RDMA Read operation
reads a virtually contiguous buffer on a remote endnode and
writes the data to a local memory buffer.

Like the Send operation, the local buffer must be in the address
space of the consumer that created the local QP.

The remote buffer must be in the address space of the remote con-
sumer owning the remote QP targeted by the RDMA Read.

• RDMA Write -- a memory semantic operation to write a virtually
contiguous buffer on a remote node. The WR contains a gather
list of local buffer segments and the virtual address of the remote
buffer into which the data from the local buffer segments are writ-
ten.

Like the Send WR, the local buffer must be in the address space
of the consumer that created the local QP.

The remote buffer must be in the address space of the remote con-
sumer owning the remote QP targeted by the RDMA Write.

• Atomic -- a memory semantic operation to do an atomic opera-
tion on a remote 64 bit word. The Atomic operation is a combined
Read, Modify, and Write operation.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 118 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An example of an Atomic operation is the Compare and Swap if
Equal operation. The WR specifies a remote memory location, a
compare value, and a new value. The remote QP reads the spec-
ified memory location, compares that value to the compare value
supplied in the message, and only if those values are equal, then
the QP writes the new value to that same memory location. In ei-
ther case the remote QP returns the value it read from the memory
location to the requesting QP. The other atomic operation is the
FetchAdd operation where the remote QP reads the specified
memory location, returns that value to the requesting QP, adds to
that value a value supplied in the message, and then writes the re-
sult to that same memory location.

• Memory Bind -- a memory management operation that changes
the binding of a memory window. The Bind Memory Window op-
eration associates a previously allocated Memory Window to a
specified address range within an existing Memory Region, along
with a specified set of remote access privileges.

For Receive Queues, there is only a single type of WR:

• Post Receive Buffer -- a channel semantic operation describing
a local buffer into which incoming Send messages are written.
The WR includes a scatter list describing several local buffer seg-
ments. The contents of an incoming Send message is written to
these buffer segments in the order specified. The buffer’s virtual
addresses must be in the address space of the consumer that
created the local QP. A WR without a scatter-gather list may be
used to receive Immediate Data from a Write or a zero length
Send operation.

Zero processor copy data transfer, with no kernel involvement, is key in
providing high bandwidth, low latency communication. A consumer can
transfer a data buffer via the QP directly from where the buffer resides in
memory. Furthermore, the protection provided by R_Keys & L_Keys
(memory registration) removes the need for the OS to validate data trans-
fers. Thus the OS may allow posting the WQE from user-mode, bypassing
the operating system, and thus consuming fewer instruction cycles.

IBA operations support the use of virtual addresses and existing virtual
memory protection mechanisms to assure correct and proper access to
all memory. Thus IBA applications are not required to use physical ad-
dressing for any operation.

A consumer can use either of two mechanisms to enable remote access
to its memory (RDMA). First, when registering its memory (creating a
Memory Region), the consumer can simply enable remote access for the
entire Memory Region. If more control of remote access is desired, the
consumer can allocate a Memory Window and bind it to a subset of an ex-
isting Memory Region. Either approach results in an R_Key. The con-

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 119 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

sumer then provides that R_Key and the virtual address of the data buffer
to a remote node for use in subsequent RDMA operations. Only an in-
coming RDMA request with a correct R_Key can gain access to the spe-
cific area of memory. Furthermore, the QP and the Memory Region or
Window must be in the same protection domain.

3.6.2 IBA TRANSPORT SERVICES

The IBA transport mechanisms provide multiple classes of communica-
tion services. When a QP is created, it is configured to provide one of
these classes of transport services:

• Reliable Connection (acknowledged - connection oriented)
• Reliable Datagram (acknowledged - multiplexed)
• Unreliable Connection (unacknowledged - connection oriented)
• Unreliable Datagram (unacknowledged - connectionless)
• Raw Datagram (unacknowledged - connectionless)

The Reliable Connection service associates a local QP with one and
only one remote QP. Thus a Send Buffer WQE placed on one QP causes
data to be written into the Receive Buffer of the associated QP. RDMA op-
erations operate on the address space of the associated QP.

A connected service requires each consumer to create a QP for each con-
sumer with which it wishes to communicate. Thus if there are M con-
sumers on each of N platforms that all wish to communicate via connected
class of service, then each platform requires M2 * N QPs. This assumes
that each consumer on a particular platform communicates with con-
sumers (including itself) on that same platform by taking advantage of the
ability to connect a QP to a QP on the same node.

Figure 22 Connected Service

Node 2

Consumer B

Receive

Consumer C
Send

Receive

Consumer D
Send

Receive

Node 3

Consumer A
Send

Receive

Node 1
Send

Send

Receive

Send

Receive

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 120 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Reliable Connection is reliable because the channel adapter can
maintain sequence numbers and acknowledges all messages. A combi-
nation of hardware and channel adapter software retries any failed com-
munications. The consumer of the QP sees reliable communications even
in the presence of bit errors, receive buffer under runs, network conges-
tion, and if alternate paths exist in the fabric, failures of fabric switches or
links.

The acknowledgments ensure data is delivered reliably between the as-
sociated QPs and thus between each node’s memory.

The acknowledgment is not a consumer level acknowledgment -- it
doesn’t validate that the receiving consumer has consumed the data. The
acknowledgment only means the data has reached the destination.

The Unreliable Connection service also associates a local QP with one
and only one remote QP. Thus a Send Buffer request placed on one QP
causes data to be written into the Receive Buffer of the associated QP.
RDMA Write operations operate on the address space of the associated
QP.

Unlike reliable connection service, unreliable connection does not ac-
knowledge and thus does not have the ability to resend lost or corrupted
messages. Rather, lost or corrupted messages are simply dropped. Since
there is no acknowledgment, RDMA Reads and Atomic operations are not
supported. Because packets of an RDMA Write might be lost or corrupted,
partial writing of a buffer might take place, but once a missing or corrupted
packet is received, the write operation ceases until the start of a new mes-
sage.

The Unreliable Datagram service is connectionless and unacknowl-
edged. It allows the consumer of the QP to communicate with any unreli-
able datagram QP on any node. Receive operation allows incoming
messages from any unreliable datagram QP on any node.

The Unreliable Datagram service greatly improves the scalability of IBA.
Since the service is connectionless, an endnode with a fixed number of
QPs can communicate with far more consumers and platforms compared
to the number possible using the Reliable Connection and Unreliable
Connection service.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 121 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 23 Datagram Service
This is the class of service used by management to discover and integrate
new IBA switches and endnodes. It does not provide the reliability guar-
antees of the other service classes, but operates with less state main-
tained at each endnode. Unlike other services where messages are
conveyed by multiple packets, the maximum message length is con-
strained in size to fit in a single packet.

The Reliable Datagram (RD) service is multiplexed over connections be-
tween nodes called End-to-end contexts (EEC) which allows each RD QP
to communicate with any RD QP on any node with an established EEC.
Multiple QPs can use the same EEC and a single QP can use multiple
EECs (one EEC for each remote node per reliable datagram domain).

A reliable datagram domain (RDD) determine which sets of RD QPs can
access which sets of EECs. Some possible reasons for multiple RDDs are
traffic in different partitions, different QoS characteristics, security, and
performance.

The EEC uses sequence numbers and acknowledgments associated with
each message to ensure the same degree of reliability as with the Reli-
able Connection service. Each channel adapter maintains end-to-end
specific state for each node to keep track of the sequence numbers, ac-
knowledgments, and time-out values. Each EEC is shared by all Reliable
Datagram QPs for that RDD.

For reliable datagram service on a per RDD basis, each consumer needs
only to create a single QP and the node creates an EE context for each

Node 2

Consumer B
Send

Receive

Consumer C
Send

Receive

Consumer D
Send

Receive

Node 3

Consumer A
Send

Receive

Node 1

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 122 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

platform with which it communicates. Thus if there are M consumers on
each of N platforms that all wish to communicate via IBA reliable datagram
service, then each platform requires M QPs and N end-to-end contexts.

Figure 24 Reliable Datagram Service

The Raw Datagram service is not technically a transport but rather it is a
data link service that allows a QP to send and receive raw datagram mes-
sages. There are two types of raw datagram service (EtherType and
IPv6). The EtherType raw datagram packet contains a generic transport
header that is not interpreted by the channel adapter, but it specifies the
protocol type. The IPv6 raw datagram contains a global route header that
identifies the protocol type.

Using IPv6 raw datagram service, the IBA channel adapter can support
standard protocols layered atop IPv6, such as TCP and UDP. Thus native
IPv6 packets can be bridged into the IBA SAN and delivered directly to a
port and to its IPv6 raw datagram QP. This allows the raw datagram QP
consumer to support multiple transport protocols.

Using EtherType raw datagram service, the IBA channel adapter can sup-
port standard protocols the same as Ethernet, including TCP and UDP as
well as IPv4. Thus native ethernet packets can be bridged into the IBA
subnet and delivered directly to a port and to its EtherType raw datagram
QP.

When the QP is created, the consumer registers with the channel adapter
in order to direct received datagrams to it (one QP for IPv6 and one for
EtherType).

Node 2

Consumer B

Receive

Consumer C
Send

Receive

Consumer D
Send

Receive

Node 3

Consumer A
Send

Receive

Node 1

Send

EE
Context

EE
Context

EE
Context

EE
Context

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 123 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.7 IBA LAYERED ARCHITECTURE

IBA operation can be described as a series of layers. The protocol of each
layer is independent of the other layers. Each layer is dependent on the
service of the layer below it and provides service to the layer above it.

Figure 25 IBA Architecture Layers

3.7.1 PHYSICAL LAYER

The physical layer specifies how bits are placed on the wire to form sym-
bols and defines the symbols used for framing (i.e., start of packet & end
of packet), data symbols, and fill between packets (Idles). It specifies the
signaling protocol as to what constitutes a validly formed packet (i.e.,
symbol encoding, proper alignment of framing symbols, no invalid or non-
data symbols between start and end delimeters, no disparity errors, syn-
chronization method, etc.)

Consumer OperationsConsumer

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

Upper Level
Protocols

Transport
Layer

Network
Layer

Link
Layer

Physical
Layer

Consumer

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

Messages

(QP)

Inter Subnet Routing

(GRH) Packet
Relay

M
A

C

 L

in
k

M
A

C

 L

in
k

Packet
Relay

Subnet Routing (LRH)
M

A
C

M
A

CFlow

Control

Signaling

End Node Switch Router End Node

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 124 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

Figure 26 IBA Packet Framing
The physical layer specification is in Volume 2. It specifies the bit rates,
media, connectors, signaling techniques, etc.

3.7.2 LINK LAYER

The link layer describes the packet format and protocols for packet oper-
ation, e.g. flow control and how packets are routed within a subnet be-
tween the source and destination. There are two types of packets.

• Link Management Packet - these are packets used to train and
maintain link operation. These packets are created and con-
sumed within the Link Layer and are not subject to flow control.
Link management packets are used to negotiate operational pa-
rameters between the ports at each end of the link such as bit
rate, link width, etc. They are also used to convey flow control
credits and maintain link integrity. Link management packets are
never forwarded to other links.

• Data Packet - these are the packets that convey IBA operations
and they consist of a number of different headers, which might or
might not be present.

Figure 27 IBA Data Packet Format

Start
Delimiter

End
Delimiter IdlesData Symbols

Packet

Start

Packet

Delimiter
End

Delimiter IdlesData Symbols

LRH GRH BTH ETH Payload I Data ICRC VCRC

Transport Layer Protocol

Link Layer Protocol

Upper Layer Protocol

Network Layer Protocol

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 125 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Local Route Header (LRH) is always present and it identifies the
local source and local destination ports where switches will route the
packet and also specifies the Service Level (SL) and VL on which the
packet travels. The VL is changed as the packet traverses the subnet but
the other fields remain unchanged.

The subnet manager assigns unique LIDs to each port of a channel
adapter as well as the management entity of a switch. The source places
the LID of the destination in the LRH and switches route the packet to that
destination. If the packet is to be routed to another subnet, the packet’s
destination LID contains the LID of a router, otherwise the packet’s desti-
nation LID specifies a LID assigned to a channel adapter (or switch, for
certain of management packets).

There are two CRCs in each packet. The Invariant CRC (ICRC) covers
all fields which should not change as the packet traverses the fabric. The
Variant CRC (VCRC) covers all of the fields of the packet. The combina-
tion of the two CRCs allow switches and routers to modify appropriate
fields and still maintain an end to end data integrity for the transport con-
trol and data portion of the packet. The coverage of the ICRC is different
depending on whether the packet is routed to another subnet (i.e. con-
tains a global route header).

Link level flow control is a credit based method where the receiver on
each link sends credits to the transmitter on the other end of the link.
Credits are per VL and indicate the number of data packets that the re-
ceiver can accept on that VL. The transmitter does not send data packets
unless the receiver indicates it has room. VL15 (the management VL) is
not subject to flow control.

3.7.3 NETWORK LAYER

The network layer describes the protocol for routing a packet between
subnets.

The Global Route Header (GRH) is present in a packet that traverses
multiple subnets. The GRH identifies the source and destination ports
using GID in the format of an IPv6 address. Routers forward the packet
based on the content of the GRH. As the packet traverses different sub-
nets, the routers modify the content of the GRH and replace the LRH. But
the source and destination GIDs do not change and are protected by the
ICRC field. Routers recalculate the VCRC but not the ICRC. This pre-
serves end to end transport integrity.

Each subnet has a unique subnet ID, the Subnet Prefix. When combined
with a Port GUID, this combination becomes a port’s Global ID (GID). A

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 126 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

node might have other locally administrated Global IDs. The source
places the GID of the destination in the GRH and the LID of the router in
the LRH. Each router forwards the packet through the next subnet to an-
other router until the packet reaches the target subnet. The last router re-
places the LRH using the LID of the destination.

3.7.4 TRANSPORT LAYER

The network and link protocols deliver a packet to the desired destination.
The transport portion of the packet delivers the packet to the proper QP
and instructs the QP how to process the packet’s data.

The transport layer is responsible for segmenting an operation into mul-
tiple packets when the message’s data payload is greater than the max-
imum transfer unit (MTU) of the path. The QP on the receiving end
reassembles the data into the specified data buffer in its memory.

Figure 28 Segmentation of Data
The Base Transport Header (BTH) is present in all packets except for
RAW datagrams. It specifies the destination QP and indicates the opera-
tion code, packet sequence number, and partition.

The operation code identifies if the packet is the first, last, intermediate, or
only packet of a message and specifies the operation (Send, RDMA Write,
Read, Atomic).

The packet sequence number (PSN) is initialized as part of the communi-
cations establishment process and increments each time the QP creates

Consumer Specified Data Buffer

Packet

Packet

Packet

Headers Payload CRC

Headers Payload CRC

Headers Payload CRC

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 127 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a new packet. The receiving QP tracks the received PSN to determine if
it lost a packet. For reliable service, the receiver sends an ACK or NAK
packet back to notify the sender that packets were or were not received
correctly. In this case the recipient discards subsequent packets until the
sender resends the missing messages. For unacknowledged service,
when the recipient detects a missing packet, it aborts the current opera-
tion and discards all subsequent packets until it receives one that speci-
fies a first or only operation code. Then operation continues.

There are various Extended Transport Headers (ETH) conditionally
present depending on the class of service and the operation code.

For reliable datagram service, the ETH identifies the EE context that the
QP uses to detect missing packets.

The first message of an RDMA Read or Write operation contains an
RDMA ETH that specifies the virtual address, R_Key, and total length of
the data buffer to read or write. Subsequent RDMA write packets provide
the remainder of the data. The QP validates that the memory is properly
registered for access by that QP and that the total data written does not
overrun the length specified. For an RDMA Read operation, the QP
fetches the data, segments it into Read Response packets and sends
them to the originator. When receiving a RDMA response, the QP writes
the data into the buffer specified in the WQE of the RDMA Read Request.

An Atomic operation contains an Atomic ETH that specifies the virtual ad-
dress and R_Key of the memory location that is the object of the operation
as well as 2 operands. The QP validates that the memory is properly reg-
istered for access by that QP. The QP fetches the data, returns that value
to the originator, performs the operation, and writes the result back to
memory. For the Compare & Swap operation, the QP compares the con-
tent of the memory location with the first operand, and if they match, then
it writes the second operand to that same location. Otherwise it does not
modify it. For the Fetch & Add operation, the QP performs an unsigned
add using the 64-bit Add Data field in the Atomic ETH, and writes the re-
sult back to the same memory location. In either case, operation is atomic
such that another QP is not allowed to modify that memory location be-
tween the time of the read and the subsequent write.

The Immediate Data (IMMDT) field is optionally present in RDMA WRITE
and SEND messages. It contains data that the consumer placed in the
Send or RDMA Write request and the receiving QP will place that value in
the current receive WQE. An RDMA Write with immediate data will con-
sume a receive WQE even though the QP did not place any data into the
receive buffer since the IMMDT is placed in a CQE that references the re-
ceive WQE and indicates that the WQE has completed.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 128 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For reliable connection service, IBA defines an end-to-end message level
flow control. This allows the receiver to send credits to the transmitter as
WQEs are posted to the receive queue. The QP tracks the number of
WQEs posted and retired from the receive queue and keeps track of the
number of messages received. It adds these numbers together to achieve
a message limit value which it sends to the transmitter on the other end of
the connection. The transmitter keeps track of the total number of mes-
sages that it creates and stops transmitting when it reaches the limit value
established by the other end of the connection.

3.7.5 UPPER LAYER PROTOCOLS

As illustrated in Figure 29, IBA supports any number of upper layer proto-
cols by various user consumers. IBA also defines messages and proto-
cols for certain management functions. These management protocols are
separated into Subnet Management and Subnet Services. Both of these
have unique properties.

Figure 29 Upper Layers

3.7.5.1 SUBNET MANAGEMENT

Subnet Management is actually divided between the Subnet Manager
(SM) application and the Subnet Management Agent (SMA). There only
needs to be one subnet manager per subnet and it can reside in any node
including switches and routers. Subnet management uses a special class
of Management Datagram (MAD) called a Subnet Management Packet
(SMP) which is directed to a special queue pair (QP0). As illustrated in
Figure 30, each port has a QP0, and each node contains an SMA that:

Verbs

Channel Adapter

Message & Data Service

U
ni

t
M

an
ag

em
en

t
Se

rv
ic

es

Fa
br

ic
 &

 S
ub

ne
t

M
an

ag
em

en
t

C
on

su
m

er

C
on

su
m

er

C
on

su
m

er

Subnet
Management

Agent

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 129 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• processes Get() and Set() SMPs received on QP0
• sends GetResp() SMPs out QP0
• sends Trap() SMPs out QP0.

A subnet manager:

• sends SMPs out QP0 to any port’s QP0
• processes all SMPs received on QP0 except SMPs which are

processed by that node’s SMA.

Figure 30 Subnet Management Elements
3.7.5.2 GENERAL SERVICES

General Service Agents (GSA*) actually consists of a number of manage-
ment service agents as illustrated in Figure 31. Some of the services are
optional. General services use a message format called a General Man-
agement Packet (GMP) which is a Management Datagram (MAD) and is
normally directed to a special queue pair (QP1) called the General Ser-
vice Interface (GSI). As illustrated in Figure 31, each port has a QP1, and
all GMPs received on QP1 are processed by the one of the GSAs. The
GSA is actually able to redirect GMPs for its particular class of service to
another queue pair, allowing each GSA to maintain its own communica-
tion interface.

Port

Unit

Message & Data Service

Channel Adapter Channel Adapter

Subnet Manager Application (optional)

SMA SMA
QP0

Port
QP0

Port
QP0

Port
QP0

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 130 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 31 General Services

3.8 IBA TRANSACTION FLOW

A consumer interacts with an IBA channel adapter through a data struc-
ture called the Queue Pair, consisting of a Send Queue and a Receive
Queue. A message is initiated by posting a work request which results in
a WQE being placed on the Send Queue.

The channel adapter detects the WQE posting and accesses the WQE.
The channel adapter interprets the command, validates the WQE’s virtual
addresses, translates it to physical addresses, and accesses the data.
The outgoing message buffer is split into one or more packets. To each
packet the channel adapter adds a transport header (sequence numbers,
opcode, etc.). If the destination resides on a remote subnet the channel
adapter adds a network header (source & destination GIDs). The channel
adapter then adds the local route header and calculates both the variant
and invariant checksums.

The flow of packets is subject to the link-level protocol over each link.

A packet is the unit of information that is routed through the IBA fabric. The
packet is an endnode-to-endnode construct, in that it is created and con-
sumed by endnodes. As the packet passes through switches, the switch
may need to change the virtual lane and thus must replace the variant
CRC with a new value but it does not touch the invariant CRC. If the
packet passes through a router, the router changes the local route header
and updates fields in the global route header, again updating the variant
CRC but not changing the invariant CRC. Each switch and router moves
the packet closer to its ultimate destination.

Port

Unit

Message & Data Service
Channel Adapter

Unit Management Services

QP1

Port
QP1

Port
QP1

Port
QP1

SNMP other

Connection
Management

I/O Device
Management

Baseboard
Management

Channel Adapter

Performance
Management

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 131 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When a packet arrives at its final destination it goes through normal va-
lidity checks (e.g., framing violations, disparity, illegal characters, align-
ment, etc.) and both VCRC and ICRC are checked for integrity. The
transport header identifies the target QP and the channel adapter uses
context from that QP to validate that the packet came from the correct
source, etc. and checks that the packet sequence number is valid (no
missed packets). For a Send operation, the QP retrieves the address of
the receive buffer from the next WQE on its receive queue, translates it to
physical addresses, and accesses memory writing the data. If this is not
the last packet of the message, the QP saves the current write location in
its context and waits for the next packet at which time it continues writing
the receive buffer until it receives a packet that indicates it is the last
packet of the operation. It then updates the receive WQE, retires it, and
sends an acknowledge message to the originator.

For reliable service types, if the QP detects one or more missing packets,
it sends a NAK message to the originator indicating its next expected se-
quence number. The originator can then resend starting with the expected
packet.

When the originator receives an acknowledgment, it creates a CQE on the
CQ and retires the WQE from the send queue.

A QP can have multiple outstanding messages at any one time but the
target always acknowledges in the order sent, thus WQEs are retired in
the order that they are posted.

3.9 IBA MANAGEMENT INFRASTRUCTURE

IBA management defines a common management infrastructure for

• Subnet Management - provides methods for a subnet manager to
discover and configure IBA devices and manage the fabric.

• General management services

• Subnet administration - provides nodes with information gath-
ered by the SM and provides a registrar for nodes to register
general services they provide.

• Communication establishment & connection management be-
tween endnodes

• Mechanisms to discover and manage I/O devices “behind”
channel adapters

• Configuration management - an authority for assigning I/O re-
sources to hosts

• Performance management - monitors and reports well-de-
fined performance counters

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 132 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Baseboard management - provides for power & chassis man-
agement using IB-ML as defined in Volume 2

• SNMP Tunneling (SNMP) - provides method for sending and
receiving information between management agents and man-
agement applications. This includes Simple Network Manage-
ment Protocol (SNMP), Desktop Management Interface
(DMI), and Common Information Model (CIM), as well as oth-
er standard and proprietary interfaces.

The subnet management physical and logical models are illustrated in
Figure 32. The general service models are illustrated in Figure 33 and
Figure 34.

Figure 32 Subnet Management Models
Every channel adapter, switch, and router has a Subnet Management
Agent (SMA) that responds to subnet management packets. Communica-
tion between the SM and SMAs use a well-known interface called the
Subnet Management Interface (SMI) where each port has a QP with QP
Number 0 (QP0) that is dedicated to sending and receiving SMPs.

Protection - The subnet manager can place a key (M_Key) in each node
which can not be read by other nodes and prevents nodes without the
M_Key from modifying a node’s configuration. The SM only shares the
M_Key with trusted peers as necessary. IBA also provides a lease expira-
tion mechanism such that if the SM dies before it shares M_Key informa-
tion with a successor, the lease expires, and the node returns to a state
that allows the successor SM to establish a new M_Key.

SMA

Switch

Master Subnet Manager

SMA

Switch

SMA

Switch

SMA

Router

Physical Model

Logical Model

Subnet
Manager

Port

Port

SMI (QP0)

SMI (QP0)

SMA

SMA

Channel
Adapter

SMA

Channel
Adapter

SMA

Channel
Adapter

SMA

Channel
Adapter

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 133 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IBA management defines the underlying interfaces and principles that
allow IBA devices and the corresponding fabric to be discovered, initial-
ized, and controlled. It defines a common management model and frame-
work applicable to IBA-managed elements, identifies those elements, and
defines their managed features. Management applications use this infra-
structure to manage the IBA devices and communicate with other man-
agement applications.

Figure 33 General Services Physical Model

Figure 34 General Services Logical Models
IBA management infrastructure supports a number of different manage-
ment service classes and logically provides for any node to host a class
manager. Figure 34 illustrates different ways that management classes
can use the management infrastructure.

Channel
Adapter

GSAGSA

GSA

Switch

GSA

Switch

GSA

Switch

GSA

Router

GSA

Channel
Adapter

GSA
GSA

Class Manager

Channel
Adapter

GSA

Channel
Adapter

GSA

Class Manager

other
subnets

GSA

Managed

Class Manager
or Management

Application

Port

GSI (QP1)

GSA

Port

Port

Port

Agent
Managed
ServicesPeer Agents

Management
ApplicationGSA

GSI (QP1)

GSI (QP1)

Port

Port

GSA

Privileged QP

Class
Manager

GSI (QP1)

Privileged QP

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 134 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The Managed Agent model allows a class manager or manage-
ment application to manage nodes through a General Service
Agent (GSA) defined for that class present on each node to be
managed. This is the same model used for subnet management
and is the model used for I/O device management, baseboard
management, SNMP, and performance management classes.

• The Peer Agents model allows managers resident on each node
as a GSA to communicate with each other. This is the model
used for communication management class.

• The Managed Service model allows management applications to
access class managers. This is the model used for subnet admin-
istration and I/O resource management classes.

IBA management entails a variety of concepts, including:

• A means of configuring and gathering information from endnodes,
switches and routers.

• A diagnostics framework as a common error handling mechanism.

• Installation and configuration services to allow for discovery and ini-
tialization of the fabric and endnodes.

• A standard management packet called a “Management Datagram” or
“MAD”.

• Subnet Management Packets (SMP) as a subset of the MADs to al-
low set and get operations specifically between the Subnet Manager
and IBA devices.

• General Management Packets (GMP) as the remaining subset of the
MADs that allow management operations between the Subnet Man-
ager and IBA devices and management operations between IBA de-
vices themselves.

• Communication management services to allow setup and teardown
of communications between channel adapters.

• Partitioning services to configure ports of an endnodes to be mem-
bers of one or more possibly overlapping sets called partitions.

IBA provides the means for the operating system to restrict access to the
management infrastructure. For the SMI, subnet management packets
must be sourced from QP0. The GSI uses a privileged Q_Key (i.e., a
Q_Key with the most significant bit set). Host channel adapters do not
permit a privileged Q_Key to be specified in a work request, rather the QP
must be configured for privileged operation by configuring the QP context
with the privileged Q_Key. This permits management applications and
class mangers to maintain their own QPs. The GSI uses QP1 for initial
communication but allows traffic for a particular class to be redirected to
a privileged QP.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 135 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.9.1 MANAGEMENT DATAGRAMS

IBA defines a standard format for management messages which supports
common processing. Each MAD contains the same header format that
identifies the class of management message and the method. SMPs are
one class of management message, another is directed route SMPs.
MADs for other classes are called General Management Packets (GMPs)
and include subnet administration, communication management, perfor-
mance management, SNMP, device management, and baseboard man-
agement.

MADs begin with a standard header that carries information common to
all classes. For classes that use the reliable multi-packet protocol
(RMPP), this is immediately followed by an additional header for RMPP
information. RMPP is a protocol that permits management entities to ex-
change more data than will fit in a single MAD. RMPP may be used by any
management class. For example, it is used by the Subnet Administration
class to give a client information about collections of paths between
nodes.

3.9.2 MANAGEMENT METHODS

IBA defines common methods that may be adopted by any class. These
include Get, Set, GetResp, Send, Trap, TrapRepress, Report, and Repor-
tResp. Of course each management class defines their own set of at-
tributes. These methods are sufficient for many classes but IBA also
provides for class specific methods.

3.9.2.1 GETS & SETS

Gets and Sets are the most common use of MADs, especially the SM. The
SM polls the fabric and learns its topology by sending SMP Get request
messages. Each destination responds by sending a GetResp response
message that includes the requested data. The SM configures IBA de-
vices by sending Set request messages. This is effectively a Set & Get re-
quest. Each destination responds by sending a GetResp response
message that includes the data values after the set action. Since not all
parameters are settable or they might have limits, the originator inspects
the response message to determine the true effect of the set request mes-
sage.

3.9.2.2 TRAPS AND NOTICES

A trap is a message sent by a management agent to its class manger
when certain asynchronous management events occur (such as protocol
violations). Notices are attributes that can be queued in a Notice Queue
at the managed node and may be retrieved and cleared by the class man-
ager. The trap message has its data in the form of a notice attribute. The
class manager programs the node with information about where to send

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 136 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

traps and the node stops sending the trap when it receives a TrapRepress
from the class manager.

IBA devices use SMPs to send traps to the subnet manager when certain
events occur. One such use is for a switch to send a trap to the subnet
manager when it detects a state change on one of its ports (i.e., a topology
change and/or device joining or leaving). Of course since SMPs are unre-
liable, the SM can not solely depend on this type of notification, but suc-
cessful traps will decrease the latency in managing the topology change.

3.9.2.3 SENDS

Send() is a management method where one entity sends data to another
on a class specific basis. Unlike Gets and Sets where the response con-
tains the same attribute and transaction ID as the request, there is no ex-
plicit response to a Send. A management protocol based on Sends might
respond with another Send, which may contain an entirely different at-
tribute. In this case, information needs to be included in the attribute to
correlate one Send to another.

3.9.2.4 REPORTS

The management infrastructure provides a means for management enti-
ties to subscribe to the class manager in order to have the class manager
forward traps it receives from management agents it controls. A manage-
ment entity subscribes by sending a Set to the class manager identifying
the port and QP where the class manger is to forward the traps. When the
class manager receives a trap, it forwards the notice attribute to the sub-
scribed entity in the form of a Report MAD and the entity responds with a
ReportResp MAD to let the class manager know that it received the Re-
port. The class manager continues sending Reports until the subscribed
entity responds with a ReportResp.

3.9.3 MANAGEMENT INTERFACES

IBA defines two well known QPs for management interfaces. QP0 is re-
served for subnet management and QP1 is designated for general man-
agement services.

3.9.4 SUBNET MANAGEMENT INTERFACE

Every IBA port has a QP dedicated to subnet management. This is QP0.
QP0 has special features that make it unique compared to other QPs.

• QP0 is permanently configured for Unreliable Datagram class of
service.

• Each port of an IBA device has a QP0 that sends and receives
packets.

• QP0 is a member of all partitions (i.e., can accept any packet
specifying any partition).

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 137 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Only subnet management packets (SMPs) are valid
• Traffic for QP0 (i.e., SMPs) exclusively uses VL15, which is not

subject to link-level flow control.
3.9.4.1 FABRIC INITIALIZATION

The subnet manager uses this service interface to poll and configure the
fabric. Switches support a special routing mode known as directed routing
that allows SMPs to be routed through switches prior to switches being
configured with their forwarding database and prior to nodes being as-
signed local IDs. The subnet manager walks its way through the fabric
sending SMPs to a device and discovering if it is a switch. Using directed
routing, it can then send SMPs out each of the switch’s ports to discover
the devices connected to the switch. This process continues until the
subnet manger discovers all of the devices and how they are intercon-
nected.

Once the SM learns the subnet’s topology, it configures each node with
local IDs and configures the routing tables of switches. Once the fabric
has been configured, SMPs can be sent using destination routing.

IBA allows multiple subnet mangers per subnet but only one can be the
master manager. Thus IBA defines how a subnet manager detects the
presence of another subnet manager and the arbitration mechanism for
selecting which will be the master subnet manager.

3.9.4.2 DIRECTED ROUTES

A SMP can specify the route it takes through the fabric. This is done by
including in the SMP a list of port numbers that define a path through the
subnet (i.e., the path vector). The path vector specifies the output port for
each switch along the path. The packet contains two path vectors (one for
the forward route and one for the reverse route), a direction bit that indi-
cates which path vector to traverse, and a hop pointer that indicates the
current position in the path vector. The reverse path vector is built by
switches as they process the forward path vector.

When a switch receives a directed routed SMP, it uses the current hop
pointer to identify where in the path vector it is. If the direction is “forward”
it determines the output port from the forward path vector, updates the re-
verse path vector by adding the port number on which it received the SMP,
increments the current hop pointer, and then forwards the packet out the
specified output port. When the packet reaches the destination, the target
device uses the reverse route field for the reply by simply changing the
sense of the direction bit and sending the reply SMP out the port on which
it was received. Because the direction is “reverse” each switch now dec-
rements the current hop pointer, uses it to determine the original input
port, and then sends the packet out that port.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 138 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3.9.5 GENERAL SERVICE INTERFACE

Every IBA channel adapter has a QP dedicated to general fabric services.
This is QP1. QP1 has special features that make it unique compared to
other QPs.

• QP1 is permanently configured for Unreliable Datagram class of
service.

• Each port of an IBA device has a QP1 that sends and receives
packets.

• QP1 is a member of all of the port’s partitions (i.e., can accept
any packet specifying a P_Key contained in the port’s P_Key ta-
ble).

• Only management datagrams (MADs) are valid
• Traffic for QP1 does not use VL15

3.9.5.1 REDIRECTION

QP1 being a well known interface has its advantages and disadvantages.
One disadvantage is that all management classes go into the same queue
which tends to bottleneck and promote head of line blocking. Thus IBA de-
fines a mechanism that allows the channel adapter to redirect general ser-
vice requests to other QPs.

When a channel adapter receives a GMP on QP1, it may respond with a
redirect response indicating a new port and QP. The originator then re-
sends the request to the new address and also uses that address for all
subsequent requests for that same management class.

3.10 I/O OPERATION

IBA I/O architecture supports a range of I/O implementation from simple
native devices to massive I/O subsystems. The model for an I/O unit is
shown in Figure 35. An I/O unit is composed of a channel adapter and a
number of I/O controllers. The channel adapter of an I/O unit is referred to
as a Target Channel Adapter (TCA). A TCA has the same functionality as
the HCA, but unlike the HCA, it is not necessarily designed for generic
use, which means that it only needs to support the capabilities required by
its controllers.

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 139 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 35 I/O Unit
I/O controllers represent the hardware and software that processes I/O
transaction requests. Examples of I/O controllers are a SCSI interface
controller, a RAID processor, a storage array processor, a LAN port con-
troller, a disk drive controller, a console service.

The I/O unit contains a Subnet Management Agent (SMA) that responds
to SMPs received on QP0. The I/O unit also contains general service
agents (GSA*) that responds to GMPs received on the GSI (QP1). The
GSA* contains at least Communication Management and I/O Device
Management (DevMgt). Each I/O controller is registered with the DevMgt
GSA such that it can respond to DevMgt GMPs with specific information
about the controller.

Typically an I/O resource manager in the processor node sends DevMgt
GMPs to an I/O unit to discover the attributes of the controllers. The at-
tributes contain sufficient information for the I/O resource manager to
identify the appropriate I/O driver. The I/O resource manager loads the
driver, if necessary, and configures the I/O driver with the identity of the
controller (IO Unit and Controller ID). The I/O driver then creates the ap-
propriate communication ports (i.e., QPs) on the processor node and calls
the processor node’s communication manager to create the appropriate
connections with the I/O controller. Once the connections are established,
the I/O driver exchanges control messages and data over the connec-
tions.

I/O Unit

TCA

I/O Controller

I/O Controller

I/O Controller

I/O Port or Devices

SMA

GSA*

Fabric

InfiniBandTM Architecture Release 1.2 Architectural Overview October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 140 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 36 IO Operation

The number of communication ports used by the driver is an implementa-
tion variable. An I/O driver may use any available class of service (reliable
connection, unreliable connection, reliable datagram, or unreliable data-
gram) and might use various classes of service for different communica-
tion ports.

I/O Operations

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

Upper Level
Protocols

Transport
Layer

Network
Layer

Link
Layer

Physical
Layer

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

Messages

(QP)

Inter Subnet Routing

(GRH)

Subnet Routing (LRH)

Flow

Control

Signaling

End Node Switch Router End Node

I/O
Controller

I/O
Controller

Packet
Relay

M
A

C

M
A

C

Packet
Relay

M
A

C

 L

in
k

M
A

C

 L

in
k

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 141 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 4: ADDRESSING

This chapter defines IBA addressing terminology and concepts. To facili-
tate understanding, refer to the following figures.

Endnode

Se
nd

Re
ce

iv
e

Se
nd

Re
ce

iv
e

QP0 QP1

Se
nd

Re
ce

iv
e

QP2

HCA or TCA

PortPort

Single manufacturer
assigned EUI-64 GUID
per port. Additional SM
assigned N-1 EUI-64
per port - one per addi-
tional GID.

One or more GIDs per
port. A GID is a valid
IPv6 address.

One or more LIDs per
port, up to 2LMC LIDs

 IBA Switch

Port Port

PortPort

Port Port

Port

Port
Single manufacturer
assigned EUI-64 GUID
per switch port 0.
Additional SM
assigned N-1 EUI-64
per switch - one per
additional GID.
One or more LIDs per
switch port 0, up to
2LMC LIDs

Control QPs

Routers provide
connectivity
among subnets

 LIDs are unique only
within a subnet

All GIDs within a
subnet share the
same GID prefix.

Endnode

Subnet A

Port
Port

H
C

A
 or TC

A

Send
Receive

Send
Receive

QP0

QP1

Send
Receive

QP2

Po
rt

Po
rt

H
C

A
 o

r T
C

A

Send
Receive

Send
Receive

QP0

QP1

Endnode

Send
Receive

QP2

Point-to-point links may be
used. The subnet manager
assigns LID and GID ad-
dresses.

Endnode

Figure 37 Reference IBA Address / Component Association

One EUI-64 per HCA or
TCA.

One or more GIDs per
switch

 Switch
Port Port

PortPort

Port Port

Port

Port

 Switch
Port Port

PortPort

Port Port

Port

Port

 Switch
Port Port

PortPort

Port Port

Port

Port

 Switch
Port Port

PortPort

Port Port

Port

Port

 Router
Port Port

PortPort

Port Port

Port

Port

 Router
Port Port

PortPort

Port Port

Port

Port

Endnode

Endnode
Endnode

Endnode

Subnet B

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 142 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4.1 TERMINOLOGY AND CONCEPTS

Endport: An endport is a CA port, a router port, or a switch management
port.

Unicast Identifier: An identifier for a single endport. A packet sent to an
unicast identifier is delivered to the endport identified by that identifier. IBA
defines two unicast identifiers - a global identifier (GID) - may be unique
across subnets - and a local identifier (LID) - unique only within a subnet).

Multicast Identifier: An identifier for a set of endports. A packet sent to a
multicast identifier is delivered to all endports identified by that identifier.
IBA defines two multicast identifiers - a global identifier (GID) used by ap-
plications to address a multicast group and route packets between sub-
nets and a local identifier (LID) used to switch packets within a subnet.

EUI-64: IEEE defined 64-bit identifier assigned to a device. The EUI-64 is
a 64-bit identifier created by concatenating a 24-bit company_id value and
a 40-bit extension identifier. The company_id is assigned by the IEEE
Registration Authority; the extension identifier is assigned by the organi-
zation with the assigned company_id.

• The manufacturer assigns an EUI-64 with global scope set. A SM
may assign additional EUI-64 with local scope indicated.

• For additional details, see: “Guidelines For 64-bit Global Identifier
(EUI-64) Registration Authority”at www.standards.ieee.org/re-
gauth/oui/tutorials/EUI64.html

GUID (Global Unique Identifier): A globally unique EUI-64 compliant
identifier.

C4-1: Each HCA, TCA, switch, and router shall be assigned an EUI-64
GUID by the manufacturer.

 IBA Router

Port Port

PortPort

Port Port

Port

Port

One EUI-64 GUID per
router port

One or more LIDs per
router port, up to 2LMC
sequential LIDs

Control QPs

One or more GIDs per
port. A GID is a valid
IPv6 address.

Figure 38 Reference IBA Router Address Association

Multi-protocol router con-
tains IBA ports and non-
IBA ports.

Single GUID per router

http://www.standards.ieee.org/regauth/oui/tutorials/EUI64.html
http://www.standards.ieee.org/regauth/oui/tutorials/EUI64.html

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 143 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C4-2: Each endport shall be assigned an EUI-64 GUID by the manufac-
turer.

Subnet Prefix: A 0 to 64-bit - as a function of scope - identifier used to
uniquely identify a set of endports which are managed by a common
subnet manager.

GID Prefix: A 64-bit identifier (upper 64-bits of a GID) created by concat-
enating address scope bits, potentially a small number of “filler” bits, and
potentially a subnet prefix - filler and subnet prefix presence is a function
of the address scope.

GID (Global Identifier): A 128-bit unicast or multicast identifier used to
identify an endport or a multicast group. A GID is a valid 128-bit IPv6 ad-
dress (per RFC 2373) with additional properties / restrictions defined
within IBA to facilitate efficient discovery, communication, and routing.
Note: These rules apply only to IBA operation and do not apply to raw IPv6
operation unless specifically called out.

C4-3: GIDs shall comply with the rules defined within 4.1.1 GID Usage
and Properties on page 143:

4.1.1 GID USAGE AND PROPERTIES

1) Each endport shall be assigned at least one unicast GID. The first
unicast GID assigned shall be created using the manufacturer as-
signed EUI-64 identifier. This GID is referred to as GID index 0 and is
formed by techniques 3(a) and 3(b) described below.

2) The default GID prefix shall be (0xFE80::0). A packet using the de-
fault GID prefix and either a manufacturer assigned or SM assigned
EUI-64 must always be accepted by an endnode. A packet con-
taining a GRH with a destination GID with this prefix must never be
forwarded by a router, i.e. it is restricted to the local subnet.

3) A unicast GID shall be created using one or more of the following
mechanisms:

a) Concatenation of the default GID prefix with the manufacturer as-
signed EUI-64 identifier associated with an endport. This GID is
referred to as the default GID.

b) Concatenation of a subnet manager assigned 64-bit GID prefix
and the manufacturer assigned EUI-64 identifier associated with
an endport.

c) Assignment of a GID by the subnet manager. The subnet manag-
er creates a GID by concatenating the GID prefix (default or as-
signed) with a set of locally assigned EUI-64 values (at GID index
1 or above).

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 144 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each endport must be assigned at least one unicast GID using (a). Ad-
ditional GIDs may be assigned using (b) and/or (c). Note: A subnet
shall only have one assigned GID prefix (non default) at any given
time.

4) Any QP in a CA, switch or router shall be addressable using the de-
fault GID prefix in addition to the assigned GID for that QP. This
allows a subnet to transition from a default GID prefix state to a
managed state without interrupting existing communication sessions.

5) The maximum number (N) of unicast GIDs supported per endport is
implementation specific. The subnet manager may assign N-1 addi-
tional unicast GIDs. Each of these N-1 GIDs is created by concate-
nating one subnet manager assigned EUI-64 identifier (the local bit
set) with the GID prefix.

6) The unicast GID address 0:0:0:0:0:0:0:0 is reserved - referred to as
the Reserved GID. It shall never be assigned to any endport. It shall
not be used as a destination address or in a global routing header
(GRH).

7) The unicast GID address 0:0:0:0:0:0:0:1 is referred to as the
loopback GID and is only used by raw IPv6 services - it is not used by
IBA transport services. It shall never be assigned to an endport or be
present in any IBA packets.

8) The unicast GID subnet prefix shall be limited to the upper 64-bits of
the GID address space. The number of subnet prefix bits may further
be limited by filler and scope bits - see below.

9) The lower 64-bits of the unicast GID cannot be further partitioned into
subnets.

10) The lower 64-bits of a unicast GID shall be subnet unique. If the uni-
versal / local bit is set to universal, then the assignment must be glo-
bally unique.

11) The GRH (Global Route Header) shall contain valid source and desti-
nation GIDs. For raw IPv6 packets, an IPv6 routing header shall
contain source and destination addresses in compliance with RFC
2373.

12) Unicast GID scoping shall be:

a) Link-local - A unicast GID used within a local subnet using the de-
fault GID prefix. Routers must not forward any packets with either
link-local source or destination GIDs outside the local subnet. A
link-local GID has the following format:

EUI-64 / Assigned Value
10-bits

54-bits of

Figure 39 Link-Local Unicast GID Format

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 145 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

b) Site-local - A unicast GID used within a collection of subnets
which is unique within that collection (e.g. a data center or cam-
pus) but is not necessarily globally unique. Routers must not for-
ward any packets with either a site-local Source GID (SGID) or a
site-local Destination GID (DGID) outside of the site.

c) Global - A unicast GID with a global prefix, i.e. a router may use
this GID to route packets throughout an enterprise or internet.
The global GID format is:

13) A multicast group is uniquely identified by a multicast GID (MGID).
Further, in addition to having the same MGID, all members of the
multicast group must share the same P_Key and Q_Key.

14) The multicast GID format is:

a) 8-bits of 11111111 at the start of the GID identifies this as being a
multicast GID.

b) Flags is a set of four 1-bit flags: 000T with three flags reserved
and defined as zero (’0’). The T flag is defined as follows:

vi) T = 0 indicates this is a permanently assigned (i.e. well-
known) multicast GID. See RFC 2373 and RFC 2375 as refer-
ence for these permanently assigned GIDs.

vii) T = 1 indicates this is a non-permanently assigned (i.e. tran-
sient) multicast GID.

EUI-64 / Assigned Value
10-bits

38-bits 0
16-bit Sub-
net Prefix

Figure 40 Site-Local Unicast GID Format

64-bit GID Prefix EUI-64 / Assigned Value

Figure 41 Unicast Global GID Format

Multicast GID
8-bits 4-

bits
4-bits
Scope

Figure 42 Multicast GID Format

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 146 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

c) Scope is a 4-bit multicast scope value used to limit the scope of
the multicast group. The following table defines scope value and
interpretation.

15) An endport may join zero, one or more multicast groups, i.e. an
endport may be assigned zero, one or more multicast GIDs.

16) Multicast GIDs shall not appear as the source GID (SGID) in the
GRH.

17) Multicast GID FF02:0:0:0:0:0:0:1 is the link-local multicast GID - a
router should not route packets with this destination GID outside the
local subnet. This GID is used as the destination address within the
global router header (GRH) for communicating to a set of QPs partic-
ipating within the all channel adapters multicast group - includes all
channel adapters and enhanced switch port 0 endnodes that wish to
participate in this group. ALL CHANNEL ADAPTERS MULTICAST
GROUP is used to implement a broadcast service to all channel
adapters which are capable of participating in multicast operations
(must share the same MGID, P_Key, and Q_Key).

Table 3 Multicast Address Scope

Scope
Value Address Scope

0 Reserved

1 Unassigned

2 Link-local

3 Unassigned

4 Unassigned

5 Site-local

6 Unassigned

7 Unassigned

8 Organization-local

9 Unassigned

0xA Unassigned

0xB Unassigned

0xC Unassigned

0xD Unassigned

0xE Global

0xF Reserved

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 147 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18) IPv6 defines a set of reserved multicast addresses in RFC 2375 and
RFC 2373. IBA, unless explicitly stated otherwise, shall not use these
addresses for IBA multicast operations and defines them as reserved
for raw IPv6 usage.

4.1.2 CHANNEL ADAPTER, SWITCH, AND ROUTER ADDRESSING RULES

C4-4: Channel Adapters, Switches, and Routers shall comply with the ad-
dressing rules defined within 4.1.2 Channel Adapter, Switch, and Router
Addressing Rules on page 147.

Addressing rules are:

1) A port shall attach to one link.

2) An endport shall support a range of LIDs as defined by a Base LID
and an LMC. The LIDs shall be sequentially ordered starting with a
base LID plus (2 LMC - 1) LIDs. The SM may program the LMC on an
endport to any value between 0 and 7, to allow use of multiple LIDs
(1-128) in addressing the endport.

a) Base switch port 0 shall be assigned a single unicast LID, i.e.
LMC = 0.

3) A unicast LID shall map to only one endport.

4) A multicast LID shall map to one or more endports - an endport may
be the target of zero, one, or more multicast flows.

5) Unicast GIDs shall be assigned on a per endport basis.

6) A multiport CA (and by definition, a router) may be attached to one or
more subnets - an endport shall only be attached to one subnet at a
time.

4.1.3 LOCAL IDENTIFIERS

C4-5: Local Identifiers (LIDs) shall comply with the rules defined within
4.1.3 Local Identifiers on page 147.

Local identifier (LID): A 16-bit identifier with the following properties:

1) A LID is assigned by the Subnet Manager (SM) and is subnet unique,
i.e. it cannot be used to route between subnets.

2) The LID address space is divided into reserved, unicast and multicast
address ranges.

3) LIDs are contained within the LRH (Local Route Header).

4) A source LID (SLID) shall refer to the endport that first injected the
packet into the subnet.

5) A SLID shall only be associated with a unicast address.

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 148 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

6) A unicast destination LID (DLID) shall refer to the destination
endport. A multicast DLID refers to the set of destination endports
within the subnet participating in a given multicast group.

7) If the destination endport is not on the same subnet, the DLID shall
refer to the router port responsible for forwarding the packet to the
next hop to the destination endport.

8) From any point within a subnet, a given endport may receive packets
through multiple physical paths within the subnet. Each physical path
may be identified by one or more destination LIDs. To facilitate mul-
tipath operation while minimizing channel adapter complexity, each
endport shall be assigned a base LID and a LID Mask Control (LMC)
value by the subnet manager. The LMC is a 3-bit field which repre-
sents 2LMC paths (maximum of 128 paths). During discovery, the
subnet manager may determine the number of paths to a given
endport and will partition the 16-bit LID space to assign a base LID
and up to 2LMC sequential LIDs to each endport.

Note: The base LID must have LMC least significant bits set to 0. For
example, if the LMC = 0, the base LID may be any unicast LID. If the
LMC = 7, the base LID set the 7 least significant bits to zero.

9) The LID space is defined as follows:

• LID 0x0000 is reserved.

Channel

Subnet E

 Switch

Channel

Four paths exist between channel adapters A and C. CA A is assigned
a Base LID 4, LMC = 2. This translates to CA A being assigned LIDs:
{4, 5, 6, 7}. CA C is assigned Base LID 8, LMC = 2. This translates
into CA C being assigned LIDs: {8, 9, 10, 11}.

Adapter CAdapter A

Figure 43 Multipath Identification

 Switch Switch

 Switch

InfiniBandTM Architecture Release 1.2 Addressing October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 149 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• LID 0xFFFF is defined as a permissive DLID. The permissive
DLID indicates that the packet is destined for QP0 on the endport
which received it. LMC is not defined for this address.

• The unicast LID range is a flat identifier space defined as 0x0001
to 0xBFFF.

• The multicast LID range is a flat identifier space defined as
0xC000 to 0xFFFE.
• The DLID for any packet which contains a multicast GID shall

be within the above specified multicast LID range.
10) A multicast LID may be overloaded by multiple multicast GIDs, i.e.

there may be a many-to-one MGID to MLID mapping within a given
subnet. When a multicast LID is overloaded, the multicast groups
sharing the same MLID must have the same P_Key. This simplifi-
cation is required to allow switches and routers that implement op-
tional P_Key enforcement for multicast operations.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 150 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 5: DATA PACKET FORMAT

This chapter introduces the fields in the data packet. A brief description of
each field is given including a definition, field size, and abbreviation. This
chapter does not specify the details of each field, but only the general
usage and layout of the fields.

In addition to data packets, IBA defines link packets which are used for
link-level flow control. The format of these link packets is described in
7.9.4 Flow Control Packet on page 210.

In this specification, the term packet refers to data packets only (i.e.
packet and data packet are synonymous). Where reference to link
packets is intended, the full term link packet will be used.

5.1 PACKET TYPES

Packets are the unit of transfer in IBA. As described in 3.3 Communica-
tions Stack on page 94 messages are segmented into packets by the CAs
for transmission across the IB fabric.

Packets have the following attributes:

• Indivisible unit of data transfer and routing
• Unit of acknowledgement
• Unit of segmentation and re-assembly for messages
• Unit of link-level flow control

There are two general classes of transports used in Packets:

• IBA Packets have IBA defined transport headers, are routed on IBA
fabrics, and use native IBA transport facilities.

IBA Message (End to End)
Message Data

IBA Data Packet (Routed unit of work)
Routing
Header

Transport
Header

Packet Payload
CRC

Figure 44 IBA Messages and Packets

Routing
Header

Transport
Header

Packet Payload
CRC

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 151 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Raw Packets may be routed on IBA fabrics but do not contain IBA
transport headers. From the IB point of view, these packets contain
only IBA routing headers, payload and CRC. IBA does not define the
processing of these packets above the link and network layers. The
intent is that these packets can be used to support non-IBA trans-
ports over an IB fabric.

5.2 DATA PACKET FORMAT
The overall data packet structure is shown in Figure 45 on page 152.
There are two routing headers that precede a transport header(s) and
payload:

• The local route header is required on all packets
• The global route header is required on all packets that are to be rout-

ed to a different subnet, and on all multicast packets regardless of
destination.

• A global route header may be placed on any packet except subnet
management packets.

C5-1: Packets generated by an InfiniBand device shall conform to the
packet structure defined in Figure 45 and to the packet header location
and size requirements as defined in figure 46

Each IBA packet ends with an invariant CRC followed by a variant CRC.

Each raw packet ends with a variant CRC.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 152 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The IBA packet structure is shown in Figure 46 on page 153.

Local (within a subnet) Packets
Local Routing

Header
IBA Transport

Header
Packet Payload Variant

CRC
Invariant

CRC

Global (routing between subnets) Packets
Local Routing

Header
IBA Transport

Header
Packet Payload Variant

CRC
Invariant

CRC
Global Routing

Header

Raw Packet with Raw Header
Local Routing

Header
Packet Payload Variant

CRC

Raw Packet with IPv6 Header
Local Routing

Header
Other Trans-
port Header

Packet Payload Variant
CRC

IPv6 Routing
Header

Raw
Header

Figure 45 IBA Packet Overview

Other Trans-
port Header

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 153 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 46 IBA Packet Structure

Destination Local ID
Pckt Length(11b)

IP Vers Flow Label - 20 bits
Payload Length Hop LimitNext Hdr

Source GID[127:96]
Source GID[95-64]
Source GID[63-32]
Source GID[31-0]

Destination GID[127-96]
Destination GID[95-64]
Destination GID[63-32]
Destination GID[31-0]

VL LVer LNH
Source Local ID

Queue Key

VA[63-32]
VA[31-0]

Remote Key
DMA Length

EE-Context

Payload

ICRC

VCRC

Local Routing
Header

Global Routing
Header

Base Trans-
port Header

Extended Trans-
port Header(s)

Message
Payload

Invariant
CRC

Variant
CRC

Local Routing Header - LRH - 8 bytes
Present in all packets of a message.

Global Routing Header - GRH - 40 Bytes
Present in all packets of message, if indicated by Link Next
Header field in LRH.

Base Transport Header - BTH - 12 Bytes
Present in all packets of message, if indicated by Link Next
Header field (i.e.not a raw packet)

Datagram Extended Transport Header - DETH - 8 Bytes
Present in every packet of datagram request messages

RDMA Extended Transport Header - RETH - 16Bytes
Present in first packet of RDMA request message

Invariant CRC- ICRC - 32b
Present in all packets of message, if indicated by Link Next
Header field (i.e.not a raw packet).

Variant CRC- VCRC - 16b
Present in all packets of message.

Payload - PYLD - 0-4096 Bytes
pad - 0-3 B

Source QPresv

resv

Immediate Data

resv 5

Reliable Datagram Extended Transport Header - RDETH -
4 Bytes; Present in every packet of reliable datagram mes-

sage.

Traffic Class

Immediate Data - ImmDt - 4 Bytes
Present in last packet of request with immediate data.

MSNSyndrome
ACK Extended Transport Header - AETH - 4Bytes;

Present in all ACK packets, including first and last packet of
message for RDMA Read Response packets.

pad - 0-3 B

rsv

Atomic ACK Extended Transport Header -
 AtomicAckETH - 8Bytes;

Present in all AtomicACK packets.

Original Remote Data[63-32]
Original Remote Data[31-0]

VA[63-32]
VA[31-0]

Remote Key
Swap (or Add) Data[63-32]
Swap (or Add) Data[31-0]

Compare Data[63-32]
Compare Data[31-0]

Atomic Extended Transport Header - AtomicETH - 28 Bytes
Present in Atomic request message

SL

resv 8a (variant)
OpCode

Destination QP
PSN

TVER Partition KeyPa
resv 7

SM

R_Key or
Immediate

Data

A

R_Key Invalidate Extended Transport Header - IETH - 4 Bytes
Present in last packet of SEND with Invalidate request

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 154 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5.2.1 LOCAL ROUTE HEADER (LRH) - 8 BYTES

C5-2: Packets generated by an InfiniBand device shall conform to the
packet header format for the LRH as defined in table 4.

The Local Routing Header (LRH) contains fields used for local routing by
switches within a IBA subnet. The following table summarizes the fields in
the LRH.:

The LRH fields are fully defined in 7.7 Local Route Header on page 192.

5.2.2 GLOBAL ROUTE HEADER (GRH) - 40 BYTES

C5-3: Packets generated by InfiniBand devices shall conform to the
packet header format for the GRH as defined in table 5.

Global Route Header (GRH) contains fields for routing the packet be-
tween subnets. The presence of the GRH is indicated by the Link Next
Header (LNH) field in the LRH. The layout of the GRH is the same as the
IPv6 Header defined in RFC 2460. Note, however, that IBA does not de-
fine a relationship between a device GID and IPv6 address (I.e. there is
no defined mapping between GID and IPv6 address for any IB device or
port).

Table 4 Local Route Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Virtual Lane VL 4 This field identifies the virtual lane that the packet is using.

Link Version LVer 4 This field identifies the Link level protocol of this packet. This
version applies to the general packet structure including the
LRH fields and the variant CRC

Service Level SL 4 This field indicates what service level the packet is request-
ing within the subnet.

Reserved 2 Transmitted as 0, ignored on receive.

Link Next Header LNH 2 This field identifies the headers that follow the LRH.

Destination Local
ID

DLID 16 This field identifies the destination port and path (data sink)
on the local subnet.

Reserved 5 Transmitted as 0, ignored on receive.

Packet Length PktLen 11 This field identifies the size of the Packet in four-byte words.
This field includes the first byte of LRH to the last byte before
the variant CRC. See 7.7.8 Packet Length (PktLen) - 11 bits
on page 194 for details on max and min values of PktLen

Source Local ID SLID 16 This field identifies the source port (injection point) on the
local subnet.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 155 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes the fields in the GRH.

5.2.3 BASE TRANSPORT HEADER (BTH) - 12 BYTES

C5-4: Packets generated by an InfiniBand device shall conform to the
packet header format for the BTH as defined in table 6.

Base Transport Header (BTH) contains the fields for IBA transports. The
presence of BTH is indicated by the Next Header field of the last previous
header (i.e either LRH:LNH or GRH:NextHdr depending on which was the

Table 5 Global Route Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

IP Version IPVer 4 This field indicates version of the GRH

Traffic Class TClass 8 This field is used by IBA to communicate global service
level.

Flow Label Flow-
Label

20 This field identifies sequences of packets requiring special
handling.

Payload length PayLen 16 For an IBA packet this field specifies the number of bytes
starting from the first byte after the GRH, up to and including
the last byte of the ICRC. For a raw IPv6 datagram this field
specifies the number of bytes starting from the first byte after
the GRH, up to but not including either the VCRC or any
padding, to achieve a multiple of 4 byte packet length. For
raw IPv6 datagrams padding is determined from the lower 2
bits of this GRH:PayLen field.
Note: GRH:PayLen is different from LRH:PkyLen.

Next Header NxtHdr 8 This field identifies the header following the GRH. This field
is included for compatibility with IPV6 headers. It should indi-
cate IBA transport.

Hop Limit HopLmt 8 This field sets a strict bound on the number of hops between
subnets a packet can make before being discarded. This is
enforced only by routers.

Source GID SGID 128 This field identifies the Global Identifier (GID) for the port
which injected the packet into the network.

Destination GID DGID 128 This field identifies the GID for the port which will consume
the packet from the network.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 156 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

last previous header). The following table summarizes the fields in the
BTH.:

The detailed definition of the Base Transport Header fields are defined in
Section 9.2 on page 234.

5.2.4 RELIABLE DATAGRAM EXTENDED TRANSPORT HEADER (RDETH) - 4 BYTES

o5-1: Packets generated by an InfiniBand device that supports reliable
datagrams shall conform to the packet header format for the RDETH
header as defined in table 7.

Reliable Datagram Extended Transport Header (RDETH) contains the ad-
ditional transport fields for reliable datagram service. The RDETH is only

Table 6 Base Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Opcode OpCode 8 This field indicates the IBA packet type. The OpCode also
specifies which extension headers follow the Base Transport
Header

Solicited Event SE 1 This bit indicates that an event should be generated by the
responder.

MigReq M 1 This bit is used to communicate migration state.

Pad Count PadCnt 2 This field indicates how many extra bytes are added to the
payload to align to a 4 byte boundary.

Transport Header
Version

TVer 4 This field indicates the version of the IBA Transport Headers.

Partition Key P_KEY 16 This field indicates which logical Partition is associated with
this packet (see 10.9 Partitioning on page 523)

Reserved (variant) 8 Transmitted as 0, ignored on receive. This field is not
included in the invariant CRC. see 7.8 CRCs on page 195 for
details.

Destination QP DestQP 24 This field indicates the Work Queue Pair Number (a.k.a. QP)
at the destination

Acknowledge
Request

A 1 This bit is used to indicate that an acknowledge (for this
packet) should be scheduled by the responder.

Reserved 7 Transmitted as 0, ignored on receive. This field is included in
the invariant CRC.

Packet Sequence
Number

PSN 24 This field is used to detect a missing or duplicate Packet.
See 9.7.1 Packet Sequence Numbers (PSN) on page 282
for a detailed description of PSN.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 157 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

in Reliable Datagram packets as indicated by the Base Transport Header
Opcode field. The following table summarizes the fields in the RDETH.:

The detailed definition of the Reliable Datagram Extended Transport
Header is in Section 9.3.1 Reliable Datagram Extended Transport Header
(RDETH) - 4 Bytes on page 240.

5.2.5 DATAGRAM EXTENDED TRANSPORT HEADER (DETH) - 8 BYTES

C5-5: Packets generated by an InfiniBand device shall conform to the
packet header format for the DETH as defined in table 8.

Datagram Extended Transport Header (DETH) contains the additional
transport fields for datagram service. The DETH is only in datagram
packets if indicated by the Base Transport Header Opcode field. The fol-
lowing table summarizes the fields in the DETH.:

The detailed definition of the Datagram Extended Transport Header is in
Section 9.3.2 Datagram Extended Transport Header (DETH) - 8 Bytes on
page 240.

5.2.6 RDMA EXTENDED TRANSPORT HEADER (RETH) - 16 BYTES

o5-2: Packets generated by an InfiniBand device that supports RDMA op-
erations shall conform to the packet header format for the RETH as de-
fined in table 9.

Table 7 Reliable Datagram Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Reserved 8 Transmitted as 0, ignored on receive.

EE-Context EECnxt 24 This field indicates which End-to-End Context should be
used for this Reliable Datagram packet

Table 8 Datagram Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Queue Key Q_Key 32 This field is required to authorize access to the receive
queue.

Reserved 8 Transmitted as 0, ignored on receive.

Source QP SrcQP 24 This field indicates the Work Queue Pair Number (a.k.a. QP)
at the source.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 158 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RDMA Extended Transport Header (RETH) contains the additional trans-
port fields for RDMA operations. The RETH is present in only the first (or
only) packet of an RDMA Request as indicated by the Base Transport
Header Opcode field. The following table summarizes the fields in the
RETH.:

The detailed definition of the RDMA Extended Transport Header is in
9.3.3 RDMA Extended Transport Header (RETH) - 16 Bytes on page 241.

5.2.7 ATOMIC EXTENDED TRANSPORT HEADER (ATOMICETH) - 28 BYTES

o5-3: Packets generated by an InfiniBand device that supports atomic op-
erations shall conform to the packet header format for the AtomicETH
header as defined in Table 10.

Atomic Extended Transport Header (AtomicETH) contains the additional
transport fields for Atomic packets. The AtomicETH is only in Atomic
packets as indicated by the Base Transport Header Opcode field. The fol-
lowing table summarizes the fields in the AtomicETH.:

The detailed definition of the Atomic Extended Transport Header is in Sec-
tion 9.3.4 ATOMIC Extended Transport Header (AtomicETH) - 28 Bytes
on page 242).

Table 9 RDMA Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Virtual Address VA 64 This field is the Virtual Address of the RDMA operation.

Remote Key R_Key 32 This field is the Remote Key that authorizes access for the
RDMA operation.

DMA Length DMALen 32 This field indicates the length (in Bytes) of the DMA opera-
tion.

Table 10 Atomic Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Virtual Address VA 64 This field is the remote virtual address.

Remote Key R_Key 32 This field is the Remote Key that authorizes access to the
remote virtual address.

Swap (or Add)
Data

SwapDt 64 This field is an operand in atomic operations.

Compare Data CmpDt 64 This field is an operand in CmpSwap atomic operation.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 159 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5.2.8 ACK EXTENDED TRANSPORT HEADER (AETH) - 4 BYTES

C5-6: Packets generated by an InfiniBand device shall conform to the
packet header format for the AETH as defined in table 11.

ACK Extended Transport Header (AETH) contains the additional trans-
port fields for ACK packets. The AETH is only in Acknowledge, RDMA
READ Response First, RDMA READ Response Last, and RDMA READ
Response Only packets as indicated by the Base Transport Header Op-
code field. The following table summarizes the fields in the AETH.

The detailed definition of the ACK Extended Transport Header is in Sec-
tion 9.3.5 on page 243.

5.2.9 ATOMIC ACK EXTENDED TRANSPORT HEADER (ATOMICACKETH) - 8 BYTES

o5-4: Packets generated by an InfiniBand device that supports atomic op-
erations shall conform to the packet header format for the AtomicAckETH
as defined in table 12.

Atomic ACK Extended Transport Header (AtomicAckETH) contains the
additional transport fields for AtomicACK packets. The AtomicAckETH is
only in Atomic Acknowledge packets as indicated by the Base Transport
Header Opcode field. The following table summarizes the fields in the
AtomicAckETH.:.

The detailed definition of the Atomic ACK Extended Transport Header is
in Section 9.3.5.3 on page 243.

Table 11 ACK Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Syndrome Syndrome 8 This field indicates if this is an ACK or NAK packet plus addi-
tional information about the ACK or NAK.

Message
Sequence
Number

MSN 24 This field indicates the sequence number of the last mes-
sage completed at the responder.

Table 12 Atomic ACK Extended Transport Header Fields

Field Name Field
Abbreviation

Field
Size

(in bits)
Description

Original Remote
Data

Orig-
RemDt

64 This field is the return operand in atomic operations and con-
tains the data in the remote memory location before the
atomic operation.

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 160 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5.2.10 IMMEDIATE DATA EXTENDED TRANSPORT HEADER (IMMDT) - 4 BYTES

Immediate DataExtended Transport Header (ImmDt) contains the addi-
tional data that is placed in the receive Completion Queue Element
(CQE). The ImmDt is only in Send or RDMA-Write packets with Immediate
Data if indicated by the Base Transport Header Opcode.

The detailed definition of the Immediate Data Extended Transport Header
is in Section 9.3.6 on page 244.

Note, the terms Immediate Data Extended Transport Header and Imme-
diate Data are used synonymous in this specification.

5.2.11 INVALIDATE EXTENDED TRANSPORT HEADER (IETH) - 4 BYTES

The Invalidate Extended Transport Header (IETH) contains an R_Key
field which is used by the responder to invalidate a memory region or
memory window once it receives and executes the SEND with Invalidate
request.

The detailed definition of the Invalidate Extended Transport Header is in
Section 9.3.7 on page 244

5.2.12 PAYLOAD

Payload (PYLD) contains the application data being transferred end to
end. Payload is not present in RDMA Read Requests, Acknowledge,
CmpSwp, FetchAdd, and Atomic Acknowledge packets. It is optionally
present in the other packet op-codes.

C5-7: The length of the Payload shall be 0 or more bytes up to the full path
MTU.

C5-8: All packets of an IBA message that contain a payload shall fill the
payload to the full path MTU except the last (or only) packet of the mes-
sage.

C5-9: In a packet using InfiniBand transport, a Pad field of 0-3 bytes shall
be included in the packet and used to align the Payload to a multiple of 4
bytes (i.e. the size of the Payload plus the Pad field is always a multiple
of four bytes). The actual size of the Pad field used in a given packet shall
be indicated in the Base Transport Header PadCnt field of the packet.

5.2.13 INVARIANT CRC
Invariant CRC (ICRC) covers the fields that do not change in packet from
source to destination. ICRC is only in IBA packets, and is not present in

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 161 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Raw Packets. Which fields are covered in the ICRC is dependent on the
presence of the GRH.

The detailed definition of the Invariant CRC is in Section 7.8.1 on page
195.

5.2.14 VARIANT CRC

Variant CRC (VCRC) covers the fields that can change from link to link.
The VCRC is in all packets, both IBA and Raw Packets. The VCRC can
be regenerated in the fabric.

The detailed definition of the Variant CRC is in Section 7.8.2 on page 197.

5.3 RAW PACKET FORMAT

A Raw Packet is a packet that does not use IBA transport. Raw packets
are not a required feature of InfiniBand devices, but if they are supported,
the raw packet shall be formatted as specified in this section.

o5-5: If a Raw packet contains an IPv6 Routing Header, the packet struc-
ture shall be: LRH, IPv6, Payload (including any transport headers), and
VCRC. If a Raw packet does not contain a IPv6 Routing Header, then the
structure shall be: LRH, RWH, Payload, and VCRC.

o5-6: The RWH is a 32 bit “Raw Header” that shall contain the EtherType
of the payload. EtherType indicates the protocol of the raw packet and
shall conform to the definition in the IEEE Type Field Registrar. (See stan-
dards IEEE 802.3, 1998 Clause 3.2.6 Length/Type Field specifications
and IEEE 802.1H-1995 for use of the Type Field.)

This format of “Raw” packets is shown in Figure 45 on page 152.

o5-7: The length of a raw packet (from after the RWH to before the variant
CRC) must be a multiple of 4 bytes.

o5-8: The format of the Raw Header shall be as is shown in Figure 47.

5.4 PACKET EXAMPLES

Some examples of IBA packets are shown in Figure 48.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Reserved (Send as 0, ignore on receive) EtherType

Figure 47 Raw Header (RWH)

InfiniBandTM Architecture Release 1.2 Data Packet Format October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 162 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

BTH

Simple Packet (e.g. send)
LRH BTH Packet Payload

Figure 48 IBA Packet Examples

Reliable Datagram Packet
LRH BTH

Atomic (CmpSwap) Packet
LRH BTH Atomic ETH

RDMA Write Request Packet
 RETH

IC
R

C

LRH Packet Payload

Packet Payload DETH

Atomic Acknowledge Packet
LRH BTH

V
C

R
C

Atomic
Ack-A

E
TH

Acknowledge Packet
LRH BTH

A
ET

H

Raw Packet (without IPv6 route header)
LRH Packet Payload

R
W

H

Datagram Packet
LRH BTH Packet Payload DETH

Simple Packet with Global Route Header
LRH BTH Packet PayloadGRH

BTH
RDMA Read Response Packet

LRH Packet Payload

A
E

TH

 RDETH

V
C

R
C

IC
R

C

V
C

R
C

IC
R

C

V
C

R
C

IC
R

C

VC
R

C

IC
R

C

VC
R

C

IC
R

C

VC
R

C

IC
R

C

VC
R

C

IC
R

C

VC
R

C

IC
R

C

VC
R

C

RDMA Read Request Packet
LRH BTH

IC
R

C

V
C

R
C

 RETH

V
C

R
C

Raw Packet (with IPv6 route header)
LRH Packet PayloadIPv6 Routing Header

InfiniBandTM Architecture Release 1.2 Physical Layer Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 163 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 6: PHYSICAL LAYER INTERFACE

6.1 OVERVIEW

This chapter describes services provided by the physical layer to the link
layer and the logical interface between these layers. The physical layer
also has an interface to management which is not covered in this chapter.

The description of the physical layer is provided in Volume 2, the electro-
mechanical specification

6.2 SERVICES PROVIDED BY THE PHYSICAL LAYER.
The physical layer is responsible for:

• establishing a physical link when possible,
• informing the link layer whether the physical link is up or down,
• monitoring the status of the physical link, and
• when the physical link is up:

• delivering received control and data bytes to the link layer, and
• transmitting control and data bytes from the link layer.

See volume 2 for physical layer specifications.

Link-Physical
Interface

Link Layer - Link-technology-independent Logic

Physical Layer - Link-Technology-dependent Functions
Link Width support, data encoding, voltage, packet framing

Figure 49 Physical Functions and Physical/Link Interface

Link Send Link Receive

Physical Send Physical Receive

InfiniBandTM Architecture Release 1.2 Physical Layer Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 164 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

6.3 INTERFACE BETWEEN PHYSICAL AND LINK LAYERS.
This chapter does not intend to describe an actual interface within a chip
- it describes the functionality of the interface between the link-technology-
dependent physical send and receive functions, and the link-technology-
independent link logical function.

This interface is designed to keep the link and higher layer interface inde-
pendent of physical layer implementation. The physical layer deals with all
details that are dependent on the characteristics of operation over a par-
ticular physical layer such as line code.

The purpose of describing a logical interface and the related state ma-
chines is to partition functions to describe external behavior of IBA de-
vices as simply and clearly as possible. Such descriptions are not
intended to imply details of the internal implementation of devices. For in-
stance, the interface described here does not imply the width of the in-
ternal link path which will be implementation dependent.

6.3.1 INTERFACE BETWEEN PHYSICAL RECEIVE AND LINK RECEIVE.
The following messages are sent between the physical receive function
and the link logic.

6.3.1.1 PHY_LINK - PHYSICAL LINK STATUS

This message conveys the status of the physical link from the physical re-
ceive function to the link logic. This message is sent when physical link
status changes and can take the following values:

These values report the status of the physical link as needed by the link
logic. Any finer grain information needed by management (e.g. no_signal
or retraining) will be obtained by management from the physical layer
rather than passed through the link layer.

6.3.1.2 L_INIT_TRAIN - LINK INITIATE RETRAINING

This message is a request for retraining of the physical link. It is sent from
the link logic to the physical receive function when the link logic has de-
tected a need to retrain the link. See Section 7.12.2, “Error Recovery Pro-
cedures,” on page 221 for usage of this message.

down the physical link is not operational. Sent when the link is in
any non-operational status including no receive signal or
retraining in progress

up the physical link is trained and operational

InfiniBandTM Architecture Release 1.2 Physical Layer Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 165 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

6.3.1.3 RCV_STREAM - RECEIVE STREAM

This message conveys the control and data stream decoded by the re-
ceiver from the physical receive function to the link logic. This message is
sent once for each data byte and once for each control signal received.
The idle signaling of the physical link is treated as one control signal. This
message can take the following values:

6.3.2 INTERFACE BETWEEN PHYSICAL TRANSMIT AND LINK TRANSMIT.
The following messages are sent between the physical transmit function
and the link logic.

6.3.2.1 XMIT_STREAM - TRANSMIT STREAM

This message conveys the control and data stream from the link logic to
the physical layer. This message is sent once for each data byte and once
for each control signal to be sent. The idle message causes the physical
send function to send idles until a new message is received. This mes-
sage can take the following values:

6.3.2.2 XMIT_READY - PHYSICAL TRANSMITTER READY

This message is sent from the physical transmit function to the link trans-
mitter to indicate whether the physical transmit function is ready to start
transmitting a new packet. This provides physical layer dependent pacing
back to the link layer since many physical layers have constraints that pre-

data data and link packet contents

error code violation

SDP start data packet delimiter

SLP start link packet delimiter

EGP end good packet delimiter

EBP end bad packet delimiter

idle idle

data data and link packet contents

SDP start data packet delimiter

SLP start link packet delimiter

EGP end good packet delimiter

EBP end bad packet delimiter

idle idle

InfiniBandTM Architecture Release 1.2 Physical Layer Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 166 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

vent sending continuous packet traffic. This message can take the fol-
lowing values:

rdy ready for packet initiation

wait hold off packet initiation

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 167 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 7: LINK LAYER

7.1 OVERVIEW

This chapter describes the behavior of the link and specifies the link level
operations for devices attached to an IBA network. The link layer handles
the sending and receiving of data across the links at the packet level. Ser-
vices provided by the link layer include addressing, buffering, flow control,
error detection and switching.

State machines are used in this specification to define the logical opera-
tion of the link layer as externally visible. They are not intended to define
internal details of implementation. For instance, the packet receiver state
machine operates on data received from the link layer as a stream of
bytes though it is expected that many implementations of the link layer will
process multiple bytes of the data stream in parallel.

7.1.1 STATE MACHINE CONVENTIONS

State machines are described to provide a clear description of the external
behavior of the devices. Their description is not intended to imply the in-
ternal implementation of IBA devices. Actual implementations must take
into account other considerations such as efficiency and suitability to the
implementation technology.

The state machines in this chapter use the following conventions:

• Each state is represented by a box.

• The top section of the box contains the state name.

• The bottom section of the box contains the actions which occur in
the state.

• Transition arrows indicate state transitions which will be made
when the expression next to the arrow is satisfied.

• A transition arrow which does not originate in a state indicates a
global transition. Such a transition will occur regardless of the
current state. For instance, in Figure 50 on page 170, there is a
global transition into the LinkDown state.

• If no exit condition for a state is satisfied, the machine remains in
the current state.

• “Or” is represented by “+”.

• “And” is represented by “*”.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 168 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The state diagrams represent the primary specification for the
functions they depict. When a conflict exists between a state dia-
gram and descriptive text, the state diagram takes precedence.

7.2 LINK STATES

C7-1: This compliance statement is obsolete and has been replaced by
C7-1.1.1:.

C7-1.1.1: A port shall control its state and overall operation as specified
in Figure 50 Link State Machine on page 170 and Section 7.2.7, “State
Machine Terms,” on page 169.

The states LinkInitialize and LinkArm are used by subnet management to
configure devices on the subnet. Refer to 14.3.6 Port State Change on
page 855 for additional information on how these states are used.

The link state machine is depicted in Figure 50. The following is a descrip-
tion of the states of this state machine.

7.2.1 LINKDOWN STATE

In the LinkDown state, the physical link is not up (that is, the physical layer
is sending phy_link=down to the link layer) and the link layer is idle. In this
state the link layer discards all packets presented to it for transmission.

7.2.2 LINKINITIALIZE STATE

In the LinkInitialize state, the physical link is up (that is, the physical layer
is sending phy_link=up to the link layer) and the link layer can only receive
and transmit subnet management packets (SMPs) and flow control link
packets. While in this state, the link layer discards all other packets re-
ceived or presented to it for transmission.

7.2.3 LINKARM STATE

In the LinkArm state, the physical link is up and the link layer can receive
and transmit SMPs and flow control link packets. Additionally, the link
layer can receive all other packets but discards all non-SMP data packets
presented to it for transmission.

A switch port which is moved from LinkArm to LinkActive by a packet may
also be the output port for that packet. The port will not be activated until
the VCRC has been checked for the packet. One data packet should be
able to pass through the network causing all armed ports on switches in
its path to transition to active. Therefore, it is important that such a
packet not be dropped when it is forwarded to a port that has not yet tran-
sitioned to active.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 169 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C7-1.a1: A switch shall ensure that a packet which causes its output port
to transition from Armed to Active is not dropped by the port while in the
Armed state. A switch port may enable transmission of data packets while
in the Armed state.

7.2.4 LINKACTIVE STATE

In the LinkActive state, the physical link is up and the link layer can
transmit and receive all packet types.

7.2.5 LINKACTDEFER STATE

The LinkActDefer state is entered from the LinkActive state when the
physical layer indicates a failure in the link. If the error persists, the Link-
DownTimeout expires and the port state transitions to LinkDown state. If
the physical layer recovers prior to LinkDownTimeout expiration, the port
state machine returns to the LinkActive state. While in the LinkActDefer
state, the link layer will not transmit or receive packets. It may process
packets already received as it would in the corresponding states. It will
drop packets presented to it for transmission.

The purpose of this state is to allow for retraining of the physical link
without requiring reinitialization of the link and higher layers.

7.2.6 MANAGEMENT STATE CHANGE COMMANDS

Management can send commands to attempt to alter the link state by
sending a set request to the link port state in PortInfo. Only values of
Down, Arm and Active are valid for such set requests. Commands to
change state to Arm or Active are only valid when they appear as an exit
term for the current state.

C7-2: Any management state change command with a value other than
Down, Arm, or Active shall not result in a state change.

C7-3: A management state change command which is not valid in the cur-
rent state shall not result in a state change.

For instance, Active is only valid when the current state is LinkArm. If the
command is not valid for the current state, it will not cause a state change.

7.2.7 STATE MACHINE TERMS

Reset - An internal signal to reset the interface.

Remote_init - a link packet with the flow control initialize Op code (see
7.9.4 Flow Control Packet on page 210) has been received and has
passed the checks of the link packet check state machine.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 170 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Active_enable - a flag to prevent a premature transition from armed to ac-
tive. It is set to false when the LinkInitialize state is exited. It is set to true
when a link packet with the normal flow control Op code has been re-

 LinkDown

reset + CPortState=Down

DataPktXmitEnable=False
DataPktRcvEnable=False
SMPEnable=False
LinkPktEnable=False
PortState=Down

(CPortState=Active +
ActiveTrigger) * PhyLink=Up
*ActiveEnable

Figure 50 Link State Machine

PhyLink=Up

CPortState=Arm * PhyLink=Up

PhyLink=Down

PhyLink=Up

remote_init + (PhyLink=Down
* LinkDownTimeout)

 LinkInitialize
DataPktXmitEnable=False
DataPktRcvEnable=False
SMPEnable=True
LinkPktEnable=True
PortState=Initialize

 LinkArm

DataPktXmitEnable=ForwardInArm
DataPktRcvEnable=RcvInArm
SMPEnable=True
LinkPktEnable=True
PortState=Arm

 LinkActive
DataPktXmitEnable=True
DataPktRcvEnable=True
SMPEnable=True
LinkPktEnable=True
PortState=Active

 LinkActDefer
DataPktXmitEnable=False
DataPktRcvEnable=False
SMPEnable=False
LinkPktEnable=False
PortState=Active

CPortState=Arm *
PhyLink=Up

remote_init

PhyLink=Down

PhyLink=Down

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 171 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ceived and has passed the checks of the link packet check state machine
while in the LinkArm state.

PhyLink - the physical link status, phy_link, from the physical layer (refer
to 6.3.1.1 Phy_link - Physical Link Status on page 164). Valid values are
Up and Down.

PortState - the value of the PortState component of the PortInfo attribute.
(Refer to 14.2.5.6 PortInfo on page 821.) Valid values are “Down”, “Ini-
tialize”, “Arm” and “Active”.

CPortState - a value that indicates commands from management to
change the port state. Valid values are “Down”, “Arm”, and “Active”. Note
that when phy_link=up and CPortState=down, the state machine will tran-
sition to the LinkDown state which will reset other link state machines.
Since phy_link=up, this will be followed by a transition to the LinkInitialize
state. Thus a command to change link port state to down provides a way
to re-initialize the link layer. To disable a port requires a command to the
physical layer port state machine. The value of CPortState shall only per-
sist while in the state where it was received. If it satisfies a transition term
from that state, it shall cause the transition. If it does not, it shall cause no
transitions. Any state transition clears CPortState.

DataPktXmitEnable - a Boolean that indicates the link layer’s action with
respect to transmission of non-SMP data packets. When True, transmis-
sion of non-SMP data packets is enabled. When False, non-SMP data
packets submitted to link layer for transmission are discarded.

DataPktRcvEnable - a Boolean that indicates the link layer’s action with
respect to reception of non-SMP data packets from the physical layer.
When True, reception of non-SMP data packets is enabled. When False,
non-SMP data packets received from the physical layer are discarded.

SMPEnable - a Boolean that indicates the link layer’s action with respect
to transmission and reception of subnet management packets (SMPs).
When True, transmission and reception of SMPs are enabled. When
False, SMPs submitted to link layer for transmission or reception are dis-
carded.

LinkPktEnable - a Boolean that indicates the link layer’s action with re-
spect to transmission and reception of link packets. When True, transmis-
sion and reception of link packets are enabled. When False, link packets
are not generated by the link layer and any link packets received are dis-
carded.

ForwardInArm - a Boolean constant that indicates whether transmission
of data packets is enabled during the Arm state. For a CA, this shall equal
False. A switch may optionally use False or True.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 172 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RcvInArm - a Boolean constant that indicates whether data packets will be
received during the Arm state. For a CA, this shall be equal to True. For a
switch all ports will be set to True, except for ESP0 (if supported) which
will be set to False (This is to guarantee that a virtual CA behind this ESP0
will not be able to inject non-VL15 packets into the fabric while the ESP0
is in the ARMED state. This is equivalent to the way a standalone CA
would behave by means of its own port state while it is ARMED. Since vir-
tual CAs behind ESP0 do not have their own port state, this mechanism
that prevents injection of non-VL15 packets while ARMED, is based on
the port state of the switch ESP0).

ActiveTrigger - a device dependent trigger that initiates the transition from
LinkArm to LinkActive. For routers and channel adapters, ActiveTrigger
occurs upon reception of a non-VL15 packet which passes the VCRC
check on the port. For routers and channel adapters, ActiveTrigger is only
generated on the port that received the packet.

For switches, ActiveTrigger occurs upon reception of a non-VL15 packet
which passes the VCRC check on any port of the switch. Note, that for
switches, the port receiving the packet could be in either Active or Armed
state, and that ActiveTrigger is generated for all ports (including enhanced
port 0) on the switch that are in Armed state.

LinkDownTimeout - a timeout that indicates that the physical link has been
down (PhyLink = down) for a period of time that causes the port state ma-
chine to transition to the LinkDown state. LinkDownTimeout occurs when
the port state machine has continuously been in the LinkActDefer state for
10ms +3% / -51%.

7.3 PACKET RECEIVER STATES

C7-4: This compliance statement is obsolete and has been replaced by
C7-4.1.1:.

C7-4.1.1: Whenever the physical link is up, the packet receiver shall pro-
cess the received stream from the physical layer as defined in Figure 51
Packet Receiver State Machine on page 174.

The packet receiver’s primary input is the rcv_stream (refer to 6.3.1.3
rcv_stream - Receive Stream on page 165). See the Link/Phy Interface
Chapter in Volume 2 of the IBA Specification for the definitions of
rcv_stream=idle and data appearing this the state machine. (It should be
noted that, for the Phy defined in IBA Version 1.1, and earlier, the
rcv_stream=idle transition case from the data pkt receive and link pkt re-
ceive states cannot occur. This transition term is intended only for a Phy
that provides explicit notification of idle at the receiver.)

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 173 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The packet receiver monitors the received stream from the physical layer,
rcv_stream, and passes any packets received with proper delimiters and
no code violations to the link packet check or the data packet check as ap-
propriate. Each byte of the rcv_stream is tested once by the state machine
and causes at most one state transition. For example, when an SLP
causes a transition from RcvDataPacket to BadPacket, that SLP does not
cause a further transition from BadPacket to RcvLinkPacket.

While this logical state machine represents sending the whole packet to
the packet checker once the end delimiter is received, implementations
are allowed to begin processing the packet before that has occurred.
Switches and routers may begin to forward a data packet while in the Rcv-
DataPacket state if the packet passes all checks of the Data Packet Check
state machine which require discard of the packet on failure. The required
checks are all based on fields within the LRH. If further processing of the
packet results in a transition to the MarkedBadPacket or BadPacket states
and the switch or router has begun forwarding the packet, the switch or
router shall corrupt the packet.

C7-5: To corrupt a packet, a switch or router shall place the 1’s comple-
ment of the VCRC calculated for the transmitted packet in the VCRC field
and shall terminate the packet with the EBP delimiter.

o7-1: When corrupting a packet, the switch or router may truncate the
packet rather than sending all the received bytes.

C7-6: If a switch or router is forwarding a corrupted packet which is longer
than indicated by the packet length field of the LRH, then it shall truncate
the packet to less than or equal to the packet length field value.

C7-7: A CA shall not deliver a received packet to its client unless it has
passed all the checks of the packet receiver and data packet check state
machines.Therefore, when the action in the state is “discard or corrupt,” a
CA shall discard the packet.

Packets without proper start delimiters cause entry to the bad packet dis-
card state and are discarded. Packets received with one or more bytes of
rcv_stream=error or without proper end delimiters cause entry to the bad
packet state and are discarded by CAs and discarded or corrupted by
switches. The errors which cause entry to the bad packet discard and bad
packet states indicate an error occurring on the local link. Packets re-
ceived with no bytes of rcv_stream=error, a data packet start delimiter
(SDP), and a bad packet end delimiter (EBP) indicate a packet forwarded
by a switch that experienced an error that was not on the local link. These
packets cause entry to the marked bad pkt state. Since link packets are
not forwarded by switches and routers, they should never have a bad
packet end delimiter. A packet with a start delimiter of SLP and an end de-

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 174 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 Idle

reset + PhyLink=down + PortState=down

Figure 51 Packet Receiver State Machine

 rcv link packet

rcv_stream=SDP

 rcv data packet

rcv_stream=SLP

 bad pkt

discard or corrupt
packet

rcv_stream=(error +
idle + SDP + SLP)

 link packet done

send packet to
link packet check

rcv_stream=EGPrcv_stream=(error +
idle + EBP + SDP +
SLP)

 data packet done

send packet to
data packet
checker

 marked bad pkt

discard or
corrupt packet

rcv_stream=EBP

rcv_stream=EGP

rcv_stream
= SLP

rcv_stream
= SLP

rcv_stream
= SLP

rcv_stream
= SLP

rcv_stream
= idle

rcv_stream
= idle

rcv_stream
= idle

rcv_stream
= idle

rcv_stream
= SDP

rcv_stream
= SDP

rcv_stream
= SDP

rcv_stream
= SDP

 bad pkt discard

discard packet

rcv_stream
= SDP

rcv_stream
= idle

rcv_stream
= SLP

 rcv init
discard or corrupt packet

PortState != down

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 175 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

limiter of EBP is considered a local link error and causes entry to the bad
packet state.

7.4 DATA PACKET CHECK

The data packet check machine in a CA verifies a data packet before
passing it to the network layer. The data packet check machine in a switch
or router port verifies a received data packet.

C7-8: This compliance statement is obsolete and has been replaced by
C7-8.1.1:.

C7-8.1.1: Data packets shall be checked as specified by Figure 52 Data
Packet Check machine on page 176 and Section 7.4, “Data Packet
Check,” on page 175. The order of checks within this state machine indi-
cates the precedence of the errors for reporting and not necessarily the
order in which the errors are detected.

For instance, most implementations would detect an invalid VL shortly
after the packet starts and a CRC error cannot be detected until the end
of the packet. However, CRC error is checked first in the state machine
because if both of these errors occur, the CRC error indicates that the
packet was damaged and that error should be reported rather than the VL
error.

C7-9: A switch or router shall perform the same checks as a CA on
packets for which the switch or router is the destination such as manage-
ment packets addressed to the switch or router.

The data packet check machine in a CA passes packets to the receiver
queueing. See Section 18.2.5.2 Receiver Queuing on page 1057.

C7-10: If a packet fails any test that terminates in a state of the Data
Packet Check State Machine with the action “discard,” switches, routers,
and CAs shall discard the packet.

C7-11: For packets that only fail tests terminating in states of the Data
Packet Check State Machine that specify the action of “corrupt or discard,”
a CA shall discard the packet and a switch or router shall discard the
packet or corrupt it as defined in Section 7.3, “Packet Receiver States,” on
page 172.

VCRC_check

good VCRC check was good

bad otherwise

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 176 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 52 Data Packet Check machine

reset + PortState=down

VCRC_check = bad +
(ICRC_check = bad * xport = IB)

data packet received

VCRC_check = good *
(ICRC_check = good + xport = raw)

dlid_check = invaliddlid_check = valid

d_length_check = badd_length_check = good

vl_check = invalidvl_check = valid

VL15_check = valid VL15_check = invalid

lver_check = good lver_check = bad

buffer = avail buffer = ovflow

Idle

CRC check

 CRC error
Discard or corrupt packet

 LVer check

Length error

Discard or corrupt packet

Good data packet

send packet to network layer
or switch receiver queueing

 LVer error
Discard packet Length check

 Flow control error
Discard packet

 VL error
Discard packet

 GRH VL15 error
Discard packet

 Buffer

 VL check
 DLID error

Discard packet

DLID check

 VL15 Check

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 177 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ICRC_check

The link layer of a switch or router is only required to check ICRC on
packets that are destined to that switch or router. On all other packets,
a switch or router may omit the ICRC check by returning ICRC_check
= good without checking the ICRC.

xport

lver_check

d_length_check

Received length is the number of bytes between the SDP and EGP.
MTU is PortInfo.MTUCap. Minimum length is 5 for raw packets and 6
for IBA transport packets. See Section 7.7.8, “Packet Length (PktLen)
- 11 bits,” on page 194.

dlid_check

In addition to the above checks, if the DLID is a multicast LID a CA
may optionally check if the DLID is configured for this CA. If the CA
performs this check, the dlid_check result may be invalid if the DLID

good ICRC check was good

bad otherwise

IB LNH indicates IB transport

raw LNH indicates raw transport

good LVer equals 0x0

bad otherwise

good PktLen * 4 = received data bytes - 2 and
(MTU +124)/4 >= PktLen > = minimum length

bad otherwise

valid for CAs: one of the following conditions is met:
• DLID is a unicast LID of this CA Port, or
• DLID is a multicast LID (i.e. in the range 0xc000 to 0xfffe), or
• DLID is 0xFFFF (the permissive LID) and VL is 15

for switches and routers: DLID is not 0x0000.

invalid otherwise

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 178 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

is not configured for this CA. Thus a DLID which is within the range
0xC000 to 0xFFFE may be declared by the CA as being invalid if the
specific DLID is not configured for this CA.

VL_check

VL15_check

buffer

7.5 LINK PACKET CHECK

The only type of link packet currently defined is the flow control packet.
See Section 7.9.4, “Flow Control Packet,” on page 210.

C7-12: A port shall verify a link packet as specified by Figure 53 Link
Packet Check machine on page 179 and Section 7.5, “Link Packet
Check,” on page 178 before passing it to the flow control.

LPCRC_check

Op

valid (VL is operational and PortState = Active or Armed) or (VL = 15 and
DLID is unicast).a

a. Note, the permissive LID is a unicast LID

invalid otherwise

valid (VL <> 15) or (LNH indicates IBA local packet)

invalid otherwise

avail buffer is available for the packet

ovflow otherwise

good LPCRC (Link Packet CRC) check was good

bad otherwise

flow either flow control opcode is present

unknown otherwise

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 179 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 Idle

reset + PortState=down

LPCRC_check = bad

Figure 53 Link Packet Check machine

LPCRC check

link packet received

LPCRC_check = good

CRC error discard

Discard packet

Operand check

Op = unknownOp = flow

Unknown Op code

Discard packet

Length check

VL

Length error

Discard packet

f_length_check = badf_length_check = good

Good link packet

send packet to flow control
VL error

Discard packet

vl_check = invalidvl_check = valid

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 180 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VL_check

During initialization, the number of active VLs may not have been con-
figured yet, so receiving credits for a non-supported VL is only an error
when in the active state.

f_length_check

7.6 VIRTUAL LANES MECHANISMS

Virtual lanes (VLs) provide a means to implement multiple logical flows
over a single physical link. Link level flow control can be applied to one
lane without affecting the others. Table 13 on page 180 summarizes the
key attributes of VLs.

C7-13: An InfiniBand protocol aware device shall conform to the require-
ments defined by the rows labeled required VLs, buffering, and ordering
in Table 13.

o7-2: An InfiniBand protocol aware device that implements more than one
data VL shall conform to the requirements defined by the row labeled flow
control in Table 13.

valid (VL is supported or PortState is not Active) and VL is not
15

invalid otherwise

good length received = 6 bytes (including LPCRC)

bad otherwise

Table 13 Key Virtual Lane Characteristics

Attribute Description

VL Represents a logical flow over a given physical link.

VL Types There are two types of VLs, one for normal traffic called
a data VL and one reserved for subnet management
traffic. The subnet management traffic VL is VL15. All
other VLs are for normal traffic.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 181 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.6.1 VL IDENTIFICATION

C7-14: The sending port of an InfiniBand protocol aware device shall
identify each packet with the virtual lane to be used, this information being
carried in the 4-bit VL field of link header. In addition, the local routing
header shall contain a 4-bit Service Level (SL).

The use of the SL field is described in Section 7.6.5 on page 185.

Required VLs VL 15 shall be implemented in all IBA channel adapt-
ers, switches, and routers.
VL 0 shall be implemented for application use in all IBA
channel adapters, switches, and routers.
VLs 1-14 may be implemented to support additional
traffic segregation. If implemented, VLs shall be num-
bered as indicated in Table 14 VL Numbering and Inter-
operability on page 182

Buffering Devices shall provide independent buffering resources
for each VL. See 7.6.4 Buffering and Flow Control For
Data VLs on page 183 for details.

Flow Control Link-level flow control shall be implemented on a per
VL basis. See 7.9 Flow Control on page 209 for
description of flow control on data VLs.
VL 15 does not use link-level flow control, however.
See 7.6.3 Special VLs on page 182 for details.
Flow control packets are not subject to flow control.

VL Field 4-bit field within the LRH indicating the actual VL being
used by this packet.

SL Field 4-bit field located in the LRH indicating the requested
service level within the local subnet.

See 7.6.5 Service Level on page 185 for a description
of this field.

Ordering When fabric configuration is stable, unicast packets
between the same source and destination LIDs within a
subnet and using the same SL shall be ordered. Multi-
cast packets shall also be similarly ordered. Note, how-
ever, that ordering is not guaranteed between unicast
and multicast flows, even if on the same SL.
Ordering is not maintained between different SLs.
Packets on one SL may overtake packets on another
SL, even if flowing through the same physical path
within the fabric.

Table 13 Key Virtual Lane Characteristics (Continued)

Attribute Description

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 182 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.6.2 NUMBER OF VLS SUPPORTED

C7-15: An InfiniBand protocol aware device shall conform to requirements
defined by the rows labeled VL numbering and configuration in Table 14

C7-16: All ports of an InfiniBand protocol aware device shall support
VL15. Further, all ports shall support data VL0.

o7-3: Ports may support more than one data VL. If they do, they shall do
in accordance with the allowed number specified in Table 14 on page 182.

C7-17: The data VLs shall be numbered sequentially starting from zero.

Thus, if an implementation supports 4 data VLs, they shall be numbered
0, 1, 2 and 3.

7.6.3 SPECIAL VLS

VL 15 is a special VL and must be supported by all ports. The following
lists the properties of VL 15:

C7-18: VL15 shall not be subject to flow control (both link level and end-
to-end), i.e. VL 15 packets may be transmitted at any time.

C7-19: InfiniBand protocol aware devices shall discard VL15 packets if
there is not enough room for reception. Other than the packet discard
counter (16.1.3.5 PortCounters on page 945) this discard is done silently.

Table 14 VL Numbering and Inter-operability

Number of Data
VLs Supported VL Numbering

List of VL
Configurations
That Shall Be
Supporteda

a. Because the port at the other end of the link may support a
different number of VLs, the port must support operation with
different numbers of VLs.

1 VL0 1

2 VL0, VL1 2, 1

4 VL0 - VL3 4, 2, 1

8 VL0 - VL7 8, 4, 2, 1

15 VL0 - VL14 15, 8, 4, 2, 1

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 183 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C7-20: All InfiniBand protocol aware devices shall support sourcing and
sinking VL 15 packets.

C7-21: CAs and routers shall provide a minimum of a single packet buffer
per port for VL15 on each port for reception.

C7-22: Switches shall provide a minimum of a single packet buffer for
VL15 per switch.

C7-23: VL15 packets shall be scheduled preemptively, i.e. they are trans-
mitted ahead of all other packets (including flow control packets).

C7-24: VL mapping in a switch does not apply to VL15. That is, a packet
received by a switch on VL15 shall be transmitted on VL15 and no packet
received on another VL shall be transmitted on VL15.

C7-25: This compliance statement is obsolete and has been removed.

The SL field should be set to 0 by devices sourcing VL15 packets and ig-
nored by devices checking and sinking VL15 packets.

C7-26: VL15 packets shall not be forwarded between subnets, i.e. they
shall not have a GRH and they shall not be raw.

C7-27: Packets using VL15 shall have a maximum payload of 256 pay-
load bytes.

7.6.4 BUFFERING AND FLOW CONTROL FOR DATA VLS

Virtual Lanes provide independent data streams on the same physical
link.

For data VLs, separate guaranteed buffering resources, and separate flow
control shall be provided. (For VL 15, different flow control and buffering
restrictions apply, and are described in above.)

C7-28: For data VLs, each VL on each port shall provide the appearance
of separate buffering resources, i.e. although dedicated buffering re-
sources are not required, the ports must behave as if they were.

C7-29: Each port shall advertise the number of credits available for each
data VL configured using flow control packets.

These credit packets and the flow control process are described in 7.9
Flow Control on page 209.

Table 15 Processing of Link Packets on page 184 details the behavior of
a port when sending and receiving a link packet for a given data VL. The

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 184 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

following terminology is used in this table (and elsewhere in this specifica-
tion):

• A data VL is supported if its VL number is inside the range indicated
by the PortInfo.VLCap attribute. This indicates that the data VL is
supported by the port.

• A data VL is configured if its VL number is inside the range indicated
by the PortInfo.OperationalVLs attribute.This indicates that the data
VL is currently configured for use by the port.

(Refer to 14.2.5.6 PortInfo on page 821 for description of PortInfo.VLCap
and PortInfo.OperationalVLs.)

C7-30: Each port shall send and receive link packets as specified in Table
15 Processing of Link Packets on page 184

Note, in this table, a required behavior has not been specified for the
cases where the data VL is supported but not currently configured. This is
done to support changing of the Data VL configuration. Note further, the
Data VL configuration may be changed in any PortState including LInkAc-
tive. It should also be noted that changing Data VL configuration when in
LinkActive state might result in generation of FlowControlUpdateErrors
which in turn could cause transitions between LinkActive and LinkActive-
Defer states and effect the values of the performance counter LinkError-
RecoveryCounter.

Table 15 Processing of Link Packets

PortState Status of a Data VL Sending of Credits on that
Data VL

Receiving of Credits on
that Data VL

LinkInitialize Data VL is Configured Shall send link packets for
that Data VL

Shall be accepted

Data VL is supported but not
currently configured

May send link packets for
that Data VL

Shall be ignored, no error

Data VL is not supported Shall not send link packets
for that Data VL

Shall be ignored, no error

LinkArm or LinkAc-
tive

Data VL is Configured Shall send link packets on
that Data VL

Shall be accepted

Data VL is supported but not
currently configured

Should not send link packets
on that Data VL

Shall be ignored, no error

Data VL is not supported Shall not send link packets
on unsupported data VLs

Shall be discarded, mal-
formed packet reported

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 185 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C7-31: Each port shall provide sufficient buffering for each configured
data VL to be able to advertise credit for at least one packet with MTU pay-
load.

Note, MTU payload here refers to the lesser of MTUCap and neigh-
borMTU for that port

(See 7.7.8 Packet Length (PktLen) - 11 bits on page 194 for definition of
the corresponding packet size requirement.)

C7-32: When a data packet arrives at a port, it shall be placed in the buffer
associated with that input port and VL field in the packet.

7.6.5 SERVICE LEVEL

Service Level (SL) is used to identify different flows within an IBA subnet.
It is carried in the local route header of the packet.

C7-33: The SL of a packet shall not be changed as a packet crosses the
subnet.

The SL is an indication as to the service class of the packet. IBA does not
assign any specific meaning to an SL value. SLs are intended as a mech-
anism to aid in providing differentiated services, improved fabric utilization
and avoiding deadlock. However, the specifics on how this is done is be-
yond the scope of this specification.

The IBA specification does, however, define two mechanisms using SLs
and VLs that are intended as tools to implement Quality of Service (QoS)
related services. One is SL-to-VL mapping, the other is data VL arbitra-
tion. Both are described in detail below.

o7-4: If multiple data VLs are supported, then both SL-to-VL mapping and
data VL arbitration must be supported (both described below).

If only a single data VL is supported, then neither are required (although
SL-to-VL mapping may still be implemented for SL filtering--see 7.6.6 VL
Mapping Within a Subnet on page 186 for a description of this).

C7-34: The only requirement for devices supporting only a single data VL
with respect to SLs and VLs is that the device shall include the SL value
in the SL field when sourcing a packet into an IBA subnet.

Note that switches are included in this list because they can be the source
of packets via their SMI or GSI interfaces. Note also that this specification
does not require the validation of SL field at the packet destination.

There are no ordering guarantees between packets of different SL.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 186 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The source for SL for different transport services is detailed in 9.10
Header and Data Field Source on page 420. For connected services (un-
reliable connected, reliable connected and reliable datagrams), the SL as-
sociated with the forward and reverse paths of the same connection may
be different (i.e. on the same connection, the SL associated with the De-
viceA:transmitWQ may be different from that for the DeviceB:trans-
mitWQ). For unreliable and raw datagrams, however, a node can always
respond to a datagram from some other node using the same SL as the
original datagram.

The SL used for a given destination (DLID), QOS, partition etc. is ulti-
mately provided by the subnet manager. It may also be from derived
sources such as request packets, local management agents etc.

7.6.6 VL MAPPING WITHIN A SUBNET

As a packet is routed across a subnet, it may be necessary for it to change
VLs when it uses a given link. Examples of where this may be needed in-
clude:

1) The link may not support the VL previously used by the packet. This
could happen when a device in the fabric supports a limited set of
VLs.

2) Two traffic streams arriving on different input ports of a switch may be
using the same outgoing link, and may also happen to be using the
same VL when arriving at the switch. If VL mapping were not sup-
ported, then both traffic streams would have to use the same VL on
the output port. VL mapping allows these two streams to be assigned
different VLs on the outgoing links. In general, VL mapping offers
greater flexibility in maintaining independent traffic flows within a
fabric.

SL to VL mapping is used to change VLs as a packet crosses a subnet.

SL to VL mapping is required in channel adapters, switches, and routers
that support more than one data VL. It is optional in those devices sup-
porting only one data VL. If it is implemented it shall be implemented in
accordance with the requirements of this section.

SL to VL mapping is done using a programmable mapping table. This is
provided by the SLtoVLMappingTable.

o7-5: In channel adapters and routers that support SL to VL mapping,
there shall be a logical table that maps the SL field in the packet LRH to
the VL to be used for that output port. This table is 16 entries deep, with
each port of the device having an independent table. All 16 possible
values of SL shall be included in this table. The table indicates the VL
number to be used by that packet when it is transmitted by the port.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 187 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o7-6: In switches that support SL to VL mapping, there shall be a logical
table that maps the SL, input port and output port of the packet to the VL
to be used for the next hop.

This table can be best viewed as a set of tables, one for each output port.
Each of these per output port tables then indicates which VL should be
used by the outgoing packet based on its SL field and the port that it ar-
rived on. Because the switch supports an internal port (refer to 18.2.4.1
Switch Ports on page 1045) that will also source packets that require VL
mapping, this port is included as one of the input ports in the table. See
14.2.5.8 SLtoVLMappingTable on page 835 for details on table size and
layout.

o7-7: This compliance statement is obsolete and has been removed.

The table indicates the VL to be used by that packet for the next hop trans-
mission based on packet SL, input port and output port.

This table provides mapping for the n+1 input ports (including the internal
port) to n output ports.

Refer to Table 149 SLtoVLMappingTable on page 835 for details of on the
SLtoVLMappingTable.

o7-8: Devices implementing SL to VL mapping shall behave as depicted
in Table 16.

The number of VLs supported is defined by the VLCap component of the
PortInfo attribute, while the number configured is defined by the Opera-
tional VLs component of the PortInfo attribute. (Refer to 14.2.5.6 PortInfo
on page 821) for description of PortInfo.VLCap and PortInfo.Operation-
alVLs.)

Note, the SLtoVLMappingTable may be programmed with VL15 for any
SL that is not authorized to use that port (for channel adapters and
routers) or input-output port path (for switches). As indicated by the above
table, packets are discarded if the SLtoVLMappingTable returns VL15.
This filtering is intended as a mechanism to help protect against unautho-

Table 16 SLtoVLMappingTable Behavior

VL Value in SLtoVLMappingTable Action

VL15 Discard packet, no error.

Data VL not configured by port Discard packet, no error.

Data VL configured by port Forward packet to port using VL

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 188 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

rized use of SLs, and to help in breaking routing dependency loops (and
thereby avoiding routing deadlocks).

7.6.7 INITIALIZATION AND CONFIGURATION

In order to allow devices to be built with different numbers of VLs, the SM
must be able to configure the number of VLs to be used on a given link.
The SM can query each port to determine the number of VLs it supports
and then configure to a number supported by both ports on the link. Table
14 on page 182 depicts the number of VLs combinations that each device
must support. The number of VLs supported is defined by the Port-
Info.VLCap component while the number of VLs configured is defined by
the PortInfo.OperationalVL (Refer to 14.2.5.6 PortInfo on page 821).

Ports may be configured to 1, 2, 4, 8 or 15 VLs and must be configured to
a value equal to or less than the number supported. If an attempt is made
to program the OperationalVLs to a value larger than the VLCap, the port
may load OperationalVLs with any valid value.

A port must be configured with the same number of VLs for both its
sending and receiving directions.

Modification of the SLtoVLMappingTable may be made while the port is in
operation.

o7-9: If a port implements SL-to-VL mapping, it shall not allow any packet
in transit to be fragmented as a result of changing the SLtoVLMapping-
Table contents.

Packets may be discarded or mis-mapped during this change, however.

When a channel adapter, router, or switch initializes, the SLtoVLMapping-
Table is not required to be initialized (i.e.the contents are undefined). The
table should be initialized by the SM prior to use by data traffic.

7.6.8 VL SCHEDULING AND FLOW CONTROL FOR VL15 AND FLOW CONTROL PACKETS

VL15 (i.e. subnet management packets) traffic and flow control packets
will use preemptive scheduling. The order of precedence is depicted in
Table 17.

7.6.9 VL ARBITRATION AND PRIORITIZATION

VL arbitration refers to the arbitration done for an outgoing link on a
switch, router or channel adapter. Each output port has a separate arbiter.
The arbiter selects the next packet to transmit from the set of candidate
packets available for transmission on that port.

C7-35: The arbiter shall not violate packet ordering rules, i.e. packets on
a given VL shall not be reordered.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 189 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following describes the algorithm to be used by the VL arbiter.

7.6.9.1 VL ARBITRATION WHEN ONLY ONE DATA VL IS IMPLEMENTED

Table 17 depicts the arbitration rules for switch, router or channel adapters
that implement only a single data VL. This is a simple priority scheme

where all packets at a precedence level are sent before any packets at a
lower precedence level.

o7-10: Devices implementing only a single data VL shall transmit packets
on its output ports using the arbitration rules depicted in Table 17 Arbitra-
tion Rules for Devices with only one data VL on page 189.

7.6.9.2 VL ARBITRATION WHEN MULTIPLE DATA VL S ARE IMPLEMENTED

The implementation of multiple data VLs is an optional feature in IBA. If
they are implemented, however, the implementation shall conform to the
specification detailed in this section.

o7-11: For devices implementing more than one data VL, the transmis-
sion of VL15 packets and flow control packets shall be the same as de-
picted in Table 17 on page 189 except that here all the data VLs are at a
lower priority than VL15 (highest) and flow control packets (second
highest).

o7-12: Devices implementing more than one data VL shall also implement
the algorithm described in Section 7.6.9.2 for arbitrating between packets
on the data VLs.

A two level scheme is employed, using preemptive scheduling layered on
top of a weighted fair scheme. Additionally, the scheme provides a
method to ensure forward progress on the low-priority VLs. The weighting,
prioritization, and minimum forward progress bandwidth is programmable.

VL arbitration is controlled by the VLArbitrationTable (refer to 14.2.5.9
VLArbitrationTable on page 836). This table shall consist of three compo-
nents, High-Priority, Low-Priority and Limit of High-Priority. The High-Pri-
ority and Low-Priority components are each a list of VL/Weight pairs. The
High-Priority list shall have a minimum length of one and a maximum of
length of 64. The Low-Priority list shall have a minimum length equal to

Table 17 Arbitration Rules for Devices with only one data VL

Packet type Precedence order

VL15 Highest

Flow control packet 2nd highest

VL0 Lowest

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 190 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the number of data VLs supported and a maximum of length of 64. The
High-Priority and Low-Priority component lists are allowed to be of dif-
ferent length.

Each list entry shall contain (1) a VL number (values from 0-14), and (2)
a weighting value (values 0-255), indicating the number of 64 byte units
which may be transmitted from that VL when its turn in the arbitration oc-
curs. The PktLen field in the LRH is used to determine the number of units
in the packet. (Note, the VCRC and also the symbols between packets in-
troduced by the physical layer should not be included in VL arbitration
weight calculations.) The calculation shall be maintained to 4 byte incre-
ments.

A weight of 0 indicates that this entry should be skipped.

If a list entry is programmed for VL15 or for a VL that is not supported or
is not currently configured by the port, the port may either skip that entry
or send from any supported VL for that entry.

Note, that the same data VL may be listed multiple times in the High or
Low-Priority component list, and, further, it can be listed in both lists.

Each configured data VL should be listed in at least one of the component
lists. There is, however, no requirement for a device to check for this case.
Should a configured data VL not appear in either component list, packets
for this data VL may be dropped, sent when the arbiter has no packets to
send or never sent.

The Limit of High-Priority component indicates the number of high-priority
packets that can be transmitted without an opportunity to send a low pri-
ority packet. Specifically, the number of bytes that can be sent is Limit of
High-Priority times 4K bytes, with the counting done the same as de-
scribed above for weights (i.e. the calculation is done to 4 byte increments
and a High-Priority packet can be sent if current byte count has not ex-
ceed exceeded the Limit of High-Priority). A value of 255 indicates that the
byte limit is unbounded. (Note, it the 255 value is used, forward progress
of low priority packets is not guaranteed by this arbitration scheme.) A
value of 0 indicates that only a single packet from the high-priority table
may be sent before an opportunity is given to the low-priority table.

The VLArbitrationTable may be modified when the port is active. This
modification shall not result in fragmentation of any packet that is in
transit. Arbitration rules may violated during this change, however.

When a channel adapter, router, or switch initializes, the VLArbitrationT-
able is not required to be initialized (i.e.the contents are undefined). The
table should be initialized by the SM prior to use by data traffic.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 191 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.6.9.2.1 ARBITRATION RULES BETWEEN VL15, LINK CONTROL AND DATA VL PACKETS

The rules of table Table 17 on page 189 apply, where the data VLs (VL0-
VL14) have the lowest priority.

7.6.9.2.2 ARBITRATION RULES FOR DATA VL PACKETS

When there are no VL15 or Flow Control packets to send, the arbitration
rules in this section apply.

7.6.9.2.3 ARBITRATION RULES BETWEEN HIGH AND LOW PRIORITY COMPONENTS

The High-Priority and Low-Priority components form a two level priority
scheme. Each of these components (or tables) may have a packet avail-
able for transmission. A packet is available for transmission from the High
Priority table if the following test succeeds:

For each entry in the High Priority table, determine if:

1) the VL field matches that of any packets that are currently waiting for
transmission for this port AND

3) there is available credit to send that packet
An entry with 0 weight is considered not in the list.
Note, Implementations may check if HiPriAvailWeight is available in determining if a
packet is available.

Upon completion of transmission of a packet the following test should be
done to determine which table to use to transmit the next packet:

If the High-Priority table has an available packet for transmission (as de-
fined above) and the HighPriCounter has not expired, then the High-Pri-
ority is said to be active and a packet may be sent from the High-Priority
table.

If the High-Priority table does not have an available packet for transmis-
sion (as defined above), or if the HighPriCounter has expired, then the
HighPriCounter shall be reset, the Low-Priority table is said to be active
and a packet may be sent from the Low-Priority table.

The following rules govern the operation of the HighPriCounter:

1) The HighPriCounter expires when its current value is negative.

2) If the value in the Limit of High-Priority component is not 255, then for
each High-Priority packet transmitted, the size of the packet (as de-
fined by the PktLen field in the LRH) is deducted from the current
value of the HighPriCounter. The calculation should be maintained to
4 byte increments.

3) When the HighPriCounter is reset, the value in the Limit of High-Pri-
ority component times 4K bytes is loaded into the HighPriCounter.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 192 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.6.9.2.4 ARBITRATION RULES WITHIN THE HIGH AND LOW COMPONENTS

Within each High or Low Priority table, weighted fair arbitration is used,
with the order of entries in each table specifying the order of VL sched-
uling, and the weighting value specifying the amount of bandwidth allo-
cated to that entry. Each entry in the table is processed in order.

A separate pointer and available weight count is maintained for each of
the two tables. The pointers identify the current entry in the table, while the
available weight count indicates the amount of weight that the current
entry has available for data packet transmission. When a table is active
(as defined in the previous section), the current entry in the table is in-
spected. A packet corresponding to this entry will be sent to the output
port for transmission and the packet size (in 4 byte increments) will be de-
ducted from the available weight count for the current entry, if all of the fol-
lowing are true:

1) The available weight for the list entry is positive.

2) There is a packet available for the VL of the entry

3) Buffer credit is available for this packet.

Note, if the available weight at the start of a new packet is positive, condi-
tion 1 above is satisfied, even if the packet is larger than the available
weight.

When any of these conditions is not true, the next entry in the table is in-
spected. The current pointer is moved to the next entry in the table, the
available weight count is set to the weighting value for this new entry, and
the above test repeated. This is repeated until a packet is found that can
be sent to the port for transmission. If the entire table is checked and no
entry can be found satisfying the above criteria, the other table becomes
active.

This description depicts the logical flow of the arbitration process, but
does not specify performance requirements. Implementations shall per-
form in a logically consistent manner with the above description. Imple-
mentations may process steps in parallel and may pipeline tests. As an
example of pipelining of tests, the check that there be available packets
may return false if a packet has just recently been forwarded to output port
but the arbiter logic has not processed its arrival.

Further, implementations are not required to implement the pointers,
available weight counter and HighPriCounter. They must, however, be-
have in a manner equivalent to that described in this section.

7.7 LOCAL ROUTE HEADER

Local Routing Header - LRH - 8 bytes

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 193 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Local Routing Header (LRH) contains the fields for local routing by
switches within a IBA subnet. The LRH is at the start of every packet and
the packet ends with the Variant CRC. The LRH is 8 bytes long. For addi-
tional information on overall packet layout, see Chapter 5: Data Packet
Format on page 150.

C7-36: The LRH shall use the format specified in Figure 54 Local Route
Header (LRH) on page 193.

7.7.1 VIRTUAL LANE (VL) - 4 BITS

Specifies a virtual lane to be used for a packet. This field identifies which
receive buffer and which receive flow control credits should be used for
the received packet.

C7-37: The VL field shall be set to the VL on which the packet is sent.

The virtual lane can change from link to link in a subnet. Since the Virtual
Lane can change, the Link Virtual Lane is not included in the Invariant
CRC field.

7.7.2 LINK VERSION (LVER) - 4 BITS

Specifies the version of the Local Routing Header used for this packet.
This version applies to the general packet structure including the LRH
fields and the variant CRC.

C7-38: The LVer field shall be set to 0x0.

If a receiving device does not support the Link Version specified then the
packet is discarded.

7.7.3 SERVICE LEVEL (SL) - 4 BITS

The Service Level field. This field is used by switches to determine the Vir-
tual Lane used for this packet. This is described in Section 7.6.5 on page
185.

bits
bytes

31-24 23-16 15-8 7-0

0-3 VL LVer SL Rsv2 LNH Destination Local Identifier

4-7 Reserve 5 Packet Length (11 bits) Source Local Identifier

Figure 54 Local Route Header (LRH)

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 194 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.7.4 RESERVE - 2 BITS
C7-39: The 2-bit Reserve field shall be transmitted as 00 and shall be ig-
nored on receive.

7.7.5 LINK NEXT HEADER (LNH) - 2 BITS

Specifies what headers following the Local Routing Header. The first bit
(msb) indicates whether the packet uses IBA transport. The second bit
(lsb) indicates whether a GRH/IPv6 header is present.

C7-40: The LNH field shall indicate the packet type of the following packet
as defined by Table 18 Link Next Header Definition on page 194.

7.7.6 DESTINATION LOCAL IDENTIFIER (DLID) - 16 BITS

Specifies the LID of the port to which the subnet delivers the packet. LIDs
are unique within a subnet. More specifically it identifies the route to take
to the destination port. If the packet is to be routed to another subnet, then
this is the LID of the Router.

7.7.7 RESERVE - 5 BITS

C7-41: The 5 bit reserve field shall be transmitted as 00000 and shall be
ignored on receive.

7.7.8 PACKET LENGTH (PKTLEN) - 11 BITS

The number of 4 byte words contained in the packet.

C7-42: The value of the PktLen field shall equal the number of bytes in all
the fields starting with the first byte of the Local Route Header and the last
byte before the Variant CRC, inclusive, divided by 4.

The maximum allowable size of all headers plus the CRC fields is 126
bytes. The maximum value of this field is (4096 + 126 - 2)/4 = 4220 / 4=
1055, reflecting a maximum of 126 bytes for all headers and CRCs minus
the uncounted variant CRC.Note, the current version of the IBA is limited
to 106 bytes (I.e. The longest current packet header that is possible is an

Table 18 Link Next Header Definition

Packet Type LNH bit 1
IBA Transport

LNH bit 0
GRH/IPv6

header
Transport Next Header

IBA global 1 1 IBA GRH

IBA local 1 0 IBA BTH

IP - non-IBA transport 0 1 Raw IPv6

Raw 0 0 Raw RWH
(Ethertype)

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 195 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RD Atomic Op (LRH + GRH + BTH + RDETH + DETH + AtomicETH +
VCRC + ICRC). The additional allowable size is for future expansion.

C7-43: For packets with IBA transport, the smallest allowed value for
Packet Length is 6 (24 Bytes) including LRH.

C7-44: For raw packets, the smallest allowed value for Packet Length is
5 (20 Bytes) including LRH.

C7-45: The maximum allowed value for Packet Length is the value shown
in Table 19 Packet Size on page 195 for the smaller of MTUCap and
NeighborMTU.

Note, this compliance statement defines the maximum size packet. The
d_length_check specified in Section 7.4: Data Packet Check is done
against PortInfo:MTUCap only, however..

7.7.9 SOURCE LOCAL IDENTIFIER (SLID) - 16 BITS

C7-46: For all non-directed route packets, the SLID shall be a LID of the
port which injected the packet onto the subnet.

For requirements on DLID in directed route packets, see 14.2 Subnet
Management Class on page 794.

The subnet manager assigns each node a LID which is unique within a
subnet.

7.8 CRCS

7.8.1 INVARIANT CRC (ICRC) - 4 BYTES

Specifies a Cyclic Redundancy Code covering all the fields of the Packet
which are invariant from end to end through all switches and routers on
the network. This field is present in all IBA packets but is NOT present in
Raw Packets because for raw packets it is not known which fields will be
invariant. The CRC calculation is re-started with each packet in the mes-
sage. Which header fields that are included depends on whether the

Table 19 Packet Size

MTU
Maximum

Packet Length
(Bytes/4)

Maximum Bytes
(MTU+126)

256 95 382

512 159 638

1024 287 1150

2048 543 2174

4096 1055 4222

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 196 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Global Routing Header is present because the router may modify addi-
tional header fields.

C7-47: The ICRC field shall be present in all IBA transport packets.

C7-48: The ICRC field shall be calculated as specified in Section 7.8.1,
“Invariant CRC (ICRC) - 4 Bytes,” on page 195.

If the packet is local to the subnet (the Global Routing Header is not
present), then the ICRC calculation is as follows:

• With no GRH, the ICRC includes:

• Local Routing Header: except for the VL.

• Base Transport Header: except for the Resv8a field

• Extension Transport Headers (if present),

• Packet Payload (if present),

• With no GRH, the ICRC excludes: (these fields are replaced with 1s
for the ICRC calculation)

• Local Routing Header: VL,

• Base Transport Header: Resv8a.

If the packet is routed between subnets, so the Global route header is
present, the ICRC calculation is as follows:

• With a GRH, the ICRC includes:

• Global Routing Header: Version, Payload length, Next Header,
Source IPV6 address, and Destination IPV6 address

• Base Transport Header, except for the Resv8a field,

• Extension Transport Headers (if present),

• Packet Payload (if present).

• With a GRH, the ICRC excludes: (these fields are replaced with 1's
for the CRC calculation)

• Local Routing Header, all fields,

• Global Routing Header: Flow label, Traffic Class, and Hop Limit
fields.

• Base Transport Header: Resv8a.

All fields in the packet. including those excluded from the Invariant CRC,
are protected by the Variant CRC described in the next section.

The polynomial used is the same CRC-32 used by Ethernet -
0x04C11DB7. The procedure for the calculation is:

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 197 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) The initial value of the CRC-32 calculation is 0xFFFFFFFF.

2) The CRC calculation is done in big endian byte order with the least
significant bit of the most significant byte being the first bits in the
CRC calculation.

3) The bit sequence from the calculation is complemented and the
result is the ICRC.

4) The resulting bits are sent in order from the bit representing the coef-
ficient of the highest term of the remainder polynomial. The least sig-
nificant bit, most significant byte first ordering of the packet does not
apply to the ICRC field.

The CRC always starts with LRH:LVer bit 0, whether GRH is present or
not.

This bit and byte ordering is consistent with Ethernet’s CRC calculation.

7.8.2 VARIANT CRC (VCRC) - 2 BYTES

Specifies a Cyclic Redundancy Code covering all fields of the Packet. This
field is present in all data packets including Raw Packets and includes all
bytes from the first byte of the LRH to the last byte before the Variant CRC,
inclusive. Since a number of these fields can change as the packet is pro-
cessed by switches and routers the Variant CRC may have to regenerated
at each Link through the subnet. If a switch does not change any fields in-
cluding the Link Virtual Lane, then the Variant CRC does not have to be
regenerated.

C7-49: The VCRC field shall be present in all data packets.

C7-50: The VCRC field shall be calculated as specified in Section 7.8.2,
“Variant CRC (VCRC) - 2 Bytes,” on page 197.

The polynomial used is the same CRC-16 used by HIPPI-6400 - 0x100B.
The procedure for the calculation is:

1) The initial value of the CRC-16 calculation is 0xFFFF.

bits
bytes

31-24 23-16 15-8 7-0

Bit0 in CRC Calculation,
 Bit 0, Byte 0 ↓

0-3 Byte0 Byte 1 Byte 2 Byte3

4-7 Byte 4 Byte 5 Byte 6 Byte 7

8-11 Byte 8 Byte 9 Byte 10 Byte 11

...

Figure 55 CRC Calculation Order

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 198 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) The CRC calculation is done in big endian byte order with the least
significant bit of the first byte of the Local Route Header (bit 0 of
LRH:LVer) being the first bit in the CRC calculation.

3) The bit sequence from the calculation is complemented and the
result is the VCRC.

4) The resulting bits are sent in order from the bit representing the coef-
ficient of the highest term of the remainder polynomial. The least sig-
nificant bit, most significant byte first ordering of the packet does not
apply to the VCRC field.

This bit and byte ordering is consistent with Ethernet’s CRC calculation.

7.8.3 LINK PACKET CRC (LPCRC) - 2 BYTES

Specifies a Cyclic Redundancy Code covering all fields of the Link Packet.
This field is present in all Link packets including Flow Control Link Packets
and includes all bytes from the first byte of the Opcode to the last byte be-
fore the LPCRC, inclusive. This field is always computed for each Link-
packet.

C7-51: The LPCRC field shall be present in all link packets.

C7-52: The LPCRC field shall be calculated as specified in Section 7.8.3,
“Link Packet CRC (LPCRC) - 2 Bytes,” on page 198.

The polynomial used is the same CRC-16 used by Variant CRC and
HIPPI-6400 - 0x100B. The procedure for the calculation is:

1) The initial value of the CRC-16 calculation is 0xFFFF.

2) The CRC calculation is done in big endian byte order with the least
significant bit of the first byte of the Local Route Header (bit 0 of
LRH:LVer) being the first bit in the CRC calculation.

3) The bit sequence from the calculation is complemented and the
result is the LPCRC.;

4) The resulting bits are sent in order from the bit representing the coef-
ficient of the highest term of the remainder polynomial. The least sig-
nificant bit, most significant byte first ordering of the packet does not
apply to the LPCRC field.

This bit and byte ordering is consistent with Ethernet’s CRC calculation.

7.8.4 CRC CALCULATION SAMPLES

The following is an example of CRC calculation. The requirements for the
CRC calculation are specified above, this section is intended for informa-
tive purposes only.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 199 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.8.4.1 ICRC GENERATOR

The polynomial used for ICRC calculation is 0x04C11DB7. The seed
value is 0xFFFFFFFF. The ICRC Generator Remainder is the comple-
ment of the resulting calculation.

The ICRC Generator actual implementation is not specified. The diagram
in Figure 56 is provided as a reference with the sole purpose of clarifying
the calculation details and does not imply a required implementation.

Figure 56 ICRC Generator
The 32 Flip-Flops are initialized to 1 before every ICRC generation. The
packet is fed to the reference design of Figure 56 one bit at a time in the
order specified in Section 7.8.1 on page 195. The Remainder is the bit-
wise NOT of the value stored at the 32 Flip-Flops after the last bit of the
packet was clocked into the ICRC Generator. ICRC Field is obtained from
the Remainder as shown in Figure 56. ICRC Field is transmitted using
Big Endian byte ordering like every field of an InfiniBand packet.

FF FF

 31 0

In

11 10
7

10 11
B

11 01
D

10 00
1

10 00
1

01 01
C

01 00
4

00 00
0

 24 23 16 15 8 7

 31 23 15 7024 16 8

ICRC bit 31 ICRC bit 0Remainder Coefficient 31 Remainder Coefficient 0

ICRC

Remainder

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 200 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.8.4.2 VCRC GENERATOR

The polynomial used for VCRC and FCCRC calculation is 0x100B. The
seed value is 0xFFFF. The VCRC/FCCRC Generator Remainder is the
complement of the resulting calculation.

The VCRC and FCCRC are generated in the same manner as described
above for the ICRC. Figure 57 shows the reference design for the VCRC
/ FCCRC Generator.

Figure 57 VCRC / FCCRC Generator

7.8.4.3 SAMPLE PACKETS

7.8.4.3.1 LOCAL PACKET EXAMPLE

Figure 58 shows the structure of the local packet used for the example.
The packet is a RDMA Write Only carrying a payload of 14 bytes.

FFFFFFFFFFFFFFFFFFFF

In

10 11
B

00 00
0

10 00
1

FFFFFFFFFF FF

00 00
0

0 8 7

 15 70

VCRC/FCCRC bit 0
Remainder Coefficient 15

Remainder Coefficient 0

VCRC/FCCRC

Remainder 15

 8

VCRC/FCCRC bit 15

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 201 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 58 Local Packet Example

The header values for the sample packet are shown in Table 20, Table 21
and Table 22 respectively. The data payload is shown in Table 23.

Table 20 LRH

Field Value

VL 0x7

LVer 0x0

SL 0x1

LNH 0x2

DLID 0x375C

PktLen 0xE

SLID 0x17D2

Table 21 BTH

Field Value

Opcode 0x0A

SE 0x0

M 0x0

Pad 0x2

TVer 0x0

PKey 0x2487

Dest QP 0x87B1B3

AckReq 0x0

PSN 0x0DEC2A

RETHBTH Data Payload VCRCICRCLRH

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 202 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The combined byte stream for the Local Packet (before ICRC and VCRC)
is shown in Table 24

Table 22 RETH

Field Value

VA 0x01710A1C015D4002

RKey 0x38f27A05

DMA Length 0x0000000E

Table 23 Payload

Byte Value

0 0xBB

1 0x88

2 0x4D

3 0x85

4 0xFD

5 0x5C

6 0xFB

7 0xA4

8 0x72

9 0x8B

10 0xC0

11 0x69

12 0x0E

13 0xD4

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 203 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 25 shows the masked byte stream used for ICRC calculation.

Table 24 Local Packet Byte Stream (before ICRC and VCRC)

Byte Value Byte Value Byte Value Byte Value

0 0x70 15 0xB3 30 0x7A 45 0x8B

1 0x12 16 0x00 31 0x05 46 0xC0

2 0x37 17 0x0D 32 0x00 47 0x69

3 0x5C 18 0xEC 33 0x00 48 0x0E

4 0x00 19 0x2A 34 0x00 49 0xD4

5 0x0E 20 0x01 35 0x0E 50 0x00

6 0x17 21 0x71 36 0xBB 51 0x00

7 0xD2 22 0x0A 37 0x88

8 0x0A 23 0x1C 38 0x4D

9 0x20 24 0x01 39 0x85

10 0x24 25 0x5D 40 0xFD

11 0x87 26 0x40 41 0x5C

12 0x00 27 0x02 42 0xFB

13 0x87 28 0x38 43 0xA4

14 0xB1 29 0xF2 44 0x72

Table 25 Masked Byte Stream for ICRC Calculation

Byte Value Byte Value Byte Value Byte Value

0 0xF0 15 0xB3 30 0x7A 45 0x8B

1 0x12 16 0x00 31 0x05 46 0xC0

2 0x37 17 0x0D 32 0x00 47 0x69

3 0x5C 18 0xEC 33 0x00 48 0x0E

4 0x00 19 0x2A 34 0x00 49 0xD4

5 0x0E 20 0x01 35 0x0E 50 0x00

6 0x17 21 0x71 36 0xBB 51 0x00

7 0xD2 22 0x0A 37 0x88

8 0x0A 23 0x1C 38 0x4D

9 0x20 24 0x01 39 0x85

10 0x24 25 0x5D 40 0xFD

11 0x87 26 0x40 41 0x5C

12 0xFF 27 0x02 42 0xFB

13 0x87 28 0x38 43 0xA4

14 0xB1 29 0xF2 44 0x72

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 204 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Generated ICRC is: 0x9625B75A

Generated VCRC is: 0x45FA

Table 26 shows the complete Local Packet Byte Stream.

7.8.4.3.2 GLOBAL PACKET EXAMPLE

Figure 59 shows the structure of the Global packet used for the example.

Figure 59 Global Packet Example

Table 26 Local Packet Byte Stream

Byte Value Byte Value Byte Value Byte Value

0 0x70 15 0xB3 30 0x7A 45 0x8B

1 0x12 16 0x00 31 0x05 46 0xC0

2 0x37 17 0x0D 32 0x00 47 0x69

3 0x5C 18 0xEC 33 0x00 48 0x0E

4 0x00 19 0x2A 34 0x00 49 0xD4

5 0x0E 20 0x01 35 0x0E 50 0x00

6 0x17 21 0x71 36 0xBB 51 0x00

7 0xD2 22 0x0A 37 0x88 52 0x96

8 0x0A 23 0x1C 38 0x4D 53 0x25

9 0x20 24 0x01 39 0x85 54 0xB7

10 0x24 25 0x5D 40 0xFD 55 0x5A

11 0x87 26 0x40 41 0x5C 56 0x45

12 0x00 27 0x02 42 0xFB 57 0xFA

13 0x87 28 0x38 43 0xA4

14 0xB1 29 0xF2 44 0x72

RETHBTH Data Payload VCRCICRCLRH GRH

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 205 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The BTH, RETH and data payload for the Global example packet are the
same as for the Local packet one. The values for the LRH and GRH fields
are shown in Table 27 and Table 28.

.

The combined byte stream for the Global Packet (before ICRC and
VCRC) is shown in Table 29

Table 27 LRH

Field Value

VL 0x7

LVer 0x0

SL 0x1

LNH 0x3

DLID 0x375C

PktLen 0x18

SLID 0x17D2

Table 28 GRH

Field Value

IPVer 0x6

TClass 0x00

FlowLabel 0x00000

PayLen 0x0030

NxtHdr 0x00

HopLmt 0x10

SGID 0x00000000000001250000000000000026

DGID 0x00000000000001170000000000000096

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 206 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 30 shows the masked byte stream used for ICRC calculation.

Table 29 Global Packet Byte Stream (before ICRC and VCRC)

Byte Value Byte Value Byte Value Byte Value

0 0x70 25 0x00 50 0x24 75 0x0E

1 0x13 26 0x00 51 0x87 76 0xBB

2 0x37 27 0x00 52 0x00 77 0x88

3 0x5C 28 0x00 53 0x87 78 0x4D

4 0x00 29 0x00 54 0xB1 79 0x85

5 0x18 30 0x00 55 0xB3 80 0xFD

6 0x17 31 0x26 56 0x00 81 0x5C

7 0xD2 32 0x00 57 0x0D 82 0xFB

8 0x60 33 0x00 58 0xEC 83 0xA4

9 0x00 34 0x00 59 0x2A 84 0x72

10 0x00 35 0x00 60 0x01 85 0x8B

11 0x00 36 0x00 61 0x71 86 0xC0

12 0x00 37 0x00 62 0x0A 87 0x69

13 0x30 38 0x01 63 0x1C 88 0x0E

14 0x00 39 0x17 64 0x01 89 0xD4

15 0x10 40 0x00 65 0x5D 90 0x00

16 0x00 41 0x00 66 0x40 91 0x00

17 0x00 42 0x00 67 0x02

18 0x00 43 0x00 68 0x38

19 0x00 44 0x00 69 0xF2

20 0x00 45 0x00 70 0x7A

21 0x00 46 0x00 71 0x05

22 0x01 47 0x96 72 0x00

23 0x25 48 0x0A 73 0x00

24 0x00 49 0x20 74 0x00

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 207 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ICRC Result is:0xB67D1ED1

VCRC Result is: 0xB148

Table 31 shows the complete Global Packet Byte Stream.

Table 30 Masked Byte Stream for ICRC Calculation

Byte Value Byte Value Byte Value Byte Value

0 0xFF 25 0x00 50 0x24 75 0x0E

1 0xFF 26 0x00 51 0x87 76 0xBB

2 0xFF 27 0x00 52 0xFF 77 0x88

3 0xFF 28 0x00 53 0x87 78 0x4D

4 0xFF 29 0x00 54 0xB1 79 0x85

5 0xFF 30 0x00 55 0xB3 80 0xFD

6 0xFF 31 0x26 56 0x00 81 0x5C

7 0xFF 32 0x00 57 0x0D 82 0xFB

8 0x6F 33 0x00 58 0xEC 83 0xA4

9 0xFF 34 0x00 59 0x2A 84 0x72

10 0xFF 35 0x00 60 0x01 85 0x8B

11 0xFF 36 0x00 61 0x71 86 0xC0

12 0x00 37 0x00 62 0x0A 87 0x69

13 0x30 38 0x01 63 0x1C 88 0x0E

14 0x00 39 0x17 64 0x01 89 0xD4

15 0xFF 40 0x00 65 0x5D 90 0x00

16 0x00 41 0x00 66 0x40 91 0x00

17 0x00 42 0x00 67 0x02

18 0x00 43 0x00 68 0x38

19 0x00 44 0x00 69 0xF2

20 0x00 45 0x00 70 0x7A

21 0x00 46 0x00 71 0x05

22 0x01 47 0x96 72 0x00

23 0x25 48 0x0A 73 0x00

24 0x00 49 0x20 74 0x00

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 208 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.8.4.3.3 LINK PACKET EXAMPLE

The field values for the Link Packet example are shown in Table 32.

Table 31 Global Packet Byte Stream

Byte Value Byte Value Byte Value Byte Value

0 0x70 25 0x00 50 0x24 75 0x0E

1 0x13 26 0x00 51 0x87 76 0xBB

2 0x37 27 0x00 52 0x00 77 0x88

3 0x5C 28 0x00 53 0x87 78 0x4D

4 0x00 29 0x00 54 0xB1 79 0x85

5 0x18 30 0x00 55 0xB3 80 0xFD

6 0x17 31 0x26 56 0x00 81 0x5C

7 0xD2 32 0x00 57 0x0D 82 0xFB

8 0x60 33 0x00 58 0xEC 83 0xA4

9 0x00 34 0x00 59 0x2A 84 0x72

10 0x00 35 0x00 60 0x01 85 0x8B

11 0x00 36 0x00 61 0x71 86 0xC0

12 0x00 37 0x00 62 0x0A 87 0x69

13 0x30 38 0x01 63 0x1C 88 0x0E

14 0x00 39 0x17 64 0x01 89 0xD4

15 0x10 40 0x00 65 0x5D 90 0x00

16 0x00 41 0x00 66 0x40 91 0x00

17 0x00 42 0x00 67 0x02 92 0xB6

18 0x00 43 0x00 68 0x38 93 0x7D

19 0x00 44 0x00 69 0xF2 94 0x1E

20 0x00 45 0x00 70 0x7A 95 0xD1

21 0x00 46 0x00 71 0x05 96 0xB1

22 0x01 47 0x96 72 0x00 97 0x48

23 0x25 48 0x0A 73 0x00

24 0x00 49 0x20 74 0x00

Table 32 Link Packet

Field Value

Op 0x0

FCTBS 0x10D

VL 0x5

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 209 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Generated FCCRC: 0xF9C9

7.9 FLOW CONTROL

7.9.1 INTRODUCTION

This section describes the link level flow control mechanism utilized by
IBA to prevent the loss of packets due to buffer overflow by the receiver
at each end of a link. This mechanism does not describe end to end flow
control such as might be utilized to prevent transmission of messages
during periods when receive buffers are not posted. See 9.7.7.2 End-to-
End (Message Level) Flow Control on page 347 for end to end flow control
specification.

Throughout this section, the terms “transmitter” and “receiver” are utilized
to describe each end of a given link. The transmitter is the node sourcing
data packets. The receiver is the consumer of the data packets. Each end
of the link has a transmitter and a receiver.

IBA utilizes an “absolute” credit based flow control scheme. Unlike many
traditional flow control schemes which provide incremental updates that
are added to the transmitters available buffer pool, IBA receivers provide
a “credit limit”. A credit limit is an indication of the total amount of data that
the transmitter has been authorized to send since link initialization.

FCCL 0x21B

Table 33 Link Packet Byte Stream

Byte Value

0 0x01

1 0x0D

2 0x52

3 0x1B

4 0xF9

5 0xC9

Table 32 Link Packet (Continued)

Field Value

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 210 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Errors in transmission, in data packets, or in the exchange of flow control
information can result in inconsistencies in the flow control state perceived
by the transmitter and receiver. The IBA flow control mechanism provides
for recovery from this condition. The transmitter periodically sends an in-
dication of the total amount of data that it has sent since link initialization.
The receiver uses this data to re-synchronize the state between the re-
ceiver and transmitter.

7.9.2 FLOW CONTROL BLOCKS

The term “flow control block”, or simply “block” indicates a quantity of data
in a data packet. This quantity is defined to be the size of the data packet
in bytes (every byte between the local route header and the variant CRC,
inclusive) divided by 64 bytes, and rounded up to the next integral value.

7.9.3 RELATIONSHIP TO VIRTUAL LANES

The flow control algorithm defined in this chapter is applied to each virtual
lane independently, except for virtual lane 15 which is not subject to link
level flow control.

7.9.4 FLOW CONTROL PACKET

C7-53: Flow control packets shall be sent for each VL except VL15 upon
entering the LinkInitialize state. When in the PortStates LinkInitialize,
LinkArm or LinkActive, a flow control packet for a given virtual lane shall
be transmitted prior to the passing of 65,536 symbol times since the last
time a flow control packet for the given virtual lane was transmitted.

C7-54: Flow control packets shall use the format specified in Figure 60
Flow Control Packet Format on page 210.

A symbol time is defined as the time required to transmit an eight bit data
quantity onto a physical lane, i.e. for links operating at link speed of
2.5Gb/s, the symbol time is 4nsec independent of the width of the link.
Flow control packets may be transmitted as often as necessary to return
credits and enable efficient utilization of the link. See Section 7.6.4, “Buff-
ering and Flow Control For Data VLs,” on page 183 for additional informa-
tion.

Flow Control Packet - general format
bits

bytes
31-24 23-16 15-8 7-0

0-3 Op FCTBS VL FCCL

4-5 LPCRC

Figure 60 Flow Control Packet Format

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 211 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.9.4.1 FLOW CONTROL PACKET FIELDS

7.9.4.1.1 OPERAND (OP) - 4 BITS

The flow control packet is a link packet with one of two Op (operand)
values: An operand of 0x0 indicates a normal flow control packet. An op-
erand value of 0x1 indicates a flow control init packet.

C7-55: When in the PortState LinkInitialize, flow control packets shall be
sent with the flow control init operand, 0x1.

C7-56: When in the PortStates LinkArm or LinkActive, flow control
packets shall be sent with the normal flow control operand, 0x0.

C7-57: All other values of the Op field are reserved for operations that
may be defined by IBA in the future. Any packet received with a reserved
value shall be discarded.

7.9.4.1.2 FLOW CONTROL TOTAL BLOCKS SENT (FCTBS) - 12 BITS

The FCTBS (Flow Control Total Blocks Sent) field is generated by the
transmitter side logic. The calculation for the value of FCTBS is described
later.

7.9.4.1.3 FLOW CONTROL CREDIT LIMIT (FCCL) -12 BITS

The FCCL (Flow Control Credit Limit) field is generated by the receiver
side logic. The calculation for the value of FCCL is described later.

7.9.4.1.4 VIRTUAL LANE (VL) - 4 BITS

VL (Virtual Lane) is set to the virtual lane to which the FCTBS and FCCL
fields apply.

7.9.4.1.5 LINK PACKET CYCLIC REDUNDANCY CHECK (LPCRC) - 16 BITS

LPCRC (Link Packet Cyclic Redundancy Check) field is a 16-bit CRC that
covers the first four bytes of the flow control packet. See Section 7.8.3,
“Link Packet CRC (LPCRC) - 2 Bytes,” on page 198.

7.9.4.2 CALCULATION OF FCTBS
C7-58: Upon transmission of a flow control packet, FCTBS shall be set to
the total blocks transmitted in the virtual lane since link initialization.

C7-59: When in the PortState initialize, FCTBS shall be set to zero.

7.9.4.3 CALCULATION OF FCCL
The FCCL calculation is based on a 12-bit Adjusted Blocks Received
(ABR) counter maintained for each virtual lane at the receiver.

C7-60: The ABR counter shall be set to zero when in the PortState ini-
tialize.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 212 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C7-61: Upon receipt of each flow control packet, the ABR shall be set to
the value of the FCTBS field.

C7-62: Upon receipt of each data packet, the ABR shall be increased by
the blocks received, modulo 4096, except that the ABR shall not be in-
creased for received packets that are discarded due to lack of receive ca-
pacity in the receiver.

C7-63: The FCCL field shall be set as specified in Section 7.9.4.3, “Cal-
culation of FCCL,” on page 211.

Upon transmission of a flow control packet, FCCL shall be set to one of
the following:

• If the current buffer state of the receiver would permit reception of
2048 or more blocks from all combinations of valid IBA packets with-
out discard, then the FCCL shall be set to ABR plus 2048 modulo
4096.

• Otherwise the FCCL shall be set to ABR plus the number of blocks
the receiver is capable of receiving from all combinations of valid IBA
packets without discard modulo 4096.

The number of blocks the receiver is capable of receiving means the
number that the receiver can guarantee to receive without buffer overflow
regardless of the sizes of the packets that arrive. If, for example, a re-
ceiver is capable of receiving more data when large packets arrive than
for small packets, the receiver must use the smaller capacity to calculating
FCCL.

This specification does not preclude the reconfiguration of receive buffers
while the link is active. Such reconfiguration may result in changes of the
FCCL value, including the possibility of reduction of available credit. Also,
link errors may cause discrepancies between ABR at the receiver and
FCTBS at the transmitter. When this has happened, the next flow control
update to the receiver will correct the value of ABR and may result in
changes of FCCL which reduce or increase credit. When FCCL is up-
dated, the credit calculation for outgoing data packets should use the new
value. Packets that are currently being transmitted or queued may be sent
based on the previous FCCL value.

7.9.4.4 TRANSMISSION OF PACKETS

If a data packet is available for transmission:

• Let CR represent the total blocks sent since link initialization plus the
number of blocks in the data packet to be transmitted, all modulo
4096.

• Let CL represent the last FCCL received in a flow control packet.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 213 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If (CL-CR) modulo 4096 ≤ 2048, then the data packet may be transmitted.
If the condition is not true, then the data packet may not be transmitted
until the condition becomes true. Flow control packet transmission is not
subject to this restriction nor are any packets on virtual lane 15.

C7-64: A non-VL15 data packet may only be sent when there is sufficient
credit as determined by the calculation in Section 7.9.4.4, “Transmission
of Packets,” on page 212.

C7-65: VL15 packets shall not be subject to flow control.

7.10 IBA AND RAW PACKET MULTICAST

7.10.1 OVERVIEW

Multicast is a one-to-many communication paradigm designed to improve
the efficiency of communication between a set of end nodes. Figure 61 il-
lustrates an example unreliable multicast IBA operation:

• A packet with PSN = 1129 is received on an IBA routing element
(switch or router) port.

• Switches extract the multicast DLID from the LRH to determine if
it corresponds to a multicast group. An implementation may main-
tain this data as part of its internal route table, e.g. a bit-mask
which corresponds to the output ports this packet should be for-
warded.

• Routers extract the GID from the GRH for IBA multicast or, for
raw packet support, examine the IPv6 header or Ethertype within
the RWH to determine if the packet corresponds to a multicast
group. It uses this information to forward the packet to the next
hop(s) to the destination(s).

• Switches or routers replicate the packet (implementation depen-
dent) and forward the packet onto the output port(s).

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 214 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.10.2 IBA UNRELIABLE MULTICAST OPERATIONAL RULES

o7-13: This compliance statement is obsolete and has been replaced by
o7-13.1.1:.

o7-13.1.1: IIBA unreliable multicast is an optional capability. When imple-
mented, it shall function based on the operational rules in Section 7.10.2,
“IBA Unreliable Multicast Operational Rules,” on page 214.

1) Multicast capability discovery, route table modification, status, and
control shall be administered by an IBA management entity. Refer to
15.2.5.8 MulticastForwardingTableRecord on page 893 and
14.2.5.12 MulticastForwardingTable on page 838”.

End Node
Se

nd
Re

ce
iv

e

Se
nd

Re
ce

iv
e

QP4 QP3

Se
nd

Re
ce

iv
e

QP2

HCA or TCA

PortPort

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

Router decodes inbound packet
header (GRH) GID multicast address
to determine target output ports.
Packet is replicated and forwarded to
each output port.

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

 IBA Router

Port Port

PortPort

Port Port

Port

Port

Control QPs

End Node

Port

End Node

Port
End Node

Port

End Node

Port

End Node

Port

Switch decodes inbound
packet header (LRH) DLID
to determine target output
ports. Packet is replicated
and forwarded to each out-
put port.

Next Subnets

PKT #1129

PKT #1129
PKT #1129

PKT #1129
PKT #1129

PKT #1129

PKT #1129

PKT #1129

PKT #1129

PKT #1129

Figure 61 Example IBA Unreliable Multicast Operation

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 215 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) Within the network, packets are replicated within IBA switches and
routers and forwarded to the corresponding output ports.

3) Packets are not reliable with respect to acknowledgment generation
nor delivery guarantees.

4) Switches and routers may vary in their ability to support multicast
packets and thus may have implementation-specific scheduling, re-
source management, and congestion policies which are outside the
scope of IBA.

5) Application multicast packets may be transmitted on VLs as assigned
via the SL to VL mapping table by the subnet manager. The use of VL
15 for multicast is prohibited.

6) Application multicast packet headers may contain any SL as provided
or derived from values provided by the subnet manager.

7) Applications targeting a multicast group use a multicast group GID -
each endport participating in a multicast group shall be assigned the
corresponding multicast group GID.

8) Each CA, switch or router that supports multicast may participate in
zero, one, or many multicast groups.

9) Multicast groups may span multiple subnets - a multicast capable
router is required to forward packets to the next hop to the desti-
nation.

10) Multicast packets may be generated by an endport.

Multicast group membership is opaque to the participating end nodes,
i.e. except as noted in Section 15.2.5.17.5 Querying a Multicast Group on
page 915, it is impossible to know which end nodes are participating
within a multicast group and whether all participating end nodes within a
multicast group reside within a local or remote subnet. Therefore, all IBA
multicast packets shall contain a GRH with the destination multicast GID
defined per the IBA addressing rules.
11) The SGID within the GRH shall be set to the source port which ini-

tially injected the packet into the network.

12) Messages shall be limited to single-packet messages. The maximum
message size is set during the multicast group’s creation. The group
creator sets the Path MTU (PMTU) for the multicast group. A CA /
router will query the SM for the PMTU during multicast group join op-
eration.

• If an end node attempts to join a multicast group and is unable to
accept the current PMTU, the join operation must fail.

13) For each multicast group an endport is participating in, the port shall
associate at least one locally managed QP.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 216 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If a source port is also a destination port within the destination
multicast group, the source shall internally replicate the packet
within the channel interface to the associated local QPs, including
the source QP if it is a receiver for this multicast group.

• If the destination end node contains multiple locally managed
QPs participating in a multicast group, the destination end node is
responsible for internally replicating the packet within the channel
interface and delivering a copy to each QP.

14) Unreliable multicast shall use the unreliable datagram transport
service. Refer to the unreliable datagram transport services section
for operational rules, constraints, verification, and error handling.

15) A source end node shall set the destination QP within the packet
header to 0xFFFFFF.

Destination end node delivers one
internally replicated copy of the packet
to each locally managed QP participat-
ing in the indicated multicast group.

If the source end node contains QPs
which are targets of send operations,
the end node shall internally replicate
the packet and deliver it to each partici-
pating QP. Replication occurs within the
channel interface and may be per-
formed either in hardware or software.

End Node

Se
nd

Re
ce

iv
e

Se
nd

Re
ce

iv
e

QP0 QP1

Se
nd

Re
ce

iv
e

QP2

HCA or TCA

Port Port

PKT #1216

PK
T

#1
21

6

PK
T

#1
21

6
End Node

Se
nd

Re
ce

iv
e

Se
nd

Re
ce

iv
e

QP0 QP1

Se
nd

Re
ce

iv
e

QP2

HCA or TCA

Port Port

PKT #1216

PKT #
12

16

PK
T

#1
21

6

Figure 62 Packet Delivery within an end node

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 217 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.10.3 RAW PACKET MULTICAST

Raw packets may be multicast using the same basic principles as unreli-
able multicast IBA packets.

7.10.3.1 RAW MULTICAST OPERATIONAL RULES

o7-14: Raw packet unreliable multicast is an optional capability. When im-
plemented, it shall function based on the operational rules in
Section 7.10.3, “Raw Packet Multicast,” on page 217.

1) Raw packet multicast is optional functionality defined within IBA.

2) Raw multicast capability discovery, route table modification, status,
and control shall be administered by an IBA management entity.

End Node

Se
nd

Re
ce

iv
e

Se
nd

Re
ce

iv
e

QP0 QP1

Se
nd

Re
ce

iv
e

QP2

HCA or TCA

PortPort

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

IBA Multi-protocol router decodes LRH
LNH to determine if RWH or raw IPv6
packet header. Router decodes next
header and replicates and forwards the
packet forwarded to each output port.

 IBA Switch

Port Port

PortPort

Port Port

Port

Port

Control QPs

End Node

Port

End Node

Port
End Node

Port

End Node

Port

End Node

Port

Switch decodes inbound
packet header (LRH) DLID to
determine target output ports.
Packet is replicated and for-
warded to each output port.

Next Sub-

Raw PKT

Raw PKT
Raw PKT

Raw PKT
Raw PKT

Raw PKT

Raw PKT Raw PKT

Raw PKT

Raw PKT

Figure 63 Example Raw Packet Multicast Operation

 IBA Router

Port Port

PortPort

Port Port

Port

Port

Control QPs

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 218 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3) Within the network, packets are replicated within IBA switches and
forwarded to the corresponding output ports.

• Switches extract the multicast DLID from the LRH to determine
the corresponding output ports.

4) Routing elements may vary in their ability to support multicast
packets and thus may have implementation-specific scheduling, re-
source management, and congestion / drop policies which are
outside the scope of this architecture.

5) Raw multicast packets may be transmitted on any VL except VL 15.

6) Raw multicast packets may be transmitted using any valid SL.

7) IPv6 applications target a multicast group using an IPv6 multicast ad-
dress. All other protocols use protocol specific addressing and reso-
lution.

8) Each endnode which supports multicast may participate in zero, one,
or many multicast groups.

9) Raw multicast groups may span multiple subnets - a multicast ca-
pable router is required to forward packets to the next hop to the des-
tination.

10) Raw multicast packets may be generated by an endnode.

11) Messages shall be limited to single-packet messages. The maximum
message size is a function of the PMTU between the source and des-
tination end nodes. Raw protocol management will interact with IBA
management entity to determine the maximum PMTU allowed. Raw
multicast operations are not required to fail if the PMTU is too small -
error recovery is the responsibility of the raw multicast group man-
agement protocol.

12) Raw packet support requires a minimum of one locally managed QP.
An implementation may provide additional QPs based on implemen-
tation-specific policies. As such, implementations are responsible for
local raw packet replication and delivery.

• If a source port is also a destination port within the destination
multicast group, the source shall internally replicate the packet
within the channel interface to the associated local application
targets.

• If the destination end node contains multiple participating applica-
tion targets within a raw multicast group, the destination end node
is responsible for internally replicating the packet within the chan-
nel interface and delivering a copy to each target.

13) Raw packet multicast shall use the IBA raw packet header formats
and semantics.

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 219 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

7.10.4 GROUP MANAGEMENT

IBA Release 1.1 does not fully define the multicast group management
protocol used to implement join and leave operations. However, the man-
agement section does contain the management interface and associated
MADs to implement a multicast group protocol. Multicast group manage-
ment is covered in 15.2.5.17 MCMemberRecord on page 908.

7.11 SUBNET MULTIPATHING

7.11.1 MULTIPATHING REQUIREMENTS ON END NODE

Each CA and router port is initialized with a LID plus an LMC (LID Mask
Control) by the subnet manager. The value of LMC indicates the number
of low order bits of the LID to mask when checking a received DLID
against the port’s DLID. LMC may take values from 0 to 7. Therefore, a
port may be identified by 1 to 128 unicast LIDs.

C7-66: When a link layer of a CA or router port checks that a unicast DLID
in a received packet is a valid DLID for that port, it shall mask the number
of low order bits indicated by the LMC before comparing the DLID to its
assigned LID.

The subnet manager may program alternate paths through the subnet for
these various LIDs. The selection of which LID to use in the SLID and
DLID of transmitted packets is covered in the Transport chapter.

7.12 ERROR DETECTION AND HANDLING
7.12.1 ERROR DETECTION

The following classes of errors are detectable by the link layer:

• Single packet receive errors
• Local physical errors - errors indicative of bit errors on the at-

tached physical link. Failures of ICRC, LPCRC and VCRC checks
in the packet check state machines and entry to the bad packet
state of the packet receiver state machine belong to this class.

• Remote physical errors - errors indicative of bit errors on a link
other than the attached physical link. Entry to the marked bad
packet state of the packet receiver state machine belongs to this
class.

• Malformed packet errors - errors indicative of packets transmitted
with inconsistent content. The packet was possibly bad at the
source. It is also possible that the error was inserted by a switch.
Programming errors of switch or port configuration by the SM

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 220 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

may also create errors in this category. LVer error, Length error,
op_code error, VL error, and GRH_VL15 error belong to this
class. These are all errors from the packet check state machines.

• Switch routing errors - errors indicative of an error in switch rout-
ing. DLID errors are in this class.

• Buffer overrun - error indicative of an error in the state of the flow
control machine in the link layer at the other end of the physical
link. One cause of such an error can be an earlier packet with a
physical error if buffers are not immediately reclaimed from bad
packets.

C7-67: An error in a received packet shall be classified as specified in
Section 7.12.1, “Error Detection,” on page 219.

C7-68: When error counters for the single packet receive errors are im-
plemented and one or more errors are detected in a received packet, then
the counter associated with the error with the highest precedence as de-
fined by Section 7.3, “Packet Receiver States,” on page 172, Section 7.4,
“Data Packet Check,” on page 175, and Section 7.5, “Link Packet Check,”
on page 178 shall increment and none of the other single packet error
counters shall increment.

• Receiver errors

• Local link integrity - excessively frequent local physical errors.
This error is caused by a marginal link. A more severe physical
problem will be detected at the physical layer based on high fre-
quency of code violations. Detection of local link integrity errors is
based on a count of local physical errors. The count starts at zero
and shall be incremented for each packet received with a local
physical error. If the current count is above zero, the counter shall
be decremented once for each packet received without a local
physical error. When it exceeds local_phy_errors threshold, the
local link integrity error shall be detected.

• Excessive buffer overruns - buffer overrun errors persisting over
multiple flow control update times. This error shall be detected
when the number of consecutive flow control update periods with
at least one overrun error in each period exceeds the OverrunEr-
rors threshold given in the PortInfo attribute. A flow control update
period should correspond to a time interval of 65536 symbol
times.

C7-69: This compliance statement is obsolete and has been replaced by
C7-69.1.1:.

C7-69.1.1: Each port shall implement detection of local link integrity and
excessive buffer overrun errors as specified in Section 7.12.1, “Error De-
tection,” on page 219

InfiniBandTM Architecture Release 1.2 Link Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 221 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Transmitter errors

• Flow control update - errors indicative of a failure of the flow con-
trol machine at the other end of the link. For each VL active in the
current port configuration, except VL 15 there shall be a watch-
dog timer monitoring the arrival of flow control updates. If the tim-
er expires without receiving an update, a flow control update error
has occurred. The period of the watchdog timer shall be 400,000
+3%/-51% symbol times. This timer shall only run when PortState
= Arm or Active. When PortState = ActiveD, this timer shall be re-
set. When PortState = Initialize or when a flow control packet is
received, the timer shall be reset.

C7-70: Each port shall implement detection of flow control update errors
as specified in Section 7.12.1, “Error Detection,” on page 219.

7.12.2 ERROR RECOVERY PROCEDURES

The response to any single packet receive error is to discard the packet.
No further recovery is necessary at the link layer. For some errors, the
data packet check state machine (Section 7.4, “Data Packet Check,” on
page 175) allows a switch to forward a packet with an error marking it as
bad by appending a bad VCRC value and the EBP delimiter as an alter-
native to dropping the packet.

Local link integrity, excessive buffer overrun, and flow control update er-
rors all indicate errors that may be fixed by retraining or may be due to a
hard fault.

C7-71: Upon detecting local link integrity, excessive buffer overrun or flow
control update errors, the link shall initiate retraining by asserting
L_init_train (refer to 6.3.1.2 L_Init_Train - Link Initiate Retraining on page
164).

7.12.3 ERROR NOTIFICATION

Single packet receive error classes increment error counters as specified
in management (Refer to 16.1.4 Optional Attributes on page 950). Note
that at most one link layer error is detected per packet so each packet in-
crements one and only one of these counters.

Local link integrity, excessive buffer overrun, and flow control update are
counted and may produce a trap as specified in management.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 222 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 8: NETWORK LAYER

8.1 OVERVIEW

This chapter describes the network layer within IBA. Within the IBA lay-
ered architecture, this layer is responsible for routing packets between
IBA subnets. This includes unicast and multicast operations. This chapter
specifies routing between IBA subnets - it does not specify multi-protocol
routing, i.e. routing IBA over non-IBA fabric types, nor does it specify how
raw packets are routed between IBA subnets.

This chapter, with the exception of section 8.4 Global Route Header
Usage on page 226, is informational in nature. As such, it does not specify
IBA requirements; refer to Chapter 19: Routers on page 1059 for require-
ments of IBA routers. Packet forwarding within an IBA subnet is done at
the link layer by IBA switches; refer to Chapter 18: Switches on page 1040
for requirements of IBA switches.

8.2 PACKET ROUTING

8.2.1 OVERVIEW

IBA supports a two-layer topological division. The lower layer is referred
to as an IBA subnet. Packets are forwarded throughout the subnet uti-
lizing IBA switches (the process of forwarding a packet from one link to an-
other within a subnet is referred to as switching). The path that a packet
takes through this layer is uniquely defined by its point of injection into the
fabric, identified in the packet by the SLID field in the LRH, and the DLID
and SL fields in its LRH.

At the higher layer, subnets are interconnected using routers (the process
of forwarding a packet from one subnet to another is referred to as
routing). Routing may be accomplished utilizing routers conforming to the
IBA specification, and may also be accomplished using routers con-
forming to other specifications (e.g. utilizing the Internet Protocol (IP) suite
of specifications). The series of subnets through which a packet passes
is not defined by IBA; however, several fields are provided in the Global
Route Header to enable routers to make this decision. These fields in-
clude SGID, DGID, TClass and FlowLabel. Additionally, a router might
use fields from other headers, e.g. the SL field in the LRH to determine a
mapping to TClass. Regardless of the mechanism used to in forwarding
decisions, IBA requires that the path be symmetric with respect to SGID
and DGID. This means that if a valid path exists from an SGID to a DGID,
then IBA requires that a valid path also exist swapping the values of DGID
and SGID.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 223 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The requirements of IBA routers are specified in Chapter 19: Routers on
page 1059. Interconnection of IBA subnets utilizing IBA routers is in-
tended to preserve IBA intra-subnet behavior across subnets.

Use of other routing technologies is beyond the scope of IBA; however,
the architecture is intentionally crafted to enable this capability, especially
utilizing IP version 6 as specified by IETF RFC 2460 and other associated
IETF RFCs.

A global IBA fabric consists of one IBA subnet or multiple IBA subnets in-
terconnected via routers. As described above, this global fabric may also
include non-IBA interconnects between IBA subnets, as well as gateways
to non-IBA fabrics.

8.2.2 GLOBAL FABRIC CHARACTERISTICS

This section describes the characteristics of a global fabric interconnected
exclusively with IBA routers. While beyond the scope of IBA, global fab-
rics interconnected with non-IBA technology may also exhibit some or all
of these characteristics.

8.2.2.1 INHERITANCE OF SUBNET REQUIREMENTS
All the packet delivery characteristics of a subnet are inherited by the
global fabric, except for virtual lane 15 subnet management packets
(since subnet management occurs at the subnet level, these packets do
not transit routers).

8.2.2.2 PACKET ERRORS AND ERROR DETECTION

IBA specifies an invariant CRC that is appended to all IBA packets except
raw packets (refer to section 7.8.1 Invariant CRC (ICRC) - 4 Bytes on
page 195). This CRC covers all of the IBA packet fields that do not require
modification to effect IBA routing. End-to-end data integrity assurance is
provided by retaining this CRC unmodified as the packet transits the
global fabric.

8.2.2.3 SERVICE LEVELS

Service levels and virtual lanes are supported throughout the global
fabric. This is accomplished by mapping service level to traffic class in the
GRH, and vice versa. The mapping function itself, as is the interpretation
of service level, is beyond the scope of IBA.

8.2.3 SUPPORT FOR MULTIPLE GLOBAL PATHS

The information required to route a packet within a subnet and between
subnets is contained in the packet’s local route header and global route
headers, respectively. Unlike many network protocols, IBA does not re-
quire a packet to contain a global route header unless the packet is either
destined for a device that is not on the same subnet or the packet is a mul-

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 224 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ticast packet. However, any packet except subnet management packets
may contain a global route header (subnet management packets are de-
fined in 14.2.1 Datagram Formats and Use on page 795.)

The identification and utilization of multiple paths between two channel
adapters on different subnets is hierarchical and involves similar but inde-
pendent mechanisms within subnets and across subnets.

Within subnets, multiple paths between two channel adapters are identi-
fied by multiple LIDs. That is, a port may effectively be assigned multiple
LIDs using a LID/LMC combination Chapter 4: Addressing on page 141.
The source channel adapter indicates a path via its selection of one of the
LIDs assigned to the destination port.

Likewise, channel adapters have the option to support the assignment of
multiple GIDs. In the case of global routing across subnets, the LID indi-
cates which of the valid paths is to be used within the subnet (i.e. switch
forwarding) and the GID indicates which of the valid paths is to be used
between subnets (i.e. router forwarding).

As a packet transits a subnet, its SLID and DLID fields remain unchanged.
As a packet transits between subnets (i.e. through a router), the router up-
dates the SLID to that of its own LID and the DLID to the LID of the next
router or final destination, as appropriate.

Note that for global routing, this provides two degrees of freedom for a
source channel adapter to select a path through the fabric. Selection of
the LID determines the route through the subnet to the first router. Selec-
tion of the GID determines the route taken after reaching the first router.
Each router along the path may choose the path through a subnet to the
next router (or final destination) via its selection of the LID for the next
router (or final destination). Furthermore, since the DLID may contain
LMC bits of multipath data, the router may use the DLID as part of its route
determination algorithm.

The decision process that routers use for forwarding packets is not spec-
ified by IBA; however, routers may rely on various combinations of Desti-
nation GID, Source GID, SL, TClass, and FlowLabel fields, among other
factors, to determine the forwarding path and flows that must exhibit in-
order delivery. Channel Adapters and/or ingress routers may label flows
of packets that are expected to be delivered in order with the same Flow-
Label in the global route header. While IBA routers utilize LIDs and GIDs
to determine paths, the FlowLabel may be used by non-IBA routers to de-
termine paths.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 225 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8.2.4 GLOBAL MULTICAST

IBA supports an unreliable multicast mechanism. A detailed description of
this mechanism may be found in section 7.10 IBA and Raw Packet Multi-
cast on page 213. Implementation of this mechanism is optional in IBA de-
vices (including switches and routers). Multicast packets within a given
multicast group, i.e. multicast packets that share a common multicast
GID, may be sourced by a single device or by multiple devices. Since
routers are not fully specified by IBA, routers may vary in their ability to
support multicast packets and may have implementation specific.

8.3 GLOBAL ROUTE HEADER

Figure 64 on page 225 illustrates the format of the Global Route Header
that is used for inter-subnet routing.

Global route headers are not required in all packets (see section 8.4.1
Global Route Header Generation on page 226 for details). The presence
of a Global Route Header is indicated in the Local Route Header as spec-
ified in 7.7.5 Link Next Header (LNH) - 2 bits on page 194. The following
subparagraphs describe the fields in the GRH:

8.3.1 IP VERSION (IPVER) - 4 BITS

Indicates the version of the GRH; always set to 6.

8.3.2 TRAFFIC CLASS (TCLASS) - 8 BITS

This field is used to communicate service level end-to-end, i.e. across
subnets. The mapping of specific traffic class to specific TClass values is
not specified by IBA and may vary by implementation.

bits
bytes

31-24 23-16 15-8 7-0

0-3 IPVer TClass FlowLabel

4-7 PayLen NxtHdr HopLmt

8-11 SGID[127-96]

12-15 SGID[95-64]

16-19 SGID[63-32]

20-23 SGID[31-0]

24-27 DGID[127-96]

28-31 DGID[95-64]

32-35 DGID[63-32]

36-39 DGID[31-0]

Figure 64 Global Route Header (GRH)

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 226 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8.3.3 FLOW LABEL (FLOWLABEL) - 20 BITS

This field may be used to identify a sequence of packets that must be de-
livered in order.

8.3.4 PAYLOAD LENGTH (PAYLEN) - 16 BITS

For an IBA packet this field specifies the number of bytes starting from the
first byte after the GRH up to and including the last byte of the ICRC. For
a raw IPv6 datagram this field specifies the number of bytes starting from
the first byte after the GRH up to but not including either the VCRC or any
padding to achieve a multiple of a 4 byte packet length.

8.3.5 NEXT HEADER (NXTHDR) - 8 BITS

This field indicates what header, if any, follows the global route header.

8.3.6 HOP LIMIT (HOPLMT) - 8 BITS

This field indicates the number of hops (i.e. the number of routers tran-
sited) that the packet is permitted to take prior to being discarded. This
ensures that a packet will not loop indefinitely between routers should a
routing loop occur. Setting this value to 0 or 1 will ensure that the packet
will not be forwarded beyond the local subnet.

8.3.7 SOURCE GLOBAL IDENTIFIER (SGID) - 128 BITS

This field identifies the port that injected the packet into the global fabric.
Additional information on the format and use of GID’s may be found in
Chapter 4: Addressing on page 141.

8.3.8 DESTINATION GLOBAL IDENTIFIER (DGID) - 128 BITS

This field identifies the final destination port of the packet, or to the multi-
cast group that represents the set of ports to which the packet is to be de-
livered. Additional information on the format and use of GID’s may be
found in Chapter 4: Addressing on page 141.

8.4 GLOBAL ROUTE HEADER USAGE

The following subsections describe the usage of the global route header:

8.4.1 GLOBAL ROUTE HEADER GENERATION

C8-1: A channel adapter initiating a packet shall include a global route
header if any of the following conditions apply:

• The packet is a multicast packet.
• The final destination of the packet is a port of a device that is not on

the same subnet as the port that initially injects the packet into the
fabric and both the injecting and receiving ports are connected to IBA
subnets.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 227 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o8-1: A channel adapter, switch, or router initiating a packet may include
a global route header in any packet except for SMPs.

The use of a global route header should be negotiated during connection
establishment time. For unreliable datagram services (not including mul-
ticast which requires a global router header for all multicast packets), the
process to determine whether to use a global route header or not is out-
side the scope of the specification.

If a global route header is included, the fields are loaded by the initiating
channel adapter, switch, or router as follows:

C8-2: IPVer: If a global route header is included in a packet, this field shall
be set to 6.

C8-3: TClass: If a global route header is included in a packet, this field
shall either be set to zero or to an appropriate TClass value by the in-
jecting channel adapter. Each router maps TClass to a SL appropriate for
the subnet on which it will inject the packet. This mapping function is not
specified by IBA.

FlowLabel: The use of this field is not required by IBA.

C8-4: If a global route header is included in a packet, and FlowLabel is not
used, it shall be set to zero.

C8-5: If a global route header is included in a packet and FlowLabel is
used, all packets that must be delivered in order with respect to each other
shall be identified by a constant, non-zero value inserted in the FlowLabel
field.

This implies that if a given QP uses a non-zero flow label, it must use the
same flow label on all packets emitted from that QP that are destined for
a given remote QP. Different QPs transmitting to a given destination may
use the same or different flow labels. Flow labels may be shared among
QPs.

C8-6: PayLen: If a global route header is included in an IBA packet, this
field shall be loaded with the length of the packet, in bytes, starting from
the first byte after the global route header up to and including the last byte
of the ICRC.

NxtHdr: The use of this field varies depending on whether the packet is a
raw or non-raw packet.

C8-7: For non-raw IBA packets that include a GRH, the NxtHdr field shall
contain 0x1B.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 228 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C8-8: For raw packets that include a IPv6 header, the contents of NxtHdr
shall be set to the identifier for the next header as defined in IETF RFC
1700 et. seq.

C8-9: HopLmt: If a global route header is included in a packet, this field
shall be set to the number of hops (i.e. the number of routers that may be
transited) that the packet is permitted to take prior to being discarded.

C8-10: SGID: If a global route header is included in a packet, this field
shall be set to one of the GID’s assigned to the port that will inject the
packet into the fabric.

C8-11: DGID: If a global route header is included in a packet, this field
shall be set to one of the GID’s assigned to the port that is the final desti-
nation of this packet, or to the multicast GID that represents the set of
ports to which the packet is to be delivered.

8.4.2 GLOBAL ROUTE HEADER MODIFICATION

This section describes the modifications that may and must be made to
the global route header by IBA routers when forwarding packets between
subnets. Note that modification of these fields implies updating the
packet’s variant CRC defined in 7.8.2 Variant CRC (VCRC) - 2 Bytes on
page 197. These changes do not affect the packet’s invariant CRC de-
fined in 7.8.1 Invariant CRC (ICRC) - 4 Bytes on page 195.

C8-12: IPVer: This field shall not be changed by IBA routers.

TClass: This field is used to communicate service level end-to-end, i.e.
across subnets. Routers utilize this field to determine an appropriate SL
for forwarding on the next subnet. This mapping function is not specified
by IBA.

C8-13: The TClass field, if non-zero, shall not be modified by IBA routers.

The use of TClass by routers when it contains zero is not defined by IBA.

FlowLabel: This field may be used to identify a sequence of packets that
must be delivered in order. The use of this field is not required by IBA. If
not used, it is left unchanged. If used, all packets that must be delivered
in order with respect to each other shall be identified by a constant, non-
zero value inserted in this field in each packet.

o8-2: The router may change the value of FlowLabel; however, it must
use the same flow label for all packets that must be delivered in order,
which includes all traffic between any given two QPs.

C8-14: PayLen: IBA routers shall not modify the content of PayLen.

InfiniBandTM Architecture Release 1.2 Network Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 229 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C8-15: NxtHdr: IBA routers shall not modify the content of NxtHdr.

C8-16: HopLmt: IBA routers shall discard packets that contain a value of
one or zero in the HopLmt field. Otherwise, IBA routers shall decrement
the HopLmt field by one.

C8-17: SGID: IBA routers shall not modify the content of SGID

C8-18: DGID: IBA routers shall not modify the content of DGID.

8.4.3 GLOBAL ROUTE HEADER VERIFICATION

Any required checks on DGID are performaed at the transport layer, see
Section 9.6.1.2 GRH Checks

C8-19: This compliance statement is obsolete and has been removed.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 230 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 9: TRANSPORT LAYER

9.1 OVERVIEW

Each IBA packet contains a transport header. The transport header con-
tains the information required by the endnode to complete the specified
operation, e.g. delivery of data payload to the appropriate entity within the
endnode such as a thread or IO controller. This chapter defines the trans-
port services used by IBA.

The client of an IBA channel adapter communicates with the transport
layer by manipulating a “queue pair” (QP) made up of a Send work queue
and a Receive work queue. For a host platform, the client of the transport
layer is the Verbs software layer. The client posts buffers or commands to
these queues and hardware transfers data from or into the buffers.
Throughout this chapter, a QP that initiates an operation, i.e. injects a
message into the fabric, is referred to as the requester and the QP that
receives the message is referred to as the responder.

When a QP is created, it is associated with one of four IBA transport ser-
vice types or non-IBA protocol encapsulation services. The transport ser-
vice describes the degree of reliability and to what and how the QP
transfers data.

The four IBA transport service types are:

1) Reliable Connection

2) Reliable Datagram

3) Unreliable Datagram

4) Unreliable Connection

The non-IBA protocol encapsulation services are:

1) Raw IPv6 Datagram

2) Raw Ethertype Datagram

 Table 314 Channel Adapter Attributes on page 1025 lists which of these
services are required for Host Channel Adapters and Target Channel
Adapters. Table 34 below compares several key attributes of these five
transport service types.

Reliable transport services use a combination of sequence numbers and
acknowledgment messages (ACK / NAK) to verify packet delivery order,
prevent duplicate packets and out-of-sequence packets from being pro-

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 231 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cessed, and to detect missing packets. Upon error detection, e.g. a
missing packet, the missing packet along with all subsequent packets will
be retransmitted by the requestor. IBA does not support selective packet
retransmission nor the out-of-order reception of packets.

An IBA operation is defined to include a request message and, for reliable
services, its corresponding response. Thus, the request message is gen-
erated by a requester, and a response, if one exists, is generated by the
responder.

A request message consists of one or more IBA packets. The packets of
a request message are called request packets. A response, except for an
RDMA READ Response, consists of exactly one packet. A response is
also called an acknowledge. The response packet acknowledges receipt
of one or more packets. The response may acknowledge the receipt of
packets that comprise anywhere from a portion of a request message to
multiple request messages.

Unreliable transport services do not use acknowledgment messages.
They do however generate sequence numbers. This allows a responder
to detect out-of-sequence or missing packets and to perform local re-

Requester Responder
request message

response

IBA Operation

(acknowledge)
Figure 65 IBA Operation

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 232 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

covery processing. The specifics of any recovery processing for unreliable
datagrams are outside the scope of the IBA specification.

Table 34 Comparison of IBA Transport Service Types

Attribute Reliable
Connection

Reliable
Datagram

Unreliable
Datagram

Unreliable
Connection

Raw Datagram
(both IPv6 &
ethertype)

Scalability (M processes on N
Processor nodes communicat-
ing with all processes on all
nodes)

M2*N QPs
required on each
processor node,

per CA

M QPs required
on each proces-

sor node, per CA.

M QPs required
on each proces-

sor node, per CA.

M2*N QPs required
on each processor

node, per CA.

Minimum 1 QP
required on each

end node, per CA.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 233 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

R
el

ia
bi

lit
y

Corrupt data detected Yes

Data delivery guarantee Data delivered exactly once No guarantees

Data order guaranteed Yes, per connec-
tion

Yes, packets from
any one source
QP are ordered to
multiple destina-
tion QPs.

No Unordered and dupli-
cate packets are
detected.

No

Data loss detected Yes No Yes No

Error recovery Reliable. Errors are detected at both
the requestor and the responder. The
requestor can transparently recover
from errors (retransmission, alternate
path, etc.) without any involvement of
the client application. QP processing
is halted only if the destination is
inoperable or all fabric paths between
the channel adapters have failed.

Unreliable. Pack-
ets with some
types of errors
may not be deliv-
ered. Neither
source nor desti-
nation QPs are
informed of
dropped packets.

Unreliable. Packets
with errors, including
sequence errors, are
detected and may be
logged by the
responder. The
requestor is not
informed.

Unreliable. Pack-
ets with errors are
not delivered. The
requestor and
responder are not
informed of
dropped packets.

RDMA and ATOMIC Opera-
tions

Yes Yes No Yes: RDMA WRITEs
No: RDMA READs &

ATOMICs

No

Bind Memory Window Yes Yes No Yes No

IBA Unreliable Multicast Sup-
port

No No Yes No No

Raw Multicast No No No No Yes

Remote Invalidation Yes No No No No

Shared Receive Queue Yes No Yes No No

Message Size Transport supports a message size of
zero to 231 bytes. Implementations
may support a smaller maximum
message size. Actual maximum mes-
sage size to be used may be negoti-
ated by upper (application) layers. A
message may consist of multiple
packets.

Single PMTU
packet datagrams
- 0 to 4096 bytes.

Transport supports a
message size of zero
to 231 bytes. Imple-
mentations may sup-
port a smaller
maximum message
size. Actual maxi-
mum message size to
be used may be
negotiated by upper
(application) layers. A
message may consist
of multiple packets.

Single PMTU
packet datagrams
- 0 to 4096 bytes.

Table 34 Comparison of IBA Transport Service Types (Continued)

Attribute Reliable
Connection

Reliable
Datagram

Unreliable
Datagram

Unreliable
Connection

Raw Datagram
(both IPv6 &
ethertype)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 234 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.2 BASE TRANSPORT HEADER

Base Transport Header (BTH) contains fields always present for all IBA
transport services - it is not present in Raw packets. The presence of BTH
is indicated by the Link Next Header (LRH:LNH) field.

C9-1: All IBA transport services shall include a Base Transport Header
(e.g. it is not present in Raw packets).

9.2.1 OPERATION CODE (OPCODE)
The OpCode field defines the interpretation of the remaining header and
payload bytes. The OpCode list definition is shown in Table 35 OpCode
field on page 235.

C9-2: Table 35 shall be used to define the OpCode parameter in the BTH
as well as the headers and payload that follow the BTH.

Connection Oriented? Connected. The
client connects
the local QP to
one and only one
remote QP. No
other traffic flows
over these QPs.

Connectionless.
Appears connec-
tionless to the cli-
ent - uses one or
more End-to-End
contexts per CA
to provide reliabil-
ity service.

Connectionless.
No prior connec-
tion is needed for
communication.

Connected. The cli-
ent connects the local
QP to one and only
one remote QP. No
other traffic flows over
these QPs.

Connectionless.
No prior connec-
tion is needed for
communication.

Table 34 Comparison of IBA Transport Service Types (Continued)

Attribute Reliable
Connection

Reliable
Datagram

Unreliable
Datagram

Unreliable
Connection

Raw Datagram
(both IPv6 &
ethertype)

bits
bytes

31-24 23-16 15-8 7-0

0-3 OpCode SE M Pad TVer Partition Key

4-7 Reserved 8
(masked in

ICRC)

Destination QP

8-11 A Reserved 7 PSN - Packet Sequence Number

Figure 66 Base Transport Header (BTH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 235 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-0.2.1: Any HCA or TCA which implements Remote Invalidate shall use
one of the two opcodes defined in Table 35 in the opcode field of the BTH
whenever it executes a SEND with Invalidate operation

Table 35 OpCode field

Code[7-5] Code[4-0] Description Packet Contents following the Base
Transport headera

000

Reliable
Connection (RC)

00000 SEND First PayLd

00001 SEND Middle PayLd

00010 SEND Last PayLd

00011 SEND Last with Immediate ImmDt, PayLd

00100 SEND Only PayLd

00101 SEND Only with Immediate ImmDt, PayLd

00110 RDMA WRITE First RETH, PayLd

00111 RDMA WRITE Middle PayLd

01000 RDMA WRITE Last PayLd

01001 RDMA WRITE Last with Immediate ImmDt, PayLd

01010 RDMA WRITE Only RETH, PayLd

01011 RDMA WRITE Only with Immediate RETH, ImmDt, PayLd

01100 RDMA READ Request RETH

01101 RDMA READ response First AETH, PayLd

01110 RDMA READ response Middle PayLd

01111 RDMA READ response Last AETH, PayLd

10000 RDMA READ response Only AETH, PayLd

10001 Acknowledge AETH

10010 ATOMIC Acknowledge AETH, AtomicAckETH

10011 CmpSwap AtomicETH

10100 FetchAdd AtomicETH

10101 Reserved Undefined

10110 SEND Last with Invalidate IETH, PayLd

10111 SEND Only with Invalidate IETH, PayLd

11000-11111 Reserved undefined

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 236 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

001

 Unreliable
Connection (UC)

00000 SEND First PayLd

00001 SEND Middle PayLd

00010 SEND Last PayLd

00011 SEND Last with Immediate ImmDt, PayLd

00100 SEND Only PayLd

00101 SEND Only with Immediate ImmDt, PayLd

00110 RDMA WRITE First RETH, PayLd

00111 RDMA WRITE Middle PayLd

01000 RDMA WRITE Last PayLd

01001 RDMA WRITE Last with Immediate ImmDt, PayLd

01010 RDMA WRITE Only RETH, PayLd

01011 RDMA WRITE Only with Immediate RETH, ImmDt, PayLd

01100-11111 Reserved undefined

Table 35 OpCode field (Continued)

Code[7-5] Code[4-0] Description Packet Contents following the Base
Transport headera

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 237 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.2.2 RESERVED TRANSPORT FUNCTION OPCODES

For future expansion of its transport layer, IBA provides Reserved and
Manufacturer Defined BTH OpCodes. Two blocks of undefined OpCodes
are specified: one for future revisions of the IBA and one block for manu-
facturer specific functions. Manufacturer Defined opcodes should not be
used between devices until the devices are clearly identified as supporting
those opcodes.

010

Reliable
Datagram (RD)

00000 SEND First RDETH, DETH, PayLd

00001 SEND Middle RDETH, DETH, PayLd

00010 SEND Last RDETH, DETH, PayLd

00011 SEND Last with Immediate RDETH, DETH, ImmDt, PayLd

00100 SEND Only RDETH, DETH, PayLd

00101 SEND Only with Immediate RDETH, DETH, ImmDt, PayLd

00110 RDMA WRITE First RDETH, DETH, RETH, PayLd

00111 RDMA WRITE Middle RDETH, DETH, PayLd

01000 RDMA WRITE Last RDETH, DETH, PayLd

01001 RDMA WRITE Last with Immediate RDETH, DETH, ImmDt, PayLd

01010 RDMA WRITE Only RDETH, DETH, RETH, PayLd

01011 RDMA WRITE Only with Immediate RDETH, DETH, RETH, ImmDt, PayLd

01100 RDMA READ Request RDETH, DETH, RETH

01101 RDMA READ response First RDETH, AETH, PayLd

01110 RDMA READ response Middle RDETH, PayLd

01111 RDMA READ response Last RDETH, AETH, PayLd

10000 RDMA READ response Only RDETH, AETH, PayLd

10001 Acknowledge RDETH, AETH

10010 ATOMIC Acknowledge RDETH, AETH, AtomicAckETH

10011 CmpSwap RDETH, DETH, AtomicETH

10100 FetchAdd RDETH, DETH, AtomicETH

10101 RESYNC RDETH, DETH

10110-11111 Reserved undefined

011
Unreliable

Datagram (UD)

00000-00011 Reserved undefined

00100 SEND only DETH, PayLd

00101 SEND only with Immediate DETH, ImmDt, PayLd

00110-11111 Reserved undefined

100 - 101 00000-11111 Reserved undefined

110 - 111 00000-11111 Manufacturer Specific OpCodes undefined
a. All OpCodes have the ICRC and VCRC attached.

Table 35 OpCode field (Continued)

Code[7-5] Code[4-0] Description Packet Contents following the Base
Transport headera

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 238 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.2.3 SOLICITED EVENT (SE) - 1 BIT
The requester sets this bit to 1 to indicate that the responder shall invoke
the CQ event handler. Additional operational guidelines:

• The SE bit should only be set in the last or only packet of a
SEND, SEND with Immediate, or RDMA WRITE with Immediate.

• For additional operational guidelines impacting HCAs, see Sec-
tion 11.4.2.2 Request Completion Notification on page 627.

SE bit is not considered a part of packet header validation, i.e. receipt of
a packet with this bit set that does not meet the invocation requirements
will not result in a NAK being generated.

C9-3: For an HCA, if an inbound request packet has the Solicited Event
bit in the BTH to 1 and the additional SE operational guidelines are valid,
it shall invoke the CQ event handler.

o9-1: For a TCA supporting Solicited Events, if an inbound request packet
has the Solicited Event bit in the BTH to 1 and the additional SE opera-
tional guidelines are valid, it shall invoke the CQ event handler.

C9-4: The responder shall not consider the SE bit in the BTH part of the
packet header validation.

In addition to its use in SEND, SEND with Immediate or RDMA Write with
Immediate operations, the SE bit can be set with SEND with Invalidate op-
erations. In such a case the SE bit should only be set in the last or only
packet of a SEND with Invalidate. In all other respects, the use of the SE
bit follows the same rules as defined for the use of the SE bit with a normal
SEND operation.

9.2.4 MIGREQ (M) - 1 BIT

Used to communicate migration state. If set to one, indicates the connec-
tion or EE context has been migrated; if set to zero, it means there is no
change in the current migration state. See Automatic Path Migration
within the Chapter 17: Channel Adapters on page 1016.

9.2.5 PAD COUNT (PADCNT) - 2 BITS

Packet payloads are sent as a multiple of 4-byte quantities. Pad count in-
dicates the number of pad bytes - 0 to 3 - that are appended to the packet
payload. Pads are used to “stretch” the payload (payloads may be zero or
more bytes in length) to be a multiple of 4 bytes.

9.2.6 TRANSPORT HEADER VERSION (TVER) - 4 BITS

Specifies the version of the IBA Transport used for this packet. This ver-
sion applies to all of the transport fields including the BTH, extended

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 239 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

header and the invariant CRC - this field is set to 0x0. If a receiver does
not support the Transport Version specified then the packet is discarded.

C9-5: Requesters and responders using IBA transports shall generate
IBA transport packets with BTH:TVer = 0x0.

9.2.7 PARTITION KEY (P_KEY) - 16 BITS

P_Key identifies the partition that the destination QP (RC, UC, UD) or EE
Context (RD) is a member.

9.2.8 DESTINATION QP (DESTQP) - 24 BITS

This field specifies the destination queue pair (QP) identifier.

9.2.9 RESERVE 8 (RESV8) - 8 BITS
Reserved (variant) - 8 bits. Transmitted as 0, ignored on receive. This field
is not included in the invariant CRC.

C9-6: When generating a packet, the sender shall set the Resv8 field to
zero. The receiver shall ignore this field.

9.2.10 ACKREQ (A) - 1 BIT

Requests responder to schedule an acknowledgment on the associated
QP.

9.2.11 RESERVE 7 (RESV7) - 7 BITS

Transmitted as 0, ignored on receive. This field is included in the invariant
CRC.

C9-7: When generating a packet, the sender shall set the Resv7 field to
zero. The receiver shall ignore this field.

9.2.12 PACKET SEQUENCE NUMBER (PSN) - 24 BITS

This field is used to identify the position of a packet within a sequence of
packets. All IBA requesters shall generate a monotonically increasing
(modulo 224) PSN when originating a packet. Depending upon the trans-
port service type and / or implementation requirements, a responder may
validate the PSN to detect missing packets.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 240 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3 EXTENDED TRANSPORT HEADERS

9.3.1 RELIABLE DATAGRAM EXTENDED TRANSPORT HEADER (RDETH) - 4 BYTES
Reliable Datagram Extended Transport Header (RDETH) contains the
End-to-End Context identifier.

9.3.1.1 RESERVE - 8 BITS

o9-2: If a CA implements Reliable Datagram functionality, then when gen-
erating a packet, the sender shall set this field to 0x0. The receiver shall
ignore this field.

9.3.1.2 END-TO-END (EE) CONTEXT - 24 BITS

This field indicates the End-to-End (EE) Context used for this packet. EE
context is a unique endnode identifier used to multiplex / demultiplex reli-
able datagram packets between any two end nodes. The EE-Context pro-
vides a context for reliable transfer state similar to that used for reliable
connection.

9.3.2 DATAGRAM EXTENDED TRANSPORT HEADER (DETH) - 8 BYTES

Datagram Extended Transport Header (DETH) contains the additional
transport fields for reliable and unreliable datagram service.

9.3.2.1 Q_KEY - 32 BITS

This field is required to authorize access to the destination queue. The re-
sponder compares this field with the destination’s QP Q_Key.

9.3.2.2 RESERVE - 8 BITS

C9-8: When generating a packet, the sender shall set this field to 0x0. The
receiver shall ignore this field.

9.3.2.3 SOURCE QP (SRCQP) - 24 BITS

This field specifies the source queue pair (QP) identifier. This is used as
the destination QP for response packets.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Reserve EE-Context

Figure 67 Reliable Datagram Extended Transport Header (RDETH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Queue Key

4-7 Reserve Source QP

Figure 68 Datagram Extended Transport Header (DETH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 241 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3.3 RDMA EXTENDED TRANSPORT HEADER (RETH) - 16 BYTES

RDMA Extended Transport Header (RETH) contains the additional trans-
port fields for RDMA operations.

9.3.3.1 VIRTUAL ADDRESS (VA) - 64 BITS

Start address of buffer. RDMA VA may start on any byte boundary.

9.3.3.2 R_KEY - 32 BITS

R_Keys have the following properties:

• A R_Key acts as a protection key to access the specified memory
address and range for a given operation, i.e. it is a protection
mechanism to insure proper access to the target memory. The re-
sponder correlates the R_Key to the local protection mechanisms
to validate the requester’s access rights.

• A R_Key must be exported to the requester - this process (also
includes the export of the starting virtual address and memory
size, i.e. length) is outside the scope of this section.

• Access rights are granted for any combination of RDMA READ,
RDMA WRITE, and ATOMICs - including none and all.

• Each Memory Region or Window has a single valid R_Key at any
given moment. A virtually contiguous range of memory locations
can have multiple Regions or Windows associated with it concur-
rently, each with an associated R_Key.

• A R_Key can be exported to multiple remote responders.

• R_Keys are used only for RDMA and ATOMIC Operations. A
R_Key is contained within the packet header.

A responder that supports RDMA and / or ATOMIC Operations shall verify
the R_Key, the associated access rights, and the specified virtual ad-
dress. The responder must also perform bounds checking (i.e. verify that
the length of the data being referenced does not cross the associated
memory start and end addresses). Any violation must result in the packet
being discarded and for reliable services, the generation of a NAK.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Virtual Address (63-32)

4-7 Virtual Address (31-0)

8-11 R_Key

12-15 DMA Length

Figure 69 RDMA Extended Transport Header (RETH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 242 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3.3.3 DMA LENGTH (DMALEN) - 32 BITS

This field indicates the length, in bytes, of the remote DMA operation.

C9-9: For an HCA performing RDMA operations, the minimum length
specified in the DMALen field is 0; the maximum length is 231.

o9-3: If a TCA implements RDMA functionality, the minimum length spec-
ified in the DMALen field is 0; the maximum length is 231.

9.3.4 ATOMIC EXTENDED TRANSPORT HEADER (ATOMICETH) - 28 BYTES

ATOMIC Extended Transport Header (AtomicETH) contains the additional
transport fields for ATOMIC Request operations.

9.3.4.1 VIRTUAL ADDRESS (VA) - 64 BITS

Start address of buffer.

9.3.4.2 R_KEY - 32 BITS

R_Key used to verify remote access to the specified virtual address. See
9.3.3.2 R_Key - 32 bits on page 241.

9.3.4.3 SWAP (ADD) DATA (SWAPDT) - 64 BITS

The data operand used in ATOMIC Operations. In a CmpSwap operation
this field is swapped into the addressed buffer if the CmpDt matched the
existing buffer contents. In a FetchAdd operation this field is added to the
contents of the addressed buffer.

9.3.4.4 COMPARE DATA (CMPDT) - 64 BITS

The data operand used in Compare portion of the CmpSwap ATOMIC Op-
eration.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Virtual Address (63-32)

4-7 Virtual Address (31-0)

8-11 R_Key

12-15 Swap (or Add) Data (63-32)

16-19 Swap (or Add) Data (31-0)

20-23 Compare Data (63-32)

24-27 Compare Data (31-0)

Figure 70 ATOMIC Extended Transport Header (AtomicETH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 243 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3.5 ACK EXTENDED TRANSPORT HEADER (AETH) - 4 BYTES

ACK Extended Transport Header (AETH) contains the additional trans-
port fields for ACK packets. The ACK Extended Transport header is in-
cluded in all ACK and the first and last packet of RDMA READ Response
messages.

9.3.5.1 SYNDROME
This field indicates if this is an ACK or NAK. If the packet is an ACK and
the QP is associated with Reliable Connection transport service, the syn-
drome also provides the Limit Sequence Number (LSN) - see 9.7.7.2 End-
to-End (Message Level) Flow Control on page 347. If packet is a NAK, it
indicates the error code. For RNR NAK, this field indicates the re-
sponder’s requested timer to be used before retransmitting the request.

9.3.5.2 MESSAGE SEQUENCE NUMBER (MSN)

Monotonically increasing (modulo 224) sequence number of the last mes-
sage completed at the responder. This field is used to optimize completion
processing at the requester.

9.3.5.3 ATOMIC ACKNOWLEDGE EXTENDED TRANSPORT HEADER (ATOMICACKETH) - 8 BYTES

ATOMIC Acknowledge Extended Transport Header (AtomicETH) con-
tains the additional transport fields for ATOMIC response operations.

9.3.5.4 ORIGINAL REMOTE DATA (ORIGREMDT) - 64 BITS

The data result from an ATOMIC Operation. This is the initial contents
read from the remote memory buffer.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Syndrome MSN

Figure 71 Acknowledge Extended Transport Header (AETH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Original Remote Data (63-32)

4-7 Original Remote Data (31-0)

Figure 72 ATOMIC Acknowledge Extended Transport Header (AtomicAckETH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 244 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.3.6 IMMEDIATE EXTENDED TRANSPORT HEADER (IMMDT) - 4 BYTES

Immediate Data (ImmDt) contains data that is placed in the receive Com-
pletion Queue Element (CQE). The ImmDt is only allowed in SEND or
RDMA WRITE packets with Immediate Data.

9.3.7 INVALIDATE EXTENDED TRANSPORT HEADER (IETH) - 4 BYTES

The SEND with Invalidate operation carries with it an R_Key field. This
R_Key is used by the responder to invalidate a memory region or memory
window once it receives and executes the SEND with Invalidate request.
The R_Key is carried in a new extended transport header called the Inval-
idate Extended Transport Header (IETH) as shown below.

9.3.7.1 R_KEY - 32 BITS

R_Key defining the memory region or memory window to be Invalidated
by the responder.

9.4 TRANSPORT FUNCTIONS

A QP provides the transport layer’s client (e.g. the verbs layer in an HCA)
with a specific transport service. Different transport services have various
reliability levels for connected and connectionless communication. This
section describes the basic functions used with each of the transport ser-
vices. Additional transport sections go into more depth on the specifics of
response packets, ordering, error recovery, etc. This section provides the
high level view of the functions and how they work.

bits
bytes

31-24 23-16 15-8 7-0

0-3 Immediate Data

Figure 73 Immediate Extended Transport Header (ImmDt)

bits
bytes

31-24 23-16 15-8 7-0

0-3 R_Key

Figure 74 Invalidate Extended Transport Header (IETH)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 245 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Not all the functions are available for each transport service, as described
in Table 36 below. The Raw Datagram transport service does not use the

IBA defined transport functions. Instead, Raw Datagram packets transfer
data that is part of some other, non IBA protocol.

9.4.1 SEND OPERATION

The SEND Operation is sometimes referred to as a Push operation or as
having channel semantics. Both terms refer to how the SW client of the
transport service views the movement of data. With a SEND operation the
initiator of the data transfer pushes data to the remote QP. The initiator
doesn’t know where the data is going on the remote node. The remote
node’s Channel Adapter places the data into the next available receive
buffer for that QP. On an HCA, the receive buffer is pointed to by the WQE
at the head of the QP’s receive queue.

The SEND Operation is referred to as having channel semantics because
it moves data much like a mainframe IO channel -- the data is tagged with
a discriminator (for IBA the discriminator is the destination LID and QP
number) and the destination chooses where to place the data based on
the discriminator.

A SEND Operation moves a single message. For the RC, RD, and UC
transport services this message may be longer than a single packet. A
message may range in size from zero bytes to 231 bytes.

C9-10: The size of a SEND Operation, as generated by a requester, shall
be between zero and 231 bytes (inclusive).

Table 36 Transport Functions Supported for Specific Transport
Services

Transport
Function

Transport Service

Reliable
Connection

Unreliable
Connection

Reliable
Datagram

Unreliable
Datagram

Raw
Datagram

SEND supported supported supported supported not
applicable

RESYNC not supported not sup-
ported

supported not sup-
ported

not sup-
ported

RDMA WRITE supported supported supported not
supported

not
applicable

RDMA READ supported not
supported

supported not
supported

not
applicable

ATOMIC Opera-
tions

optional
support

not
supported

optional
support

not
supported

not
applicable

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 246 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-11: For RC and UC transport services in an HCA, a request message
greater than PMTU in length shall be segmented into PMTU-sized seg-
ments for transmission via multiple packets. Similarly, an HCA responder
shall reassemble such packets back into a single message.

o9-4: For RD transport services in an HCA, a request message greater
than PMTU in length shall be segmented into PMTU-sized segments for
transmission via multiple packets. Similarly, an HCA responder shall reas-
semble such packets back into a single message.

o9-5: For RC, UC and RD transport services in a TCA, a request message
greater than PMTU in length shall be segmented into PMTU-sized seg-
ments for transmission via multiple packets. Similarly, a TCA responder
shall reassemble such packets back into a single message.

C9-12: For the Unreliable Datagram transport service, a SEND Operation
shall consist only of single packet messages (i.e. the message data pay-
load is limited to a maximum of the PMTU between the requester and the
responder, i.e. 256, 512, 1024, 2048, or 4096 bytes).

A SEND Operation can, at the discretion of the client, include 4 bytes of
Immediate data with each send message. If included, the Immediate data
is contained within an additional header field (Immediate Extended Trans-
port Header or ImmDt) on the last packet of the SEND Operation.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 247 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For example, Figure 75 below shows a SEND Operation of 700 bytes re-
quiring 3 SEND packets, (assuming a 256 Byte PMTU).

There are several things to note from the above figure:

• The BTH OpCode field determines the start and end of the SEND
message.
• If the SEND message is less than or equal to the PMTU, then

the BTH OpCode “SEND Only” or “SEND Only with Immedi-
ate” is used.

• If the SEND message is for a length of zero, then the BTH
OpCode “SEND Only” or “SEND Only with Immediate” is
used. In this case, there is no Data Payload field, but all other
fields are as shown.

• If the SEND message is greater than the PMTU, then the
BTH OpCode of the first packet is “SEND First” and the BTH
OpCode of the last packet is “SEND Last” or “SEND Last with
Immediate”.

• If the SEND message is greater than twice the PMTU, then
the packets between the first and last use the BTH OpCode
“SEND Middle”.

ImmDtImmDt

GRH

GRH

GRH

RDETH DETH

RDETH DETH

RDETH DETH

GRH

GRH

GRH

Field Name

LRH Local Route Header

GRH Global Route Header

BTH Base Transport Header

RDETH Reliable Datagram
Extended Transport
Headera

a. Present only for the Reliable
Datagram transport service

DETH Datagram Extended
Transport Headerb

b. Present only for Reliable Datagram
and Unreliable Datagram transport
service

ImmDt Immediate Extended
Transport Header

ICRC Invariant CRC

VCRC Variant CRC

Packet Header Field
present if necessary

Packet #1 VCRCICRC

Packet #2
VCRCICRC

Packet #3
ICRC VCRC

Packet Header Field

Figure 75 SEND Operation Example

LRH

LRH

LRH

A 700 byte SEND Operation uses
3 packets, assuming a 256 Byte
PMTU. Acknowledgment
Packets, used for reliable trans-
port services, are not shown.

RDETH DETHBTH Data Payload

RDETH DETH

RDETH DETH

BTH Data Payload

BTH Data Payload

Packet BTH OpCodea

a. The BTH OpCode determines if
the RDETH, DETH, and ImmDt
headers are present.

#1 “SEND First”

#2 “SEND Middle”

#3 “SEND Last” or “SEND
Last with Immediate”

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 248 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Every packet in a message that doesn’t have the opcode
SEND Only, SEND Only with Immediate, SEND Last, or
SEND Last with Immediate shall have a data field of PMTU
length.

• The responder node (the destination of the SEND Operation)
does not know the final length of the SEND message until the last
packet with the “SEND Last” or “SEND Last with Immediate” Op-
Code arrives.

• The Packet Sequence Number field is used by the responder to
detect out-of-order or missing packets.

• If the entire message is not a multiple of the PMTU, then the initial
packets of the message carry a full PMTU number of bytes and
the final packet carries the remainder as a partial payload.

• For a given requesting node’s QP, once a multi-packet SEND Op-
eration is started, no other request packets may be generated un-
til the “SEND Last” or “SEND Last with Immediate” packet.

C9-13: A multi-packet message shall not be interleaved with other opera-
tions on the same SEND Queue.

• Not all SEND messages carry Immediate data. If they do, a spe-
cial header is included in the last or only packet of the message.
The presence of the header is indicated by a special “SEND Last
with Immediate Data” or “SEND Only with Immediate Data” Op-
Code in the BTH.

• For an HCA, there is no alignment requirement for the source or
destination buffers of a SEND message. For buffers within a TCA,
any alignment requirement is implementation specific.

The verbs chapter explains how the upper level SW client of an HCA uses
a work request to post a buffer that is in turn segmented and sent as
packets across the fabric. The same chapter also describes how the des-
tination node posts a receive buffer into which the destination HCA reas-
sembles the data. SEND messages initiated by a TCA use an
implementation specific mechanism to create (and respond to) SEND
packets.

C9-14: When generating a packet for a SEND operation, the requester
shall include at least these headers and fields in every packet of the re-
quest: LRH, BTH, Data Payload, ICRC, VCRC.

C9-15: When generating a response to a SEND operation, the responder
shall include at least these headers and fields the response: LRH, BTH,
AETH, ICRC, VCRC.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 249 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.4.1.1 SEND WITH INVALIDATE

In most respects, a SEND with Invalidate operates exactly as does a nor-
mal SEND operation. The significant variation is that the last (or only)
packet of the message carries with it an R_KEY in an IETH (Invalidate
Extended Transport Header). This is the R_KEY that the responder is
being asked to invalidate. In effect, the Invalidate function is piggy-
backed onto a normal SEND operation.

There are several things to note about SEND with Invalidate with respect
to a normal SEND operation. All of the following statements assume that
an Invalidate operation is being piggybacked onto a “normal” SEND
operation.

• If the SEND message onto which the invalidate operation is piggy-
backed is less than or equal to the PMTU, then the BTH OpCode
“SEND Only with Invalidate” is used.

• If the SEND message onto which the invalidate operation is piggy-
backed is for a length of zero, then the BTH OpCode “SEND Only
with Invalidate” is used. In this case, there is no Data Payload field,
but all other fields are as shown.

• If the SEND message onto which the invalidate operation is piggy-
backed is greater than the PMTU, then the BTH OpCode of the first
packet is “SEND First” and the BTH OpCode of the last packet is
“SEND Last with Invalidate”. The BTH OpCode for all other packets
of the message is “SEND Middle”.

• Every packet in a SEND message that doesn’t have the opcode
“SEND Only”, “SEND Only with Immediate”, “SEND Only with Invali-
date”, “SEND Last”, “SEND Last with Immediate”, or “SEND Last with
Invalidate” shall have a data field of PMTU length.

• The responder node (the destination of the SEND operation) does
not know the final length of the SEND message onto which the invali-
date operation is being piggybacked until the last packet with the
“SEND Last with Invalidate” OpCode arrives.

• For a given requesting node’s QP, once a multi-packet SEND opera-
tion is started, no other request packets may be generated until the
“SEND Last”, “SEND Last with Immediate”, or “SEND Last with Inval-
idate” packet is generated.

Remote invalidate operations are used to disable access to memory
through the R_Key contained in the IETH. However, Invalidate operations
maintain the memory translation and protection resources associated with
the R_Key that is being invalidated. A SEND with Invalidate operation
does not disable all accesses to the memory referenced by the R_Key, it
simply means that the R_Key being invalidated can no longer be used to
access those memory regions or memory windows. Other R_Keys that
reference the same memory remain valid.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 250 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The intent is that the Invalidate operation be executed by the channel in-
terface, which may include hardware as well as software drivers below the
verbs. Thus, the invalidate operation may be performed by the software
driver immediately above the transport layer hardware. In this case, the
transport layer hardware simply passes the IETH upwards to the software
portion of the channel interface which executes the necessary invalida-
tion. For this reason, the IETH is not validated as part of normal transport
packet header validation. The invalidate operation does not make any
changes to the state of the referenced memory.

9.4.1.1.1 INVALIDATE OPERATION ORDERING

o9-5.2.1: For any HCA which supports SEND with Invalidate, upon re-
ceiving an IETH, the Invalidate operation must not take place until after
the normal transport header validation checks have been successfully
completed.

An invalidation must not occur if the packet containing the IETH (e.g.
SEND with Invalidate) is not a valid packet as described by normal
packet validation procedures. However, since the invalidation operation
is not executed by the transport layer, the Invalidate operation may take
place either before or after the transport-level acknowledge has been
generated, but in any case, the transport-level acknowledgement
(ACK/NAK) does not reflect either the success or failure of the invalidate
operation.

The following defines the ordering rules for a SEND with Invalidate oper-
ation:

1) there are no ordering guarantees between any SEND with Invalidate
operation and any subsequent operation. Thus a requester cannot
rely on a SEND with Invalidate operation, by itself, to prevent access
to the responder’s invalidated region by a subsequent operation.

2) Normal ordering rules apply to an RDMA WRITE, SEND or ATOMIC
operation followed by a SEND with Invalidate operation. In this case,
the RDMA WRITE, SEND or ATOMIC operation executes before the
subsequent SEND with Invalidate operation is executed at the re-
sponder.

3) a SEND with Invalidate operation may impact a previous RDMA
READ operation. Thus, a requester should not perform a SEND with
Invalidate while previous RDMA READ operations are still out-
standing. The requester can set the Fence attribute on a given work
request such as a SEND with Invalidate in order to ensure that pre-
vious outstanding RDMA READ operations have completed before
initiating a subsequent SEND with Invalidate operation.

4) As always, acknowledgements are always returned by the responder
in order, and WQEs at the requester are always completed in order.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 251 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.4.1.1.2 RESPONDER - R_KEY VALIDATION

The transport layer does not validate the R_Key field of the IETH during
transport-level packet header validation. The channel interface retains re-
sponsibility for validating the R_Key field of the IETH prior to executing the
invalidation. For this reason, the IETH is not considered to be a transport
header and therefore R_Key validation for a remote invalidate operation
is not discussed in this section.

See 9.4.1.1.3 R_Key Validation for Remote Memory Invalidate on page
251 for a description of validating the R_Key field of the IETH.

9.4.1.1.3 R_KEY VALIDATION FOR REMOTE MEMORY INVALIDATE

o9-5.2.2: For a CA which supports remote invalidate, prior to executing a
remote invalidate operation, the R_Key contained in the IETH must be
validated. To be considered valid, all of the following conditions must be
true:

1) The R_Key must not be in the invalid state.

2) If the implementation supports a single key space for the L_Keys and
R_Keys, the R_Key contained in the IETH must not be the same as
the reserved L_Key.

3) For an HCA, the R_Key must not reference a memory region that
was created through a Register Memory Region or Reregister
Memory Region.

4) For an HCA, the R_Key must not reference a Shared Memory
Region.

5) For an HCA, the R_Key must not reference a memory region that is
associated with a different protection domain than the QP on which
the IETH was received.

6) For an HCA, the R_Key must not reference a type 1 memory window.
See Section 10.6.7.2.3 Type 1 Memory Windows on page 495 for a
description of type 1 memory windows.

7) For an HCA, the R_Key must not simultaneously be in the valid state
and be referencing a type 2A memory window that is associated with
a different QP than the QP on which the IETH was received. See
Section 10.6.7.2.4 Type 2 Memory Windows on page 497 for a de-
scription of type 2 memory windows.

8) For an HCA, the R_Key must not simultaneously be in the valid state
and be referencing a type 2B memory window that is associated with
a different protection domain or QP than the QP on which the IETH
was received. See Section 10.6.7.2.4 Type 2 Memory Windows on
page 497 for a description of type 2 memory windows.

9) For an HCA, the R_Key must not simultaneously be in the free state
and be referencing a type 2 memory window that is associated with a

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 252 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

different protection domain than the protection domain of the QP on
which the IETH was received. See Section 10.6.7.2.4 Type 2 Memory
Windows on page 497 for a description of type 2 memory windows.

Note: If the L_Key and its accompanying R_Key are in the Free State
then a remote invalidate operation will not change the L_Key and its
accompanying R_Key state.

The behavior governing the QP if the R_Key validation as defined above
in compliance statement o9-5.2.2: fails is defined in Table 58 Responder
Error Behavior Summary on page 409 under the entry titled “Remote
Invalidate Error”.

9.4.2 RESYNC OPERATION

A RESYNC operation is supported only for the Reliable Datagram trans-
port service. RESYNC is essentially the same as a zero-length Reliable
Datagram SEND-only request but with a several unique properties:

1) RESYNC is used by the requester to force the responder to reset its
expected PSN to a value defined by the requester,

2) A RESYNC request carries a data payload of zero length,

3) The responder is required to accept a RESYNC request, even if the
currently executing request has not yet completed.

4) A RESYNC request does not, itself, directly consume either a send
WQE on the requester side, nor a receive WQE on the responder
side.

C9-15.a1: The RESYNC request shall carry a zero length Data Payload.

9.4.3 RDMA WRITE OPERATION
The RDMA WRITE Operation is used by the requesting node to write into
the virtual address space of a destination node. The message may be be-
tween zero and 231 bytes (inclusive) and is written to a contiguous range
of the destination QP’s virtual address space (not necessarily a contig-
uous range of physical memory).

C9-16: For an HCA requester performing RDMA WRITE operations, the
length of an RDMA WRITE message, as reflected in the RETH:DMALen
field, shall be between zero and 231 bytes (inclusive).

o9-6: If a TCA requester implements RDMA WRITE functionality, the
length of an RDMA WRITE message, as reflected in the RETH:DMALen
field, shall be between zero and 231 bytes (inclusive).

Before allowing incoming RDMA WRITEs, the destination node first allo-
cates a memory range for access by the destination’s QP (or group of

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 253 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

QPs). A destination’s channel adapter associates a 32-bit R_Key with this
memory region or window. For a HCA, the verbs layer refers to this as reg-
istering a memory region - see 10.6 Memory Management on page 468.
TCAs use an implementation-specific mechanism to allocate and manage
R_Keys that is outside the scope of the IBA specification.

The destination communicates the virtual address, length, and R_Key to
any other host it wishes to have access the memory region. The commu-
nication of address and R_Key is done by the client upper level protocol -
the exchange is outside the scope of the IBA. For example, an application
program might embed the address, length, and R_Key into a private data
structure that it in turn pushes to other application programs using the
SEND Operation.

C9-17: As with SEND Operations, an HCA requester shall segment a
RDMA WRITE message larger than the PMTU into multiple packets.

o9-7: If a TCA requester implements RDMA WRITE functionality, it shall
segment a RDMA WRITE message larger than the PMTU into multiple
packets.

If specified by the verbs layer, Immediate data is included in the last
packet of an RDMA WRITE message. The Immediate data is not written
to the target virtual address range, but is passed to the client after the last
RDMA WRITE packet is successfully processed. E.G. on an HCA the im-
mediate data is placed on the completion queue.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 254 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For example, Figure 76 below shows a 700 byte RDMA WRITE (on a path
with a 256B PMTU).

There are several things to note from the above figure:

• The BTH OpCode field determines the start and end of the RDMA
WRITE message.
• If the RDMA WRITE request was for a length of zero, then the

BTH OpCode “RDMA WRITE Only” or “RDMA WRITE Only
with Immediate” is used. In this case, there is no Data Pay-
load field, but all other fields are as shown.

• If the RDMA WRITE message is less than or equal to the PM-
TU, then the BTH OpCode “RDMA WRITE Only” or “RDMA
WRITE Only with Immediate” is used.

• If the RDMA WRITE message is greater than the PMTU, then
the BTH OpCode of the first packet is “RDMA WRITE First”
and the BTH OpCode of the last packet is “RDMA WRITE
Last” or “RDMA WRITE Last with Immediate”.

ImmDtImmDt

RDETH DETH

RDETH DETH

RDETH DETHGRH

GRH

GRH

RDETH DETH

RDETH DETH

RETHRDETH DETHGRH

GRH

GRH

Field Name

LRH Local Route Header

GRH Global Route Header

BTH Base Transport Header

RDETH Reliable Datagram
Extended Transport
Headera

a. Present only for the Reliable
Datagram transport service

DETH Datagram Extended
Transport Headera

RETH RDMA Extended
Transport Header

ImmDt Immediate Extended
Transport Header

ICRC Invariant CRC

VCRC Variant CRC

Packet Header Field
present if necessary

Packet #1 BTH Data Payload VCRCICRC

Packet #2 BTH VCRCICRC

Packet #3 BTH Data Payload ICRC VCRC

Packet Header Field

Figure 76 RDMA WRITE Operation Example

LRH

LRH

LRH

A 700 byte RDMA WRITE Operation
uses 3 packets, assuming a 256 Byte
PMTU. Acknowledgment Packets, used
for reliable transport services, are not
shown.

Data Payload

Packet BTH OpCodea

a. The BTH OpCode field
determines if the RDETH, DETH,
and ImmDt headers are present.

#1 “RDMA WRITE First”

#2 “RDMA WRITE Middle”

#3 “RDMA WRITE Last” or
“RDMA WRITE Last with
Immediate”

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 255 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If the RDMA WRITE message is greater than twice the PM-
TU, then the packets between the first and last use the BTH
OpCode “RDMA WRITE Middle”.

• Every packet in a RDMA WRITE message that doesn’t have
the opcode RDMA WRITE Only, RDMA WRITE Only with Im-
mediate, RDMA WRITE Last, or RDMA WRITE Last with Im-
mediate has a data field of PMTU length.

• The RETH header is present in the first (or only) packet of the
message. It contains the virtual address of the destination buffer
as well as the R_Key and message length fields.

• The Packet Sequence Number field is used by the responder to
detect out-of-order or missing packets.

• If the entire message is not a multiple of the PMTU, then the initial
packets of the message carry a full PMTU number of bytes and
the final packet carries the remainder in a partial payload.

• For a given requesting node’s QP, once a multi-packet RDMA
WRITE operation is started, no other request packets may be
generated until the “RDMA Last” or “RDMA Last with Immediate
Data” packet is sent.

C9-18: For an HCA RDMA WRITE request, a multi-packet message shall
not be interleaved with other operations on the same SEND Queue.

o9-8: If a TCA requester implements RDMA WRITE functionality, then for
an RDMA WRITE request, a multi-packet message shall not be inter-
leaved with other operations on the same SEND Queue.

• Not all RDMA WRITE messages carry Immediate data. If a
RDMA WRITE does, a special header is included in the last (or
only) packet of the message. The presence of the header is indi-
cated by a special “RDMA WRITE Last with Immediate Data” or
“RDMA WRITE Only with Immediate Data” OpCode in the BTH.

• For an HCA, there is no alignment requirement for the source or
destination buffers of an RDMA WRITE message. For buffers
within a TCA, any alignment requirement is implementation spe-
cific.

C9-19: When generating an RDMA WRITE Request, an HCA requester
shall include at least the following headers and fields in each request
packet: LRH, BTH, Data Payload, ICRC, VCRC. The first (or only) packet
of the request shall also include the RETH.

o9-9: If a TCA requester implements RDMA WRITE functionality, it shall
behave as follows. When generating an RDMA WRITE Request, a TCA
requester shall include at least the following headers and fields in each re-
quest packet: LRH, BTH, Data Payload, ICRC, VCRC. The first (or only)
packet of the request shall also include the RETH.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 256 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-20: When generating an RDMA WRITE Response, an HCA responder
shall include at least the following headers and fields in each response
packet: LRH, BTH, AETH, ICRC, VCRC.

o9-10: If a TCA responder implements RDMA WRITE functionality, then
when generating an RDMA WRITE Response, a TCA responder shall in-
clude at least the following headers and fields in each response packet:
LRH, BTH, AETH, ICRC, VCRC.

9.4.4 RDMA READ OPERATION

RDMA READ Operations are similar to RDMA WRITE Operations. They
allow the requesting node to read a virtually contiguous block of memory
on a remote node. As with RDMA WRITEs, the responding node first al-
lows the requesting node permission to access its memory. The re-
sponder passes to the requestor a virtual address, length, and R_Key to
use in the RDMA READ request packet.

A single RDMA READ request can read from zero to 231 bytes (inclusive)
of data.

C9-21: For an HCA responding to an RDMA READ request, if the re-
quested data size is greater than the PMTU, the responder shall segment
the data into PMTU size data segments for transmission as multiple
RDMA READ Response packets. The data is reassembled in the re-
questing node’s memory.

o9-11: If a TCA responder implements RDMA READ functionality, and the
requested data size is greater than the PMTU, the responder shall seg-
ment the data into PMTU size data segments for transmission as multiple
RDMA READ Response packets. The data is reassembled in the re-
questing node’s memory.

C9-22: For an HCA requester using RDMA operations, the length of the
requested RDMA READ data, as reflected in the RETH:DMALen field,
shall be between zero and 231 bytes (inclusive).

o9-12: If a TCA requester implements RDMA READ functionality, then the
length of the requested RDMA READ data, as reflected in the
RETH:DMALen field, shall be between zero and 231 bytes (inclusive).

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 257 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following example in Figure 77 shows a 700 byte RDMA READ oper-
ation (on a path with a 256B PMTU)

RDETH

RDETH

RDETH

RDETH

GRH

GRH

GRH

GRHGRH

GRH

GRH

Packet Header Field
present if necessary

Response
Packet #1

Response
Packet #2 VCRCICRC

Response
Packet #3 ICRC VCRC

Packet Header Field

Figure 77 RDMA READ Operation Example

LRH

LRH

LRH

A 700 byte RDMA READ Operation
has 3 response packets, assuming a
256 Byte PMTU.

GRH
Request
Packet LRH

Packet BTH OpCodea

a. The BTH OpCode field
determines if the RDETH and AETH
are present.

Request “RDMA READ Request”

#1 “RDMA READ Response
First”

#2 “RDMA READ Response
Middle”

#3 “RDMA READ Response
Last”

RDETH

RDETH AETH

RDETH

RDETH

Field Name

LRH Local Route Header

GRH Global Route Header

BTH Base Transport Header

RDETH Reliable Datagram
Extended Transport
Headera

a. Present only for the Reliable
Datagram transport service

DETH Datagram Extended
Transport Headera

AETH Acknowledgment
Extended Transport
Header

RETH RDMA Extended
Transport Header

ICRC Invariant CRC

VCRC Variant CRC

BTH

BTH Data Payload

BTH Data Payload

BTH VCRCICRC

RDMA READRequest Packet

RDMA READ

Response

 Packet #1

RDMA READ

Response

 Packet #2

RDMA READ

Response

 Packet #3

A ladder diagram showing the single RDMA READ
Request Packet initiated by the requestor node. In
this example, the destination node segments the
data into three response packets.

DETH RETH

AETH VCRCICRCData Payload

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 258 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

There are several items to note in the previous figure:

• A single request packet will result in multiple read response pack-
ets if the read length is greater than the PMTU.

• The BTH OpCode field identifies the packet as a RDMA READ
Request or Response as well as determines if any of the extend-
ed transport headers are present.

• The BTH OpCode field determines the start and end of the RDMA
READ Acknowledgment message.

• If the RDMA READ request message requested a zero byte
transfer, then the BTH OpCode “RDMA READ Response
Only” is used. All other fields remain as shown.

• If the RDMA READ Acknowledgment message is less than or
equal to the PMTU, then the BTH OpCode “RDMA READ Re-
sponse Only” is used.

• If the RDMA READ message is greater than the PMTU, then
the BTH OpCode of the first packet is “RDMA READ Re-
sponse First” and of the last packet “RDMA READ Response
Last”.

• If the RDMA READ response message is greater than twice
the PMTU, then the packets between the first and last use the
BTH OpCode “RDMA READ Response Middle”.

• Every packet in a RDMA READ Response First or RDMA
READ Response Middle message has a data field of PMTU
length.

• If the entire message is greater than a multiple of the PMTU, then
the initial packets of the response message carry a full PMTU
number of bytes and the final packet carries a partial payload.

• The Packet Sequence Number (PSN) field is used to detect out-
of-order or missing response packets.

• After initiating a RDMA READ Request packet, the requesting
node may send out additional request packets without waiting for
the response packets to return. See section 9.7.3.1 Requester
Side - Generating PSN on page 289 for an explanation of how the
PSN is determined for subsequent request packets.

• The maximum number of RDMA READ Requests for a particular
QP that can be outstanding at any one time is negotiated at con-
nection establishment time. A responder may restrict the connec-
tion to as few as one outstanding RDMA READ request per QP. If
ATOMIC Operations are supported, the number of outstanding
requests negotiated at connection establishment time includes
both ATOMIC Operation requests and RDMA READ requests.

• RDMA READ packets never carry Immediate data.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 259 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RDMA READ Requests are retried if the requester did not receive the
proper response.

• Retried RDMA READ Requests need not start at the same ad-
dress nor have the same length as the original RDMA READ. The
retried request may only reread those portions that were not suc-
cessfully responded to the first time.

• The responder validates the R_Key and RDMA READ virtual ad-
dress for the retried request.

• The PSN of the retried RDMA READ must be in the duplicate
PSN region. See Section 9.7.1 Packet Sequence Numbers (PSN)
on page 282

• The PSN of the retried RDMA READ request need not be the
same as the PSN of the original RDMA READ request. Any re-
tried request must correspond exactly to a subset of the original
RDMA READ request in such a manner that all potential dupli-
cate response packets must have identical payload data and
PSNs regardless of whether it is a response to the original re-
quest or a retried request.

• For an HCA, there is no alignment requirement for the source or
destination buffers of an RDMA READ message. For buffers with-
in a TCA, any alignment requirement is implementation specific.

C9-23: When generating an RDMA READ Request, an HCA requester
shall include at least the following headers and fields in its request packet:
LRH, BTH, RETH, ICRC, VCRC.

o9-13: If a TCA requester implements RDMA operations, then it shall in-
clude at least the following headers and fields in its request packet: LRH,
BTH, RETH, ICRC, VCRC.

C9-24: When generating an RDMA READ Response, an HCA responder
shall include at least the following headers and fields in each response
packet: LRH, BTH, Data Payload, ICRC, VCRC. If the response packet
BTH:Opcode is “RDMA READ Response First, RDMA READ Response
Last, or RDMA READ Response Only, the packet shall also include an
AETH. If the response packet BTH:Opcode is “RDMA READ Response
Middle, an AETH shall not be included.

o9-14: If a TCA responder implements RDMA operations, then it shall in-
clude at least the following headers and fields in each response packet:
LRH, BTH, Data Payload, ICRC, VCRC. If the response packet BTH:Op-
code is “RDMA READ Response First, RDMA READ Response Last, or
RDMA READ Response Only, the packet shall also include an AETH. If
the response packet BTH:Opcode is “RDMA READ Response Middle, an
AETH shall not be included.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 260 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.4.5 ATOMIC OPERATIONS

ATOMIC Operations execute a 64-bit operation at a specified address on
a remote node. The operations atomically read, modify and write the des-
tination address and guarantee that operations on this address by other
QPs on the same CA do not occur between the read and the write. The
scope of the atomicity guarantee may optionally extend to other CPUs
and HCAs.

ATOMIC Operations use the same remote memory addressing mecha-
nism as RDMA READs and Writes. The virtual address specified in the re-
quest packet is in the address space of the remote QP that the ATOMIC
Operation has targeted.

ATOMIC Operations consist of two packet types, the “ATOMIC Com-
mand”, request packet and the “ATOMIC Acknowledge” response packet.

1) ATOMIC Operations are only supported by the Reliable Connection
and Reliable Datagram transport services.

2) ATOMIC Operations do not support Immediate data.

3) ATOMIC Operations support is strongly recommended to be provided
strictly in hardware.7

4) The virtual address in the ATOMIC Command Request packet shall
be naturally aligned to an 8 byte boundary. The responding CA
checks this and returns an Invalid Request NAK if it is not naturally
aligned.

IBA defines the following ATOMIC Operations:

• FetchAdd (Fetch and Add)

The FetchAdd ATOMIC Operation tells the responder to read a 64-bit
buffer value at a naturally aligned virtual address in the responder's
memory, perform an unsigned8 add using the 64-bit Add Data field in
the AtomicETH, and write the result (must match the memory type at
the requester) back to the same virtual address. The responder's op-
eration shall be atomic (i.e. undisturbed by other entities) per section
9.4.5.1 Atomicity Guarantees on page 262.

The FetchAdd operation is performed in the endian format of the
target memory. The original remote data is converted from the endian
format of the target memory for return. The fields are in Big-endian
format on the wire.

7. CA implementations may use software assists - this shall be indistinguishable
from a hardware-only implementation; Performance must be such that higher
level software applications are not affected.
8. If Signed numbers are used, this is the same as using twos complement
arithmetic (the carry is not saved nor reported).

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 261 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The requestor specifies:

• Remote data address and R_Key

• Add data

The acknowledge packet returns:

• Original remote data

After the operation, the responder's memory at the specified virtual
address contains the unsigned sum of the original value and the Add
field in the AtomicETH header. All operations on the requester’s
memory are done in the native endian format of the requester.

• CmpSwap (Compare and Swap)

The CmpSwap ATOMIC Operation tells the responder to read a 64-bit
value at a naturally aligned virtual address in the responder's memory,
compare it with the Compare Data field in the AtomicETH header, and,
if they are equal, write the Swap Data field from the AtomicETH
header into the same virtual address. If they are not equal, the con-
tents of the responder's memory are not changed. In either case, the
original value read from the virtual address is returned to the re-
quester. The responder's operation shall be atomic (i.e. undisturbed
by other entities) per section 9.4.5.1 Atomicity Guarantees on page
262.

The requestor specifies:

• Remote data address and R_Key

• Write (swap) data

• Compare data

The acknowledgment packet returns:

• Original remote data

After the operation, the remote data buffer contains the “original re-
mote value” (if comparison did not match) or the “Write (swap) data”
(if the comparison did match).

The CmpSwap operation involves three 8 byte data buffers, the com-
pare data, the write (swap) data, and the original remote data. All three
are transmitted within the request and response packets in byte big
endian format. All operations on the responder’s CA memory are done
in the native endian format of that memory system. All operations on
the requestor’s memory are done in the native endian format of the re-
questor.

For example, consider a big endian CA initiating a CmpSwap ATOMIC
Operation request packet to a little endian responder. The request
packet contains two big endian data fields: the compare data and the
write (swap) data. The responder converts these data fields to little en-
dian format and does the compare and swap operation. The original

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 262 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

target data field is converted to big endian format and returned in the
response packet.

.

o9-15: When generating an ATOMIC Operation request, a requester shall
include at least an LRH, a BTH, an AtomicETH, an ICRC and a VCRC.
The sources of data for the LRH, BTH and AtomicETH headers shall be
as shown in Table 60 Packet Fields and Parameters by Service on page
420.

o9-16: When responding to an ATOMIC Operation request, a responder
shall include in its response packet at least an LRH, BTH, AETH, Atomi-
cAckETH, ICRC and a VCRC.

9.4.5.1 ATOMICITY GUARANTEES

o9-17: Atomicity of the read/modify/write on the responder’s node by the
ATOMIC Operation shall be assured in the presence of concurrent atomic
accesses by other QPs on the same CA.

RDETH

GRH

GRH

GRH

Packet Header Field
present if necessary

Acknowl-
edgment
Packet

ICRC VCRC

Packet Header Field

Figure 78 ATOMIC Operation Example

LRH

GRH
Request
Packet LRH

AETH

RDETH

Field Name

LRH Local Route Header

GRH Global Route Header

BTH Base Transport Header

RDETH Reliable Datagram
Extended Transport
Headera

a. Present in ATOMIC Operations only for
the Reliable Datagram transport service

AETH Acknowledgment Extended
Transport Header

DETH Datagram Extended
Transport Headera

AtomicETH ATOMIC Request
Extended Transport
Header

AtomicAck-
ETH

ATOMIC Acknowledgment
Extended Transport
Header

ICRC Invariant CRC

VCRC Variant CRC

BTH AtomicAckETH

BTH VCRCICRC

ATOMIC Command
Request Packet

ATOMIC

Acknowledgment

Packet

A ladder diagram showing the “ATOMIC
Command” Request Packet and the re-
turning “ATOMIC Acknowledge” response

DETH AtomicETH

RDETHRDETH

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 263 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-18: A CA may optionally assure atomicity of ATOMIC Operations in the
presence of concurrent memory accesses from other CAs, IO devices,
and CPUs. For a HCA, the Verbs layer shall report whether it supports this
enhanced atomicity guarantee.

9.4.5.2 ATOMIC ACKNOWLEDGMENT GENERATION AND ORDERING RULES

1) For the requestor, an ATOMIC Operation is considered complete
when the response packet returns.

2) If an RDMA READ work request is posted before an ATOMIC Oper-
ation work request then the atomic may execute its remote memory
operations before the previous RDMA READ has read its data. This
can occur because the responder is allowed to delay execution of the
RDMA READ. Strict ordering can be assured by posting the ATOMIC
Operation work request with the fence modifier. See the description
for the fence modifier Post Send Request. The fence modifier causes
the requestor to wait till the RDMA READ completes before issuing
the ATOMIC Operation.

3) When a sequence of requests arrives at a QP, the ATOMIC Operation
only accesses memory after prior (non-RDMA READ) requests
access memory and before subsequent requests access memory.
Since the responder takes time to issue the response to the atomic
request, and this response takes more time to reach the requestor
and even more time for the requestor to create a completion queue
entry, requests after the atomic may access the responders memory
before the requestor writes the completion queue entry for the
ATOMIC Operation request.

4) Each ATOMIC Operation request requires an explicit response and
acknowledge message. An ATOMIC Operation response, with a
properly formed AETH, is considered an acknowledge message.

9.4.5.3 ERROR BEHAVIOR

A responder utilizes vendor specific resources and facilities to implement
ATOMIC Operations and RDMA READs as well as to facilitate retried
ATOMIC requests. It is the responsibility of the requestor to ensure that all
unacknowledged ATOMIC operations and RDMA READs combined do
not overrun the receiver resources. The number of these resources is ne-
gotiated on a per QP basis at connection setup (see 9.4.4 RDMA READ
Operation on page 256 and 9.4.5 ATOMIC Operations on page 260).

The responding node saves the reply data, the PSN, and an indication
that the stored data is from an ATOMIC Operation. This saved data is
used to generate the response for retried ATOMIC Operations. Note that
the execution of an RDMA READ operation may consume the same re-
sources as is used to save the ATOMIC Operation PSN and reply data.
The information is stored in the destination QP’s “connection context”.
The “connection context” is the QP context for Reliable Connection Ser-

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 264 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

vice. For Reliable Datagram Service, the “Connection context” is actually
the “EE context”.

Several rules determine when the responder stores the PSN and reply
data of an ATOMIC Operation:

• Only valid, new ATOMIC Operation requests (i.e. all header
checks are valid, the incoming PSN matches the expected PSN,
the R_Key is valid for the data being accessed, and the address
is aligned to a 64b boundary) are saved.

• If the responder QP supports multiple outstanding ATOMIC Oper-
ations and RDMA READ Operations, the information on each val-
id request is saved in FIFO order. The FIFO depth is the same as
the maximum number of outstanding ATOMIC Operations and
RDMA READ requests negotiated on a per QP basis at connec-
tion setup.

• Repeated ATOMIC or RDMA READ Operations are not saved
again.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 265 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The saved ATOMIC and RDMA READ state is shown in the figure below.

An ATOMIC Operation is guaranteed to execute at most once. If the
ATOMIC Operation does not execute on the destination, it is reported to
the sender (e.g. an R_Key protection fault) with the appropriate NAK syn-
drome response.

However, like all operations, a non-recoverable error that occurs after ex-
ecution at the responder, but before the response reaches the requester
(e.g. a fatal HCA error), results in the requester not knowing the state of
the responder’s memory. This case must be detected and dealt with by
the client or upper layer protocol.

As with all operations, errors could occur on any of the transfers. If the
original “ATOMIC Command” request is lost, or the “ATOMIC Acknowl-
edge” is lost, the sender will retry using the normal retry procedures. If the

Figure 79 Responder State Maintained for ATOMIC & RDMA READ Operations

FetchAdd; PSN=23;
Addr=100; Data=7

ATOMIC Ack;

PSN=23

The ladder diagram shows multiple ATOMIC and RDMA READ Requests. In
this example the responder’s QP has agreed at connection setup time that it
can accept up to any combination of 2 outstanding ATOMIC or RDMA READ
Operations. This example shows how the responder maintains state of the re-
cent ATOMIC and RDMA READ operations. Note also in the example a
RDMA READ preceding an ATOMIC Operation but targeting the same ad-
dress may return the value after the ATOMIC executes. Strict ordering is pos-
sible in an HCA by using the “fence” option when posting the ATOMIC
following the RDMA READ. See 11.4.1.1 Post Send Request on page 612

Time 0

Timeline of Responder’s State

Time

Contents
of

Memory
at

address
100

Per QP Statea Tracking Most Recent ATOMIC &
RDMA READ Operations

a. For Reliable Connection Service, the state bits for tracking the most recent
ATOMIC and RDMA READ Operations are kept in the per QP State. For
Reliable Datagram Service these state bits are kept in the EE Context instead
of the Per QP State.

Most Recent 2nd Most Recent

Op PSN Result Op PSN Result

Time 0 20 na na na na na na

Time 1 27 ATOMIC 23 20 na na na

Time 2 27 RDMA
READ

24 na ATOMIC 23 20

Time 3 29 ATOMIC 25 27 RDMA
READ

24 na

ATOMIC Ack;

PSN=25

RDMA Rd; PSN=24;
Addr=100; Length=8 FetchAdd; PSN=25;
Addr=100; Data=2

RDMA Rd Ack; PSN=24

Data=29

Time 1

Time 2

Time 3

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 266 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

retry fails, it is not certain whether the ATOMIC Operation took place at the
destination, but the connection will be in the Error state.

As with retries of Send and RDMA WRITE operations, if the responding
CA has actually executed the request, it will only acknowledge the request
again, not re-run the ATOMIC Operation. This is necessary since an
ATOMIC Operation is not idempotent. The responder recognizes a retried
ATOMIC Operation and returns the reply data from the original acknowl-
edgment that was previously stored in the QP (or EE context for Reliable
Datagram service) “hidden state”. The responder returns the stored result
of an ATOMIC Operation if the following conditions are met:

• The request is valid (i.e. header an OpCode are valid)
• The request is for an ATOMIC Operation (the responder may

check the ATOMIC Operation OpCode is the same as that of the
stored operation)

• The PSN of the request is in the “duplicate region”. See a de-
scription of the PSN space in Section 9.7.1 Packet Sequence
Numbers (PSN) on page 282.

• The PSN matches that of a saved ATOMIC Operation.
A retried ATOMIC Operation that does not meet the above conditions is
discarded by the responder. See Table 58 Responder Error Behavior
Summary on page 409

When an ATOMIC Operation is retried, the responder does not validate
the R_Key nor does it translate the virtual address in the retried request.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 267 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The figure below demonstrates a failed ATOMIC Operation response
packet and shows the retried request and the eventual successful re-
sponse.

If all retries fail, that implies that the connection is lost, and the error re-
covery routines in the requesting CA’s driver will inform the local applica-
tion.

The size of the operation is always 64-bits. The target must be naturally
aligned (low 3 bits of the virtual address must be zero). An error will be
reported if the R_Key range does not fully enclose the target. If this or an-
other protection error occurs, it will be reported (NAK_Remote_Access)
but will not result in taking any of the “ATOMIC Operation hidden queue”
resources. That is, if the same request is repeated (same PSN) and the
responding side has subsequently allocated an R_Key range, this new
operation will now succeed.

Figure 80 Retrying ATOMIC Operations

ATOMIC Ack;

PSN=23

The ladder diagram shows multiple ATOMIC and RDMA READ Requests. In
this example the responder’s QP has agreed at connection setup time that it
can accept up to any combination of 2 outstanding ATOMIC or RDMA READ
Operations. This example shows a lost ATOMIC acknowledgment (at Time
2). When the request is retried, the original result value is returned. The orig-
inal value is returned even if subsequent operations from the same or a dif-
ferent QP have modified the target of the ATOMIC Operation.

Time 0
Timeline of Responder’s State

Time

Contents
of

Memory
at

address
100

Per QP Statea Tracking Most Recent ATOMIC & RDMA
READ Operations

a. For Reliable Connection Service, the state bits for tracking the most recent
ATOMIC and RDMA READ Operations are kept in the per QP State. For Reliable
Datagram Service these state bits are kept in the EE Context instead of the Per
QP State.

Most Recent 2nd Most Recent

Op PSN Result Op PSN Result

Time 0 20 na na na na na na

Time 1 22 ATOMIC 23 20 na na na

Time 2 25 ATOMIC 24 22 ATOMIC 23 20

Time 3 25 ATOMIC 24 22 ATOMIC 23 20

Time 4 25 ATOMIC 24 22 ATOMIC 23 20

Time 5 25 ATOMIC 24 22 ATOMIC 23 20

Time 1

Time 2

Time 3

FetchAdd; PSN=23;
Addr=100; Data=2FetchAdd; PSN=24;
Addr=100; Data=3

ATOMIC Ack;

PSN=24

ATOMIC Ack;

PSN=23

FetchAdd; PSN=23;
Addr=100; Data=2FetchAdd; PSN=24;
Addr=100; Data=3

ATOMIC Ack;

PSN=24

Time 4

Time 5

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 268 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.4.6 RESERVED AND MANUFACTURER DEFINED TRANSPORT FUNCTION OPCODES

The IBA has two mechanisms for future expansion of its transport layer:

• Reserved and Manufacturer Defined BTH OpCodes

IBA Transport layer functionality can be expanded by defining new BTH
OpCodes. Two blocks of undefined OpCodes are specified. One for future
revisions of the IBA and one block for manufacturer specific functions.

9.5 TRANSACTION ORDERING

This section defines the rules for ordering of transmission, execution, and
completion for transactions for a given QP:

C9-25: A requester shall transmit request messages in the order that the
Work Queue Elements (WQEs) were posted.

C9-26: For messages that are segmented into PMTU-sized packets, the
data payload shall use the same order as the data segments defined by
the WQE.

Packets from a given source QP to a given destination QP travel on the
same path through the fabric and are received in the same order they
were injected.

C9-27: For reliable services on an HCA, all acknowledge packets shall be
strongly ordered, e.g. all previous RDMA READ responses and ATOMIC
responses shall be injected into the fabric before subsequent SEND,
RDMA WRITE responses, RDMA READ response or ATOMIC Operation
responses.

o9-19: If a TCA responder implements Reliable Connection service, or if
a CA responder implements Reliable Datagram service, all acknowledge
packets shall be strongly ordered. That is, all previous RDMA READ re-
sponses and ATOMIC responses shall be injected into the fabric before
subsequent SEND, RDMA WRITE responses, RDMA READ response or
ATOMIC Operation responses.

C9-28: A responder shall execute SEND requests, RDMA WRITE re-
quests and ATOMIC Operation requests in the message order in which
they are received. If the request is for an unsupported function or service,
the appropriate response (for example, a NAK message, silent discard, or
logging of the error) shall also be generated in the PSN order in which it
was received.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 269 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• An application shall not depend upon the order of data writes to
memory within a message. For example, if an application sets up
data buffers that overlap, for separate data segments within a
message, it is not guaranteed that the last sent data will always
overwrite the earlier.

C9-29: The completion at the receiver is in the order sent (applies only to
SENDs and RDMA WRITE with Immediate) and does not imply previous
RDMA READs are complete unless fenced by the requester.

C9-30: A requester shall complete WQEs in the order in which they were
transmitted.

C9-31: A work request with the fence attribute set shall block until all prior
RDMA Read and Atomic WRs have completed.

C9-32: All WQEs shall be completed in the order they were posted inde-
pendent of their execution order.

Due to the ordering rule guarantees of requests and responses for re-
liable services, the requester is allowed to write CQ completion events
upon response receipt.

o9-20: An application shall not depend of the contents of an RDMA
WRITE buffer at the responder until one of the following has occurred:

• Arrival and Completion of the last RDMA WRITE request
packet when used with Immediate data.

• Arrival and completion of a subsequent SEND message.
• Update of a memory element by a subsequent ATOMIC oper-

ation.
o9-21: An application shall not depend on the contents of an RDMA
READ target buffer at the requestor until the completion of the corre-
sponding WQE.

o9-21.a1: An application shall not depend upon the contents of a SEND
buffer at the responder until it has been completed.

C9-33: An application shall not depend on the contents of a receive queue
buffer until the corresponding receive WQE has been completed.

9.6 PACKET TRANSPORT HEADER VALIDATION

Packet transport header validation is conducted on each packet that is
passed up to the transport layer from the lower IBA layers. The purpose
is to ascertain that the inbound packet can be associated with a particular
queue pair. If it cannot, the packet is silently discarded. Packet transport
header validation applies only to packets using the IBA transport.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 270 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-34: The transport layer shall validate the packet headers of all packets
using the IBA transport according to the requirements in this section (9.6
Packet Transport Header Validation on page 269. A packet shall be
deemed to be using the IBA transport if the msb of the LRH:LNH field is
set to 1. If the msb of the LRH:LNH field is set to zero, then the packet is
a raw packet. Raw packets are described in Section 9.8.4 Raw datagrams
on page 394.

C9-35: For each inbound packet using the IBA transport, a CA shall vali-
date the packet according to the state diagram shown in Figure 819. The
details of the state diagram are discussed in the remainder of this section.

If the packet can be associated with a given queue pair, further validation
is conducted by comparing certain characteristics of the packet with con-
text information stored with the queue pair (or EE Context, in the case of
reliable datagram service). This level of validation is described in Section
9.7 Reliable Service on page 280 and Section 9.8 Unreliable Service on
page 375.

Throughout this section, the phrase “packet is silently dropped” is used.
The responder, unless otherwise noted, behaves as follows when a silent
drop occurs:

• No acknowledge message is returned.

• No receive WQE is consumed by the responder.

• The errant request packet is not executed.

• Any request packets received prior to the errant request are executed
and completed normally.

• Responder does not update its expected PSN.

• Responder resumes waiting for a valid inbound request packet.

The requester, unless otherwise noted, behaves as follows when a silent
drop occurs:

• No send WQEs are completed as a result of a packet that is silently
dropped.

• No direct action is taken as a result of the silently dropped packet, al-
though error counters may be incremented or other similar events
may occur.

9. The LVer field of the LRH is verified in the link layer before a packet is
presented to the transport layer. The ICRC and VCRC headers are also verified
in the link layer before a packet is presented to the transport layer. A packet with
an invalid LVer field, invalid ICRC or invalid VCRC is dropped silently before
reaching the transport layer.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 271 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 81 Packet Header Validation Process

Idle

BTH TVer, OpCode chk

BTH TVer error
silently drop packet

GRH check

RDETH check

GRH error
silently drop packet

(nxthdr=not_iba)+

(gid_check=bad)

BTH P_Key check

RD EE error
silently drop packet

(context_check=bad)

P_Key error
silently drop packet

(pkey_check=bad)

DETH check

(rd*pkey_check=good)+

Q_Key error

Q_Key error handler

(new inbound packet)

LRH check(qkey_check=bad)

Good packet
begin execution

(qkey_check=good)

(rc*pkey_check=good)+

(ud*pkey_check=good)

(uc*pkey_check=good)

LID error
silently drop packet

(lid_check=bad)
(lid_check=good)

(ip_vers=not v6)+

Multicast Check

Multicast error

silently drop packet

(mcast_pkt*mcast_check=bad)
(mcast pkt*mcast_check=good)
(not_mcast_pkt) +

BTH RD QP checkBTH QP check

BTH RD QP error
RD error handler

(rd*destqp=bad)

silently drop packet

(tver_check=good)*(opcode=rd)

(tver_check=good)*(opcode=not rd) (tver_check=bad)

(context_check=good)

(not rd*destqp=bad)
(not rd*destqp=good)

(grh_not_present)+
(nxthdr=iba)*(ip_vers=v6)*(gid_check+good)

(rd*destqp=good)

BTH QP error

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 272 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The silently dropped packet shall not count for purposes of satisfying
the transport timer.

The queue state is not be changed. In addition, for connected transport
services or reliable datagram, the connection or EE context is not torn
down.

9.6.1 VALIDATING HEADER FIELDS

This section specifies the headers and fields that must be validated by a
receiver of an inbound packet (either a request or response packet) before
it can rely on the integrity of the packet.

9.6.1.1 BTH CHECKS

This section describes the fields of the BTH that must be validated for all
incoming packets.

9.6.1.1.1 BTH:TVER VALIDATION

C9-36: The transport shall verify that the version number of the transport
headers is supported by the CA or router. If the CA, switch or router does
not support the indicated version, the packet shall be silently dropped.
The only valid transport version is zero.

tver_check

• good: TVer field of BTH is 0x0
• bad: TVer field of BTH is non-zero

9.6.1.1.2 BTH:DESTINATION QP, OPCODE CHECK

Since the OpCode contained in the BTH of the inbound packet is used to
determine if the selected destination QP is valid, OpCode validation is
combined with validating the destination QP and its current condition.

C9-37: The transport shall verify that the destination QP exists and that
the QP state is valid for receiving the inbound packet.

o9-22: This compliance statement is obsolete and replaced by o9-23.2.1:

o9-23: For CAs which support Unreliable Datagram Multicast, the desti-
nation QP value of 0xFFFFFF shall only be valid if there is at least one
locally managed QP which is configured for IBA Unreliable Datagram Mul-
ticast service.

C9-38: BTH:OpCode[7:5] shall be checked to ensure that the service re-
quested (RC, UC, RD, UD) is consistent with the configuration of the des-
tination QP.

The response to an inbound packet which contains either an invalid des-
tination QP, or whose destination QP is not in a valid state for receiving

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 273 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the inbound packet, is dependent on the service being requested. This is
determined by examining BTH:OpCode[7:5], which indicates whether the
requested service is RC, RD, UC or UD.

Furthermore, if BTH:OpCode[7:5] indicates that the packet is for RD ser-
vice, then the remainder of the OpCode bits must be examined to deter-
mine if the inbound packet is a request or a response packet.

C9-39: If BTH:OpCode[7:5] indicates that the packet is for RC, UC or UD
services, and the destination QP does not exist, or the destination QP is
not configured to provide the requested service, or the destination QP
state is invalid, then the inbound packet is silently dropped.

C9-40: This compliance statement is obsolete and replaced by o9-23.2.1:

o9-23.2.1: For a CA that implements RD service: if BTH:OpCode[7:0] in-
dicates an RD request packet, (SEND, RDMA READ Request, etc.), and
the EE Context is valid, and the destination QP does not exist, or the des-
tination QP is not configured to provide RD service, or the destination QP
state is invalid, then a NAK-invalid RD request must be returned. If
BTH:OpCode[7:0] indicates an RD response packet (RDMA READ Re-
sponse, Acknowledge, etc.), and the destination QP does not exist, or the
destination QP is not configured to provide RD service, or the destination
QP state is invalid, then the inbound packet shall be silently dropped.

destqp_check

• good: destination QP specified in BTH is a valid QP, and it is in
the correct state to receive the packet, and the configuration of
the QP is consistent with the service being requested.

Table 37 Verification of Destination QP

Error Condition Description

Invalid Destination QP identifier No such QP exists on this CA. If the QP identi-
fier is the IBA unreliable multicast QP
(0xFFFFFF), there is no QP configured for IBA
unreliable multicast service on this CA.

Incorrect Destination QP Configuration The destination QP configuration is inconsis-
tent with the service requested by
BTH:OpCode[7:4].

Request packet: QP is not in Ready-to-
Send state, Send-Queue-Drain state, or
Ready-to-Receive state or Send-Queue-
Error state.

Receive queue is not in a proper state to
accept an inbound request packet.

Acknowledge packet: QP is not in Send-
Queue-Drain state, Ready-to-Send
state, or Send-Queue-Error state.

Send queue is not in a proper state to accept
an inbound response packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 274 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• bad: destination QP specified in BTH does not exist, or is not in
the correct state to receive the packet, or is configured inconsis-
tently with the service being requested.

9.6.1.1.3 BTH:P_KEY

C9-41: If the destination QP is QP0, the BTH:P_Key shall not be checked.

C9-42: If the destination QP is QP1, the BTH:P_Key shall be compared to
the set of P_Keys associated with the port on which the packet arrived. If
the P_Key matches any of the keys associated with the port, it shall be
considered valid.

C9-43: For all destination QPs other than QP0 or QP1, for all transport
services except Reliable Datagram, the P_Key shall be compared with the
P_Key associated with the responder’s receive queue. An invalid P_Key
shall cause the request packet to be silently dropped.

o9-24: For Reliable Datagram, the P_Key shall be compared with the
P_Key associated with the responder’s EE Context. An invalid P_Key
shall cause the request packet to be silently dropped.

For further details of the process for matching the P_Key, please see
10.9.3 Partition Key Matching on page 526.

pkey_check

• good: BTH:P_Key matches value associated with recv queue or
EE Context

• bad: BTH:P_Key does not match value associated with recv
queue or EE Context

9.6.1.2 GRH CHECKS

This sections describes the fields of the GRH, if present, that must be val-
idated.

Prior to receiving an inbound packet, a QP or EEC is configured as to
whether or not a GRH is expected in each packet received on this connec-
tion. The mechanism by which this configuration occurs is outside the
scope of the specification. One possible implementation is that this con-
figuration occurs at connection establishment time via the Subnet Local
bit in the CM REQ message. An inbound packet is only guaranteed to
pass the GRH check if the presence or absence of the GRH is consistent
with the QP (or EEC) configuration. For RC, RD and UC services, if an in-
bound packet arrives that is not consistent with the QP (or EEC) configu-
ration with respect to the presence or absence of the GRH, the packet
should be dropped. For UD services, since it is impractical to predict the
source of a packet, the presence or absence of the GRH should not be
checked.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 275 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

As specified in Section, 9.6.1.5.2 IBA Unreliable Multicast Checks on
page 280, a multicast packet must include a GRH.

C9-43.1.1: For UD services, if the packet is a multicast packet as specified
in Section 9.6.1.5.2 IBA Unreliable Multicast Checks on page 280 and a
GRH is not present in the packet, the packet shall be silently dropped.

C9-43.1.2: For RC, RD and UC services, if a received packet is consistent
with the configuration of the QP (or EEC) with respect to the presence or
absence of a GRH, then the packet shall be considered to have passed
the GRH check, subject to the remaining GRH checks described in the
rest of Section 9.6.1.2 GRH Checks on page 274.

9.6.1.2.1 GRH:NEXT HEADER

C9-44: If there is a GRH present, the Next Header field of the GRH must
be checked. The value of the Next Header field should be set to 0x1B. Any
other value indicates that this packet does not use the IBA transport, and
the packet shall be silently dropped.

nxthdr_check

• good: GRH:NxtHdr field indicates IBA transport
• bad: GRH:NxtHdr field indicates non-IBA transport

9.6.1.2.2 GRH:IPVERS

C9-45: If there is a GRH present, the version field of the GRH shall be
checked. If the version number is anything other than 6, the packet shall
be silently dropped.

ip_vers

• not_v6: invalid GRH version number
• v6: GRH version number is valid

9.6.1.2.3 GRH:SGID, GRH:DGID
Connection Management is responsible for loading the primary SGID and
DGID in the transport layer. If the given CA supports automatic path mi-
gration, a set of alternate SGID and DGID are also loaded. Primary and
alternate GID comparison and actions are per the rules defined in Section
17.2.8 Automatic Path Migration on page 1031.

If a GRH is present, the SGID and DGID shall be verified as follows:

C9-46: If the destination QP is configured for UD transport service, the
SGID shall not be validated at the transport layer. The DGID shall only be
validated if the packet is a valid multicast packet. See 9.6.1.5.2 IBA Unre-
liable Multicast Checks on page 280 for a definition of a valid multicast
packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 276 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-47: This compliance statement is obsolete and replaced by C9-
47.1.1:

C9-47.1.1: If the destination QP is configured for RC, UC, or RD transport
services, the SGID and the DGID shall be validated at the transport layer.
Packets that do not pass these validity checks must be silently dropped.

The DGID is validated as follows:

1) If the DGID is set to the Reserved GID, the DGID is invalid.

2) If the DGID is set to the Loopback GID, the DGID is invalid.

3) If the DGID’s scope indicates a Multicast GID but there is no locally
associated QP, then the DGID is invalid.

Following these checks, the DGID is compared against the following. If it
matches none of these, then the DGID is invalid.

4) The DGID is compared against the Primary DGID.

5) The upper 64-bits of the DGID is compared against the default GID
prefix (0xFE80::0) and the lower 64-bits of the DGID is compared
with the lower 64-bits of the Primary DGID

6) If Automatic path migration is supported, the DGID is compared with
the Alternate DGID.

7) If Automatic path migration is supported, the upper 64-bits of the
DGID is compared against the default GID prefix (0xFE80::0) and the
lower 64-bits of the DGID is compared with the lower 64-bits of the
Alternate DGID

The SGID is validated as follows:

1) If the SGID is set to multicast, the SGID is invalid.

2) If the SGID is set to the Loopback GID, the SGID is invalid.

Following these checks, the SGID is compared to the following. If the
SGID does not match at least one of the following, it is invalid.

3) The SGID is compared against the Primary SGID

4) The upper 64-bits of the SGID is compared against the default GID
prefix (0xFE80::0) and the lower 64-bits of the SGID is compared with
the lower 64-bits of the Primary SGID

5) If Automatic path migration is supported, the SGID is compared with
the Alternate SGID

6) If Automatic path migration is supported, the upper 64-bits of the
SGID is compared against the default GID prefix (0xFE80::0) and the

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 277 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

lower 64-bits of the SGID is compared with the lower 64-bits of the Al-
ternate SGID

gid_check

• good GRH SGID and DGID compared successfully
• bad GRH SGID or DGID is invalid

9.6.1.3 RDETH CHECKS

The section describes the fields of the RDETH, if present, that must be
validated for reliable datagram service.

9.6.1.3.1 RDETH:EE CONTEXT

C9-47.2.1: If BTH:OpCode[7:5] indicates RD transport service and the CA
does not implement RD service, then the packet must be silently dropped.

o9-25: If BTH:OpCode[7:5] indicates RD transport service, the RDETH
shall be validated.

o9-26: The EE Context Identifier shall be verified per the rules in Table 38
Verification of EE Context on page 277. If the EE context is invalid, the
packet must be silently dropped.

context_check

• good: EE Context specified in RDETH is valid
• bad: EE Context specified in RDETH is invalid or CA does not

support RD transport service

9.6.1.4 DETH CHECKS

This section describes the fields of the DETH, if present, that must be
checked for datagram service, either reliable or unreliable.

9.6.1.4.1 DETH:Q_KEY

C9-48: If the destination QP is QP0, the DETH:Q_Key field shall not be
validated.

Table 38 Verification of EE Context

Error Condition Description

Invalid Destination EE Context identifier No such EE Context exists on this CA.

Request packet: EE Context is not in
Ready-to-Send state, Send-Queue-
Drain state or Ready-to-Receive state.

EE Context is not in a proper state to accept
an inbound request packet.

Acknowledge packet: EE Context is not
in Ready-to-Send state or Send-Queue-
Drain state.

EE Context is not in a proper state to accept
an inbound response packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 278 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-49: If the destination QP is QP1, the DETH:Q_Key field shall be con-
sidered valid if it compares successfully to the well-known Q_Key
0x80010000.

C9-50: For all packets received for a queue pair configured for datagram
service, except QP0, the Q_Key shall be checked by the receiver’s re-
ceive queue. If the Q_Keys do not match, the responder’s behavior de-
pends on whether the service is unreliable datagram or reliable datagram
and shall be as follows:

Unreliable Datagram: the packet shall be silently dropped.

Reliable Datagram:

• A NAK-Invalid RD Request shall be returned.
• The P_Key used in the NAK may be supplied by the responder’s

EE Context or it may be extracted from the request packet being
acknowledged.

• The PSN used in the NAK message is the PSN of the errant re-
quest packet.

• The EE Context’s PSN is unchanged; it remains pointing to the
failed request packet.

• The responder resumes waiting for a valid inbound request pack-
et.

C9-51: The responder must not return an acknowledge message for a
packet until the Q_Key and the P_Key for the packet have been checked
by the receive queue.

qkey_check

• good: the Q_Key contained in the DETH matches that associated
with the receive queue’s stored Q_Key.

• bad: the Q_Key contained in the DETH does not match that asso-
ciated with the receive queue’s stored Q_Key.

9.6.1.5 LRH CHECKS

This section describes the fields of the LRH that must be validated for all
inbound packets.

9.6.1.5.1 LRH:SLID, LRH:DLID
C9-52: The 16 bit fully resolved SLID and DLID contained in the LRH shall
be validated.

C9-53: The DLID shall be validated only for reliable connected, unreliable
connected or reliable datagram service. The DLID shall not be validated
for Unreliable Datagram service.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 279 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-54: The SLID shall be validated only for reliable connected, unreliable
connected or reliable datagram service. The SLID shall not be validated
for Unreliable Datagram service.

To be valid, the SLID and the DLID contained in the LRH must compare
exactly to one of the following:

1) Permissive LID

2) Multicast LID (for DLID only)

3) Primary LID

4) Alternate LID

C9-55: The permissive LID shall only be accepted as valid if the destina-
tion queue pair is QP0.

C9-56: If the SLID is a multicast LID, it shall be invalid.

C9-57: In an HCA configured for Reliable Connection or Unreliable Con-
nection service, if an invalid LID is detected, the packet shall be silently
dropped. For RC and UC service, this check is performed by the send or
receive queue.

o9-27: If a TCA implements Reliable Connection or Unreliable Connec-
tion service and an invalid LID is detected, the packet shall be silently
dropped. For RC and UC service, this check is performed by the send or
receive queue.

o9-28: If a CA implements Reliable Datagram service, and if an invalid
LID is detected, the packet shall be silently dropped. For RD service, this
check is performed by the EE Context.

The primary SLID and DLID are stored in the QP or EE Context. If the
given channel adapter supports transparent migration, an alternate SLID
and DLID are also stored in the QP or EE Context as part of the alternate
path. The choice of whether to compare the inbound SLID and DLID to the
primary or alternate LIDs is a function of the current state of the automatic
path migration state machine and the state of the MigReq bit in the BTH.

lid_check

• good: SLID and DLID contained in the LRH matches the SLID
and DLID, respectively, stored in the QP or EE Context.

• bad: SLID or DLID contained in the LRH does not match the
SLID and DLID, respectively, stored in the QP or EE Context.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 280 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.6.1.5.2 IBA UNRELIABLE MULTICAST CHECKS

C9-58: A packet is declared to be an IBA unreliable multicast packet if the
destination QP is 0xFFFFFF. To be considered valid, it must have the fol-
lowing three characteristics: The packet must contain a GRH, the DGID
must be a valid multicast GID, and there must be at least one locally man-
aged queue pair configured for multicast operation. If any of these condi-
tions is not true, the packet is not a valid multicast packet and shall be
dropped silently.

C9-59: The DGID shall be used to map the inbound packet to a particular
locally managed QP.

multicast_check

• good: a multicast packet meets all the criteria cited above to be a
valid multicast packet.

• bad: a multicast packet does not meet all the criteria cited above
to be a valid multicast packet.

9.7 RELIABLE SERVICE

Reliable Service provides a guarantee that messages are delivered from
a requester to a responder at most once, in order and without corruption.
Key elements of the reliable service include a protection scheme to en-
able detection of corrupted data (CRC), an acknowledgment mechanism
allowing the requester to ascertain that the message had been success-
fully delivered, a packet numbering mechanism to detect missing packets
and to allow the requester to correlate responses with requests, and a
timer to allow detection of dropped or missing acknowledgment mes-
sages.

This section addresses the acknowledgment and packet sequence num-
bering mechanisms. The CRC mechanism for detecting packet corruption
is not addressed here. Note that CRCs are checked at lower protocol
layers and may result in packets being dropped before they are delivered
to the transport layer. These dropped packets may eventually be detected
at the transport layer as sequence errors.

• Characteristics of reliable service
• Messages delivered at most once, in order and without corruption

in the absence of unrecoverable errors.
• Each message is acknowledged either explicitly or implicitly.

• Types of reliable service
• Reliable Connection
• Reliable datagram

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 281 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Reliability mechanisms

• ACK / NAK protocol

• Packet Sequence Numbers (PSN)

• Responder considers operation complete when it has:

• Received a valid “Last” or “Only” OpCode in the BTH,

• Received all packets comprising the message in proper PSN or-
der,

• Payload has been committed to the local fault zone (SENDS or
RDMA WRITEs),

• Response has been committed to the wire for RDMA READs or
ATOMIC Operations,

• Acknowledge packet for the last packet of the request has been
committed to the wire (including the appropriate fields for RDMA
READ response)

• Requester considers the operation complete when:

• All packets of the response (for RDMA READ or ATOMIC Opera-
tion) have been received and committed to local memory,

• Acknowledge message has been received and validated.

C9-60: Before it can consider a WQE completed, the requester must wait
for the necessary response(s) to arrive. If the requester requires an ex-
plicit response such that it can complete a given WQE, then the requester
shall be responsible to take the necessary steps to ensure that the needed
response is forthcoming.

There are several mechanisms available to accomplish this, such as:

1) Set the AckReq bit on the last packet of every message, thus guaran-
teeing that the responder will generate the needed explicit response,

2) Set the AckReq bit on the last packet of the message for which an ex-
plicit response is desired,

3) If the AckReq bit was not set for the request for which an explicit re-
sponse was desired, the requester can retry the request (with
AckReq set) thus requiring the responder to return a response,

4) If the AckReq bit was not set for the request for which an explicit re-
sponse was desired, the requester can send a NOP command (e.g.
RDMA WRITE request with a length of zero) and set the AckReq bit.
This strategy only works if the responder supports RDMA WRITES.

The choice of which of these, or other, strategies to use is implementation
dependent.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 282 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.1 PACKET SEQUENCE NUMBERS (PSN)
PSNs are transmitted within the Base Transport Header (BTH) for all
packets. They are used to detect missing or out-of-order packets, and, for
reliable services, to relate a response packet to a given request packet.
Each IBA QP consists of a send queue and a receive queue; likewise, an
EE Context has a send side and a receive side. There is a relationship be-
tween the PSN on a requester’s send queue and the PSN on the re-
sponder’s corresponding receive queue. Thus, each half of a QP (or EE
Context) maintains an independent PSN; there is no relationship between
the PSNs used on the Send queue and Receive queue of a given queue
pair, or between different connection. This is illustrated in the figure below.

There are two abnormal conditions that must be detected and resolved at
the responder to ensure reliable operation. The two conditions are dupli-
cate packets and invalid packets.

1) Duplicate Packet. A duplicate packet may be recognized by the re-
sponder if the requester injects a request packet into the fabric more
than once. This occurs when the requester detects a condition for
which the prescribed recovery mechanism is to retry the operation.

There are two primary causes of a timeout condition that may cause
the requester to inject a given request packet into the fabric more than
once:

SEND queue

RECEIVE queue

RECEIVE queue

SEND queue

Endpoint A Endpoint B

request A-B response A-B

request B-Aresponse B-A

Request A-B and Response A-B (for reliable service) are related by PSN A-B.
PSN A-B has no relationship to PSN B-A.

Figure 82 Send-Receive Queues Related by PSN

Connection

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 283 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• A response is late in arriving at the requester either because a re-
sponse packet is lost or delayed in the fabric as shown in Figure 83
below, or because the responder experienced a delay in generating a
response, or

• A request packet may be lost or delayed in reaching the responder as
shown in Figure 85.

Regardless of the cause, the responder must be able to determine if
an inbound request is a duplicate request that had been previously ex-
ecuted (or not) and respond appropriately.

In the previous figure, the response has been lost or delayed in the
fabric causing the requester to detect a timeout condition and re-
transmit the request. The responder interprets the second arrival of
the request packet as a duplicate request.

r1

a1

r1*

Requester Responder

After timeout,

’r’ is a request packet,
’a’ is an acknowledge packet

* Responder detects r1 as a
duplicate request

 re-transmits r1

Figure 83 Duplicate Request Packets

Requester

r1

r1*

Requester Responder

’r’ is a request packet,
’a’ is an acknowledge packet

responder executes r1*

requester sends r1

after timeout,
requester re-sends r1

original r1 finally appears

Figure 84 Ghost Request Packet

a1*

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 284 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A duplicate packet may also be detected by the responder due to a
“ghost” request packet. This occurs when a request packet is delayed
in the fabric long enough to cause a timeout to occur at the requester.
The requester re-sends the original request packet to which the re-
sponder generates the proper acknowledge message. Sometime
later, the original (delayed) packet arrives at the responder which in-
terprets the late arriving packet as a duplicate request. This may
occur, for example, during automatic path migration.

2) Invalid Request Packet Sequence. This condition occurs when the
responder believes that one or more request packets have been lost
in the fabric. This is illustrated in the following figure.

The distinction between an invalid packet and a duplicate packet is impor-
tant since the requester’s actions and the responder’s actions are different
for the two cases.

These two conditions must be detected both by the responder (for request
packets), or by the requester (for response packets on reliable services).

In addition to duplicate packets and invalid packets, there is a third condi-
tion, called a Stale Packet (“TIME WAIT packet”). If a connection to a re-
sponder is torn down and a new connection is established while packets
are in flight, a packet from the old (stale) connection may arrive at the re-
sponder. The responder, in turn, may interpret this stale incoming packet
as a valid packet, when in fact it is a remnant of a previous connection.
There are no transport layer mechanisms to guard against this condition;
it is the responsibility of connection management to avoid re-using QPs
until there is no possibility that a stale packet could arrive at the responder.
This is done by placing the requester and responder QPs in a “Time Wait”
state long enough to ensure that any stale packets left in the fabric have
expired before re-using those QPs.

r1

r2

Requester Responder

’r’ is a request packet,
’a’ is an acknowledge packet

* Responder detects a missing
r3

request

Figure 85 Lost Request Packet(s)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 285 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Duplicate packets are distinguished from invalid packets by the 24-bit
PSN field which is carried in the base transport header, and allows room
for uniquely naming up to 16,777,216 packets.

C9-61: In order to make it possible for the responder to distinguish dupli-
cate packets from out of order packets, a given send queue shall have a
series of PSNs no greater than 8,388,608 outstanding at any given time.
Therefore, a send queue shall have no more than 8,388,608 packets out-
standing at any given time. This includes the sum of all SEND request
packets plus all RDMA WRITE request packets plus all ATOMIC Opera-
tion request packets plus all expected RDMA READ response packets.

Thus, the PSN space (consisting of a range of 16,777,216 PSNs) is di-
vided into two regions, each occupying a range of 8,388,608 PSNs, called
the valid region and the invalid region. This is illustrated in Figure 86.

The responder further subdivides the valid region into an Expected PSN
and a Duplicate region. The responder’s expected PSN (ePSN) is defined
in Section 9.7.4.1.2 Responder - PSN Verification on page 297, and is
simply described as the PSN that the responder expects to find in the next
new request packet to be received. The duplicate region is therefore de-
fined to be the entire valid region, except for the single expected PSN.
Simply put, a duplicate PSN is a PSN which the responder has seen and
executed previously and which falls within the valid region.

0 224-1

A SEND QUEUE OR EE CONTEXT MAY HAVE NO MORE THAN
8,388,608 PACKETS OUTSTANDING AT ANY TIME.

DUPLICATE REGION

RANGE OF PACKET SEQUENCE NUMBERS = 0 TO 16,777,215

Responder’s Expected PSN

Figure 86 Valid and Invalid PSN Regions

VALID REGION: RANGE = 8,388,608 PSNS

PSN of oldest outstanding request

INVALID REGION

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 286 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.1.1 PSN MODEL FOR RELIABLE SERVICE

C9-62: For an HCA requester using Reliable Connection service, the re-
quester shall insert a PSN in each packet of each request it generates.
When responding to the request, the responder shall insert a PSN in each
packet of each response it generates.

o9-29: If a TCA implements Reliable Connection service, or if a CA re-
quester implements Reliable Datagram service, the requester shall insert
a PSN in each packet of each request it generates. When responding to
the request, the responder shall insert a PSN in each packet of each re-
sponse it generates.

Except for the special case of RDMA READ responses, there is a 1:1 re-
lationship between the PSN in a request packet and the PSN in the cor-
responding response packet.

In the general PSN model, the requester calculates the PSN of the next
request packet to be generated. This calculated PSN is called the Next
PSN. At the time that the requester generates a new request packet, the
“Next PSN” is copied into the BTH and thus becomes the current PSN.
The requester then calculates a new “Next PSN”.

In order to detect missing or out of order packets, the responder also cal-
culates the PSN it expects to find in the next inbound request packet. This
is called the Expected PSN.

Conversely, when generating responses, the responder calculates the
Response PSN to relate the response to a given request. However, due
to acknowledge coalescing as described in 9.7.5.1.2 Coalesced Acknowl-
edge Messages on page 308, the requester cannot necessarily predict
which one of a range of PSNs may appear in the next response packet.
Therefore, the requester must be prepared to accept any one of a range
of Response PSNs. The range is bounded by the PSN of the oldest unac-
knowledged request packet and the expected response PSN of the most
recently sent request packet. The requester evaluates the PSN of an in-
bound response packet to ensure that it falls between these two ex-
tremes. This general model is illustrated below.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 287 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the following sections only rarely is it not obvious from the context to
which of the four PSNs the text is referring. Thus, it is common practice to
refer to “PSN”, or “expected PSN” or some other variant. In the cases
where the context is not clear, the above expressions are used for clarity.

9.7.2 ACK/NAK PROTOCOL

The ACK/NAK protocol, along with packet sequence numbers, is a funda-
mental component of reliable service, and applies to both reliable con-
nected service and reliable datagram service. This and the following
sections describe the protocol, provide a set of rules governing generation
of ACK and NAK responses, specify the ACK and NAK codes and specify
the requester’s required responses when it receives either an ACK or a
NAK response.

The purpose of the ACK/NAK protocol is to allow the requester to ascer-
tain deterministically if the responder correctly received the request
packet. There are also mechanisms provided to ensure that a complete
message was received correctly. This is accomplished through a combi-
nation of the packet sequence number and packet OpCodes
(first/middle/last/only packet indications).

SEND queue RECEIVE queue

Requester Responder

Figure 87 Request/Response PSNs

Next PSN Expected PSN

Evaluate Response PSN Response PSN

request packetresponse packet

calculate

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 288 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Since a response packet(s) can get lost in the fabric, the ACK/NAK pro-
tocol requires a requester to implement a timer to detect lost response
packets. The transport timer is also described in this section.

The word “acknowledge” is used consistently throughout this section to
mean either a negative (NAK) or a positive (ACK) acknowledgment. The
generic term “response” is used to describe the acknowledgment returned
by the responder to the requester. A response is carried in one or more
acknowledge packets and may comprise, depending on the original re-
quest message, an ACK packet, a NAK packet, a RDMA READ response
or an ATOMIC Operation response.

The following is a summary of the rules governing the ACK/NAK protocol:

• Each request packet received on a reliable service shall be acknowl-
edged.

• Each RDMA READ request requires an explicit response. A RDMA
READ response, with a properly formed ACK Extended Transport
Header (AETH) is considered a valid response. The ACK Extended
Transport Header appears in the first packet and last packet (or only
packet) of a RDMA READ response. The details are covered below
in Section 9.7.5.1.9 RDMA READ Responses on page 322

• Each ATOMIC Request requires an explicit response. An acknowl-
edge packet, with a properly formed ACK Extended Transport Head-
er (AETH) and an ATOMIC ACK Extended Transport Header
(AtomicAckETH) is considered to be a valid response.

• Acknowledges may be coalesced; that is, a single acknowledge
packet can serve as acknowledgment for one or more previous re-
quest packets.

• Acknowledge packets shall be returned in the PSN order in which the
original request packet was received, including RDMA READ re-
sponses.

• A RDMA READ response consists of one or more packets; all other
responses consist of exactly one packet.

C9-63: For an HCA responder using Reliable Connection service, the re-
sponder shall behave as follows. A responder shall acknowledge each re-
quest packet received. A responder shall generate an explicit response
for each RDMA READ request received. A responder shall generate an
explicit response for each ATOMIC Request received. A responder shall
generate response packets in the PSN order in which the original request
packets were received, including RDMA READ responses.

o9-30: If a TCA responder implements Reliable Connection service, or if
a CA responder implements Reliable Datagram service, the responder
shall behave as follows. A responder shall acknowledge each request

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 289 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

packet received. A responder shall generate an explicit response for each
RDMA READ request received. A responder shall generate an explicit re-
sponse for each ATOMIC Request received. A responder shall generate
response packets in the PSN order in which the original request packets
were received, including RDMA READ responses.

9.7.3 REQUESTER: GENERATING REQUEST PACKETS

This section specifies the requirements placed on a requester as it gener-
ates request packets.

9.7.3.1 REQUESTER SIDE - GENERATING PSN

C9-64: For Reliable Connection service in an HCA, the requester must
place a value, called the current PSN, in the BTH:PSN field of every re-
quest packet.

o9-31: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, then the requester must
place a value, called the current PSN, in the BTH:PSN field of every re-
quest packet.

During connection establishment, the transport layer’s client programs the
next PSN to any value between zero and 16,777,215. For proper opera-
tion, the initial expected PSN value on the responder side must be loaded
with the same value.

C9-65: For Reliable Connection service in an HCA, the initial PSN, as pro-
grammed by the transport layer’s client, is the PSN that shall appear in the
first request packet generated by the requester.

o9-32: If Reliable Datagram service is implemented in CA, or if Reliable
Connection Service is implemented in a TCA, then the initial PSN, as pro-
grammed by the transport layer’s client, is the PSN that shall appear in the
first request packet generated by the requester.

Thereafter, the requester calculates the next PSN. The calculation de-
pends on the operation being performed (SEND, RDMA READ, etc.) and
the size of the data payload.

With one exception, the requester shall increment the current PSN value
by one for each request packet it generates. The single exception is for
any request packet immediately following a RDMA READ request mes-
sage. In this case, the request packet immediately following the RDMA
READ request message shall have a PSN that is one greater than the
PSN of the last expected RDMA READ response packet. In this way, the
requester leaves a “hole” in the PSN sequence of the request packets,
such that all response packets will have monotonically increasing PSNs.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 290 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Thus, for RDMA READ Requests:

Let curr_PSN = PSN of a RDMA READ Request

Let next_PSN = PSN of the request following a RDMA READ Request

Let n = the number of expected RDMA READ response packets

Then next_PSN = (curr_PSN + n) modulo 224

Since the requester knows both the total length of the requested RDMA
READ data and the PMTU between the requester and the responder, and
since there is a requirement that each response packet (except a last or
only packet) be filled to the full PMTU size, the requester can calculate the
total number of expected response packets and thus calculate the PSN of
the request immediately following the RDMA READ request.

C9-66: For an HCA requester using Reliable Connection service, the re-
quester shall behave as follows. For each request packet other than the
packet immediately following an RDMA READ request message, the re-
quester shall increment the next PSN value by one modulo 224. For any
request packet immediately following a RDMA READ request message,
the packet shall have a PSN that is one greater (modulo 224) than the PSN
of the last expected RDMA READ response packet.

o9-33: If a TCA requester implements Reliable Connection service, or if a
CA requester implements Reliable Datagram service, the requester shall
behave as follows. For each request packet other than the packet imme-
diately following an RDMA READ request message, the requester shall
increment the next PSN value by one modulo 224. For any request packet
immediately following a RDMA READ request message, the packet shall
have a PSN that is one greater (modulo 224) than the PSN of the last ex-
pected RDMA READ response packet.

Table 39 Requester’s Calculation of Next PSN

Current Request
Packet PSN for Next Request Packet

SEND, RDMA WRITE,
ATOMIC Operation

current PSN + 1 (modulo 224)

RDMA READ current PSN + (number of expected RDMA READ
response packets) (modulo 224)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 291 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.3.2 REQUESTER - SPECIAL RULES FOR RELIABLE DATAGRAM

9.7.3.2.1 RDD CHECKING

For reliable datagram service, any given send queue is associated with an
EE Context by a Reliable Datagram Domain (RDD). Each send queue
and EE Context has a single RDD associated with it. Before sending a re-
quest, the EE context must check the RDD of the currently active send
queue. If the send queue’s RDD does not match the EE Context’s RDD,
the current message transfer is terminated and a timeout condition is in-
dicated to the send queue.

o9-34: For each request, the requester must confirm that the RDD of the
currently active send queue matches the RDD of the selected EE context.

o9-35: This compliance statement is obsolete and has been removed.
Error behavior for RDD mismatch is defined in Table 56 Requester Side
Error Behavior on page 401

9.7.3.2.2 RESYNC GENERATION

Under some conditions, a requester’s EE Context is required to generate
a special form of a request packet called a RESYNC request. This occurs
when the requester EE Context elects to discontinue (abort) the current
request message. The process of aborting the current request message
and generating the subsequent RESYNC request is described in 9.7.8
Reliable Datagram on page 358 in the subsection dealing with handling
QP errors.

The RESYNC request has the special property that it forces the responder
to re-initialize its expected PSN to a value defined by the requester side
EE Context.

The following paragraph governs the PSN that the requester is required
to use when aborting the current message and generating the RESYNC
request. It also governs the PSN it should expect in an acknowledgement
received in response to the RESYNC request. These PSNs are identified
in Figure 87 Request/Response PSNs on page 287 as the Next PSN and
the Response PSN.

o9-35.a1: For a CA which supports Reliable Datagram service, when
aborting the current request message and generating a RESYNC request,
the requester side EE Context shall set the PSN of the RESYNC request
to an increment of one greater (Modulo 224) than the largest PSN (Modulo
224) used in transmitting the current request. In addition, the requester
shall reset the PSN it expects in a response to the same value. “The
largest PSN used in transmitting the current request” means;

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 292 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) The (logically) largest PSN (Modulo 224) assigned to any packet of
the request message including any retries of the request message, or

2) the PSN of the last expected RDMA READ response, if the request
was an RDMA READ request.

For example, if the current request being transmitted consists of three
packets with PSNs numbered 4, 5 and 6, then the PSN of the RESYNC
request would be set to 7.

Or, consider the case where the requester is sending a large request mes-
sage consisting of many packets. Even if the responder returns a NAK
early in the transfer but the requester has sent subsequent packets, the
PSN of the RESYNC request must be one greater (Modulo 224) than the
PSN of any request packet sent, regardless of when the NAK packet was
generated or its PSN.

In another example, if the current request being transmitted is an RDMA
READ request with a PSN of 24, and to which the requester expects to
receive 5 response packets, then the PSN of the RESYNC request would
be set to 29, which is one greater than the PSN of the last expected RDMA
READ response packet.

If a requester performs one or more retries, due to timeouts or other rea-
sons, the PSN of the RESYNC request must be one greater (Modulo 224)
than the PSN of any request packet sent, or response packet expected,
for all of the previous attempts.

o9-35.a2: For a CA which supports Reliable Datagram service, the re-
quester shall insert in the RESYNC request source and destination QPns
which are identical to the source and destination QPs from the current re-
quest (which is being aborted).

9.7.3.3 REQUESTER - GENERATING OPCODES

The opcodes generated by a requester must fit into a schedule of opcodes
as shown below.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 293 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-67: A requester must generate packet opcodes which fit within the
schedule of valid OpCode sequences as shown in Table 40 Schedule of
Valid OpCode Sequences on page 293.

C9-68: When generating a request packet, the BTH:Opcode shall be as
specified in Table 35 OpCode field on page 235.

9.7.3.4 REQUESTER - GENERATING PAYLOADS

The requester shall generate payload lengths as a function of the opcode
as follows:

C9-69: If the OpCode specifies a “first” or “middle” packet, then the packet
payload length must be a full PMTU size.

C9-70: If the OpCode specifies a “only” packet, then the packet payload
length must be between zero and PMTU bytes in size. Thus, the only way
to create a zero byte length transfer is by use of a single packet message.

C9-71: If the OpCode specifies a “last” packet, then the packet payload
length must be between one and PMTU bytes in size.

C9-72: For an HCA, if the OpCode specifies an RDMA WRITE request,
the length specified in the DMALen field of the RETH shall be no less than
zero, and no greater than 231 bytes.

o9-36: If RDMA WRITE is implemented in a TCA and the OpCode spec-
ifies an RDMA WRITE request, the length specified in the DMALen field
of the RETH shall be no less than zero, and no greater than 231 bytes.

Table 40 Schedule of Valid OpCode Sequences

Previous Packet OpCode Valid OpCodes for Current Packet

None e.g., first packet following
connection establishment

“First” packet
“Only” packet

“First” packet “Middle” packet (message is 3 or more packets)
“Last” packet (message is exactly 2 packets)
Type of operation must match the previous OpCode

“Middle” packet “Middle” packet
“Last” packet
Type of operation must match the previous OpCode

“Last” packet “First” packet (1st packet of a new message)
“Only” packet (1st packet of a new single packet msg)

“Only” packet “First” packet
“Only” packet

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 294 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.4 RESPONDER: RECEIVING INBOUND REQUEST PACKETS

This section describes the process used by a responder when it receives
an inbound request packet.

9.7.4.1 RESPONDER - INBOUND PACKET VALIDATION

C9-73: For Reliable Connection service in an HCA, inbound request
packets shall be validated as shown in Figure 88 on page 295.

o9-36.a1: If Reliable Connection service is implemented in a TCA, in-
bound request packets shall be validated as shown in Figure 88 on page
295.

o9-37: If Reliable Datagram service is implemented in a CA, inbound re-
quest packets shall be validated as shown in Figure 89 on page 296.

The following sections describe each of the validation checks and the re-
sponder’s behavior / response.

9.7.4.1.1 RESPONDER - SPECIAL RULES FOR RELIABLE DATAGRAM CHECKING

o9-38: For RD within a HCA, when an inbound packet arrives, the receive
queue must test its own RDD value against that of the EE Context over
which the inbound packet arrived. If they do not match, the receive queue
must drop the packet and schedule a NAK-Invalid RD Request. The
P_Key and PSN to be used for returning the NAK shall be supplied by the
EE Context.

o9-38.a1: If Reliable Datagram service is implemented in a CA, a re-
sponder shall do the following when an inbound packet arrives:

1) If the responder receives a new request packet (i.e. PSN = expected
PSN) with an opcode of “middle” or “last” (i.e., the responder has pre-
viously received a new request packet with an opcode of “first” and
has not yet received a new request packet with an opcode of “last”),
the responder shall validate that the source and destination QPns
contained in the new request packet exactly match those of the most
recently received “first” packet. If the source and destination QPns of
the new “middle” or “last” request packet do not match those of the
most recently received “first” request, the responder shall ignore the
packet.

2) If the responder receives a duplicate request packet (i.e., the PSN is
in the duplicate region), the responder shall validate that the source
and destination QPns in the duplicate request packet exactly match
those of the most recently received new request. If the source and
destination QPns do not match those of the most recently received
new request, the responder shall ignore the packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 295 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 88 Inbound Request Packet Validation, RC mode

yes

OM10528

new inbound
request

actual PSN
=ePSN?

yes

NAK-Invalid
Request. Goto

NAK scheduling

no yes

no

RNR NAK

no

RDMA

yes

yesor ATOMIC
Req?

actual PSN
<ePSN?

no

Packet sequence
error.

Go to sequence
error processing.

Valid duplicate

Go to duplicate
request processing.

NAK-Remote
Access Violation.

Go to NAK
scheduling

no

no

yes

Resources
Available?

Opcode
Sequence

valid?

Valid new request.
Execute.

no

Error?noyes no

NAK-Operational
Error.

Complete.
Go to Completion

Processing

R_Key
Valid?yes

request.

supported
opcode

?

Local

(optional for RC
.
NAK scheduling
service). Go to

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 296 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 89 Inbound Request Packet Validation, RD mode

yes

new inbound
request

Drop Packet

actual PSN
=ePSN?

yesno

yes

yes

NAK-Invalid
Request. Goto
NAK scheduling

no yes

no

RNR NAK

no

RDMA

yes

yesor ATOMIC
Req?

actual PSN
<ePSN?

no

Packet sequence
error.

Go to sequence
error processing.

Valid duplicate

Go to duplicate
request processing.

NAK-Remote
Access Violation.

Go to NAK
scheduling

no

no

yes

Resources
Available?

Valid?

Opcode
Sequence

valid?

Valid new request.
Execute.

no

Error?

RESYNC?

noyes no

NAK-Operational
Error.

Complete.
Go to Completion

Processing

R_Key
Valid?yes

request.

supported
opcode

?

RDD

Local

no

yesno

NAK-Invalid RD
Request. Go to
NAK scheduling

QPs, EEC
Consistent?

Set ePSN to
packet PSN +1

Message, if any
Abort Previous
Schedule Ack
(module 224)

(required for RD).
Go to NAK
scheduling.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 297 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-38.a2: If Reliable Datagram service is implemented in a CA, when an
inbound RESYNC request arrives, the responder shall do the following:

1) If the responder receives a RESYNC request, it shall accept the re-
quest regardless of the value of the source and destination QPns in
the RESYNC request.

2) If the responder receives a RESYNC request, it shall accept that re-
quest regardless of the state of the opcode sequence (“first”,
“middle”, etc.) of the currently executing request (i.e. the most re-
cently received new request).

3) If the PSN of the RESYNC request is equal to or logically greater
than the responder’s expected PSN (i.e. the RESYNC request is a
new request), the responder shall:

a) Set its expected PSN equal to the PSN of the RESYNC request
plus one (Modulo 224),

b) Use the PSN of the RESYNC request as the PSN of the re-
sponse,

c) Abort any processing associated with the currently executing re-
quest if the currently executing request is incomplete (i.e. a Re-
quest packet with an opcode of “last” or “only” has not yet
arrived). If such a currently executing request was a SEND
RDMA WRITE with Immediate (and thus would have consumed a
receive WQE), the partially consumed receive WQE shall be
completed in error.

4) If the PSN of the RESYNC request is logically less than the re-
sponder’s expected PSN, the responder shall treat the RESYNC re-
quest as a duplicate request and thus shall not change its expected
PSN. The responder shall use the PSN of the duplicate RESYNC re-
quest as the PSN of the response.

9.7.4.1.2 RESPONDER - PSN VERIFICATION

C9-74: For Reliable Connection service in an HCA responder, and before
executing the inbound request, the responder shall check the PSN by
comparing the inbound BTH:PSN to the responder’s expected PSN. The
PSN shall be checked by the responder’s receive queue.

o9-39: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, and before executing the in-
bound request, the responder shall check the PSN by comparing the in-
bound BTH:PSN to the responder’s expected PSN. The PSN shall be
checked by the responder’s receive queue.

For reliable datagram service, the PSN is checked by the responder’s EE
Context.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 298 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

To a large extent, the responder’s behavior in responding to a request is
based on an interpretation of the incoming PSN.

Logically, a receive queue or EE Context maintains an expected PSN
(ePSN). This is the PSN that the responder expects to find in the BTH of
the next new request packet it receives. The rules that the responder uses
to calculate its next expected PSN are the same as those used by the re-
quester when it calculates the PSN value to insert in its next request
packet.

C9-75: For Reliable Connection service in an HCA responder, a re-
sponder shall use the rules given in 9.7.3.1 Requester Side - Generating
PSN on page 289 to calculate its expected PSN.

o9-40: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, a responder shall use the
rules given in 9.7.3.1 Requester Side - Generating PSN on page 289 to
calculate its expected PSN.

The responder’s expected PSN is initialized at connection establishment
time by the Communication Manager to any value between zero and
16,777,215. For proper operation, this initial value must match the initial
next PSN value as loaded on the requester.

The initial expected PSN can only be set by the client when the queue is
in the Initialized state. Attempts by the client to set the PSN when it is in
any other state may be ignored by the transport layer.

C9-76: For Reliable Connection service in an HCA responder, the HCA
shall update its expected PSN only when the receive queue is in a state
such that it is properly conditioned to receive request packets. For ex-
ample, the transport does not modify the expected PSN when the queue
pair is in the Initialized state.

o9-41: If Reliable Connection service is implemented in a TCA, the re-
sponder shall update its expected PSN only when the Receive Queue is
in a state such that it is properly conditioned to receive request packets.
For example, the transport does not modify the expected PSN when the
queue pair is in the Initialized state.

o9-42: If Reliable Datagram service is implemented in a CA, the re-
sponder shall update its expected PSN only when the EE Context is in a
state such that it is properly conditioned to receive request packets.

When compared to its expected PSN, the actual PSN of an inbound re-
quest message may fall into one of three regions; it may be exactly equal
to the responder’s expected PSN, it may be logically “less” than the re-
sponder’s expected PSN and thus fall into the duplicate region as shown

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 299 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

in Figure 86, or it may fall outside both the valid region and the expected
PSN “region”, and thus be invalid.

Expected (new) Request: An inbound request packet received with a
PSN that exactly matches the responder’s expected PSN is a new request
packet.

C9-77: For Reliable Connection service in an HCA responder, a new re-
quest packet shall be validated normally and executed according to the
rules governing order of execution. Once the request has been executed,
a response shall be scheduled as specified in 9.7.5 Responder: Gener-
ating Responses on page 306.

o9-43: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, a new request packet shall
be validated normally and executed according to the rules governing
order of execution. Once the request has been executed, a response shall
be scheduled as specified in 9.7.5 Responder: Generating Responses on
page 306.

Note that it is not required to return a discrete acknowledge packet for
each inbound request packet.

Once a packet with a valid expected PSN has been received, the re-
sponder advances its expected PSN by calculating the new expected
PSN, and slides the valid region window up to reflect the new range of
valid PSNs.

Valid Duplicate Request: A PSN that falls within the valid region, but is
not the expected PSN, is a valid duplicate request packet.

C9-78: For Reliable Connection service in an HCA responder, the re-
sponder shall respond to valid duplicate requests as specified in 9.7.5.1.4
Acknowledging Duplicate Requests on page 312.

o9-44: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, then the responder shall re-
spond to valid duplicate requests as specified in 9.7.5.1.4 Acknowledging
Duplicate Requests on page 312.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 300 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 41 summarizes those actions.

Invalid Request: A packet with an actual received PSN outside the valid
region and not in the expected “regions” is an invalid request. An invalid
PSN value is generally an indication that one or more request packets
have been lost in the fabric.

The responder’s detailed behavior in response to an invalid request re-
quest packet is as follows:

• The errant request packet is not executed.

• Any request packets received prior to the errant request must be
executed and completed before the NAK-Sequence Error is is-
sued since it acts as an implicit ACK for prior outstanding SEND
or RDMA WRITE requests, and as an implicit NAK for outstand-
ing RDMA READ or ATOMIC Operation requests.

• Return a NAK-Sequence error to the requester.

• The responder does not update its expected PSN.

C9-79: For Reliable Connection service in an HCA responder, when the
actual PSN of an inbound request message is outside the valid region (In-
valid Request), a NAK-Sequence Error shall be returned by the re-
sponder. Any request packets received prior to the errant request must be
executed and completed before the NAK-Sequence Error is issued.

o9-45: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, and if the actual PSN of an
inbound request message is outside the valid region (Invalid Request),
then a NAK-Sequence Error shall be returned by the responder. Any re-
quest packets received prior to the errant request must be executed and
completed before the NAK-Sequence Error is issued.

The responder resumes waiting for a valid inbound request packet that
has a PSN equal to its expected PSN or within its valid region. If, while
waiting for a valid new request, the responder receives any subsequent

Table 41 Summary: Responder Actions for Duplicate PSNs

Duplicate Request
Message Responder Action

SEND or RDMA WRITE
or RESYNC

Schedule acknowledge packet

RDMA READ Re-execute request, schedule response

ATOMIC Operation Do not re-execute request, after validating the request, return
the saved results from the referenced ATOMIC Operation
request.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 301 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

invalid request packets, those packets are simply dropped silently; no
NAK is returned.

C9-80: For Reliable Connection service in an HCA responder, after gen-
erating a NAK-Sequence Error, the responder shall not generate an ACK
or NAK until it receives either a valid new request, or a valid duplicate re-
quest.

o9-46: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, then after generating a
NAK-Sequence Error, the responder shall not generate an ACK or NAK
until it receives either a valid new request, or a valid duplicate request.

There is no requirement that the queue be stopped or for a connected
transport service that the connection be torn down.

9.7.4.1.3 RESPONDER - OPCODE SEQUENCE CHECK

A request packet must fit within a schedule of valid OpCode sequences.
For Reliable Connected and Reliable Datagram services the responder
shall check the sequence of packet OpCodes comprising the request
message as follows:

1) If this is the first packet following establishment of the connection,
then the packet OpCode must indicate either “first” or “only”.

2) If the last valid packet received had an OpCode indicating “first”, then
the current OpCode must indicate either “middle” or “last”. It must
also match the operation type specified in the last valid packet (Send,
RDMA, ATOMIC Operation). It is an error if the current OpCode indi-
cates “first” or “only”, since that implies that the last packet of the pre-
vious message was missed.

3) If the last valid packet received had an OpCode indicating “middle”,
then the current OpCode must indicate either “middle” or “last”. It
must also match the operation type specified in the last valid packet
(Send, RDMA, ATOMIC Operation). It is an error if the current
OpCode indicates “first” or “only” packet since that implies that the
last packet of the previous message was missed.

4) If the last valid packet received had an OpCode indicating “last”, then
the current OpCode must indicate either “first” or “only”. It is an error
if the current OpCode indicates either “middle” or “last”, since that im-
plies that the first packet of the message was missed.

5) If the last valid packet received had an OpCode indicating “only”, then
the current OpCode must indicate either “first” or “only”. It is an error
if the current OpCode indicates either a middle packet or last packet
since that implies that the first packet of the message was missed.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 302 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

These rules are stated succinctly in the following table.

C9-81: For an HCA responder using Reliable Connected service, the re-
sponder shall check that the sequence of packet OpCodes comprising the
request message conforms to the schedule shown in Table 42 Schedule
of Valid OpCode Sequences on page 302. If the responder detects an in-
valid opcode sequence, it shall return a NAK-Invalid Request to the re-
quester.

o9-47: If a TCA responder implements Reliable Connected service, the
responder shall check that the sequence of packet OpCodes comprising
the request message conforms to the schedule shown in Table 42
Schedule of Valid OpCode Sequences on page 302. If the responder de-
tects an invalid opcode sequence, it shall return a NAK-Invalid Request to
the requester.

o9-48: If a CA responder implements Reliable Datagram service, the re-
sponder shall check that the sequence of packet OpCodes comprising the
request message conforms to the schedule shown in Table 42 Schedule
of Valid OpCode Sequences on page 302. If the responder detects an in-
valid opcode sequence, it shall return a NAK-Invalid Request to the re-
quester.

The detailed behavior in the presence of an invalid OpCode sequence is
specified in Section 9.9 Error detection and handling on page 396.

o9-49: This compliance statement is obsolete and has been removed.

9.7.4.1.4 RESPONDER OPCODE VALIDATION

C9-82: Before executing an inbound request, the responder shall validate
the OpCode field of the BTH.

Table 42 Schedule of Valid OpCode Sequences

Previous Packet OpCode Valid OpCodes for Current Packet

None e.g., first packet following
connection establishment

“First” packet
“Only” packet

“First” packet “Middle” packet (message is 3 or more packets)
“Last” packet (message is exactly 2 packets)
Type of operation must match the previous OpCode

“Middle” packet “Middle” packet
“Last” packet
Type of operation must match the previous OpCode

“Last” packet “First” packet (1st packet of a new message)
“Only” packet (1st packet of a new single packet msg)

“Only” packet “First” packet
“Only” packet

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 303 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The OpCode is checked for the following characteristics:

• The requested function (Send, RDMA, ATOMIC) is supported by this
receive queue,

• If the request is for an RDMA READ or an ATOMIC Operation, there
are sufficient resources available to receive it.

As the packet was passed up to the transport layer, BTH OpCode
field[7:5] was checked to ensure that the requested operation was for a
reliable service. If it was not, then the packet was silently dropped. This
check is specified in Section 9.6 Packet Transport Header Validation on
page 269. Thus, before the packet arrives at the queue pair for validation
according to the rules in this section, it is already known to be a request
for a reliable service.

C9-83: For Reliable Connection service in an HCA responder, if the re-
quest is for a function which this receive queue does not support, then a
NAK-Invalid Request shall be returned.

For example, if the queue pair is not configured to accept requests for
RDMAs, but the request is for an RDMA WRITE, then a NAK-Invalid Re-
quest shall be returned.

o9-50: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, if the request is for a func-
tion which this receive queue does not support, then a NAK-Invalid Re-
quest shall be returned.

C9-84: For Reliable Connection service in an HCA responder, and the
BTH OpCode field[4:0] specifies a Reliable Connection reserved opcode
or a Reliable Datagram reserved opcode, a NAK-Invalid Request shall be
returned.

o9-51: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, and the BTH OpCode
field[4:0] specifies a Reliable Connection reserved opcode or a Reliable
Datagram reserved opcode, then a NAK-Invalid Request shall be re-
turned.

C9-85: For Reliable Connection service in an HCA responder, if BTH Op-
Code field[4:0] specifies a first or middle request packet (e.g. SEND First,
or RDMA WRITE Middle), then the pad count bits shall be verified to be
b00, indicating no pad bytes are present. If the pad count bits are non-
zero, a NAK-Invalid Request shall be returned.

o9-52: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, if BTH OpCode field[4:0]
specifies a first or middle request packet (e.g. SEND First, or RDMA

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 304 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

WRITE Middle), then the pad count bits shall be verified to be b00, indi-
cating no pad bytes are present. If the pad count bits are non-zero, a NAK-
Invalid Request shall be returned.

C9-86: For Reliable Connection service in an HCA responder, if there are
insufficient resources to receive a new RDMA READ or ATOMIC Opera-
tion request, then a NAK-Invalid Request shall be returned.

o9-53: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, and if there are insufficient
resources to receive a new RDMA READ or ATOMIC Operation request,
then a NAK-Invalid Request shall be returned.

The behavior for returning a NAK-Invalid Request is as follows:

• The errant request packet is not executed.
• Any request packets received prior to the errant request must be

executed and completed before the NAK-Invalid Request is is-
sued. This is important since the NAK effectively coalesces re-
sponses to earlier outstanding request and acts as an implicit
response for prior outstanding SENDs, RDMA WRITEs, ATOMIC
Operations or RDMA READ requests. See Section 9.7.5.1.2 Coa-
lesced Acknowledge Messages on page 308 for details.

• NAK-Invalid Request is returned.
• The responder does not update its expected PSN.

C9-87: For Reliable Connection service in an HCA responder, any re-
quest packets received prior to a packet containing an invalid opcode
must be executed and completed before a NAK-Invalid Request is issued
by the responder.

o9-54: If Reliable Datagram service is implemented in a CA, or if Reliable
Connection service is implemented in a TCA, then any request packets re-
ceived prior to a packet containing an invalid opcode must be executed
and completed before a NAK-Invalid Request is issued by the responder.

More detail on error behavior in the presence of an invalid request is given
in Section 9.9.3 Responder Side Behavior on page 408.

9.7.4.1.5 RESPONDER R_KEY VALIDATION

A R_Key violation is caused by any or all of the following conditions for
either a RDMA READ, RDMA WRITE, or ATOMIC Operation:

• The R_Key field of the RETH is invalid (for RDMA READ or
WRITEs)

• The R_Key field of the AtomicETH is invalid (for ATOMIC Opera-
tions).

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 305 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The virtual address and length, or type of access specified, is out-
side the locally defined limits associated with the R_Key. For an
RDMA WRITE request, the length check is conducted on a per
packet basis, and is based on the LRH:PktLen field. For an
RDMA READ request, the length check is based on the
RETH:DMA Length field.

• For an HCA, an R_Key violation also includes a violation of the
protection domain as defined in 10.2.3 Protection Domains on
page 434.

C9-88: For an HCA responder using Reliable Connection service, for
each zero-length RDMA READ or WRITE request, the R_Key shall not be
validated, even if the request includes Immediate data.

o9-55: If an HCA responder implements Reliable Datagram service, or if
a TCA responder implements Reliable Connection and RDMA function-
ality, or if a TCA responder implements Reliable Datagram service and
RDMA functionality, the responder shall behave as follows. For each zero-
length RDMA READ or WRITE request, the R_Key shall not be validated,
even if the request includes Immediate data.

C9-89: If the responder’s receive queue detects a R_Key violation, a
NAK-Remote Access Error shall be returned to the requester using the
PSN of the errant request packet.

C9-90: Any request packets received prior to a packet containing an
R_Key violation shall be executed and completed before a NAK-Remote
Access Error is issued by the responder.

See 9.7.5.2.4 Remote Access Error on page 326 for additional details.

9.7.4.1.6 RESPONDER - LENGTH VALIDATION10

C9-91: The PktLen field of the LRH shall be checked to confirm that there
is sufficient space available in the receive buffer specified by the receive
WQE. If the buffer defined by the receive WQE is insufficient to hold an
inbound SEND request then a NAK-Invalid Request shall be returned.

C9-92: The length of the packet shall also be validated by comparing it to
the OpCode as follows:

If the OpCode specifies a “first” or “middle” packet, then the packet pay-
load length must be a full PMTU size.

If the OpCode specifies a “only” packet, then the packet payload length
must be between zero and PMTU bytes in size. Thus, the only way to
create a zero byte length transfer is by use of a single packet message.

10. CAs are not required to validate the GRH packet length.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 306 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the OpCode specifies a “last” packet, then the packet payload length
must be between one and PMTU bytes in size.

C9-93: If a packet is detected with an invalid length the request shall be
an invalid request.

The responder’s behavior in such a case is specified in Section 9.9.3 Re-
sponder Side Behavior on page 408.

In addition to checking the LRH:PktLen field, the DMA Length field of the
RETH is checked as follows.

For an RDMA WRITE request, the responder may optionally check the
DMA Length field in the RETH to ensure that it does not specify a transfer
length of greater than 231 bytes. It may also, at the end of the transfer,
verify that the sum of the packet payloads equalled the DMALen field in
the RETH. If the responder detects either of these conditions, it may treat
the request as an invalid request.

C9-94: For an HCA validating an inbound RDMA READ request, the DMA
Length field shall be checked. If the request is for greater than 231 bytes,
then a NAK-Invalid Request shall be returned.

o9-56: If a TCA implements RDMA operations, then for an inbound RDMA
READ request, the DMA Length field shall be checked. If the request is
for greater than 231 bytes, then a NAK-Invalid Request shall be returned.

9.7.4.1.7 RESPONDER LOCAL OPERATION VALIDATION

A valid inbound request may still fail to complete due to a failure that is
local to the responder, e.g. local memory translation error while accessing
local memory. All local responder errors are reported to the requester as
NAK-Remote Operational Error. See 9.7.5.2.6 Remote Operational Error
on page 327 for additional details.

9.7.5 RESPONDER: GENERATING RESPONSES

9.7.5.1 RESPONDER SIDE BEHAVIOR

This section specifies the required behavior that a responder must follow
when generating acknowledge messages.

9.7.5.1.1 GENERATING PSNS FOR ACKNOWLEDGE MESSAGES

As the responder generates a response to each request, it shall identify
the request with which the response is associated by inserting a PSN in
the BTH of the response.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 307 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This allows the requester to correlate response packets it receives with its
request. This basic concept is illustrated below in Figure 90 Example:
PSNs for Response Messages on page 307.

C9-95: For responses to SEND requests or RDMA WRITE requests the
responder shall insert in the PSN field of the response the PSN of the
most recent request packet being acknowledged.

"PSN of the most recent request", as used here and throughout Chapter
9, specifically means the PSN of the most recently received NEW request
packet. (This distinguishes it from the PSN of a recently received dupli-
cate request). Thus, the PSN of the most recently received request marks
the point of greatest forward progress, as perceived by the responder,
while ignoring duplicate requests.

Because of the rules for coalescing acknowledges (given in Section
9.7.5.1.2), the PSNs for consecutive response packets may not neces-
sarily be sequential.

C9-96: For HCA responses to RDMA READ requests, the PSNs of the re-
sponse packets must be sequential and monotonically increasing begin-
ning with the PSN of the original RDMA READ request message.

o9-57: If a TCA implements RDMA READ functionality, then for each
RDMA READ response the PSNs of the response packets must be se-

r1

r2

r3

a1

a3

Requester Responder

request: PSN=2

request: PSN=1

request: PSN=3

response PSN=1

response PSN=3

’r’ is a request packet
’a’ is an acknowledge packet (message)

Figure 90 Example: PSNs for Response Messages

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 308 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

quential and monotonically increasing beginning with the PSN of the orig-
inal RDMA READ request message.

o9-58: Since ATOMIC Operation requests require an explicit response,
and since an ATOMIC Operation request is restricted to a single packet,
the PSN of the response packet must be identical to the PSN of the re-
quest.

9.7.5.1.2 COALESCED ACKNOWLEDGE MESSAGES

It is not required that there be a unique, discrete response for each re-
quest packet. Instead, the responder may acknowledge several out-
standing request packets with a single acknowledge packet. This is called
acknowledge coalescing.

A given response packet acknowledges prior outstanding requests (i.e.,
those with earlier PSNs than the PSN contained in the BTH of the re-
sponse packet) as follows:

1) If there is an outstanding RDMA READ or ATOMIC Operation request
with a PSN earlier than the PSN in the BTH of the response packet,
then the response packet implies a negative acknowledgment for the
oldest such outstanding RDMA READ or ATOMIC Operation request.
Any requests posted to the send queue subsequent to such an
RDMA READ or ATOMIC Operation request are not acknowledged.
This is illustrated in Figure 91 Requester Interpretation of Coalesced
Acknowledges on page 309.

2) It implies a positive acknowledgment for all outstanding SEND or
RDMA WRITE request packets with a PSN earlier than the PSN in
the BTH of the response packet, unless such an outstanding SEND
or RDMA WRITE request falls after an outstanding RDMA READ or
ATOMIC Operation request as described above.

3) If the given response is an RDMA READ response message, it is the
first (or only) packet of a RDMA READ response message that im-
plicitly acknowledges prior outstanding requests.

4) The last (or only) packet of a RDMA READ response message ex-
plicitly acknowledges only the RDMA READ request.

These rules are illustrated in Figure 92.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 309 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.5.1.3 ACKNOWLEDGING RDMA READ REQUESTS

An RDMA READ response is different from a normal response in that it
contains a data payload.

Every RDMA READ request message requires a discrete acknowledg-
ment, called the RDMA READ response which consists of one or more
packets.

C9-97: For an HCA, if an RDMA READ response contains more than one
packet, the first and last packets must contain an AETH.

o9-59: In a TCA implementing RDMA, if an RDMA READ response con-
tains more than one packet, the first and last packets must contain an
AETH.

r1SEND request

SEND request

RDMA READ request

REQUESTER RESPONDER

r3

r4

a3

a4

X

Lost RDMA READ
response

r2SEND request

Figure 91 Requester Interpretation of Coalesced Acknowledges

Acknowledge packet a4:

1) implicitly acknowledges SEND requests r1 and r2,

2) implicitly NAKs RDMA READ request r3.

3) does not acknowledge SEND request r4.

Thus, acknowledges for requests r1 and r2 have been coa-
lesced, and the requester must re-try requests r3 and r4.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 310 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The AETH in the first packet implicitly acknowledges prior outstanding re-
quests as specified in Section 9.7.5.1.2 Coalesced Acknowledge Mes-
sages on page 308. The AETH in the last packet acknowledges the
RDMA READ request.

C9-98: For an HCA, if an RDMA READ response is itself a single packet,
then that packet must contain an AETH.

o9-60: If a TCA implements RDMA functionality, and an RDMA READ re-
sponse is itself a single packet, then that packet must contain an AETH.

The AETH contained in a single packet RDMA READ response serves to
both implicitly acknowledge prior outstanding requests as well as to ex-
plicitly acknowledge the RDMA READ request itself.

C9-99: An HCA responder shall generate RDMA READ response packet
payload lengths which are consistent with the opcode as follows:

1) A packet with an opcode of “RDMA READ response only” shall be
zero to (PMTU) bytes long.

2) A packet with an opcode of “RDMA READ response first” or RDMA
READ response middle” shall be exactly (PMTU) bytes long.

3) A packet with an opcode of “RDMA READ response last” shall be
one to (PMTU) bytes long.

4) Zero length RDMA READ requests are permitted.

5) A response to a zero length RDMA READ request shall consist of a
single packet with an opcode of “RDMA READ response only”.

o9-61: If a TCA implements RDMA functionality, it shall generate re-
sponse packets with payload lengths as described in the previous compli-
ance statement.

C9-100: If an HCA responder detects an error while in the process of re-
turning a multi-packet RDMA READ response, it shall force a premature
termination of the RDMA READ response by not transmitting any of the
errant payload data and forcing the opcode of the packet on which the
error occurred to “acknowledge” instead of an opcode of “RDMA READ
response last”. The appropriate NAK code is inserted.

o9-62: If a TCA implements RDMA functionality, and detects an error
while in the process of returning a multi-packet RDMA READ response, it
shall force a premature termination of the RDMA READ response by not
transmitting any of the errant payload data and forcing the opcode of the
packet on which the error occurred to “acknowledge” instead of an opcode
of “RDMA READ response last”. The appropriate NAK code is inserted.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 311 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Due to the relaxed ordering rules for RDMA READ Requests, the re-
sponder is permitted to begin executing one or more SEND or RDMA
WRITE requests that arrive after the RDMA READ request.

C9-101: For an HCA, before executing any of the requests following the
RDMA READ request, the header fields of the RDMA READ request must
be validated. These requests must not be acknowledged until the out-
standing RDMA READ responses have been sent.

o9-63: Before executing any of the requests following the RDMA READ
request, the header fields of the RDMA READ request must be validated.
These requests must not be acknowledged until the outstanding RDMA
READ responses have been sent.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 312 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.5.1.4 ACKNOWLEDGING DUPLICATE REQUESTS

After validating a duplicate request, the response to a duplicate request
packet is as follows:

C9-102: After validating a duplicate request, if the duplicate packet is
valid, the responder shall generate a response.

C9-103: Throughout the processing of the duplicate request, the re-
sponder shall not update its expected PSN; it remains set to the value it

r1

r4

Requester Responder

Responder begins executing r1.

While executing r1 & r4, responder

Responder NAKs r4 after

a1

’r’ is a request packet,
’a’ is an acknowledge message

 RDMA READ Request

RDMA READ Request

may begin executing r5

No response has been returned
for r4 or r5 yet, because r1

ACK’ing r1.

Responder must not acknowledge r5

’n’ is a negative acknowledge message

RDMA WRITE Request r5

has not yet completed

Responder begins executing r4

While returning responses to r1,
responder detects R_Key violation
on r4a2

a3

n4

a5

r1 will require 3 response packets.

 r1: RDMA RD
 r4: RDMA RD

 r5: RDMA WR

...

request

Requester’s

...

...

Send Queue

Figure 92 Relaxed Ordering Rules for RDMA READs

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 313 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

had prior to the arrival of the duplicate request. This is true even if the re-
sponder detects an error while in the process of generating the response
to the duplicate request.

Following generation of the appropriate response (as described in the
next paragraphs), the responder resumes waiting for a new inbound
packet with a PSN matching its expected PSN.

It is possible that the responder will receive another duplicate request
while waiting for a new inbound packet. This is perfectly valid, and should
be treated as simply another duplicate request. Furthermore, since it is a
duplicate request, there is no requirement that the next request received
be in sequential PSN order with the first duplicate request. However, the
responder is required to maintain the same ordering rules for generating
responses to duplicate requests as are required for normal new requests.

C9-104: In particular, a duplicate RDMA READ or ATOMIC Operation re-
quest must be acknowledged with an explicit response prior to returning
acknowledges for subsequent duplicate SEND or RDMA WRITE re-
quests.

This is illustrated in Figure 93 Maintaining the Order of Responses to Du-
plicate Requests on page 314.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 314 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The response to be generated is a function of the duplicate request mes-
sage as follows:

• SEND, RESYNC or RDMA WRITE Request

C9-105: For an HCA which receives a duplicate inbound SEND or RDMA
Write request, or for a TCA which receives a duplicate inbound SEND re-
quest, the responder shall not re-execute the request but only generates
a response packet for the duplicate packet, pending responses for any

r1

r2

a1

Requester

Send request: PSN=2

RDMA READ request: PSN=1

response for r2

RDMA READ response for r1

’r’ is a request packet
’a’ is an acknowledge packet (message)

r1

a1

duplicate RDMA request: PSN=1

resend RDMA READ response for r1

a2

r2
duplicate Send request: PSN=2

a2
resend response for r2.

Responder must return response to
duplicate RDMA READ request r1
before it can return response to dupli-
cate SEND request r2.

Figure 93 Maintaining the Order of Responses to Duplicate Requests

Responder

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 315 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

outstanding duplicate RDMA READ requests or ATOMIC Operation re-
quests.

o9-64: If a TCA responder implements RDMA functionality, it shall not re-
execute the RDMA WRITE request but only generate a response packet
for the duplicate packet, pending responses for any outstanding duplicate
RDMA READ requests or ATOMIC Operation requests.

The PSN of the acknowledge message must be the PSN of the most
recently completed new request. One way to think of this process is
as a logical extension of the ability to coalesce acknowledges. Indeed,
the requester, on receiving a response to a duplicate request, treats it
exactly as it would any other coalesced acknowledge; any outstanding
duplicate RDMA READ or ATOMIC Operation requests are consid-
ered to be NAK’ed. In this case, by returning the PSN of the most re-
cently completed request, the responder is informing the requester
that it believes it has already seen and executed all requests between
the duplicate request and the most recently completed request. This
is illustrated in Figure 94.

C9-106: For duplicate SEND, RESYNC or RDMA WRITE requests, if the
responder detects an error while in the process of returning the response,
it shall silently drop the duplicate request. This is done in order to avoid
confusion with any possible outstanding NAKs to new requests.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 316 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• RDMA READ Request
C9-107: An HCA responder must re-create the requested read response
data. The resulting read data is returned to the requester in an RDMA
READ response. The PSN of the first RDMA READ response packet shall
be the same as the PSN of the duplicate request, with the PSNs for the
subsequent response packets incrementing according to the normal rules
for generating PSNs for RDMA READs.

C9-108: If an HCA responder detects an error while re-executing a dupli-
cate RDMA READ request before returning the first response packet, the
responder shall silently drop the duplicate request.

C9-109: If an HCA responder detects an error while re-executing a dupli-
cate RDMA READ Request after returning one or more response packets,
the RDMA READ response operation shall be aborted, i.e. no more re-
sponse packets shall be returned.

r1

r2

r3

a3

Requester Responder

SEND request: PSN=2

 SEND request: PSN=1

SEND request: PSN=3
response PSN=1

response PSN=3

’r’ is a request packet
’a’ is an acknowledge packet (message)

r1

a3

duplicate SEND request: PSN=1

resent response a3

Figure 94 Acknowledging a Duplicate SEND Request

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 317 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When an RDMA READ Request is generated, a certain number of se-
quential PSN numbers are allocated based on the number of packets ex-
pected in the RDMA READ Response. These PSNs are used by the
responder when generating the RDMA READ Response packet(s) Also,
the original request contains a DMA Length defined in the RETH which
represents the extent of the data being requested.

As described in Section 9.4.4 RDMA READ Operation on page 256, to be
considered a duplicate RDMA READ Request, the PSN of the duplicate
request must be within the responder's current duplicate PSN region. Fur-
thermore, to be considered a valid duplicate RDMA READ Request, the
PSN of the duplicate request must fall within the range of PSNs allocated
to the original RDMA READ Response, and the amount of data requested
in the duplicate request must be entirely contained within the extent of
data requested in the original RDMA READ Request. In other words, the
data requested in the duplicate RDMA READ Request must be a proper
subset of the data requested in the original RDMA READ Request.

If the starting PSN and length of a duplicate RDMA READ Request does
not fall within the range of PSNs allocated to the original RDMA READ Re-
sponse, the request is invalid and the responder may silently drop the du-
plicate RDMA READ Request.

C9-110: A responder shall respond to all duplicate requests in PSN order;
i.e. the request with the (logically) earliest PSN shall be executed first. If,
while responding to a new or duplicate request, a duplicate request is re-
ceived with a logically earlier PSN, the responder shall cease responding
to the original request and shall begin responding to the duplicate request
with the logically earlier PSN.

If a responder is interrupted by a duplicate request, it is not required to re-
sume the interrupted request. It is the requester’s responsibility to resend
any unacknowledged requests.

o9-65: If a TCA implements RDMA functionality, RDMA READ Re-
sponses shall conform to the previous 4 compliance statements for HCAs.

Following the duplicate RDMA READ response, the responder may
acknowledge any subsequent duplicate Send or RDMA WRITE re-
quests with the PSN of the most recently completed request. This is
illustrated in Figure 95

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 318 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

• ATOMIC Operation Request

A given receive queue may have resources to support only a limited
number of ATOMIC Operations. When a duplicate ATOMIC Operation
request is received, the PSN of the duplicate request is compared to
the PSNs of the recently executed ATOMIC Operations.

o9-66: If the PSN of the duplicate ATOMIC Operation request matches
exactly the PSN of one of the recently executed ATOMIC Operations, the
saved results of that operation shall be returned to the requester. The re-
sponder shall not re-execute the request.

r1

r2

r3

a1

Requester Responder

Send request: PSN=2

RDMA READ request: PSN=1

Send request: PSN=3

Coalesced response for r2 and r3

RDMA READ response for r1

’r’ is a request packet
’a’ is an acknowledge packet (message)

r1

a1

duplicate RDMA RD req: PSN=1

resend RDMA READ response for r1

Figure 95 Acknowledging a Duplicate RDMA READ Request

a3

r2
duplicate Send request: PSN=2

a3
resend response for r3. This implicitly
acknowledges the duplicate r2

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 319 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-67: If the PSN of the duplicate ATOMIC Operation request does not
match the PSN of one of the recently executed ATOMIC Operations, the
request is invalid and the duplicate request packet shall be silently
dropped. This should never happen as long as the requester is observing
the limits on the number of outstanding ATOMIC Operation requests.

o9-68: If a local error prevents the responder from reproducing the orig-
inal ATOMIC Operation request data, the responder must silently drop the
duplicate request.

In all cases, the PSN returned in the acknowledge message is the
PSN of the duplicate request.

9.7.5.1.5 GENERATING NAKS

There are several circumstances that cause a responder to generate a
NAK.

C9-111: In all cases except for RDMA READ requests, the PSN of the
NAK packet shall contain the responder’s expected PSN.

C9-112: In the case of an RDMA READ response packet, the PSN given
in the NAK response packet shall point to the RDMA READ response
packet which is being NAK’ed.

C9-113: When generating an RNR NAK, the PSN of the response packet
shall point to the PSN of the packet being RNR NAK’ed.

C9-113.a1: When generating a NAK, the packet containing the NAK code
shall have an opcode of Acknowledge.

This means that, even for an RDMA Read response, if the responder is
returning a NAK code, it does so by substituting a packet with an opcode
of Acknowledge instead of the normal opcode of RDMA Read Response
(first/middle/last/only).

Once the responder has returned a NAK-sequence error or an RNR NAK,
it waits for the requester to send a packet with the responder’s expected
PSN.

The rules that the responder must follow are as follows:

C9-114: Once a NAK has been returned for a PSN sequence error, the
responder shall ignore all other new requests, except duplicate requests,
until it receives a valid request with a PSN that matches its expected PSN.
It shall not return any other NAK packets, except in response to a valid re-
quest with a PSN that matches its expected PSN.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 320 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-115: The responder must continue to respond to duplicate requests as
specified above. However, the responder shall not return a NAK in re-
sponse to an error condition occurring while processing a duplicate re-
quest.

9.7.5.1.6 ACKNOWLEDGE MESSAGE SCHEDULING

The scheduling of responses, per se, is not specified; however the re-
quester may use the AckReq bit in the BTH to require the responder to
schedule a response.

C9-116: When the responder receives a valid request packet with the
AckReq bit set, it shall schedule a response packet for that request. The
PSN of the response must be equal to or logically greater than (modulo
224) the PSN of the request.

After receiving a request message with the AckReq bit set, the responder
still accepts request messages, (including additional ones marked with
the AckReq bit set), while it is preparing to transmit the response packet.
These additional request messages may result in a coalesced ACK when
the responder is able to send the response. In this case, the single re-
sponse message may satisfy several outstanding request messages.

When one or more requests arrive without the AckReq bit set, the re-
sponder may choose to deliberately coalesce its responses; it may even
wait an unbounded time for additional requests, until one arrives that re-
quires the scheduling of a response.

There are several places where the AckReq bit can be very useful to the
requester. For example, if the requester is sending the last packet of the
last request WQE posted to the send queue, it is advisable for the re-
quester to set the AckReq bit or use some other mechanism to force the
responder to return a response. If the requester does not do so, there is a
possibility that the responder will choose to coalesce responses indefi-
nitely. Some other mechanisms that the requester can use to ensure that
the responder returns a response are:

• Always set the AckReq bit on the last (or only) packet of every
message

• Follow a given request with a NOP with the AckReq bit set
• Retry the request for which a response was desired with the Ack-

Req bit set.
For SEND or RDMA WRITE requests, an ACK may be scheduled before
data is actually written into the responder’s memory. The ACK simply in-
dicates that the data has successfully reached the fault domain of the re-
sponding node. That is, the data has been received by the channel
adapter and the channel adapter will write that data to the memory system

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 321 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of the responding node, or the responding application will at least be in-
formed of the failure.

The absence of the AckReq bit does not prohibit the responder from gen-
erating a response packet. As always, RDMA READ and ATOMIC Oper-
ation requests require explicit responses, thus the AckReq bit has no
effect on requests.

9.7.5.1.7 RESPONSE FORMATS

Responses may take one of three forms:

1) An acknowledge packet for a normal SEND, RESYNC or RDMA
WRITE operations,

2) RDMA READ responses, and

3) Acknowledge messages for ATOMIC Operations - see 9.4.5 ATOMIC
Operations on page 260.

The key distinctions between the three forms is that the normal acknowl-
edge packet (used for SENDs, RESYNCs and RDMA WRITEs) does not
carry a payload field, while the responses for both the RDMA READ and
ATOMIC Operations do. This observation impacts both the format of the
response and the rules for coalescing acknowledges.

An acknowledge packet contains the following information:

• A syndrome used to notify the requester of the success or failure
of a given request message,

• A PSN value used by the requester to correlate the acknowledge
message with its listing of outstanding requests,

• A Message Sequence Number used by the responder to notify
the requester that request messages have been completed,

• Optional End-to-End flow control credits,
• Payload data in the case of a RDMA READ response or ATOMIC

Operation response.
Each of the three forms is discussed in the following sections.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 322 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.5.1.8 RESPONSE FORMAT FOR SEND, RESYNC OR RDMA WRITE REQUESTS

This format is used to acknowledge SEND, RESYNC or RDMA WRITE re-
quest packets. A normal acknowledge message comprises a single
packet, and is shown in Figure 96.

9.7.5.1.9 RDMA READ RESPONSES

This response format, called a RDMA READ response, is used to ac-
knowledge RDMA READ requests. A RDMA READ response message
consists of one or more packets.

C9-117: For an HCA, the PSNs of the RDMA READ response packets
must be sequential and monotonically increasing. If the response mes-
sage consists of more than one packet, the first and last packets of the re-
sponse message must contain an Acknowledge Extended Transport
Header (AETH).

o9-69: If a TCA implements RDMA functionality, the PSNs of the RDMA
READ response packets must be sequential and monotonically in-
creasing. If the response message consists of more than one packet, the
first and last packets of the response message must contain an Acknowl-
edge Extended Transport Header (AETH).

C9-118: For an HCA, if the response message contains only a single
packet (an “only” packet), then that packet must contain an AETH. This is
illustrated in Figure 97.

LRH GRH BTH RDETH AETH ICRC VCRC

note 1: GRH may or may not appear, depending on the LRH Next
Header field
note 2: RDETH appears only for reliable datagram operations
note 3: DETH, RETH, EOP, PYLD and IMM fields are prohibited

Figure 96 Response Format for SENDs, RDMA WRITEs

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 323 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-70: If a TCA implements RDMA functionality, and the response mes-
sage contains only a single packet (an “only” packet), then that packet
must contain an AETH as shown in Figure 97.

A RDMA READ Response message, besides acknowledging the RDMA
READ request itself, also implicitly acknowledges requests preceding the
RDMA READ request. The rules governing coalesced ACKs are given in
Section 9.7.5.1.2 Coalesced Acknowledge Messages on page 308.

The arrival of either a first packet or an only packet triggers the implicit ac-
knowledges of any outstanding request messages as specified in section
9.7.5.1.2 Coalesced Acknowledge Messages on page 308. This is done

LRH GRH BTH PYLD ICRC VCRC

note 1: GRH may or may not appear, depending on the LRH:Next Header field
note 2: RDETH appears only for reliable datagram operations
note 3: DETH, RETH, and IMM headers are prohibited

Packet 1 Packet 2 Packet n...

Each RDMA READ Response message comprises one or more pack-

Format for all middle packets. PYLD must be (PMTU) bytes long.

LRH GRH BTH RDETH AETH ICRC VCRC

Format for first, last or only RDMA READ Response Packet.

If a first packet, PYLD shall be (PMTU) bytes long.
If an only packet, PYLD shall be zero to (PMTU) bytes long.
If a last packet, PYLD shall be one to (PMTU) bytes long.

RDETH

PYLD

Figure 97 Acknowledge Message Format for RDMA READ Requests

opcode=”first” or “only”

opcode=”middle” opcode=”last”

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 324 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

in order to reduce the latency to complete any outstanding request mes-
sages.

The arrival of a last packet or an only packet triggers the explicit acknowl-
edge of the RDMA READ request itself.

9.7.5.2 AETH FORMAT

Acknowledge syndromes are carried in the AETH of the acknowledge
message. The table below illustrates the syndrome field of the AETH.

C9-119: When generating an AETH, a HCA responder implementing RC
service shall encode the AETH Syndrome Field as shown in Table 43
AETH Syndrome Field on page 324.

o9-71: If a TCA responder implements RC service, or if a CA responder
implements RD service, the responder shall encode the AETH Syndrome
Field as shown in Table 43 AETH Syndrome Field on page 324.

C9-119.a1: For an HCA, the msb of the AETH Syndrome Field is re-
served and shall be set to zero.

o9-71.a1: For a TCA which provides RC or RD service, the msb of the
AETH Syndrome Field is reserved and shall be set to zero.

o9-72: If a CA implements Reliable Datagram service, the C CCCC bits
are set to zero, since end to end credits are not defined for RD service.

The interpretation of bits [4:0] depends on the code contained in bits [6:5].
Bits [4:0] may contain a positive acknowledgment with or without end-to-
end flow control credits (depending on whether the service is RC or RD),
an RNR NAK timer value, a positive acknowledgment without end-to-end
credits, or a NAK code.

C CCCC = encoded end-to-end flow control credits

T TTTT = RNR NAK Timer Field - see Table 45 Encoding for RNR NAK
Timer Field on page 330

N NNNN = NAK Code - see Table 44 NAK Codes on page 325

Table 43 AETH Syndrome Field

bit 7 bits 6:5 bits 4:0 Definition

0 0 0 C CCCC ACK (C CCCC = credit count)

0 0 1 T TTTT RNR NAK (T TTTT = timer value)

0 1 0 X XXXX reserved

0 1 1 N NNNN NAK (N NNNN = NAK code)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 325 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Code 011 N NNNN (NAK) allows MSNs to be carried with NAK packets.

Acknowledge syndromes are carried in the AETH of the acknowledge
message. The table below illustrates the syndrome field of the AETH.

9.7.5.2.1 END-TO-END FLOW CONTROL CREDIT FIELD

If bits [7:5] of the AETH Syndrome field are zero, then bits [4:0] of the
AETH Syndrome field carries encoded end-to-end flow control credits
from the responder to the requester. This field is only valid for reliable con-
nections.The encoding 5b11111 means that the credit field is not valid.
This encoding is also used for cases where the receive queue does not
support End-to-End credits. See Section 9.7.7.2 End-to-End (Message
Level) Flow Control on page 347 for further details.

9.7.5.2.2 NAK CODES

If bits [6:5] of the AETH Syndrome field are b11, then bits [4:0] carry a NAK
code. The code guides the requester in selecting a recovery strategy. The
following sections describe all the possible NAK Codes. Even though an
RNR NAK has its own AETH syndrome (AETH[6:5] = b01), RNR NAK is
also described in this section.

The list of valid NAK codes is provided in Table 44.

C9-120: If a requester receives an acknowledge message containing a re-
served code, it shall consider the acknowledge packet to be malformed
and shall silently drop it. This may eventually cause the requester to time
out while waiting for the missing acknowledge packet, at that time it will
either re-transmit the original request message, or stop operations on that
send queue.

Table 44 NAK Codes

NAK Code
(AETH bits 4:0)

Definition

0 0000 PSN Sequence Error

0 0001 Invalid Request

0 0010 Remote Access Error

0 0011 Remote Operational Error

0 0100 Invalid RD Request

0 0101 - 1 1111 reserved

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 326 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.5.2.3 PSN SEQUENCE ERROR

A sequence error occurs when a responder detects a packet that is out of
PSN sequence, i.e. a PSN value that is neither equal to the expected PSN
nor within the valid duplicate packet range.

C9-121: The responder, when it constructs NAK packet in response to a
sequence error, must insert its expected PSN value in the PSN field of the
BTH. This lets the requester back up its send queue to at least the point
of the failure and begin re-sending request packets from that point for-
ward.

A PSN sequence error may be retried by the requester a number of times.
Once the retry count has expired, the requester’s transport notifies its
client that it did not succeed in transferring the message. The requester’s
required behavior once its retry count has expired is given in 9.9.2 Re-
quester Side Error Behavior on page 397. The following discussion spec-
ifies the behavior before the retry count has expired.

When the responder detects a sequence error there is no impact on the
receive queue nor are any WQEs consumed. Instead, the receive queue
simply returns the NAK packet to the requester and resumes waiting for
an inbound request packet with the correct PSN value.

C9-122: Once a NAK packet for a sequence error has been returned to
the requester, the responder shall discard all subsequent requests that do
not contain the responder’s expected PSN, except for valid duplicate re-
quests.

C9-123: If the responder receives a request packet with a PSN that is log-
ically less than its expected PSN (i.e. a valid duplicate request packet), it
shall respond to that request according to the rules for duplicate packet
processing.

9.7.5.2.4 REMOTE ACCESS ERROR

A R_Key violation is caused by any or all of the following conditions for
either a RDMA READ, RDMA WRITE, or ATOMIC Operation:

• The R_Key field of the RETH is invalid.

• The virtual address and length or type of access specified is out-
side the locally defined limits associated with the R_Key.

• For an HCA, a protection domain violation is detected.

C9-124: For an HCA responder, when reporting an RDMA remote access
error, the BTH field of the acknowledge message must contain the PSN of
the request packet that caused the remote access error.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 327 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-73: If a TCA responder implements RDMA functionality, or if a CA re-
sponder supports ATOMIC operations, then when reporting a remote ac-
cess error, the BTH field of the acknowledge message must contain the
PSN of the request packet that caused the remote access error.

The responder’s behavior on detecting an access error, beside generating
a NAK-Remote Access Error packet, is specified in section 9.9.3 Re-
sponder Side Behavior on page 408.

The requester’s behavior on receiving a NAK-Remote Access Error is
specified in section 9.9.2 Requester Side Error Behavior on page 397.

9.7.5.2.5 INVALID REQUEST

The requester has requested an operation that is outside the established
usage of the transport service - generally, this is an OpCode that is not
supported by the responder or a request whose length exceeds the avail-
able receive buffer space. For example, an RDMA request transmitted to
a responder that does not support RDMAs would cause an Invalid Re-
quest Error. An out-of-sequence OpCode may also cause a NAK-Invalid
Request depending on the particular service.

C9-125: When reporting an invalid request, the BTH field of the acknowl-
edge packet must contain the responder’s expected PSN value, i.e., the
PSN of the request packet that contained the invalid request.

The responder’s behavior upon detecting an invalid request, besides gen-
erating a NAK-Invalid Request, is given in section 9.9.3 Responder Side
Behavior on page 408.

The requester’s behavior on receiving a NAK-Invalid Request is given in
section 9.9.2 Requester Side Error Behavior on page 397.

9.7.5.2.6 REMOTE OPERATIONAL ERROR

A remote operational error occurs when the responder encounters a situ-
ation that prevents its receive queue from completing the current request.
The list of error conditions detectable by the responder, and reportable as
a remote operational error, is not specified since it is implementation spe-
cific. Remote operational errors cannot be caused by anything the re-
quester may have done. Rather, they reflect a fault in the responder.

C9-126: When reporting a remote operational error, the BTH field of the
acknowledge message must contain the PSN of the request being exe-
cuted at the time the responder detected the operational error.

The responder’s behavior upon detecting an operational error, besides re-
turning NAK-Remote Operational Error, is given in section 9.9.3 Re-
sponder Side Behavior on page 408.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 328 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The requester’s behavior when it receives a NAK-Remote Operational
Error is specified in section 9.9.2 Requester Side Error Behavior on page
397.

9.7.5.2.7 INVALID RD REQUEST

This NAK code is generated when the responder detects a Q_Key or RDD
violation while operating in RD service, or if the destination QP is not con-
figured for RD service, or if the destination QP is not in a state where it can
accept an inbound packet.

o9-74: If the responder’s EE Context detects an invalid P_Key, the re-
quest packet shall be silently dropped by the EE Context.

If no P_Key violation is detected, the EE Context forwards the packet to
the receive queue specified in the BTH.

C9-127: If the QP as specified in the BTH is not configured for RD service,
then a NAK-Invalid RD Request shall be returned.

The receive queue checks the Q_Key of the inbound request packet and
also checks that its current RDD value matches that of the EE Context.

If the responder’s receive queue detects an invalid Q_Key, or if the re-
ceive queue’s RDD value does not match that of the EE Context, the re-
sponder shall return a NAK-Invalid RD Request to the requester.

The responder’s behavior upon detecting either a Q_Key or RDD viola-
tion, beside generating a NAK-Invalid RD Request, is specified in section
9.9.3 Responder Side Behavior on page 408.

The requester’s behavior in response to a NAK-Invalid RD Request is
specified in section 9.9.2 Requester Side Error Behavior on page 397.

9.7.5.2.8 RNR NAK

Under certain circumstances, a receive queue may be temporarily unable
to accept an inbound request message. For example, there may not cur-
rently be a valid receive WQE posted to the receive queue. When this oc-
curs, the responder may return a response indicating Receiver Not Ready
(RNR NAK). Note: the responder may return an RNR NAK for any type of
request (e.g. SEND, RDMA READ request, RDMA WRITE request, etc.).
On receiving a RNR NAK, the requester may, after waiting for at least the
interval specified in the RNR NAK, retry the same request. “The same re-
quest” means the precise same request message beginning with the
same PSN as reported by the responder in its RNR NAK packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 329 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-128: For an HCA requester using Reliable Connection service, after
receiving an RNR NAK, the requester shall not substitute a different re-
quest message by reusing the same PSN.

o9-75: If a TCA requester implements Reliable Connection service, after
receiving an RNR NAK, the requester shall not substitute a different re-
quest message by reusing the same PSN.

For Reliable Datagram service, the requester may either exactly repeat
the request, move the EEC to the Error state, abandon the request or sus-
pend the request as described in Section 9.7.8 Reliable Datagram on
page 358.

C9-129: An HCA responder using Reliable Connection service, when
generating an RNR NAK, shall indicate the appropriate interval in the
timer field of the AETH. The value loaded in the timer field of the AETH
shall be as shown in Table 45 Encoding for RNR NAK Timer Field on page
330.

o9-76: If a CA responder implements Reliable Datagram service, or if a
TCA implements Reliable Connection service, it shall follow this rule:
when generating an RNR NAK, the responder shall indicate the appro-
priate interval in the timer field of the AETH. The value loaded in the timer
field of the AETH shall be as shown in Table 45 Encoding for RNR NAK
Timer Field on page 330.

C9-130: An HCA requester providing Reliable Connection service, after
receiving a RNR NAK, must wait for at least the interval specified in the
timer field of the AETH before retrying the request. If the requester fails to
wait for the appropriate timeout interval before re-trying the request, the
responder may silently drop the packet.

o9-76.a1: An HCA requester providing Reliable Datagram service, after
receiving a RNR NAK, must wait for at least the interval specified in the
timer field of the AETH before retrying the request. If the requester fails to
wait for the appropriate timeout interval before re-trying the request, the
responder may silently drop the packet.

o9-76.a2: A TCA requester providing Reliable Connection service, or a
TCA requester providing Reliable Datagram service, after receiving a
RNR NAK, must wait for at least the interval specified in the timer field of
the AETH before retrying the request. If the requester fails to wait for the
appropriate timeout interval before re-trying the request, the responder
may silently drop the packet.

C9-131: This compliance statement is obsolete and has been removed.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 330 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-132: An HCA requester using Reliable Connection service shall main-
tain a 3 bit retry counter which is loaded during connection establishment
with information provided by the responder. This counter is used to limit
the number of times a requester can retry an operation which was RNR
NAK’ed. When a RNR NAK response is received, if the RNR NAK retry
counter is not equal to 7 (indicates infinite retry), the requester shall dec-
rement the RNR NAK retry counter. Thereafter, when the retry timer ex-
pires, if the retry counter is non-zero, the requester may re-issue the
request.

o9-77: If a CA requester implements Reliable Datagram service, or if a
TCA requester implements Reliable Connection Service, it shall maintain
a 3 bit retry counter which is loaded during connection establishment with
information provided by the responder. This counter is used to limit the
number of times a requester can retry an operation which was RNR
NAK’ed. When a RNR NAK response is received, if the RNR NAK retry
counter is not equal to 7 (indicates infinite retry), the requester shall dec-
rement the RNR NAK retry counter. Thereafter, when the retry timer ex-
pires, if the retry counter is non-zero, the requester may re-issue the
request.

A locally detected error is recorded by the requester if the retry counter
has decremented to zero at the time that the RNR NAK retry timer expires.
See Section 9.9.2.1 Requester Side Error Detection - Locally Detected Er-
rors on page 397 for further details.

The timer field is encoded as shown in the Table below.

Table 45 Encoding for RNR NAK Timer Field

RNR
Time

Delay in
milliseconds

RNR
Time

Delay in
milliseconds

00000 655.36 10000 2.56

00001 0.01 10001 3.84

00010 0.02 10010 5.12

00011 0.03 10011 7.68

00100 0.04 10100 10.24

00101 0.06 10101 15.36

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 331 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The use of RNR NAK for temporary problems that do not affect the whole
message (such as a memory page not present) is not prohibited. In par-
ticular, for Reliable Datagram service, an RNR NAK returned in the middle
of a SEND request message by a responder may result in the current
message being abandoned by the requester and a new message being
sent from another queue pair. This may result in unexpected incomplete
messages at the responder. These incomplete messages are detected by
the responder while executing a RESYNC request, thus allowing the re-
sponder to complete the partially completed WQE in error and begin re-
ceiving the new request.

A responder should use this feature as a mechanism to delay the in-
coming request when a local resource is unavailable only rarely. The RNR
NAK mechanism consumes bandwidth in that an incoming packet will be
aborted and will have to be re-sent.

9.7.6 REQUESTER: RECEIVING RESPONSES

9.7.6.1 VALIDATING INBOUND RESPONSE PACKETS

On receipt of an inbound acknowledge packet, a requester validates the
packet as follows:

C9-133: To verify the integrity of the packet, the requester shall validate
the packet as specified in Section 9.6 Packet Transport Header Validation
on page 269. Invalid packets shall be silently dropped by the requester.

C9-134: For an HCA requester using Reliable Connection service, the
PSN shall be examined to detect out of order packets. Since acknowl-
edges may be coalesced as described in section 9.7.5.1.2 Coalesced Ac-
knowledge Messages on page 308, the PSN is used to detect coalesced
responses.

00110 0.08 10110 20.48

00111 0.12 10111 30.72

01000 0.16 11000 40.96

01001 0.24 11001 61.44

01010 0.32 11010 81.92

01011 0.48 11011 122.88

01100 0.64 11100 163.84

01101 0.96 11101 245.76

01110 1.28 11110 327.68

01111 1.92 11111 491.52

Table 45 Encoding for RNR NAK Timer Field (Continued)

RNR
Time

Delay in
milliseconds

RNR
Time

Delay in
milliseconds

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 332 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-78: If a TCA requester implements Reliable Connection service, or if a
CA requester implements Reliable Datagram service, the PSN of each ac-
knowledge packet shall be examined to detect out of order packets. Since
acknowledges may be coalesced as described in section 9.7.5.1.2 Coa-
lesced Acknowledge Messages on page 308, the PSN is used to detect
coalesced responses.

C9-135: For an HCA requester using Reliable Connection service, the va-
lidity of the acknowledge syndrome shall be checked according to the
table in Section 9.7.5.2.2 NAK Codes on page 325. A response packet
containing a reserved NAK code shall be simply dropped.

o9-79: If a TCA requester implements Reliable Connection service, or if a
CA requester implements Reliable Datagram service, the validity of the
acknowledge syndrome shall be checked according to the table in Section
9.7.5.2.2 NAK Codes on page 325. A response packet containing a re-
served NAK code shall be simply dropped.

o9-79.a1: If a CA implements Reliable Datagram service, when receiving
a response packet, the requester shall check the destination QPn con-
tained in the BTH against the expected QPn for the current EEC. If the re-
sponse packet is not destined for the currently active requester side QP,
it shall be dropped by the requester.

The requester must also insure that responses are appropriate for the
type of operation being performed. For example, in certain congested
fabric cases it is possible for an ACK to arrive when an RDMA READ or
Atomic response is expected. This can happen even when the PSN con-
tained in the response packet matches the requester’s expected response
PSN. The converse is also true.

Therefore, the requester should validate that the response packet re-
ceived is consistent with the outstanding request. If it is not, the re-
quester’s behavior should be as described in Table 56 Requester Side
Error Behavior on page 401.

C9-135.a1: This compliance statement is obsolete.

If the packet is determined to be valid, it is processed by the requester.
While processing the acknowledge packet, the requester may encounter
local errors. The list of local errors that the requester may encounter when
processing the acknowledge message is not specified since it is imple-
mentation specific, but includes any error due to a fault on the requester
side. The required behaviors for this case are specified in 9.9.2 Requester
Side Error Behavior on page 397.

Validating the PSN of an inbound response packet relies on identifying
three critical points in the PSN sequence. These three points are:

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 333 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) Requester’s maximum forward progress - the logically largest
(modulo 224) PSN of any request sent by the requester. (This in-
cludes PSN space allocated for RDMA READ responses.) It marks
the “right-hand” edge of the Valid Region.

2) Oldest unacknowledged request - the PSN of the oldest outstanding
(unacknowledged) request. This represents the maximum forward
progress made by the responder, as viewed by the requester. The
significance of this PSN is that it marks the end of the duplicate
region, i.e. responses with PSNs logically less than this are treated
either as invalid or as duplicates.

3) Oldest valid request - this point marks the “left-hand” edge of the
Valid Region.

See the figure below for an illustration of these three points.

As is the case with request packets, each response packet carries a PSN.
The requester, on receiving a response packet, checks the PSN to deter-
mine if the response is an expected response or a ghost acknowledge
packet. Conceptually, the requester keeps track of the PSN of the oldest
unacknowledged request packet and the logically largest (modulo 224)
PSN sent to date including PSNs reserved for RDMA READ responses.

0 224-1

DUPLICATE REGION

RANGE OF PACKET SEQUENCE NUMBERS = 0 TO 16,777,215

VALID REGION

Maximum

INVALID REGION

Oldest unacknowledged requestOldest valid request

UNACKNOWLEDGED REGION

Forward
Progress

Figure 98 Response Packet PSN Regions

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 334 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

These two PSNs define the endpoints of a range of PSNs identified in the
figure above as the Unacknowledged Region. If the PSN of a response
packet falls within that range then the packet is an expected response
packet. If the response does not fall within that region, then it is consid-
ered either a duplicate response and is handled according to the rules de-
fined in Section 9.7.5.1.4 Acknowledging Duplicate Requests on page
312, or it a ghost (invalid) acknowledge packet and is dropped by the re-
quester.

C9-136: For an HCA requester using Reliable Connection service, ghost
acknowledge packets shall be dropped by the requester.

o9-80: If a TCA requester implements Reliable Connection service, or if a
CA requester implements Reliable Datagram service, ghost acknowledge
packets shall be dropped by the requester.

9.7.6.1.1 PSNS FOR RETRIED REQUESTS

Under some circumstances (described below) the requester may need to
retry a request. In PSN terms, this means that the requester may re-send
a packet with a PSN which is logically less (modulo 224) than the max-
imum PSN transmitted to date. In the figure below, this is identified as the
Re-tried request.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 335 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

During the process of retrying a request, the requester should maintain a
means of marking the point of furthest PSN advance (high water mark)
even though it is logically “backing up” the PSN sequence when it re-tries
a request. This is necessary because the response to the re-tried request
may have a PSN which is logically greater than the PSN of the re-tried re-
quest. This can happen because under some circumstances the re-
sponder might interpret the re-tried request as a duplicate request. If so,
it (the responder) is obligated to return the PSN marking its furthest point
of advance, which may be beyond the PSN of the re-tried request.

Maximum
Oldest unacknowledged request Forward

Progress

Re-tried request

1.

1. Requester advances to the point of maximum forward progress.

2. Due to timeout, the request “backs up” and re-tries a request.

2.

3. Meanwhile, the responder may have continued to make progress. Thus, the response it
returns may have a PSN logically greater than the PSN of the re-tried request. (However, it

duplicate region

3.

response to re-tried
request

cannot be greater than the requester’s point of maximum forward progress.)

INVALID PSN REGION

VALID PSN REGION

Figure 99 Three PSN Paradigm

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 336 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The need for the requester to maintain these three pointers (point of max-
imum advance, PSN of the oldest unacknowledged request, and the PSN
of the re-tried request) is referred to as the three PSN paradigm. Although
various implementations may find different ways of implementing the
three PSN paradigm, nonetheless, a requester must account for the fact
that a responder may return a response to a re-tried request with a PSN
which is logically greater (further advanced) than the PSN of the re-tried
request itself.

9.7.6.1.2 REQUESTER RESPONSE TO A NAK MESSAGE

The requester’s reaction to a negative response message depends on the
NAK code that is returned, and whether the queue pair is configured for
reliable connected or reliable datagram service.

A NAK-Sequence error triggers an automatic retry of the request. The
PSN in the response packet is the requester’s indication of the request
packet that the responder believes it missed, thus, the requester can retry
that request. To prevent the requester from retrying the same request for-
ever, the requester maintains a 3 bit retry counter which is used to count
the number of times a particular request packet has been retried and
timed out. See Section 9.9.2.1 Requester Side Error Detection - Locally
Detected Errors on page 397 for a full description of the retry counter.

C9-137: An HCA requester using Reliable Connection service shall dec-
rement its 3 bit retry counter each time the responder returns a NAK-Se-
quence error for a given request packet. The counter shall be re-loaded
whenever the given outstanding request is cleared. If automatic path mi-
gration is not supported, and if a NAK-Sequence error is returned once
more, then the requester shall declare a locally detected error.

o9-80.a1: An HCA requester which supports Reliable Datagram service
shall decrement its 3 bit retry counter each time the responder returns a
NAK-Sequence error for a given request packet. The counter shall be re-
loaded whenever the given outstanding request is cleared. If automatic
path migration is not supported, and if a NAK-Sequence error is returned
once more, then the requester shall declare a locally detected error.

o9-81: A TCA requester which implements Reliable Connection service
or Reliable Datagram service shall decrement its 3 bit retry counter each
time the responder returns a NAK-Sequence error for a given request
packet. The counter shall be re-loaded whenever the given outstanding
request is cleared. If automatic path migration is not supported, and if a
NAK-Sequence error is returned once more, then the requester shall de-
clare a locally detected error.

o9-82: If a CA supports automatic path migration, then the following is re-
quired. If a NAK-Sequence error is returned after the retry counter has
decremented to zero, then the channel adapter shall attempt an automatic

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 337 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

path migration. Following the automatic path migration, the requester
shall reload the retry counter and begin the process over again. If the re-
quester still does not succeed in sending the request after several retries,
then the requester shall declare a locally detected error.

For other NAK packets, the response of the send queue depends on
whether the queue is providing Reliable Datagram or Reliable Connected
service.

Reliable Datagram Behavior: Reliable datagrams require the use of an
EE Context that maintains the packet sequence numbers and thus en-
sures reliable delivery of requests. The rules for responding to a NAK en-
sure that the current PSN at the requester and the expected PSN at the
responder remain in sync. Therefore, the connection between the re-
quester’s EE Context and responder’s EE Context survives. This allows
the connection to continue to service other Send/Receive QPs.

Depending on the cause and the operation in question, the EE context
may undertake any of the following options after detecting a failed request
packet:

a) It may retry the same failed packet from the same QP (note that
not all NAKs can be retried, and for those that can be retried there
are limits to the number of times a retry is possible), or

b) It may transition the QP and the EE Context to the Error state,
completing the failed request message in error, or

c) It may place the current QP in the SQEr state and generate a RE-
SYNC request according to the rules detailed in Section 9.7.8 Re-
liable Datagram on page 358. In this case, the failed WQE will
usually end up being completed in error.

This last strategy is designed to allow the requester side EE Context to
continue in service, thus avoiding the need to tear down the EE Context-
to-EE Context connection.

If the “same failed packet” is to be retried, the requester is not required to
begin its retransmission sequence beginning with the PSN indicated in the
responder’s NAK; instead, it may begin its retransmission with an earlier
request packet. These earlier request packets are treated by the re-
sponder as normal duplicate packets causing no ill side effects.

See section 9.9 Error detection and handling on page 396 for a complete
description of the errors and the EE Context’s subsequent behavior.

C9-138: For an HCA requester using Reliable Connection service, the re-
quester must receive and discard any duplicate acknowledge messages
with no ill side effects.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 338 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-83: If a TCA requester implements Reliable Connection service, or if a
CA requester implements Reliable Datagram service, the requester must
receive and discard any duplicate acknowledge messages with no ill side
effects.

Reliable Connected Behavior: For reliable connections, the requester
has only two possible alternatives when it receives a NAK. It may either
retry the same request packet, or it may mark the current WQE as com-
pleted in error and notify its client. Note that not all NAKs can be retried.

If the requester retries the same request packet, it is not required to begin
its retransmission sequence beginning with the PSN indicated in the re-
sponder’s NAK; instead, it may begin its retransmission with an earlier re-
quest packet. These earlier request packets are treated by the responder
as normal duplicate packets causing no ill side effects.

9.7.6.1.3 DETECTING LOST ACKNOWLEDGE MESSAGES AND TIMEOUTS

Under some error conditions the requester does not receive an acknowl-
edge message in response to one or more of its requests. This can occur
for one of three reasons:

1) The responder generated an acknowledge message that was subse-
quently lost in the fabric, or,

2) The responder failed for some reason preventing it from generating
an acknowledge message, or

3) The original request message was lost in the fabric before it was re-
ceived by the responder.

All three of these conditions are detected by the requester as a lost ac-
knowledge message.

Often, these errors are corrected automatically due to acknowledge coa-
lescing; the next acknowledge received by the requester serves to implic-
itly acknowledge all outstanding requests.

However, there are several cases where a lost acknowledge message is
not automatically recovered by the coalesced acknowledge rules. For ex-
ample, a NAK message lost in the fabric will not be resolved via acknowl-
edge coalescing because the responder side rules require that the
responder may have no more than one NAK message outstanding at a
given time.

C9-139: For an HCA requester using Reliable Connection service, to de-
tect missing responses, every Send queue is required to implement a
Transport Timer to time outstanding requests.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 339 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-84: If a TCA requester implements Reliable Connection service, to de-
tect missing responses, every Send queue is required to implement a
Transport Timer to time outstanding requests.

o9-85: If a CA requester implements Reliable Datagram service, to detect
missing responses, every EE Context is required to implement a Trans-
port Timer to time outstanding requests.

Because of variabilities in the fabric, scheduling algorithms and architec-
ture of the channel adapters and many other factors, it is not possible, nor
desirable, to time outstanding requests with a high degree of precision.
Nonetheless, the Transport Timer is an integral element of the ACK/NAK
protocol by providing a deterministic means to detect lost requests or re-
sponses.

The requester need not separately time each request launched into the
fabric, but instead simply begins the timer whenever it is expecting a re-
sponse. Once started, the timer is restarted each time an acknowledge
packet is received as long as there are outstanding expected responses.
The timer does not detect the loss of a particular expected acknowledge
packet, but rather simply detects the persistent absence of response
packets.

The timer measures the lesser of:

• the time since the requester sent a packet with the AckReq bit set in
the BTH,

• or the time since the last valid acknowledge packet arrived.
The operation is as follows.

The requester starts the timer running whenever the timer is not currently
running AND:

1) The requester sets the AckReq bit in a Send or RDMA WRITE re-
quest or,

2) The requester generates an RDMA READ request or,

3) The requester generates an ATOMIC Operation request.

Thereafter, the requester restarts the timer each time it receives a new in-
bound acknowledge packet as long as there are still outstanding expected
responses.

The timer is stopped whenever there are no outstanding expected re-
sponses.

An “expected response” is created by the requester by setting the AckReq
bit in a request packet or by generating an RDMA READ request or an

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 340 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ATOMIC Operation request. An outstanding expected response is a re-
sponse to any request packet which has the AckReq bit set in the BTH, or
any RDMA READ request or ATOMIC Operation request, which has not
been acknowledged.

Each QP has a single Local ACK Timeout value associated with it which
is used to derive the Transport Timer timeout interval Ttr.

C9-140: For an HCA requester using Reliable Connection service, the
Transport Timer timeout interval, Ttr shall be defined to be 4.096 uS *
2(Local ACK Timeout). Local ACK Timeout shall be a 5 bit value, with zero
meaning that the timer is disabled. The minimum acceptable value of
Local ACK Timeout, other than zero, shall be defined by the CA vendor. If
a non-zero Local ACK Timeout value is loaded in QP context which is less
than the minimum supported by the CA, then the CA may use its minimum
value.

C9-141: For an HCA requester using Reliable Connection service, a QP
shall provide facilities to detect a timeout condition.

The timeout interval should begin after a request has been scheduled.
The timeout condition, To, should be detected in no less than the timeout
interval, Tr, and no more than four times the timeout interval, 4Tr.

Thus, Ttr <= To <= 4Ttr.

Once a timeout for a given request packet is detected, the requester may
retry the request.

C9-142: For an HCA requester using Reliable Connection service, to pre-
vent the requester from retrying the request forever, the requester shall
maintain a 3 bit retry counter which is used to count the number of times
a particular request packet has been retried and timed out. This counter
shall be decremented each time the transport timer expires for a given re-
quest packet. The counter shall be re-loaded whenever a given out-
standing request is cleared.

See Section 9.9.2.1 Requester Side Error Detection - Locally Detected Er-
rors on page 397 for a full description of the retry counter.

C9-143: For an HCA requester using Reliable Connection service, if au-
tomatic path migration is not supported, and if the transport timer expires
after the retry counter has decremented to zero, then the requester shall
declare a locally detected error.

o9-86: If automatic path migration is supported, and If the transport timer
expires after the retry counter has decremented to zero, then the channel

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 341 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

adapter shall attempt an automatic path migration. Following the auto-
matic path migration, the requester shall reload the transport timer retry
counter and begin the process over again. If the requester still does not
succeed in sending the request after several retries, then the requester
shall declare a locally detected error.

o9-87: If a TCA requester implements Reliable Connection service, then
the five preceding HCA compliance statements (that is, timeout rules for
outstanding requests) shall be applicable to that TCA.

o9-88: If a CA requester implements Reliable Datagram service, then the
five preceding HCA compliance statements (that is, timeout rules for out-
standing requests) shall be applicable to that CA. In that case, the func-
tionality described applies to the EE Context rather than the Queue Pair.

9.7.6.1.4 DUPLICATE ACKNOWLEDGEMENTS

9.7.1 Packet Sequence Numbers (PSN) on page 282 describes how du-
plicate requests are generated. These requests may result in duplicate
acknowledgments being returned by the responder. The responder may
also send unsolicited Acks that appear to be “Ghost Acks” from the point
of view of the requestor.

C9-144: For an HCA requester using Reliable Connection service, if the
responder is configured to generate end-to-end flow control credits, then
the requester must extract end-to-end flow control credits from a duplicate
acknowledgment.

o9-89: If a TCA implements Reliable Connection service, and if the re-
sponder is configured to generate end-to-end flow control credits, then the
requester must extract end-to-end flow control credits from a duplicate ac-
knowledgment.

C9-145: For an HCA requester using Reliable Connection service, dupli-
cate acknowledgments shall be discarded.

o9-90: If a TCA requester implements Reliable Connection service, dupli-
cate acknowledgments shall be discarded.

See Section 9.7.7.2 End-to-End (Message Level) Flow Control on page
347 for a complete description.

9.7.7 RELIABLE CONNECTIONS

A reliable connection is a connection created between a single local QP
and a single remote QP and that can guarantee that messages are deliv-

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 342 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ered at most once, in order and without corruption (in the absence of un-
recoverable errors) between the local and remote QPs.

The desired reliability characteristics are provided by application of packet
sequence numbers and the ACK/NAK protocol.

C9-146: For an HCA, each QP configured for Reliable Connection service
must conform to the requirements specified in section 9.7 Reliable Ser-
vice on page 280, the characteristics given in Table 46 Reliable Con-
nected Service Characteristics on page 342, and any additional
requirements given in this section.

o9-91: This compliance statement is obsolete and has been removed.

9.7.7.1 GENERATING MSN VALUE

For Reliable Connected service, the Message Sequence Number is a
number returned by the responder to the requester indicating the number
of messages completed by the responder. The MSN is carried in the three
least significant bytes of the AETH. The MSN is provided to the requester
as a service to assist it in completing WQEs by informing the requester of
the messages that have been completed by the responder.

C9-147: An HCA responder using Reliable Connection service shall re-
turn an MSN in the AETH of any response packet which contains an
AETH.

Table 46 Reliable Connected Service Characteristics

Property / Level of Reliability Support

Corrupt data detected Yes

Data delivered exactly once (Except for an unrecover-
able error - that is reported to the application)

Yes

Data order guaranteed Yes

Data loss detected Yes

RDMA Support Yes - both Read and Write

State of Send/RDMA WRITE when request com-
pleted

Completion on remote end node

ATOMIC Support Optional

Send with Invalidate Operation Type Support Optional

Multi-packet message support Yes

Number of messages in flight per QP 223 (maximum)

Number of packets allowed in flight per QP 223 (maximum)

Number of messages enqueued per QP Implementation limited only

Maximum Message Size 231Bytes

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 343 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-92: If a TCA responder implements Reliable Connection service, it
shall return an MSN in the AETH of any response packet which contains
an AETH.

Logically, the requester associates a sequential Send Sequence Number
(SSN) with each WQE posted to the send queue. The SSN bears a one-
to-one relationship to the MSN returned by the responder in each re-
sponse packet. Therefore, when the requester receives a response, it in-
terprets the MSN as representing the SSN of the most recent request
completed by the responder to determine which send WQE(s) can be
completed.

Note that SSN as described above is a logical concept only which is given
to convey the concept of how the MSN is applied; an implementation is
not required to implement it as described.

Following initialization, the first WQE posted to the Send queue has an
SSN of one assigned to it. The responder initializes its MSN counter to
zero. Thereafter, the responder increments its 24-bit MSN value when-
ever it completes execution of an inbound request message. This is illus-
trated in Figure below.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 344 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-148: An HCA responder using Reliable Connection service shall ini-
tialize its MSN value to zero. The responder shall increment its MSN
whenever it has successfully completed processing a new, valid request
message. The MSN shall not be incremented for duplicate requests. The
incremented MSN shall be returned in the last or only packet of an RDMA
READ or Atomic response. For RDMA READ requests, the responder
may increment its MSN after it has completed validating the request and
before it has begun transmitting any of the requested data, and may return
the incremented MSN in the AETH of the first response packet. The MSN
shall be incremented only once for any given request message.

o9-93: If a TCA responder implements Reliable Connection service, it
shall calculate and update MSN as described in the preceding compliance
statement.

9.7.7.1.1 REQUESTER BEHAVIOR ON RECEIVING A NEW MSN
As described above, the existence of a new MSN value in a response
packet may be used by the requester as a signal to complete certain

r15

r16

a15 (0)

Requester Responder

request: SSN=1, PSN=15

’r’ is a request packet.
’a’ is an acknowledge packet.
MSN is shown in parentheses.

a16 (1)

 request 1 00 00 01
 request 2 00 00 02
 request 3 00 00 03
... ...

request SSN

Requester’s Send Queue

... ...

... ...

request: SSN=1, PSN=16

response to r1, PSN=15, MSN=0

response to r2, PSN=16, MSN=1

Request1 is a multi-packet send.
Responder returns an acknowledge for
each packet received. Response a16
marks the completion of request 1.

Figure 100 Responder Initializes MSN to Zero

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 345 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

WQEs posted to its send queue. Since the responder may choose to co-
alesce acknowledges, a single response packet may in fact acknowledge
several request messages. Thus, when it receives a new MSN, the re-
quester begins evaluating WQEs on its send queue beginning with the
oldest outstanding WQE and progressing forward. This is illustrated in
the figure below for the case where there are no outstanding RDMA READ
requests or ATOMIC Operation requests on the send queue.

For the case where there are outstanding RDMA READ requests or
ATOMIC Operation requests, the situation is slightly more complex. In this
case, the requester only completes outstanding WQEs up to either the
first outstanding RDMA READ request, ATOMIC Operation request, or

r15

r16

Requester Responder

request: SSN=1, PSN=15

’r’ is a request packet.
’a’ is an acknowledge packet.
MSN is shown in parentheses.

a17 (3)

 request 1 00 00 01
 request 2 00 00 02
 request 3 00 00 03
... ...

request SSN

Requester’s Send Queue

... ...

... ...

request: SSN=2, PSN=16

response to r17, MSN=3

request: SSN=3, PSN=17
r17

previously

WQEs
completed

Requester completes WQEs for
request1, 2 and 3 inclusive.

Figure 101 Requester Behavior - Completing WQEs

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 346 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

WQE whose SSN matches the MSN in the response packet, whichever
comes first. This is because both RDMA READ requests and ATOMIC

Operation requests require an explicit response and thus cannot be com-
pleted until such an explicit response is received.

C9-149: For an HCA responder using Reliable Connection service, the
MSN counter shall be inserted in the AETH regardless of whether the re-
sponse is a positive acknowledgment, a negative acknowledgment or a
duplicate acknowledgment.

r1

r3

r6

a3 (4)

Requester Responder

RDMA READ request: PSN=3, SSN=3

request: PSN=1, SSN=1

request: PSN=6, SSN=4

RDMA READ Response

’r’ is a request packet
’a’ is an acknowledge packet (message)
MSN is shown in parentheses.

a6 (4) response to request r6

a4

a5 (4)

request is for 3

\

 SEND2 00 00 02
 READ3 00 00 03
 SEND4 00 00 04
... ...

request SSN

Requester’s Send Queue

... ...
 SEND1 00 00 01

response packets

r2request: PSN=2, SSN=2

Since RDMA READs are loosely ordered, it is likely that the responder will “complete”
SEND4 before it finishes returning the READ response data (a3, a4, a5). Nonetheless,
a3 has an MSN of 4 indicating that it the responder has completed SEND1, SEND2 and
SEND4.

However, the requester may only complete SEND1 and SEND2 because of the pres-
ence of READ3 in the send queue.

Figure 102 Limitation on Completing Send Queue WQEs

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 347 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-94: If a TCA responder implements Reliable Connection service, the
MSN counter shall be inserted in the AETH regardless of whether the re-
sponse is a positive acknowledgment, a negative acknowledgment or a
duplicate acknowledgment.

9.7.7.2 END-TO-END (MESSAGE LEVEL) FLOW CONTROL

IBA provides an end-to-end (or message level) flow control capability for
reliable connections that can be used by a responder to optimize the use
of its receive resources. Essentially, a requester cannot send a request
message unless it has appropriate credits to do so.

Encoded credits are transported from the responder to the requester in an
acknowledge message in the Syndrome field of the AETH. The credits
carried in the AETH are with respect to the MSN field of the same AETH;
therefore proper interpretation of the credit field also requires interpreta-
tion of the MSN field. See Section 9.7.5.2 AETH Format on page 324 for
a full description of the appropriate AETH fields.

Each credit represents the receive resources needed to receive one in-
bound request message. Specifically, each credit represents one WQE
posted to the receive queue. The presence of a receive credit does not,
however, necessarily mean that enough physical memory has been allo-
cated. For example, it is still possible, even if sufficient credits are avail-
able, to encounter a condition where there is insufficient memory available
to receive the entire inbound message.

The shared receive queue concept, on the other hand, allows a set of re-
ceive queues to draw from a common pool of receive WQEs - the shared
receive queue. Thus, there is no practical way for any of the individual re-
ceive queues to accurately gauge the number of WQEs available in the
shared receive queue. For this reason, the end-to-end flow control mech-
anism is disabled for any QP which is associated with a shared receive
queue.

1) The end-to-end credit mechanism applies only to Reliable Connected
service.

2) End-to-End credits are generated by a responder’s receive queue
and consumed by a requester’s send queue.

3) Requirements on a CA for supporting end-to-end flow control are
given in Chapter 17: Channel Adapters on page 1016. HCA receive
queues must generate end-to-end credits (except for QPs that are
associated with a Shared Receive Queue), but TCA receive queues
are not required to do so. If the TCA’s receive queue generates End-
to-End credits, then the corresponding send queue must receive and
respond to those credits.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 348 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4) Credits are issued on a per message basis, without regard to the size
of the message.

5) End-to-End credits are carried in the AETH as an encoded 5-bit field.

6) The responder may send credits to the requester asynchronously by
using an Unsolicited acknowledge packet. An unsolicited ac-
knowledge packet is created by re-sending the most recently sent ac-
knowledge packet.

C9-150: This compliance statement is obsolete and has been replaced by
C9-150.2.1:.

C9-150.2.1: For QPs that are not associated with an SRQ, each HCA re-
ceive queue shall generate end-to-end flow control credits. If a QP is as-
sociated with an SRQ, the HCA receive queue shall not generate end-to-
end flow control credits.

o9-95: This compliance statement is obsolete and has been replaced by
o9-95.2.1:

o9-95.2.1: Each TCA receive queue may generate end-to-end credits ex-
cept for QPs that are associated with an SRQ. If a TCA supports SRQ, the
TCA must not generate End-to-End Flow Control Credits for QPs associ-
ated with an SRQ.

C9-151: If a TCA’s given receive queue generates End-to-End credits,
then the corresponding send queue shall receive and respond to those
credits. This is a requirement on each send queue of a CA.

9.7.7.2.1 TRANSFERRING CREDITS FROM RESPONDER TO REQUESTER

Two mechanisms are defined for transporting credits from the responder’s
receive queue to the requester’s send queue. The credits can be piggy-
backed onto an existing acknowledge message, or a special unsolicited
acknowledge message can be generated by the responder. Piggybacked
credits are those credits that are carried in the AETH field of an already
scheduled acknowledge packet.

Piggybacked Credits:

Piggybacking of end-to-end credits refers to transferring credits to the re-
quester in the AETH of a normal acknowledge packet. Credits are carried
in AETH Syndrome[4:0]. Credits can be piggybacked onto any acknowl-
edge packet when the MSN field in the AETH is also valid.

Unsolicited Acknowledge Packet:

From a PSN perspective, an unsolicited acknowledge message appears
to the requester like a duplicate of the most recent positive acknowledge

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 349 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

message. However, it always has an opcode of Acknowledge even if the
most recent positive acknowledge was an RDMA READ Response or
Atomic Response. Since the ACK/NAK protocol prohibits the responder
from sending duplicate negative acknowledge packets (NAKs), an unso-
licited acknowledge cannot be created by re-sending a NAK packet.

An unsolicited acknowledge may be sent by the responder at any time.
The requester’s send queue simply recovers the credit field and the MSN
from the most recently received acknowledge packet.

Since an unsolicited acknowledge packet appears to the requester as a
duplicate response, it has no effect on the requester other than the
transfer of the credits.

C9-152: The MSN field of the unsolicited acknowledge packet must have
a valid MSN field.

9.7.7.2.2 NEGOTIATING CONNECTIONS: INITIAL CREDITS

For each connection established, the use (or not) of end-to-end flow con-
trol is established separately for each direction. The capabilities of the re-
ceive queue determine the flow control characteristics for that half of the
connection.

C9-153: If the receive queue signals that it is expecting to generate
credits, then the corresponding send queue must observe the end-to-end
flow control rules. If, on the other hand, the receive queue signals that it
will not generate end-to-end flow control credits, then the corresponding
send queue may transmit request messages at will without regard for
credits. This is a requirement on each send queue of a CA.

C9-154: If a TCA’s receive queue does not generate End-to-End credits,
it shall place the value 5b11111 in AETH Syndrome[4:0] signalling that the
credit field is invalid.

o9-95.2.2: If a CA supports SRQ and a QP provides reliable connection
service and is associated with an SRQ, then the QP must not generate
end-to-end credits and shall place the value 5b11111 in AETH Syn-
drome[4:0] signalling that the credit field is invalid.

C9-155: When the receive queue is in the RESET state, the transport
shall set the initial credit count to zero. Once the queue pair has transi-
tioned to the INITIALIZED, RTR, SQD or RTS states, it shall increment its
credit count for each receive WQE posted.

Once it is in the RTR, SQD or RTS states, the responder may transfer
these credits to the requester by using unsolicited acknowledges.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 350 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Normally an unsolicited acknowledge is created by re-sending the most
recently sent positive acknowledge packet with an updated credit field. At
initialization time however, no acknowledge packets have yet been sent
so the normal method for creating an unsolicited acknowledge cannot be
used. Therefore, at initialization time, an unsolicited acknowledge is cre-
ated by subtracting “1” from the initial PSN. Thus, if the PSN is initialized
to 0x000000 when the receive queue is in RESET state, then the PSN of
the initial unsolicited acknowledge shall be 0xFFFFFF. “Initialization time”,
in this context means the interval beginning when the receive queue has
transitioned out of the RESET state and has not yet sent an acknowledge
packet in either the RTR, SQD or RTS states.

To the send queue which receives this initial unsolicited acknowledge
packet, it will appear as a “ghost” acknowledge packet Figure 98 Re-
sponse Packet PSN Regions on page 333. The requester’s send queue
may accept the MSN and credits contained in the unsolicited acknowl-
edge packet but ignore the rest of the packet. This is an exception to the
normal rules for ghost responses which require that ghost acknowledge
packets be dropped.

The above paragraph notwithstanding, responsibility for recovering initial
credits from the responder shall lie with the requester; if the responder
provides initial credits by using an unsolicited acknowledge, the requester
may accept those as its initial credits in satisfaction of its responsibility to
recover initial credits.

C9-156: If the responder does not provide initial credits, the requester
shall behave as specified in Section 9.7.7.2.5 Requester Behavior - Lim-
ited Send WQEs on page 357

Figures Figure 103 Requester End-to-End Credit Processes on page 351
and Figure 104 Responder End-to-End Credit Initialization Process on
page 352 describe this behavior. Note that these figures do not depict all

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 351 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

normal state transitions for the receive and send queues. These are fully
specified in the Software Interface chapter.

Figure 103 Requester End-to-End Credit Processes

RTS State

Init or Reset State

yes

RTS, RTR, or SQD State

no

Initialize
LSN1 = 0

and
SSN2 = 1

Recover Credits,
Re-calculate LSN

ACK?3

Wait for WQEs to
be posted

WQE Ready

yes

yes

Follow protocol
for Limited WQEs

no

Send the Request

SSN ≤

to send?

credit4

Increment LSN

no

Increment SSN

no

yes

required to
send?

 LSN?

1) LSN = Limit Sequence Number. This is described below.
2) SSN = Send Sequence Number. This is described below.
3) Any ACK or unsolicited ACK with a valid MSN
4) a credit is required for a “Send” or “RDMA Write with immediate”.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 352 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Initialize credits to
zero

Increment credit
count for each

RTR
state?

INIT
State?

RESET state

posted Receive
WQE

Return Credits in
response**

Return RNR NAK*

no yes

no

Increment credit
count for each
posted Receive

WQE

inbound
request?

credits
available?

initialization complete

no

no

RTR State

INIT state

*Return RNR NAK only
if the request would
consume a receive
WQE. If it does not, pro-
cess the request nor-
mally

**Responder may
optionally return credits
while in the RTR state
using unsolicited acks.

Figure 104 Responder End-to-End Credit Initialization Process

(optional for RC)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 353 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.7.2.3 RESPONDER ALGORITHM FOR CALCULATING CREDITS

C9-157: This compliance statement is obsolete and has been replaced by
C9-157.2.1:.

C9-157.2.1: For an HCA using Reliable Connection service on a QP that
is not associated with an SRQ, the receive queue shall increment its credit
count for each WQE posted to the receive queue. It shall decrement its
credit count for each inbound request message received which consumes
a WQE. Thus, the responder does not adjust its credit count when it re-
ceives an inbound RDMA READ request, an RDMA WRITE request
without Immediate data or an ATOMIC Operation request. If the receive
queue is associated with an SRQ, the responder does not adjust its credit
count regardless of the WQEs that may be posted to the receive queue.

o9-96: If a TCA implements Reliable Connection service, and if the re-
ceive queue generates end-to-end flow control credits, it shall increment
its credit count for each WQE posted to the receive queue. It shall decre-
ment its credit count for each inbound request message received which
consumes a WQE. Thus, the responder does not adjust its credit count
when it receives an RDMA READ request, an RDMA WRITE request
without Immediate data or an ATOMIC Operation request.

C9-158: This compliance statement is obsolete and has been replaced by
C9-158.2.1:.

C9-158.2.1: For an HCA using Reliable Connection service on a QP that
is not associated with an SRQ, for each acknowledge message gener-
ated, either a normal acknowledge message or an unsolicited acknowl-
edge message, the receive queue shall insert its current encoded credit
count as shown in Table 47 End-to-End Flow Control Credit Encoding on
page 354, in AETH Syndrome[4:0]. For example, if the receive queue has
five credits available, it shall insert the 5 bit value b00100 in the AETH. It
also includes its current MSN value. If the QP is associated with an SRQ,
the receive queue shall insert the 5 bit value 5b11111 in the AETH

o9-97: If a TCA implements Reliable Connection service, and if the re-
ceive queue generates end-to-end flow control credits, for each acknowl-
edge message generated, either a normal acknowledge message or an
unsolicited acknowledge message, it shall insert its current encoded
credit count as shown in Table 47 End-to-End Flow Control Credit En-
coding on page 354, in AETH Syndrome[4:0]. For example, if the receive
queue has five credits available, it shall insert the 5 bit value b00100 in the
AETH. It also includes its current MSN value. If a TCA does not generate
end-to-end flow control, it shall insert the value as shown in Table 47 End-
to-End Flow Control Credit Encoding on page 354 to indicate that the
credit count field is invalid.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 354 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.7.2.4 REQUESTER BEHAVIOR

The presence or absence of credits limits the sender’s ability to transmit
requests which will consume a receive WQE (SEND requests or RDMA
WRITE requests with immediate data).

C9-159: The send queue’s behavior when it has no credits available to it
shall be as specified in Section 9.7.7.2.5 Requester Behavior - Limited
Send WQEs on page 357.

The requester may always send a request which does not consume a re-
ceive WQE (RDMA WRITE request without immediate data, RDMA
READ request, or ATOMIC Operation request) without regard to credits.

C9-160: The requester shall not violate the normal transaction ordering
rules as stated throughout this specification, particularly in Section 9.5
Transaction Ordering on page 268.

In particular, the requester may not search the send queue looking for re-
quests which don’t consume a receive WQE and transmit those requests
out of order, nor may the requester violate the rules governing fenced
WQEs.

The available credits are encoded and carried in AETH Syndrome[4:0];
the MSN is carried in the least significant 3 bytes of the AETH. Table 47
below shows, for each valid encoded credit, the actual number of credits.

Table 47 End-to-End Flow Control Credit Encoding

Credit Valued added to
MSN to get LSN Credit Valued added to

MSN to get LSN

00000 0 10000 256

00001 1 10001 384

00010 2 10010 512

00011 3 10011 768

00100 4 10100 1024

00101 6 10101 1536

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 355 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Logically, the requester associates a sequential Send Sequence Number
(SSN) with each WQE posted to the send queue. The SSN bears a one-
to-one relationship to the MSN returned by the responder in each re-
sponse packet. Thus, the requester interprets the MSN as representing
the SSN of the most recent request completed by the responder.

C9-161: The encoded credit count returned by the responder in the AETH
shall specify the number of receive WQEs posted to the responder’s re-
ceive queue relative to the MSN unless the responder does not generate
end-to-end flow control credits, in which case the “invalid”code is carried
in the AETH.

Since the MSN is directly related to the requester’s SSN, the credit count
is a simple offset into the send queue from the SSN of the most recent re-
quest completed by the responder. Logically, the sum of the MSN plus the
credit count is the requester’s Limit Sequence Number (LSN). The re-
quester may freely transmit any request whose SSN is less than or equal
to the computed LSN.

If the responder returns the “invalid” code in the AETH instead of the credit
count, then the requester may freely transmit requests at will. The “invalid”
code is used by the responder to indicate that the AETH credit count field
is not valid because the responder does not generate end-to-end credits.
Even a responder which does generate end-to-end credits may choose to
send the “invalid” code in the AETH. However, once a requester has re-
ceived an “invalid” code in the AETH from the responder, the requester
may choose to ignore the AETH credit count field for all future transac-
tions on that connection. Thus, if a responder resumes returning valid
credits after having signalled “invalid”, the results may be unpredictable.

00110 8 10110 2048

00111 12 10111 3072

01000 16 11000 4096

01001 24 11001 6144

01010 32 11010 8192

01011 48 11011 12288

01100 64 11100 16384

01101 96 11101 24576

01110 128 11110 32768

01111 192 11111 invalid

Table 47 End-to-End Flow Control Credit Encoding

Credit Valued added to
MSN to get LSN Credit Valued added to

MSN to get LSN

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 356 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Any request whose SSN is greater than the current computed LSN is said
to be limited. The send queue’s behavior when it encounters a limited re-
quest is as specified in Section 9.7.7.2.5 Requester Behavior - Limited
Send WQEs on page 357.

Figure 105 Relating AETH values to the Send Queue on page 356 illus-
trates the relationship between the values returned by the responder in
the AETH and the requester’s send queue.

The requester calculates a new LSN each time it receives an acknowl-
edge packet containing valid credits. The requester also dynamically ad-
justs the LSN by adding one to it for every request it wishes to send that
does not consume a receive WQE (RDMA READ requests, RDMA
WRITE requests without immediate data, or ATOMIC Operation re-
quests). This adjustment is the mechanism which allows the requester to
send requests that do not consume a receive WQE.

 request 22 00 00 15
 request 23 00 00 16
 request 24 00 00 17
 request 25 00 00 18
 request 26 00 00 19

 request 32 00 00 1F

 request n xx xx xx

... ...

... ...

request SSN

credits = 6 MSN = 00 00 18

 request 27 00 00 1A
 request 28 00 00 1B
 request 29 00 00 1C
 request 30 00 00 1D
 request 31 00 00 1E

completed WQEs

Requester’s Send Queue

AETH

... ...

... ...

... ...

LSN
unlimited WQEs

Request 32 is “limited”
since its SSN is greater
than the current com-
puted LSN.

limited WQEs

Figure 105 Relating AETH values to the Send Queue

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 357 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Any given implementation is not required to implement the LSN and SSN
mechanisms described above, but must conform semantically to the be-
havior described.

9.7.7.2.5 REQUESTER BEHAVIOR - LIMITED SEND WQES

C9-162: When the requester encounters a WQE on its send queue for
which it has no available credits, that WQE is said to be limited. The send
queue’s behavior when it encounters a limited WQE shall be as follows:

• If the limited request WQE is an RDMA READ request, an RDMA
WRITE request without immediate data, or an ATOMIC Operation re-
quest, it may be sent normally without regard to the availability of
credits. The normal rules for ordering of requests still hold (i.e., the
send queue may not search through the list of posted WQEs in an at-
tempt to find unlimited WQEs to be sent out of order). After sending
such a request, the requester increments its computed LSN value11,
since the sent request does not consume a receive WQE and thus
does not consume a credit.

• If the limited request WQE is a SEND request, the send queue shall
transmit no more than a single packet of the request message before
it must stop transmission and wait for an acknowledge packet. To en-
sure that the responder will generate a response, the requester shall
set the AckReq bit in that single packet.

• If the limited request WQE is an RDMA WRITE request with immedi-
ate data, the requester may transmit the entire request message be-
fore it must stop transmission and wait for an acknowledge packet.
This is permitted because it is the single packet containing immediate
data of the request that actually consumes the receive WQE. To en-
sure that the responder will generate a response, the requester shall
set the AckReq bit in the last packet of the request message.

C9-163: For an HCA using Reliable Connection service, if the limited
WQE is a SEND request, the send queue shall transmit no more than a
single packet of the request message. Within this single packet, the Ac-
knowledge Request (AckReq) bit of the BTH shall be set. The requester
shall then stop transmission and wait for an acknowledge packet.

o9-98: If a TCA implements Reliable Connection service, and if the limited
WQE is a SEND request, the send queue shall transmit no more than a
single packet of the request message. Within this single packet, the Ac-
knowledge Request (AckReq) bit of the BTH shall be set. The requester
shall then stop transmission and wait for an acknowledge packet.

11. An interesting situation can occur that artificially limits the sender LSN with
certain message patterns; if the sender does Send, RDMA, RDMA, RDMA with
two credits from the receiver, it will increment the LSN by three. If after that, the
response arrives with MSN+1 credit, the LSN will then be set back by two,
putting the requestor into limit until the Ack from the RDMA's arrive.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 358 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-99: In an HCA using Reliable Connection service, or if a TCA imple-
ments Reliable Connection service, and if the limited request WQE is a
RDMA WRITE request, the requester may transmit the entire request
message before it must stop transmission and wait for an acknowledge
packet. To ensure that the responder will generate a response, the re-
quester shall set the Acknowledge Request (AckReq) bit in the last packet
of the RDMA WRITE request.

C9-164: Since the responder’s receive queue may generate an unsolic-
ited acknowledge message at any time, the requester shall be prepared
to receive an unsolicited acknowledge message from the responder at
any time, provided that the receive queue has signalled that it will gen-
erate end-to-end flow control credits.

An unsolicited acknowledge is used solely for the purpose of transferring
credits from the responder to the requester. On receiving an unsolicited
acknowledge, the requester recalculates its LSN as specified above and
responds accordingly. A lack of credits does not impact a requester’s
ability to re-transmit previously transmitted requests as part of its recovery
from lost packets. End-to-end credits only limit the transmission of new re-
quest messages. For example, if the requester detects a timeout condition
after having sent a single packet of a limited SEND request, it decrements
its timeout retry counter as usual and retransmits the request.

9.7.8 RELIABLE DATAGRAM

Reliable Datagram provides reliable communication, i.e. the same level of
reliability and error recovery as for Reliable Connection, using a one-to-
many paradigm. A requestor’s send queue may send sequential mes-
sages to different responders, at different QPs on the same or different
nodes. A responder QP may receive messages from multiple requesters
on the same or different endnodes. As with the Unreliable Datagram
transport service, the source endnode and source QP are provided to the
responder.

The motivation for using Reliable Datagram is to economize the QP name
space for applications that engage in “all to all” communication. Consider
N processor nodes, each with M processes. If all M processes wish to
communicate with all the processes on all the nodes, a Reliable Connec-
tion service requires M2*(N-1) QPs on each node. By comparison, the Re-
liable Datagram service only requires M QPs + N “end-to-end” (EE)
connections on each node for exactly the same communications.

Reliability is implemented using at least one “QP-like” context for each re-
mote endnode - this is referred to as the End-to-End Context (EE Context
or EEC). This context provides the information needed to locate the re-
mote node, to serialize and exchange acknowledgments, and maintain re-
liability.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 359 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Service still uses the QPs to provide the queues, WQE pointers, pro-
tection checking parameters etc. Together, a QP and an EEC contain the
information needed to reliably move messages to a destination. But many
QPs may use a single EEC for sending or receiving, and a QP may com-
municate through several different EECs, one chosen with each mes-
sage.

When an application determines the target that it is to communicate with,
it must first establish (or use an already established) an EE Context.

As with Reliable Connection, the local QPs to use for this service are es-
tablished in the RD service mode by the application prior to use. Remote
QPs are chosen in an application dependent manner.

Once the EE Context is created, the client may send a message to the re-
sponder QP via this EE Context. The client must specify the local EE con-
text number, the responder QP, the Q_Key, and any additional message
parameters. The implementation then “multiplexes” the messages from
each source QP to the appropriate EEC, and sends the message. When
the message arrives at the destination, the implementation uses the EE
Context to validate the packet and “de-multiplexes” the message to the
appropriate QP.

The Reliable Datagram service uses the methods (PSNs, ACK/NAK pro-
tocol etc.) as described previously in 9.7 Reliable Service on page 280.

9.7.8.1 RELIABLE DATAGRAM CHARACTERISTICS

Table 48 Reliable Datagram QP characteristics

Property / Level of Reliability Support

Corrupt data detected Yes

Data delivered exactly once (Except for an unrecover-
able error; that is reported to the application)

Yes

Data order guaranteed to same destination QP from
the same source QP

Yes

Data order guaranteed to different destinations from
the same QP

Yes

Scalability (number of messages) on the service Limited to number of EE Con-
texts in use between endnodes

Data loss detected Yes

RDMA READ Support Yes

RDMA WRITE Support Yes

State of SEND/RDMA WRITE when request com-
pleted

Completion on remote end node

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 360 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-100: CA’s claiming to support RD mode shall provide QP’s capable of
supporting RD. When operating in RD mode, these QPs allow sending se-
quential RD messages to different responders, at different destination
QPs on the same or different nodes. When operating in RD mode, these
QPs shall be capable of receiving RD messages from multiple requesters
on the same or different endnodes.

o9-101: CA’s claiming to support RD mode shall provide EEC’s that allow
the “multiplexing” of multi packet RD message traffic to and from multiple
QPs while maintaining reliability (messages are delivered from a re-
quester to a responder at most once, in order and without corruption, or
the upper layer is notified.)

o9-102: CA’s claiming to support RD mode shall ensure that an RD mes-
sage has been completed at the sender (fully acknowledged or completed
in error) before sending another message on the same EEC.

o9-103: CA’s claiming to support RD mode shall ensure that an RD mes-
sage has been completed at the sender (fully acknowledged or completed
in error) before sending another message on the same QP.

o9-104: CA’s claiming to support RD mode shall meet the requirements
specified in 9.2.1 Operation Code (OpCode) on page 234 for coding of the
RD OpCodes, 9.3.1 Reliable Datagram Extended Transport Header
(RDETH) - 4 Bytes on page 240 for creation of that header, and 9.6 Packet

State of in-flight SEND/RDMA WRITE when unrecov-
erable error occurs

First one unknown, others not
delivered

ATOMIC Support Optional

Multi-packet message support Yes

Multiple EE Context allowed between end-nodes (to
provide traffic segregation for QOS)

Yes

Single SL / QoS assigned to EE Context Yes

Number of messages in-flight per EEC 1

Number of messages in flight per QP 1

Number of messages enqueued per EEC / QP Implementation limited only

Number of packets allowed in flight (architectural) 223

RD QP shall only communicate with RD QPs Yes

Partition Key verification On a per EEC basis

Protection verification (e.g. Q_Key, R_Key, etc.) and
Addressing

On a per QP basis

Max Size of messages 231

Destination QP, Q_Key, and address supplied On a per send WR basis

Source QP and address supplied On a per receiver completion
basis

Table 48 Reliable Datagram QP characteristics (Continued)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 361 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Transport Header Validation on page 269 and 9.7 Reliable Service on
page 280 through 9.7.6 for reliable transports for processing RD mes-
sages.

o9-105: CA’s claiming to support RD mode shall meet the requirements
specified in 9.9 Error detection and handling on page 396 while pro-
cessing RD messages.

o9-106: CA’s claiming to support RD mode shall provide support for set-
ting up connections between EECs as defined in Chapter 12: Communi-
cation Management on page 650, using the Management facilities as
defined in Chapter 13: Management Model on page 709

o9-107: CA’s claiming to support RD mode shall ensure that RD message
errors or events that are not associated with the underlying EE Context
(for example Q_Key or R_Key violations or RNR-NAK) shall not cause
that EE Context to shut down or prevent the EE Context from processing
other RD messages destined to other QPs.

o9-108: HCA’s claiming to support RD mode shall provide support for
Send, RDMA WRITE, RDMA READ, and ATOMICS in RD mode to the ex-
tent defined and reported in 11.2 Transport Resource Management on
page 550.

o9-109: HCA’s claiming to support RD mode shall provide support for
EEC management as defined in 10.2.7 End-to-End Contexts on page 441
and 11.2.7 EE Context on page 584.

o9-110: HCA’s claiming to support RD mode shall provide support for
RDD domains as defined in 10.2.8 Reliable Datagram Domains on page
443, 11.2.1.7 Allocate Reliable Datagram Domain on page 558, and
11.2.1.8 Deallocate Reliable Datagram Domain on page 559.

Implementation note: For many implementations, an EEC will actually
be a special “mode” of a general QP or EE context. For these implemen-
tations, the context number specified as a destination EEC must be set up
in Reliable Datagram ‘EEC’ mode. Reliable Datagram packets arriving at
a context (identified by the EE Context field in the header) that is not set
up to “EE Context” mode, shall be silently dropped.

The responder QP context must be set to support Reliable Datagram
transport service. If a Reliable Datagram packet arrives at a QP context
that is not configured for RD operation, the responder shall respond with
a “NAK Invalid RD Request”.

An important distinction for this service is that errors that are not associ-
ated with the underlying EE Context do not result in shutting that EE Con-
text down. Examples of these would be Q_Key or R_Key violations.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 362 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Similarly, the Receiver Not Ready (RNR NAK), caused by resources as-
sociated with the receiver’s QP does not prevent the EE Context from pro-
cessing other messages destined to other QPs.

Errors that are associated with the EE Context (retry limit exceeded, etc.),
detected during a message transmission or reception, shall be reported in
the WR completion.

Errors associated with the requestor or responder QP shall be reported in
the WR completion with the usual error semantics. See 9.9 Error detection
and handling on page 396 for a more complete discussion on errors.

Since an end-to-end credit mechanism is not practical in a “connection-
less” type of service, responders shall send a NAK Receiver Not Ready
response if a requester's SEND arrives while the responder's Receive
Queue is empty. See 9.7.5.2.8 RNR NAK on page 328 for additional de-
tails.

To preserve the ordering rules required of this service, and to keep the de-
sign complexity down, messages on this service are sent one at a time
from the source QP with the requirement that each message acknowledg-
ment be received at the requesting QP before the next message can be
started.

9.7.8.2 EXAMPLE RD OPERATIONS

The following is not normative material, but is included to clarify this topic.
These examples are based on an HCA implementation; other implemen-
tations are possible. TCAs, for instance may not utilize virtual memory and
may modify other details of this example.

This implementation example maintains a standard send queue for WRs.

It also maintains a linked list of Send QPs, anchored at each EEC. This
list contains QPs, each of which has a WR at the head of its Send Queue
that is destined for the EEC.

In order to manage the orderly transmission of packets and messages, the
implementation uses a scheduler. This scheduler maintains a list of those
EEC that have packets to send. As each EEC gets to the head of the
scheduler list, one or more packets are sent (depending on QoS and other
factors not important here).

On the responder side, the implementation example maintains a standard
set of Receive Queues.

The implementation also maintains space in each EEC to copy those pa-
rameters needed to process a single incoming message. These parame-

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 363 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Rcv Buff

Rcv Buff

Process E QP=14

RcvQ
Rcv Buff

R
ec

ei
ve

S
en

d

SendQ

Send

Two views of “connectionless”, Reliable Data-
gram service. The figure to the right shows a soft-
ware view of Reliable Datagram communication
among 4 processes on 3 processors. In this ex-
ample, there is no communication among pro-
cess E and processes C and D, otherwise,
Process A can send to and receive from all the
other processes.

The lower parts of the figure shows the multiple
EE Contexts used by the CA to synthesize the Reliable Datagram ser-
vice. Each context shows some of the state it uses to “connect” to the
others.

The SendQ 4 state shows the destinations of three messages; the ReceiveQ
states show the Queues after successful transmission of those messages.

Rcv Buff

Rcv Buff

Process A QP=4

RcvQ
Rcv Buff

R
ec

ei
ve

System Area
Network Fabric

HCA

SendQ 4 State:
Msg 0: DLID=27, QP=24
Msg 1: DLID=27, QP=25
Msg 2: DLID=54, QP=14

SendQ

Send

EE27 State:
DLID = 27.
XMit PSN = 77
Rcv ePSN = 66

Processor 1

Processor 2

Figure 106 “Connectionless” QPs for Reliable Datagram
Operation

(DLID = 33)

Process A

Send
QP 4

Receive

Process C

Send
QP 24

Receive

Process D

Send
QP 25

Receive

Processor 1 Processor 2

Process E

Send
QP 14

Receive

Processor 3

EE54 State:
DLID =54
XMit PSN = 55
Rcv ePSN = 44

HCA DLID = 54

HCA DLID = 27

HCA DLID = 33

RcvQ 24 State:
Msg 0: SLID=33, QP=4
Msg 1: not filled
Msg 2: not filled

EE33 State:
DLID = 33
XMit PSN = 66
Rcv ePSN = 77

HCA

EE33 State:
DLID = 33.
XMit PSN = 44
Rcv ePSN = 55

Processor 3

(DLID = 54)

HCA (DLID = 27)

Rcv Buff

Rcv Buff

Process C QP=24

RcvQ
Rcv Buff

R
ec

ei
ve

S
en

d

SendQ

Send

Rcv Buff

Rcv Buff

Process D QP=25

RcvQ
Rcv Buff

R
ec

ei
ve

S
en

d

SendQ

Send

Send

Send

RcvQ 25 State:
Msg 0: SLID=33, QP=4
Msg 1: not filled
Msg 2: not filled

RcvQ 14 State:
Msg 0: SLID=33, QP=4
Msg 1: not filled
Msg 2: not filled

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 364 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ters are copied both from the QP (PD, CQ, Q_Key etc.) and the receive
WQE (data segment L_Key, Virtual address, size etc.). The EEC then has
enough information to process the entire message to completion with no
further reference to the WQE or QP, even if the message contains many
packets.

9.7.8.2.1 EXAMPLE OUTBOUND REQUEST

1) The client of the Reliable Datagram posts a send message (de-
scribed by WQE) to the send queue of its QP. This consists of:

• the list of data segments (virtual address, L_Key and length) that
describes the send message

• the local EE Context number

• the destination QP number

• the destination Q_Key

2) When the WQE reaches the head of the Send Queue (found by
pointer from the QP context), the EE Context is located from the
WQE and the QP is “linked” to the EECs “QP list” for processing
(EEC contains enqueue and dequeue pointers, each QP contains link
pointer to next QP to run. Take QP at enqueue pointer, update its
“next” link to point to the new QP, adjust enqueue pointer to the newly
linked QP).

If the EEC is not currently sending messages, the EEC is also placed
into the scheduler.

3) When the EEC is scheduled to send a message, the HCA locates the
WQE parameters by accessing the QP at the head of the EEC’s “QP
list” (Take QP found at the Dequeue pointer) and using the QP’s work
queue pointers.

4) HW uses the memory protection parameters of the enqueuing
process (stored with the QP Context) and the virtual address etc.
from the WQE. This allows the Send Queue HW to directly access
the virtual address space of each process that posts send message
buffers.

5) The HCA hardware reads the data buffer, builds the transport header
(including the “Packet Sequence” number associated with the EE
Context) and puts the packet onto the wire.

6) This process is repeated from step 3 until the entire message is sent.
The “EE Context” is serviced according to the same scheduling algo-
rithm used for Reliable Connection QPs.

7) When a message is completely sent, the CA waits until all Acknowl-
edgments are in for the message.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 365 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

8) Since the EEC must wait for a message ACK before continuing (only
a single message outstanding at once), the EEC is scheduled with an
appropriate timeout and the EE Context is updated.

9) When the last ACK has arrived and the WQE completed, the HCA
determines if there are additional WQEs posted to the current QP
(the one at the head of the EEC’s QP list). If so, the next WQE is ex-
amined to locate the EEC for the QP’s next message (this may be to
a different EEC than the current). The CA then dequeues the QP
from the current EEC’s QP list, and enqueues it on the tail of the next
message’s EEC QP list. This is similar to step 2 above.

10) The EEC’s QP list is examined to determine if any QP has work for
this EEC.

11) The process repeats from step 3 until no more messages are
available to send. At this point, the EEC is removed from the
scheduler and set into an “inactive” state.

9.7.8.2.2 EXAMPLE INBOUND REQUEST

The inbound request needs to access the QP state associated with the re-
sponder’s Receive Queue, the receive WQE, and the EE Context that
maintains information about the source. Both QP and EEC are available
in the header for this purpose.

The following lists the steps taken by the HCA to process an incoming re-
quest packet:

First or Only Packets 1) The incoming request packet arrives and is found to be un-corrupted
and the first or only packet of the message.

2) The packet header specifies the destination QP number. This is the
QP associated with the client of the Reliable Datagram service. This
QP points to the receive queue, and a WQE, but does not have any
sequence number information. The packet header also includes the
“EE Context number” that is used to access the EE Context. The se-
quence number information is stored with the EE Context connected
to the requesting host.

3) The incoming request’s sequence number is compared against the
state of the EE Context connected to the requesting node.

4) If the sequence number and other packet contents are correct, the
destination QP’s memory protection and WQE entry information are
temporarily copied to the EE Context. This implementation is useful
because other EECs may be targeting the same QP and other mes-
sages will end up in progress to the same QP. By copying the WQE
and memory related information to the EEC, the QP is free to point to
subsequent WQEs for additional messages. This is also the reason
that receive WQEs may complete out of order.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 366 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5) The memory protection checks are done, and if the receive buffer is
valid, the incoming request is written to memory (or in the case of a
RDMA READ, stored for later processing).

6) The CA puts the EEC on the scheduler to send an ACK response.

7) If the packet was an “only”, then the CA completes the message
using the EEC’s copy of WQE and QP values, with no additional ref-
erences to the QP or WQE.

Middle or Last packets 1) For subsequent packets from the same message, only the EE Con-
text is accessed based on the header EEC number. This allows other
EECs to utilize other WQEs from the QP Receive Queue indepen-
dently.

2) If the sequence number and other header checks are correct, the
memory protection checks are done, and if the receive buffer is valid,
the incoming request data is written to memory.

3) The CA puts the EEC on the scheduler to send an ACK response.

4) If the packet was a “last”, then the CA completes the message using
the EEC’s copy of WQE and QP values, with no additional references
to the QP or WQE.

9.7.8.2.3 EXAMPLE OUTBOUND ACKNOWLEDGE

When the EEC gets to the head of the scheduler queue, the CA notes that
an ACK must be sent, and sends it. If multiple packets have arrived before
the EEC gets to the head of the scheduler, this creates a coalesced ACK.
The EE Context’s last valid receive sequence number is sent in the ACK
packet per the ACK/NAK rules.

If the operation was an RDMA read, then multiple response packets may
be required. In this case, the EEC is placed back on the scheduler after
each packet until the PSN of the responses reaches the expected PSN.

9.7.8.2.4 EXAMPLE INBOUND ACKNOWLEDGE

A returning ACK response indicates a request packet was successfully
completed. When the ACK arrives, the EE Context is examined and the
returned PSN is checked. If this is the expected (next sequential) ACK,
the expected PSN is updated. If this is the last ACK of a message and all
previous packets were acknowledged, then the message can be com-
pleted using the EEC’s copy of the QP and WQE information. If the ACK
is not sequential, then the usual coalesced ACK rules apply. Since only a
single message is outstanding at one time, only a single message is ever
acknowledged at one time.

For RDMA READs, the CA uses the EEC’s copied QP protection informa-
tion and WQE data segment information to store the data.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 367 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.7.8.3 RELIABLE DATAGRAM OPERATIONS

The processing is very much the same as defined for Reliable connection
service. The significant difference is for the treatment of repeated packets
at the responder, and the rules for repeating a request at the requester.
The differences are highlighted in italics.

9.7.8.3.1 SEND AND RDMA WRITE WITH IMMEDIATE DATA PROCESSING

SENDs and RDMA WRITEs with Immediate data are handled in the same
way as for Reliable Connection service, except that end-to-end credits are
not returned to the sending QP.

o9-111: CA’s claiming support for Reliable datagram service shall use the
NAK-RNR protocol to indicate an over-run of the Receive Queue for RD
messages.

9.7.8.3.2 RDMA READ PROCESSING

RDMA READs are handled in the same way as for Reliable Connection
service. Incoming requests are stored at the responder’s “hidden re-
sources”, attached to the EE Context, and memory protection information
is accessed or copied from the QP Contexts. Unlike Reliable Connection
service, the number of RDMA READ request messages outstanding from
a single QP or EEC shall be limited to one.

9.7.8.3.3 ATOMICS PROCESSING

Atomics are handled in the same way as for Reliable Connection service.
Incoming requests are stored at the responder’s “hidden resources”, at-
tached to the EE Context, and memory protection information is accessed
or copied from the QP Contexts. Unlike Reliable Connection service, the
number of ATOMIC requests outstanding from a single QP or EEC shall
be limited to one.

9.7.8.4 ORDERING RULES

Receive Queues are FIFO queues. Once enqueued, WQEs shall begin
processing in FIFO order, but may be completed out of order. The mes-
sages from any single source QP shall always be in order.

o9-112: CA’s claiming to support RD mode shall provide upper layer sup-
port for out of order receive queue completion for RD messages.

Send queues are FIFO queues. Once enqueued, WQEs shall be pro-
cessed for sending in the order they were enqueued.

o9-113: CA’s claiming to support RD mode shall ensure that WQEs on the
Send Queue in RD mode are completed in order whether they are tar-
geting different destination QPs on the same or a different endnode or the
same destination QP. The completions for WQEs shall always be returned
to the transport consumer in FIFO order.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 368 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This does not mean that the implementation must place the data portions
of the messages in memory in any particular order. As a result, the arrival
order is not guaranteed until the message is marked complete on at least
one side. An application shall expect that memory buffers are undefined
until the message is completed.

Note that items queued on different QP’s Send Queues on the same HCA
for the same destination endnode or even the same destination QP are
not ordered with respect to each other. For example, if WQE ‘A’ destined
for destination’X’ and QP “75” is posted to QP 1, and WQE ‘B’ destined
for destination’X’ and QP “75” is later posted to QP 2 of the same CA,
there is no guarantee that ‘A’ will arrive before ‘B’ at the destination.

o9-114: For CA’s claiming to support RD mode, upper layers must tolerate
lack of ordering among RD messages from different send QPs. That is,
items queued on different QP’s Send Queues on the same HCA for the
same destination endnode or even the same destination QP are not or-
dered with respect to each other.

9.7.8.5 HANDLING QP ERRORS - RESYNC

Since RD service allows multiple QPs to share a single EEC, it is desirable
that a QP with an error localized to the QP, not effect the remainder of the
QPs sharing the same EEC. To support this, RD service allows the EEC
to “Abandon” or “Suspend” operations on a QP under certain error condi-
tions.

A message is “Abandoned” if it is completed in error at the source QP, and
the QPn is transitioned to the error state.

A message is “Suspended” if it is not completed at the source QP, but an-
other message is started on the same EEC. When later resumed, the sus-
pended message must be restarted from the beginning if it is a Send, or
RDMA Write with immediate operation. If it is an RDMA Read or RDMA
Write w/o Immediate, it can (implementation choice) be restarted where it
left off, but must appear to be a new message to the responder.

“Suspend” and Restart only apply to RNR NAK conditions, where the re-
sponder is temporarily unable to perform the request associated with a
particular QP, and the requestor can improve performance by sending
messages from other QPs on the same EEC, while waiting for the RNR
NAK timeout.

A requestor is not allowed to Suspend an Atomic operation.

For convenience, we will sometimes say a message is “aborted” when
when either “abandoned” or “suspended” is meant.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 369 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The concept of “Abandon” or “Suspend” does require the RD service to
deal with a class of errors that can occur when packets associated with a
message are delayed, repeated, or both. To deal with this problem, a RE-
SYNC operation is required whenever a message is “Abandoned” or
“Suspended”. An example of this problem is shown in Figure 107 below
where an RNR’d request is actually executed by the responder.

If the requestor simply started a new message at the original PSN, data
corruption could occur. In addition, the requestor, when it restarted the
RNR NAK’d message later, the responder would get two copies.

r1

Requester

’r’ is a request packet
’a’ is an acknowledge packet (message)

r1

a1

Figure 107 Loss of synchronization of the EEC on Suspend

Responder

RNR 1

Requestor sees RNR, thinks Responder did
not complete message. Both Message comple-
tion and PSN are out of sync.

The requestor gets Timeout, so Retry the Send
request: PSN=1

Send request: PSN=1. The Packet experi-
ences a long transmission delay.

Responder is not ready, so it returns
RNR NAK response for r1.
Responder is ready now, so it returns Ack

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 370 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

To deal with this problem, a RESYNC is used following any error that af-
fects a QP, but leaves the EEC able to continue operation. The RESYNC
serves several purposes, it gets the PSNs on both ends of the EEC syn-
chronized, it lets the responder know that the previous message, if incom-
plete, is to be abandoned, and it allows the requestor to determine with
certainty the status of the current message at the responder. The following
flow chart shows the resynchronization process at the requestor.

no

yes

no yes

Requester
QP Error

Set ReqPSN, ePSN to
next unused value

Send RESYNC
Command

Response
Received?

eMSN
==

aMSN?

no

no

yes

Packet
Valid?

aMSN ==
eMSN+1?

RDMA
Read?

no yes

no yes

no

yes

Timeout?

no

yes

Out of
Retries?

Ignore Response

RNR,
Ok to

Retry?
WQE incomplete,
Reschedule QP to

Redo the message later

Complete WQE
in error

QP -> SQEr

Other NAK,

Failure!
Complete WQE

in Error
QP -> SQEr
EEC -> Error

Complete
Send Queue

WQE with
Message OK

Figure 108 Requestor RESYNC flow chart

“Suspend”

“Abandon”

noyes Atomic?

Complete
Send Queue

WQE with
Error and

“Remote Known
Complete”

An Atomic must
only Abandon!

yes

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 371 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following ladder diagram illustrates a RESYNC operation to correct
the problem described in Figure 107. The RESYNC process allows get-
ting both ends to agree on a appropriate PSN, to determine the status of
the aborted message at the responder, and to inform the responder to
abort a message in progress, if that is the case.

.

r1

Requester

’r’ is a request packet
’a’ is an acknowledge packet (message)

r1

a1

Figure 109 RESYNC detects unexpectedly complete message

Responder

RNR 1

Requestor sees RNR, does RESYNC.

The requestor gets Timeout, so Retry the
Send request: PSN=1

Send message 1 request: PSN=1. The
Packet experiences a long transmission
delay.

Responder is not ready, so it returns
RNR NAK response for r1. MSN=0
Responder is ready now, so it completes
the message and returns Ack MSN=1RESYNC 2Requestor gets unexpected Ack (it is

now an old PSN), ignores it. Responder gets RESYNC, resets ePSN
to 2+1, and Acks MSN=2a2

Requestor sees MSN=2, (was expecting 1)
and must complete message 1 instead of
suspending it.
Requestor goes on to message 2, PSN=3.

r3

Responder does normal response to
requesta3

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 372 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Another problem that RESYNC corrects is dealing with “Ghost” packets.
This is illustrated in where a multi-packet message has an error on an
early packet, the requestor puts the Send Queue in SQEr, and the upper
layer eventually returns the Send Queue to RTS. Meanwhile, a fabric
“event” causes a packet to be extremely delayed.

In the figure above,’r3’, being extremely delayed, arrives at the responder
during packet processing of a message for the same QPs. In this case,
the responder must see’r3’ as a retried packet. As such it is ignored, ex-
cept to schedule an Ack, at least for Sends and RDMA Writes. For RDMA
reads, the responder must create an explicit response. If a correct RDMA
read was already in progress, it must be interrupted and a different re-
sponse generated. This will create ghost responses at the requestor, and
cause it to timeout on its RDMA Read request, with a retry to make a re-
covery. For an atomic, the response also appears as a ghost, or unex-
pected response at the requestor. In either case, it is dropped and the
operation recovers.

r1

Requester

’r’ is a request packet
’a’ is an acknowledge packet (message)

r2

Figure 110 RESYNC prevents corruption by delayed packets

Responder

Nak 1

The requestor sees error, so does
RESYNC at one past highest previous
PSN: PSN=4

Send message 1 request: PSN=1.
The Packet at PSN=2 experiences a
long transmission delay.

Responder finds error, so it returns
NAK response for r1. MSN=0

RESYNC 4

Responder gets RESYNC, resets ePSN
to 4+1, and Acks MSN=1

a4
Requestor sees MSN=1, as expected and
puts QP into SQEr
Same QP is put back into RTS by ULP,
Requestor goes on to a two packet mes-
sage 2, PSN=5 and PSN=6.

r5

Responder does normal response to
request
Responder sees this as a retry, already
has Ack scheduled, otherwise ignores
Sees another packet, finally sends Ack,
PSN=6, MSN=2

r3

r6

a6

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 373 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the RESYNC had not been performed, message 2 would have started
with PSN=2. The reception of’r3’ at PSN=3 would have created a data
corruption problem.

o9-114.a1: For CA’s claiming to support RD mode, when a message in
RD mode incurs a QP related error the requestor may either:

1) Transition the QP and EEC to the error state and complete the mes-
sage in error, or

2) Implement the RESYNC process as described in 9.7.8.5 Handling
QP errors - RESYNC on page 368.

The RESYNC request generation is described in 9.7.3.2.2 RESYNC Gen-
eration on page 291.

o9-114.a2: For CA’s that support the RD transport service, following the
sending of a RESYNC, the requestor shall wait for an Ack at the RESYNC
PSN. No other response is valid.

As usual, the AckReq bit should be set to insure that the responder sched-
ules a response.

RESYNC should be timed out and retried with the usual retry count if no
correct response arrives as described in 9.7.6.1.3 Detecting Lost Ac-
knowledge Messages and Timeouts on page 338.

As usual, the requestor updates the request PSN by one prior to sending
another message from the EEC.

The RESYNC response may actually complete two messages, the pre-
vious message, and the “RESYNC” message.

9.7.8.6 RESPONDER GENERATION OF MSN

For Reliable Datagram service, the Message Sequence Number is a
number returned by the responder to the requester indicating the number
of messages completed by the responder at the EE context. The MSN is
carried in the three least significant bytes of the AETH. The MSN assists
the requester in completing WQEs by informing the requester of the mes-
sages that have been completed by the responder.

o9-114.a3: The Responder in CAs that implement Reliable Datagram ser-
vice shall return an MSN in the AETH of every response packet.

o9-114.a4: A CA responder using Reliable Datagram service shall ini-
tialize its MSN value to zero. The responder shall increment its MSN
whenever it has successfully completed processing a new, valid request
message. The MSN shall not be incremented for duplicate requests. The

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 374 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

incremented MSN shall be returned in the last or only packet of an RDMA
READ or Atomic response.

9.7.8.6.1 REQUESTER BEHAVIOR ON RECEIVING A NEW MSN

The existence of a new MSN value in a response packet may be used by
the requester as a signal to complete a message.

The MSN in the response to the “RESYNC” message may also be used
to determine the completion status of the previous message:

• If, due to earlier retries, the previous message was actually complet-
ed, the MSN will be two higher than the last value, which was re-
turned in the NAK response.

• If the previous message was a Send or RDMA Write, it should be
completed normally (meaning that it was not abandoned or sus-
pended after all).

• If the previous message was an RDMA Read, the requestor did
not get the return data, so must still either suspend or abandon
the message, depending on the error type.

r15

r16

a15 (0)

Requester Responder

request 1, PSN=15

’r’ is a request packet.
’a’ is an acknowledge packet.
MSN is shown in parentheses.

a16 (1)

 request 1 00 00 01
 request 2 00 00 02
 request 3 00 00 03
... ...

request MSN

Responder’s MSN

... ...

... .00 00 00

request 1, PSN=16

response to r1, PSN=15, MSN=0

response to r2, PSN=16, MSN=1
Request1 is a multi-packet send.
Responder returns an acknowledge for
each packet received. Response a16
marks the completion of request 1.

Figure 111 Responder use of MSN

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 375 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If the previous message was an Atomic, it must be completed in
Error, the additional information “Known Complete at Responder”
may be returned to the upper layers.

• If the MSN was as expected (one greater than last value), the previ-
ous message should be treated appropriately:
• Completed in error if it is abandoned, the additional information

that the message was “Known incomplete at Responder”
• Not started if it is a Send, or RDMA Write with immediate, to be

retried later
• Incomplete if it is an RDMA Read or RDMA Write without immedi-

ate to be restarted as a new message later
If the MSN was any other value, the response is corrupted, and the EEC
should be put into the error state.

9.8 UNRELIABLE SERVICE

IBA defines two types of unreliable service: Unreliable Connection
(SEND, RDMA WRITE) and Unreliable Datagram (SEND only). These
services have the following characteristics:

1) Requester receives no acknowledgment of message receipt

2) No packet order guarantees

3) Responder validates incoming packets as normal (validates appro-
priate header fields, CRC checks). A corrupted packet may be si-
lently dropped, causing the message to be dropped.

4) On detecting an error in an incoming packet such as a dropped / out
of order packet, the responder does not stop, but continues to re-
ceive incoming packets.

5) Responder considers the operation complete once it has received a
complete message in correct sequence, all data has been committed
to the local fault zone, and all appropriate validity checks (including
variant and invariant CRC checks) have been completed. For Unre-
liable Connected service, the definition for a completed message is
given in section 9.8.2.2.7 on page 389

6) Requester considers a message operation complete once the “last”
or “only” packet has been committed to the fabric.

9.8.1 VALIDATING AND EXECUTING REQUESTS

This section applies to both unreliable connection and unreliable data-
gram services. Where there are differences between the services, those
differences are noted. The major differences between the two services
are due to the fact that Unreliable Datagram service is restricted to single
packet messages whereas Unreliable Connected service does not have

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 376 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

this restriction. In addition, Unreliable Datagram service is restricted to
using the Send function further simplifying the request validation process.

The following describes the requirements placed on a responder for vali-
dating an inbound request packet.

C9-165: The responder shall validate the various fields of the headers in
order to verify the integrity of the packet. This validation process is speci-
fied in Section 9.6 Packet Transport Header Validation on page 269.
Packets containing invalid fields shall be silently dropped by the re-
sponder.

C9-166: For an HCA using Unreliable Connected service, the PSN shall
be examined to detect out of order packets. By examining the PSN, the
responder can determine whether the packet is a new request or an in-
valid packet. See Section 9.8.2.2.1 Responder - Validating the PSN on
page 382 for a description of this check.

o9-115: If a TCA implements Unreliable Connected service, the PSN shall
be examined to detect out of order packets. By examining the PSN, the
responder can determine whether the packet is a new request or an in-
valid packet. See Section 9.8.2.2.1 Responder - Validating the PSN on
page 382 for a description of this check.

C9-167: For an HCA using Unreliable Connected service, the responder
shall examine the packet OpCode to determine that the packet OpCode
sequence is valid. This check is not applicable to Unreliable Datagram
since that service is restricted to single packet messages, thus the con-
cept of a sequence of opcodes is not applicable.

o9-116: If a TCA implements Unreliable Connected service, the re-
sponder shall examine the packet OpCode to determine that the packet
OpCode sequence is valid. This check is not applicable to Unreliable Da-
tagram since that service is restricted to single packet messages, thus the
concept of a sequence of opcodes is not applicable.

C9-168: The responder shall examine the packet OpCode to determine
whether the requested operation is supported by this receive queue.

C9-169: The responder shall verify that it has sufficient resources avail-
able to receive the message. The necessary resources include a valid re-
ceive WQE (for a SEND or an RDMA Write with immediate data), and, for
a SEND request, sufficient buffer space available to receive the request.

C9-170: For an HCA responder using Unreliable Connection service, if
the request is for an RDMA WRITE operation, the responder shall ex-
amine the R_Key. If the packet is found to be valid, in order, and sufficient

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 377 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

resources are available, it is executed by the responder. In the process of
execution, the responder may encounter local errors.

o9-117: If a TCA responder implements Unreliable Connection service,
and if it supports RDMA operations, it shall behave as follows. If an in-
bound request is for an RDMA WRITE operation, the responder shall ex-
amine the R_Key. If the packet is found to be valid, in order, and sufficient
resources are available, it is executed by the responder. In the process of
execution, the responder may encounter local errors.

C9-171: For an HCA responder using Unreliable Connection or Unreliable
Datagram services, or for a TCA responder using Unreliable Datagram
service, the responder shall follow the sequence shown in Figure 112
when validating an inbound request packet.

o9-118: If a TCA responder implements Unreliable Connection service,
the responder shall follow the sequence shown in Figure 112 when vali-
dating an inbound request packet.

For Unreliable Connected service, these requirements are discussed in
some detail in section 9.8.2.2 Responder Behavior on page 382. Packet
validation for Unreliable Datagram service is discussed in 9.8.3.2 Re-
sponder Behavior on page 392.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 378 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 112 Unreliable Service: Inbound Packet Validation OM10531

yesno

no

Invalid Request.
Packet silently

dropped.

no

yes no

R_Key
Valid?

UD?

yes

UC?

=ePSN?
actual PSN yes

opcode
sequence

valid?
opcode=only

(UC) (UD)

no

opcode=
“first” or
“only”?

Wait for new
request

request?
new

yes

?
valid opcode

yes

yes

no

no

no

yes

no

Invalid packet
Dropped silently.
No receive WQE

consumed

wait for new
inbound
request

Valid request

Error?
Local

Local Error
Terminate current

message.
Receive queue to

error state

Complete.
Go to Completion

Processing

Resources
Available?

yes

yes no

RDMA
 WRITE

yes
?

noyes

new inbound
packet

no

ePSN=actual PSN

 Allowed?

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 379 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.8.2 UNRELIABLE CONNECTIONS

An unreliable connection consists of a one-to-one correspondence be-
tween two QPs. Packets are sent from one QP to the other but no ac-
knowledgments are generated by the destination QP. The chief
characteristics are that there are no delivery guarantees made to the re-
quester. The responder, however can detect data corruption and out of
order packets.

The characteristics of Unreliable Connection service are summarized in
Table 49.

9.8.2.1 REQUESTER BEHAVIOR

This section specifies the requester’s required behavior when generating
request packets for Unreliable Connection service.

9.8.2.1.1 REQUESTER - GENERATING PSN

C9-172: For an HCA requester using Unreliable Connection service, the
requester must place a value, called the current PSN, in the BTH:PSN
field of every request packet.

o9-119: If a TCA requester implements Unreliable Connection service,
the requester must place a value, called the current PSN, in the BTH:PSN
field of every request packet.

During connection establishment, the transport layer’s client must pro-
gram the next PSN to any value between zero and 16,777,215.

C9-173: For an HCA requester using Unreliable Connection service, the
initial PSN, as programmed by the transport layer’s client, shall appear as
the BTH:PSN in the first request packet generated by the requester.

Table 49 Summary of Unreliable Connection Service
Characteristics

Characteristic Comment

Delivery guarantee No guarantees to the requester. Responder may drop messages.

Ordering-requester No guarantee. Requester cannot rely on msgs arriving in order.

Ordering-responder Responder detects and drops out of order packets.

Ordering-responder Dropped packets may cause the message to be dropped.

Ordering-responder After dropping a packet, responder resumes with the first packet of
a new message.

Supported Operations Sends and RDMA WRITEs (with and without Immediate data)

Message size Maximum 231 bytes. Msgs may comprise multiple packets.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 380 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-120: If a TCA implements Unreliable Connection service, the initial
PSN, as programmed by the transport layer’s client, shall appear as the
BTH:PSN in the first request packet generated by the requester.

C9-174: For an HCA using Unreliable Connection service, the transport layer
shall modify (update) the PSN only when the send queue is in a proper state to
transmit request packets. For example, for an HCA, the transport layer does not
update the next PSN while the queue pair is in the INITIALIZED state.

o9-121: If a TCA implements Unreliable Connection service, the transport layer
shall modify (update) the PSN only when the send queue is in a proper state to
transmit request packets.

C9-175: For an HCA using Unreliable Connection service, each request
packet generated by the requester must have a PSN value that is an in-
crement of “1” (modulo 224) of the PSN value of the preceding request
packet.

o9-122: If a TCA implements Unreliable Connection service, each request
packet generated by the requester must have a PSN value that is an in-
crement of “1” (modulo 224) of the PSN value of the preceding request
packet.

9.8.2.1.2 REQUESTER - GENERATING OPCODES

The opcodes generated by a requester must fit into a schedule of opcodes
as shown below.

Table 50 Requester’s Calculation of Next PSN

Current Request
Packet PSN for Next Request Packet

SEND, RDMA WRITE current PSN + 1 (modulo 224)

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 381 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-176: For an HCA requester using Unreliable Connection service, the

requester must generate packet opcodes which fit within the schedule of
valid OpCode sequences as shown in Table 51 Schedule of Valid OpCode
Sequences on page 381. When generating a request packet, the
BTH:Opcode shall be as specified in Table 35 OpCode field on page 235.

o9-123: If a TCA requester implements Unreliable Connection service,
the requester must generate packet opcodes which fit within the schedule
of valid OpCode sequences as shown in Table 51 Schedule of Valid Op-
Code Sequences on page 381. When generating a request packet, the
BTH:Opcode shall be as specified in Table 35 OpCode field on page 235.

9.8.2.1.3 REQUESTER - GENERATING PAYLOADS

The requester shall generate payload lengths as a function of the opcode
as follows:

C9-177: For an HCA using Unreliable Connection service, if the OpCode
specifies a “first” or “middle” packet, then the packet payload length must
be a full PMTU size.

C9-178: For an HCA using Unreliable Connection service, if the OpCode
specifies a “only” packet, then the packet payload length must be between
zero and PMTU bytes in size. Thus, the only way to create a zero byte
length transfer is by use of a single packet message.

C9-179: For an HCA using Unreliable Connection service, if the OpCode
specifies a “last” packet, then the packet payload length must be between
one and PMTU bytes in size.

Table 51 Schedule of Valid OpCode Sequences

Previous Packet OpCode Valid OpCodes for Current Packet

None e.g., first packet following
connection establishment

“First” packet
“Only” packet

“First” packet “Middle” packet (message is 3 or more packets)
“Last” packet (message is exactly 2 packets)
Type of operation must match the previous OpCode

“Middle” packet “Middle” packet
“Last” packet
Type of operation must match the previous OpCode

“Last” packet “First” packet (1st packet of a new message)
“Only” packet (1st packet of a new single packet msg)

“Only” packet “First” packet
“Only” packet

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 382 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-124: If a TCA implements Unreliable Connection service, then it shall
conform to the three preceding HCA requirements for OpCode.

9.8.2.1.4 COMPLETING A MESSAGE SEND OR RDMA WRITE

C9-180: For an HCA requester using Unreliable Connection service, the
requester shall consider a message Send (or RDMA WRITE) complete
when either of the following conditions occurs: The requester has com-
mitted the last byte of the VCRC field of the last packet to the wire (and
detected no local errors associated with the message transfer), or the re-
quester has detected a local error associated with the message transfer
that causes the requester to terminate sending the request.

o9-125: If a TCA requester implements Unreliable Connection service,
the requester shall consider a message Send (or RDMA WRITE) com-
plete when either of the following conditions occurs: The requester has
committed the last byte of the VCRC field of the last packet to the wire
(and detected no local errors associated with the message transfer), or
the requester has detected a local error associated with the message
transfer that causes the requester to terminate sending the request.

Note that at the time that the requester completes the send WQE, the
state of the memory at the responder is unknown. Likewise, if the re-
quester detects a local error while sending the request packet, the state
of the responder’s memory is unknown.

9.8.2.2 RESPONDER BEHAVIOR

This section specifies the responder’s required behavior when receiving
inbound requests.

9.8.2.2.1 RESPONDER - VALIDATING THE PSN

The responder maintains an Expected PSN value (ePSN) that it uses to
detect missing packets from a multi-packet request message and to de-
tect dropped messages. Since the PSN of every inbound request packet
is sequential and monotonically increasing for UC service, a break in the
PSN sequence indicates a lost or dropped request packet.

C9-181: For an HCA responder using Unreliable Connection service, the
responder shall maintain an Expected PSN value (ePSN). This is the PSN
that the responder expects to find in the BTH of the next inbound request
packet.

o9-126: If a TCA responder implements Unreliable Connection service,
the responder shall maintain an Expected PSN value (ePSN). This is the
PSN that the responder expects to find in the BTH of the next inbound re-
quest packet.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 383 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The responder’s expected PSN may be initialized at connection establish-
ment time by the transport’s client to any value between zero and
16,777,215. However, since the responder will accept any valid packet
with an opcode of “first” or “only”, and use the value of the PSN contained
in such a packet as its expected PSN, it is not required that the re-
sponder’s initial expected PSN be programmed. See Chapter (Chapter
12: Communication Management on page 650 for a full description of the
mechanism for loading the expected PSN at connection establishment
time.

The initial expected PSN can only be set by the client when the queue is
in the Initialized state. Attempts by the client to set the PSN when it is in
any other state may be ignored by the transport layer.

C9-182: For an HCA using Unreliable Connection service, the transport
layer shall modify (update) its expected PSN only when the receive queue
is in a proper state to receive inbound request packets. For example, for
an HCA, the transport layer does not modify the PSN when the queue pair
is in the Initialized state.

o9-127: If a TCA implements Unreliable Connection service, the transport
layer shall modify (update) its expected PSN only when the receive queue
is in a proper state to receive inbound request packets. For example, for
an HCA, the transport layer does not modify the PSN when the queue pair
is in the Initialized state.

C9-183: For an HCA responder using Unreliable Connection service, an
inbound request packet shall be declared out of order if its PSN does not
exactly match the responder’s current ePSN.

o9-128: If a TCA responder implements Unreliable Connection service,
an inbound request packet shall be declared out of order if its PSN does
not exactly match the responder’s current ePSN.

C9-184: An HCA responder using Unreliable Connection service shall be-
have as follows. If, during packet validation, an inbound request packet is
discovered with an OpCode of “first” or “only”, the responder shall accept
the packet and shall accept the PSN of that request message as its new
ePSN, regardless of whether the inbound packet is out of order or not.
This shall be done regardless of the previous value of ePSN.

o9-129: A TCA responder implementing Unreliable Connection service
shall behave as follows. If, during packet validation, an inbound request
packet is discovered with an OpCode of “first” or “only”, the responder
shall accept the packet and shall accept the PSN of that request message
as its new ePSN, regardless of whether the inbound packet is out of order
or not. This shall be done regardless of the previous value of ePSN.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 384 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-185: For an HCA responder using Unreliable Connection service, be-
fore executing an inbound request, the responder shall check the PSN by
comparing the PSN in the inbound BTH to the responder’s expected PSN.
The rules that the responder uses to calculate its next expected PSN shall
be the same as those used by the requester when it calculates the PSN
value to insert in its next request packet. These rules are given in 9.8.2.1.1
Requester - Generating PSN on page 379.

o9-130: For an HCA responder using Unreliable Connection service, be-
fore executing an inbound request, the responder shall check the PSN by
comparing the PSN in the inbound BTH to the responder’s expected PSN.
The rules that the responder uses to calculate its next expected PSN shall
be the same as those used by the requester when it calculates the PSN
value to insert in its next request packet. These rules are given in 9.8.2.1.1
Requester - Generating PSN on page 379.

o9-131: If the PSN of the inbound message does not match the re-
sponder’s ePSN, the responder may notify its client of the presence of one
or more lost messages. The mechanism by which the responder notifies
its client is outside the scope of this specification.

C9-186: For an HCA responder using Unreliable Connection service, if a
multi-packet message is in progress at the time that an out of order packet
is detected, the current message shall be silently dropped. The responder
then waits for the first packet of a new message. It is possible that the
present packet (the out of order packet) is the first packet of a new mes-
sage. If so, it shall be treated as a new message.

o9-132: If a TCA responder implements Unreliable Connection service, if
a multi-packet message is in progress at the time that an out of order
packet is detected, the current message shall be silently dropped. The re-
sponder then waits for the first packet of a new message. It is possible that
the present packet (the out of order packet) is the first packet of a new
message. If so, it shall be treated as a new message.

A “new message” is denoted by an inbound request packet with an Op-
Code in the BTH of “first” or “only”.

“Current message” means all the packets received since the most re-
cently received “first” or “only” OpCode, excluding the present packet.

9.8.2.2.2 RESPONDER - OPCODE SEQUENCE CHECK

A request packet must fit within a schedule of valid OpCode sequences.
The OpCode sequence is determined by examining the BTH:OpCode.

C9-187: For an HCA responder using Unreliable Connection service, the
responder shall check the sequence of packet OpCodes as described in
items (1) through (5) below:

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 385 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) If this is the first packet following establishment of the connection,
then the packet OpCode must indicate either “first” or “only”. An Op-
Code of “middle” or “last” implies that at least the first packet of the
current message was lost and denotes an invalid OpCode sequence.

2) If the last valid packet received had an OpCode indicating “first”, then
the current OpCode must indicate either “middle” or “last”. It must
also match the operation type specified in the last valid packet
(SEND, RDMA WRITE). A current OpCode of “first” or “only” implies
that at least the last packet of the previous message was lost and de-
notes an invalid OpCode sequence.

3) If the last valid packet received had an OpCode indicating “middle”,
then the current OpCode must indicate either “middle” or “last”. It
must also match the operation type specified in the last valid packet
(SEND or RDMA WRITE request). A current OpCode of “first” or
“only” implies that at least the last packet of the previous message
was lost and denotes an invalid OpCode sequence.

4) If the last valid packet received had an OpCode indicating “last”, then
the current OpCode must indicate either “first” or “only”. A current
OpCode of “middle” or “last” implies that at least the first packet of the
current message was lost and denotes an invalid OpCode sequence.

5) If the last valid packet received had an OpCode indicating “only”, then
the current OpCode must indicate either “first” or “only”. A current
OpCode of either “middle” or “last” implies that the first packet of the
current message was missed and denotes an invalid OpCode se-
quence.

o9-133: If a TCA responder implements Unreliable Connection service,
the responder shall check the sequence of packet OpCodes as described
in items (1) through (5) above.

The responder’s behavior in the presence of an invalid OpCode sequence
is specified in Section 9.9.3 Responder Side Behavior on page 408.

C9-188: For an HCA responder using Unreliable Connection service, if
the responder detects an invalid OpCode sequence, the current message
shall be silently dropped. The responder then waits for a new inbound re-
quest packet with an OpCode of “first” or “only”; any other inbound request
packet shall be silently dropped.

o9-134: If a TCA responder implements Unreliable Connection service,
and if the responder detects an invalid OpCode sequence, the current
message shall be silently dropped. The responder then waits for a new in-
bound request packet with an OpCode of “first” or “only”; any other in-
bound request packet shall be silently dropped.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 386 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

“Current message” means all the packets received since the most re-
cently received “first” or “only” OpCode, excluding the present packet.

C9-189: For an HCA responder using Unreliable Connection service, if
the present packet, which caused the invalid OpCode sequence, has an
OpCode of “first” or “only” it shall be treated as the first packet of a new
request message.

o9-135: If a TCA responder implements Unreliable Connection service,
and if the present packet, which caused the invalid OpCode sequence,
has an OpCode of “first” or “only” it shall be treated as the first packet of
a new request message.

The list of valid OpCode sequences is summarized in the following table.

9.8.2.2.3 RESPONDER OPCODE VALIDATION

C9-190: For UC, the responder shall validate the requested function
(SEND or RDMA WRITE) is supported by the receive queue and that the
BTH:OpCode is not reserved before executing the request.

Note that the OpCode was also examined as part of packet validation in
section 9.6 Packet Transport Header Validation on page 269 to ensure
that the inbound packet contains a request for Unreliable Connected ser-
vice.

C9-191: Invalid UC requests shall be silently dropped by the responder
per 9.9.3 Responder Side Behavior on page 408.

9.8.2.2.4 RESPONDER REMOTE ACCESS VALIDATION

C9-192: This compliance statement has been obsoleted and replaced by
C9-192.2.1:

Table 52 Summary: Valid OpCode Sequences

Previous Packet OpCode Valid OpCodes for Current Packet

None e.g., first packet following
connection establishment

“First” packet
“Only” packet

“First” packet “Middle” packet (message is 3 or more packets)
“Last” packet (message is exactly 2 packets)
Type of operation must match the previous OpCode

“Middle” packet “Middle” packet
“Last” packet
Type of operation must match the previous OpCode

“Last” packet “First” packet (1st packet of a new message)
“Only” packet (1st packet of a new single packet msg)

“Only” packet “First” packet
“Only” packet

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 387 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-192.2.1: For an HCA responder using Unreliable Connection service,
if the inbound request is for a RDMA WRITE and the requested DMA
length in the RETH is non-zero, then the following conditions shall be
checked:

• The R_Key field in the RETH is valid.

• The virtual address and length is within the locally defined limits
associated with the R_Key. For an RDMA WRITE request, the
length check is conducted on a per packet basis and is based on
the LRH:PktLen field.

• The type of access specified (Write) is within the locally defined
limits associated with the R_Key.

• For an HCA, the protection domain shall be checked according to
the conditions defined in Section 10.2.3 Protection Domains on
page 434.

A failure of any of these checks constitutes an R_Key violation. The re-
sponder’s behavior in response to an R_Key violation is specified in Sec-
tion 9.9.3 Responder Side Behavior on page 408.

o9-136: If a TCA responder implements Unreliable Connection service
and RDMA functionality, it shall conform to the preceding HCA compli-
ance statement.

C9-193: For an HCA using Unreliable Connection service, the R_Key field
shall not be checked for a zero-length RDMA WRITE request, even if the
request includes Immediate data.

o9-137: If a TCA responder implements Unreliable Connection service
and RDMA functionality, the R_Key field shall not be checked for a zero-
length RDMA WRITE request, even if the request includes Immediate
data.

9.8.2.2.5 RESPONDER - LENGTH VALIDATION

C9-194: For an HCA responder using Unreliable Connection service, the
PktLen field of the LRH shall be checked to confirm that there is sufficient
space available in the receive buffer specified by the receive WQE. This
check applies only to SENDs.

o9-138: If a TCA responder implements Unreliable Connection service,
the PktLen field of the LRH shall be checked to confirm that there is suffi-
cient space available in the receive buffer specified by the receive WQE.
This check applies only to SENDs.

The length of the packet shall also be validated by comparing it to the Op-
Code as follows:

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 388 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-195: For an HCA responder using Unreliable Connection service, if
the UC BTH:OpCode specifies a “first” or “middle” packet, then the packet
payload length must be a full PMTU size.

o9-139: If a TCA responder implements Unreliable Connection service,
and if the UC BTH:OpCode specifies a “first” or “middle” packet, then the
packet payload length must be a full PMTU size.

C9-196: For an HCA responder using Unreliable Connection service, if
the UC BTH:OpCode specifies a “only” packet, then the packet payload
length must be between zero and PMTU bytes in size. Thus, the only way
to create a zero byte length transfer is by use of a single packet message.

o9-140: If a TCA responder implements Unreliable Connection service,
and if the UC BTH:OpCode specifies a “only” packet, then the packet pay-
load length must be between zero and PMTU bytes in size. Thus, the only
way to create a zero byte length transfer is by use of a single packet mes-
sage.

C9-197: For an HCA responder using Unreliable Connection service, if
the UC BTH:OpCode specifies a “last” packet, then the packet payload
length must be between one and PMTU bytes in size.

o9-141: If a TCA responder implements Unreliable Connection service,
and if the UC BTH:OpCode specifies a “last” packet, then the packet pay-
load length must be between one and PMTU bytes in size.

C9-198: This compliance statement is obsolete and has been removed.

o9-142: This compliance statement is obsolete and has been removed.

C9-199: For an HCA responder using Unreliable Connection service, if
the BTH:OpCode field[4:0] specifies a first or middle request packet (e.g.
SEND First, or RDMA WRITE Middle), the pad count bits are verified to
be b00, indicating no pad bytes are present. If the pad count bits are non-
zero, the OpCode is invalid.

o9-143: If a TCA responder implements Unreliable Connection service,
and if the BTH:OpCode field[4:0] specifies a first or middle request packet
(e.g. SEND First, or RDMA WRITE Middle), the pad count bits are verified
to be b00, indicating no pad bytes are present. If the pad count bits are
non-zero, the OpCode is invalid.

If a packet is detected with an invalid length the request is an invalid re-
quest. The responder’s behavior in such a case is specified in Section
9.9.3.1 Responder Side Error Response on page 412.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 389 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.8.2.2.6 RESPONDER - LOCAL OPERATION VALIDATION

A valid inbound request may still fail to complete due to a failure that is
local to the responder, e.g. local memory translation error while accessing
local memory. A local error may cause the receive queue to transition to
the error state. See 9.9.3 Responder Side Behavior on page 408 for addi-
tional details.

9.8.2.2.7 COMPLETING A MESSAGE RECEIVE

The responder considers a given inbound message completed success-
fully when it has:

• Detected the beginning of a valid message as indicated by the pres-
ence of a “First packet” or “Only packet” OpCode in the BTH,

• Detected the end of the same valid message as indicated by the
presence of a “Only packet” or “Last packet OpCode in the BTH,
without a skip in the PSN sequence,

• Received all the packets between “First packet” and “Last packet” in-
clusive successfully and in order, or has successfully received an
“Only packet”.

• Committed the message payload to the local fault zone without error,
and,

• Successfully completed all appropriate validity checks (including vari-
ant and invariant CRC).

A failure detected during any of these steps may or may not cause the as-
sociated WQE to be completed in error. In some cases, such as a missing
“first” packet, it is entirely likely that no WQE will be consumed by the re-
sponder. Note that, in the presence of errors, it is not possible to guar-
antee the state of the responder’s memory. Some or all of a given packet
may have been committed to the responder’s memory before the error is
detected.

Once an inbound message receive is completed successfully, the re-
sponder completes the current WQE.

9.8.3 UNRELIABLE DATAGRAMS

Unreliable Datagrams are a form of communication that allow a source
QP to send each message to one of many destination QPs that may exist
on the same or multiple destination endnodes.

• For each message to be sent, the requester must be supplied
with the destination address (see 11.2.2.1 Create Address Han-
dle on page 559), the destination QP, the destination Q_Key etc.
See 11.4.1.1 Post Send Request on page 612 for the parameters
supplied for an HCA.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 390 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The responder must deliver to the client the requester’s address,
QP etc. See 11.4.2.1 Poll for Completion on page 623 for more
detail on HCA requirements.

C9-200: Devices that source UD messages shall limit the UD message
size to a single packet. The packet should be no larger than the PMTU be-
tween the source and destination (or it will be dropped).

C9-201: Devices that source and sink UD messages shall meet the re-
quirements of the basic Unreliable Services (see 9.8 Unreliable Service
on page 375 through 9.8.1 Validating and Executing Requests on page
375).

C9-202: Devices that source and sink IBA UD messages shall meet the
requirements specified in 9.9 Error detection and handling on page 396.

Table 53 Unreliable Datagram QP characteristics

Property / Level of Reliability Support

Corrupt data detected and dropped Yes, silent drop on error

OpCode Service and command Validation Yes, silent drop on error

Receive buffer overrun Yes, reported as WR error

Data repeated No

Data order guaranteed No

Data loss detected Not required

RDMA Support No

ATOMIC Support No

Immediate data support Yes

Max Size of SEND messages PMTU-sized packet - 256 - 4096
bytes of data payload. Any mes-

sage that exceeds the PMTU
will not be delivered.

State of SEND when request completed Committed to transmission on
the fabric

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 391 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 113 Connectionless QPs for
Unreliable Datagram Operation

Process A

Send
QP 4

Receive

Process C

Send
QP 24

Receive

Process D

Send
QP 25

Receive

Processor 1 Processor 2

Process E

Send
QP 14

Receive

Processor 3

CA DLID = 27

CA DLID = 33

System Area
Network Fabric

Rcv Buff

Rcv Buff

Process C QP 24

S
en

d

QP 24

Snd

Snd Rcv Buff

R
ec

ei
ve

QP 24 State:
DLID = in WQE
Destination QP = in WQE
XMit PSN = 104
Rcv ePSN = NA

Rcv Buff

Rcv Buff

Process D QP 25

S
en

d

QP 25

Snd

Snd Rcv Buff

R
ec

ei
ve

QP 25 State:
DLID = in WQE
Destination QP = in WQE
XMit PSN = 42
Rcv ePSN = NA

Processor 2

(CA DLID = 27)

This figure shows two views of Unreliable
Datagram QPs. Process A on Processor 1
communicates with three processes: pro-
cesses C and D on Processor 2 and process
E on processor 3.

The view on the right shows how software might view the con-
nection. Buffers in the Send Q flow into buffers in the Receive
Queue on the connected QP.

The lower view gives a hardware centric view, showing some of
the state maintained per connected QP. Since each QP is con-
nected to nothing, the destination and other necessary informa-
tion (SL, DGID etc.) is picked with each message. The PSNs,
while generated, are not checked.

Rcv Buff

Rcv Buff

Process E QP 14

S
en

d

QP 14

Snd

Snd Rcv Buff

R
ec

ei
ve

QP 14 State:
DLID = in WQE
Destination QP = in WQE
XMit PSN = 72
Rcv ePSN = NA

Processor 3

(CA DLID = 54)

Rcv Buff

Rcv Buff

Process A QP=4

S
en

d

QP 4

Snd

Snd Rcv Buff

R
ec

ei
ve

QP 4 State:
DLID = in WQE
Destination QP = in WQE
XMit PSN = 5
Rcv ePSN = NA

Processor 1

(CA DLID = 33)

CA DLID = 54

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 392 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.8.3.1 REQUESTER BEHAVIOR

This section specifies the requester’s required behavior when generating
request packets.

C9-203: Devices that source UD messages shall meet the requirements
specified in 9.8.3.1.1 Generating PSN on page 392 and 9.8.3.1.2 Com-
pleting a Message Send on page 392 while sending UD messages.

9.8.3.1.1 GENERATING PSN
C9-204: For each request message on a UD transport service, the re-
quester shall generate PSNs that is an increment of “1” (modulo 224) of
the PSN value of the preceding request packet. The incrementing of PSN
is not required for QP0 and QP1.

The initial PSN value shall be loaded by the transport’s client while the
send queue is in the Initialized state and may be initialized to any 24-bit
value. While in the process of transmitting request packets, the transport
layer shall modify (update) the PSN only when the send queue is in the
Ready to Send state.

9.8.3.1.2 COMPLETING A MESSAGE SEND

The requester shall consider a message Send complete when it has:

• Committed the last byte of the VCRC field of the packet to the wire,
and detected no local errors associated with the message transfer.

• Detected a local error associated with the message transfer that
causes the requester to terminate sending the request.

Note that at the time that the requester completes the send WQE, the
state of the memory at the responder is unknown. Likewise, if the re-
quester detects a local error while sending the request packet, the state
of the responder’s memory is unknown.

9.8.3.2 RESPONDER BEHAVIOR

This section specifies the responder’s required behavior when receiving
inbound requests.

9.8.3.2.1 RESPONDER - VALIDATING THE PSN
o9-144: For UD transport service, the responder may ignore the PSN
field.

Some applications (e.g. multicast-based media streaming) may derive
benefit from having the responder validate the PSN sequence to detect
out-of-sequence packets. It is permissible for a responder implementation
to do so, but is outside the scope of the IBA specification.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 393 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.8.3.2.2 RESPONDER - LENGTH VALIDATION

C9-205: Before executing the request, the responder shall validate the
Packet Length field of the LRH and the PadCnt of the BTH as described
in 9.8.3.2.2: Responder - Length Validation.

The following characteristics shall be validated:

• The Length fields shall be checked to confirm that there is sufficient
space available in the receive buffer specified by the receive WQE.

• The packet payload length must be between zero and PMTU bytes
inclusive in size.

If a packet is detected with an invalid length, the request shall be an invalid
request and it shall be silently dropped by the responder as specified in
Section 9.9.3 Responder Side Behavior on page 408. The responder then
waits for a new request packet.

9.8.3.2.3 RESPONDER OPCODE VALIDATION

C9-206: For UD, the responder shall validate the BTH:OpCode for the re-
quested function (SEND) is supported by this receive queue and is not re-
served before executing the request else the request is invalid.

C9-207: If a UD receive queue does not have an entry to hold an inbound
SEND request, the request is invalid.

If the request is invalid, it shall be silently dropped by the responder as
specified in Section 9.9.3 Responder Side Behavior on page 408.

9.8.3.2.4 RESPONDER - LOCAL OPERATION VALIDATION

A valid inbound request may still fail to complete due to a failure that is
local to the responder, e.g. local memory translation error while accessing
local memory. A local error may cause the receive queue to transition to
the error state. See 9.9.3 Responder Side Behavior on page 408 for addi-
tional details.

9.8.3.2.5 COMPLETING A MESSAGE RECEIVE

The responder considers a given inbound message completed success-
fully when it has:

• Committed the message payload to the local fault zone without error
• Successfully completed all appropriate validity checks (including vari-

ant and invariant CRC).
A failure detected during any of these steps may or may not cause the as-
sociated WQE to be completed in error. In some cases, such as an op-
code or length error, no WQE will be consumed by the responder. Note
that, in the presence of errors, it is not possible to guarantee the state of
the responder’s memory. Some or all of a given packet may have been

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 394 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

committed to the responder’s memory before the error is detected. Once
an inbound message receive is completed successfully, the responder
completes the current WQE.

9.8.4 RAW DATAGRAMS

The previous several sections describe the different transport protocols
defined by the IBA specification. In addition to these, IBA allows other pro-
tocols to be carried by an IBA subnet. IBA datagrams that encapsulate
such traffic are referred to as Raw Datagrams.

IBA defines two different methods to support Raw Datagrams. In Section
7.7.5 Link Next Header (LNH) - 2 bits on page 194 two bits in the local
route header are used to specify the next header after the LRH. The fol-
lowing table describes the two LNH encodings that describe Raw Data-
grams.

Figure 114 Raw Datagrams

The first method of encoding a Raw Datagram is used only for IPv6 data-
grams. The packet payload may contain any transport or network protocol
defined by the IETF’s encoding of the IPv6 header’s “next header” field
excluding any encoding indicating the next header is an IBA transport
header.

C9-208: CAs shall not generate an outbound packet and will discard any
inbound packet whose LRH indicates a Raw Datagram and whose IPv6
“next header” indicates an IBA transport. TCAs may report this error in
any manner they choose.

The second method of encoding a Raw Datagram uses the IBA defined
raw header (RWH). The RWH contains the 16-bit Ethertype field - the
RWH is described in section 5.3 Raw Packet Format on page 161. The
RWH is used to define the protocol header encapsulated in the packet
payload. In general, the second method is used to allow protocols not sup-
ported by the IPv6 next header - it should be noted that either method may
be used to transport IPv6 datagrams.

Link Next Header LNH(1:0)

IBA_Transport
GRH
(IPv6)
header

Structure of the Raw Datagram

0 1

0 0

LRH IPv6 Packet Payload VCRC

LRH RWH Packet Payload VCRC

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 395 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-145: If a CA implements Raw Datagram support, the Packet Payload
of Raw Datagrams must always be of a modulo 4 size, since the LRH
Packet length describes the length in 4 byte increments. Should the en-
capsulated payload size not be a multiple of 4 bytes, the payload shall be
padded to a multiple of 4 bytes.

o9-146: If a CA implements Raw Datagram support, the QPs used to in-
ject and consume Raw Datagrams shall be locally managed, i.e. the as-
sociation of a QP with a given Raw Datagram service is implementation
dependent.

o9-147: If a CA implements Raw Datagram support, it may support one
or more QPs for Raw Datagram operations.

9.8.4.1 RAW DATAGRAM PACKET SIZE

The IBA MTU defines the maximum size of an IBA transport’s data pay-
load. The maximum size of an IBA packet is MTU+124 bytes12 (see 7.7.8
Packet Length (PktLen) - 11 bits on page 194).

o9-148: If a CA implements Raw Datagram support, and since a Raw da-
tagram does not use IBA transport headers, raw datagrams may have a
packet payload larger than the supported MTU (see Figure 114 Raw Dat-
agrams on page 394). The table below summarizes the maximum packet
payload (and the corresponding value for the LRH PktLen field) for each
of the two raw datagram types.

12. The 124B maximum packet header/CRC byte count does not include the
VCRC field.

Table 54 Maximum Raw Datagram Packet Payload

MTU
IPv6 Raw Datagram RWH Raw Datagram

Largest Possible
Packet Payloada

a. largest possible IPv6 raw packet payload = MTU + 124 (the largest packet
header/CRC size) - 8 (LRH size) - 40 (IPv6 header size)

Corresponding
PktLen Value

Largest Possible
Packet Payloadb

b. largest possible RWH raw packet payload = MTU + 124 (the largest packet
header/CRC size) - 8 (LRH size) - 4 (RWH header size)

Corresponding
PktLen Value

256 332 Bytes 95 368 Bytes 95

512 588 Bytes 159 624 Bytes 159

1024 1100 Bytes 287 1136 Bytes 287

2048 2124 Bytes 543 2160 Bytes 543

4096 4172 Bytes 1055 4208 Bytes 1055

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 396 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.9 ERROR DETECTION AND HANDLING

IBA uses a layered error management architecture (LEMA) approach.
Each level is responsible for detecting and managing errors appropriate
to that layer before passing the packet or message up to the next layer in
the stack.

Thus the transport layer responds to errors particular to the transport in-
cluding errors in the packet header and failures to correctly transport a
message.

Errors detected in the transport layer are reported to the transport’s client.
In this section, the interface between the transport layer and its client is
shown conceptually as the send or Receive Queue. In the case of an
HCA, the transport indicates errors to its client by writing a completion
code to a Completion Queue Entry (CQE) on the Completion Queue (CQ).
As usual TCAs are free to report errors (or not) as they see fit.

In order to simplify the discussion, error behavior is discussed separately
for the requester and responder ends. This causes a slight amount of du-
plication between the summary tables in the following sections describing
the errors for the requester and responder side. Specifically, overlaps
occur when an error is detected by the responder and reported to the re-
quester. These areas of overlap, however, are strictly confined to reliable
classes of service.

Errors that are reported by the requester to its client fall into one of two
classes. The first are Locally Detected errors; i.e., errors that are detected
solely by the requester side. An example of a locally detected error is a
protection fault detected by the requester while accessing its own local
memory during a send request.

The second class is remotely detected errors, which are those errors de-
tected by the responder and reported to the requester via a NAK syn-
drome in an Response packet. Remotely detected errors only apply to the
reliable classes of service (reliable connected and reliable datagram).

Whereas there were two classes of errors for the requester side (locally
and remotely detected), there are only locally detected errors on the re-
sponder side.

In response to a locally detected error, the responder side may be re-
quired to report the error to the requester, or it may be required to report
the error to its local client, or both, or neither. The choice of to whom the
error is reported is governed by the class of service (reliable versus unre-
liable), and the specific error that is detected.

Remote Error
Detection

Response

Requester

Responder

CQ

Receive
Queue

Acknowledge
Generation

Local Error Detection

Send
Queue

CQ

Local Error Detection

(ACK)

Request
Packets

Packets

Figure 115 Requester /
Responder Error Detection

Requester

Responder

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 397 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The key focus of the following sections is to categorize all errors according
to how errors are reported to the transport layer’s client, and the behavior
that the send (receive) queue must exhibit following detection of an error.
Thus, this section is categorized according to not only where an error is
detected, but to whom it is reported.

9.9.1 REPORTING ERRORS TO THE VERBS LAYER

For an HCA, the IBA software interface defines three types of errors that
can be reported through the verbs layer. These are called immediate er-
rors, completion errors, and asynchronous errors. Of those three types,
the transport layer is only capable of reporting completion errors or asyn-
chronous errors. This is because immediate errors are detected by the
verbs layer before the WQE ever gets posted to the transport layer. Table
55 summarizes the types of errors that an IBA transport can detect and
report to the verbs layer. For more information on these error types, see
10.10.2 Error Handling Mechanisms on page 530.

There are two classes of completion errors: Interface checks and pro-
cessing errors. An interface check is an error in the information supplied
to the Channel Interface detected before data is placed onto the link. A
processing error is an error encountered during the processing of the work
request by the Channel Interface.

9.9.2 REQUESTER SIDE ERROR BEHAVIOR

As indicated above, the requester detects errors originating locally or re-
motely.

9.9.2.1 REQUESTER SIDE ERROR DETECTION - LOCALLY DETECTED ERRORS

A locally detected error reflects either an error condition that has occurred
in the requester’s channel interface, a missing response from the re-
sponder side (timeout) or excessive retries for sequence errors or RNR
NAKs.

Locally detected errors at the requester can occur during request packet
generation, during the processing of response packets, or due to a tim-
eout.

Table 55 Software Error Types Detected by Transport Layer

IBA Software Defined Error Types Detected by
IBA Transport

Immediate Errors no

Completion Errors - Interface check yes

Completion Errors - Processing error yes

Asynchronous Errors - Affiliated type yes

Asynchronous Errors - Unaffiliated type yes

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 398 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-209: For an HCA requester using RC, UC, or UD service, and for a
TCA requester using UD service, the requester shall behave as follows.
For locally detected transport errors that are detected during transmission
of request packets, a CA shall stop transmission for the affected QP, shall
store the state associated with the error until any previous incomplete
WQEs are completed, and finally complete the affected WQE. The QP
shall be put into the error state if the error type requires this.

o9-149: If a TCA requester implements Reliable Connection or Unreliable
Connection service, it shall behave as follows. For locally detected trans-
port errors that are detected during transmission of request packets, a CA
shall stop transmission for the affected QP, shall store the state associ-
ated with the error until any previous incomplete WQEs are completed,
and finally complete the affected WQE. The QP shall be put into the error
state if the error type requires this.

o9-150: If a CA requester implements Reliable Datagram service, it shall
behave as follows. For locally detected transport errors that are detected
during transmission of request packets, a CA shall stop transmission for
the affected EEC, shall store the state associated with the error until any
previous incomplete WQEs are completed, and finally complete the af-
fected WQE. The EEC shall be put into the error state if the error type re-
quires this.

This is required to maintain the ordered completion of WQEs and to en-
sure that the error is properly reported in the WQE where the error oc-
curred.

9.9.2.1.1 REQUESTER ERROR RETRY COUNTERS

C9-210: For an HCA using Reliable Connection service, in order to detect
excessive retries, the requester shall maintain the RNR NAK and Error
retry counters that perform the logical functions described in 9.9.2.1.1 Re-
quester Error Retry Counters on page 398.

o9-151: If a CA requester implements Reliable Datagram service, or if a
TCA requester implements Reliable Connection service, the requester
shall behave as follows. In order to detect excessive retries, the requester
shall maintain the RNR NAK and Error retry counters that perform the log-
ical functions described in 9.9.2.1.1 Requester Error Retry Counters on
page 398.

Implementations may implement these retry counters in any way they
choose, but for clarity, they are here described as down counters, initial-
ized to the number of retries allowed before terminating the operation and
creating the final completion error. See 10.2.4.3 Modifying Queue Pair At-
tributes on page 437 for the programming of these counters in an HCA.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 399 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The RNR NAK retry counter is decremented each time the responder re-
turns an RNR NAK. If the requester’s RNR NAK retry counter is zero, and
an RNR NAK packet is received, an RNR NAK retry error occurs. Each
time an RNR NAK is cleared (i.e., an acknowledge message other than
an RNR NAK is returned), the retry counter is reloaded. An exception to
the following is if the RNR NAK retry counter is set to 7. This value indi-
cates infinite retry and the counter is not decremented.

The Error retry counter is decremented each time the requester must retry
a packet due to a Local Ack Timeout, NAK-Sequence Error, or Implied
NAK. If the requester’s retry counter decrements to zero, one of two
things may be implemented.

If Automatic Path migration is not supported, or has already been com-
pleted, a “Transport Retry Counter Exceeded” error shall be reported in
the completion.

o9-152: If a CA supports Automatic Path Migration, then, following a po-
tentially recoverable error and its retries, the requester may migrate the
connection or EE context and perform the Error retries again before finally
reporting the completion in error. See 17.2.8 Automatic Path Migration on
page 1031 for more information.

Each time a packet is properly acknowledged, the retry counter shall be
reloaded.

9.9.2.2 REQUESTER SIDE ERROR DETECTION - REMOTELY DETECTED ERRORS

A remotely detected error occurs when the responder reports an error to
the requester. Remotely detected errors are unique to reliable classes of
service.

Remotely detected errors are reported via a NAK code carried in an ac-
knowledge message. However, not all NAK codes result in an error being
reported to the requester’s client.

Of the possible NAK codes, two (NAK-Sequence Error and NAK-RNR) in-
dicate operations that should be retried automatically by the requester.

The NAK codes other than NAK-Sequence Error and NAK-RNR indicate
failures that must be reported to the requester’s client immediately and
cannot be retried.

9.9.2.3 SUMMARY - REQUESTER SIDE ERROR BEHAVIOR

Table 56 lists all errors that are detected by the requester, including both
locally and remotely detected errors. If the error is detected locally by the
requester, the column labelled “Syndrome” contains the notation “locally
detected error”. If the error is detected remotely by the responder, this

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 400 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

column lists the NAK syndrome that was returned by the responder. The
fault behavior class specifies the actions that the requester takes to report
the error to its client.

Each fault behavior class is specified below in Sections 9.9.2.4.1 through
9.9.2.4.5. For convenience, the six possible classes of fault behaviors are
summarized in Table 57 Summary of Requester Fault Behavior Classes
on page 403 below.

C9-211: This compliance statement is obsolete and has been replaced by
C9-211.1.1:.

C9-211.1.1: For the implemented subset of transport services, requesters
shall conform to the error behavior as specified in Table 56. Also, the re-
quester’s send queue shall behave as specified for each Fault Behavior
Class shown in Table 57 and each of the Requester Class Fault descrip-
tions.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 401 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 56 Requester Side Error Behavior

Error Description Syndrome Requestor Fault
Behavior Class

Packet sequence error.
Retry limit not exceeded.

Responder detected a PSN larger than it
expected.
Requester may retry the request.

NAK-Sequence
Error

RC: Class A
RD: Class A
else: NA

Packet sequence error.
Retry limit exceeded.

Responder detected a PSN larger than it
expected.
The requestor performed retries, and auto-
matic path migration and additional retries,
if applicable, but all attempts failed.

NAK-Sequence
Error

RC: Class B
RD: Class D
else: NA

Implied NAK sequence
error. Retry limit not
exceeded.

Requestor detected an ACK with a PSN
larger than the expected PSN for an RDMA
READ or ATOMIC response.
Requester may retry the request.

locally detected error RC: Class A
RD: Class A
else: NA

Implied NAK sequence
error. Retry limit
exceeded.

Requestor detected an ACK with a PSN
larger than the expected PSN for an RDMA
READ or atomic response.
The requestor performed retries, and auto-
matic path migration and additional retries,
if applicable, but all attempts failed.

locally detected error RC: Class B
RD: Class D
else: NA

Local Ack Timeout error.
Retry limit not exceeded.

No ACK response from responder within
timer interval.
Requester may retry the request.

locally detected error RC: Class A
RD: Class A
else: NA

Local Ack Timeout error.
Retry limit exceeded.

No ACK response within timer interval. The
requestor performed retries, and automatic
path migration and additional retries, but all
attempts failed.

locally detected error RC: Class B
RD: Class D
else: NA

RNR NAK Retry error.
Retry limit not exceeded.

Responder returned RNR NAK.
Requestor may retry the request.

RNR-NAK RC: Class A
RD: Class A
else: NA

RNR NAK Retry error.
Retry limit exceeded.

Excessive RNR NAKs returned by the
responder.
Requestor retried the request “n” times, but
received RNR NAK each time.

locally detected error RC: Class B
RD: Class B
else: NA

Unsupported OpCode. Responder detected an unsupported
OpCode.

NAK-Invalid Request RC: Class B
RD: Class B
else: NA

Unexpected OpCode. Responder detected an error in the
sequence of OpCodes, such as a missing
“Last” packet. Note: there is no PSN error,
thus this does not indicate a dropped
packet.

NAK-Invalid Request RC: Class B
RD: Class B
else: NA

Local Memory Protection
Error.

Requester detected an implementation
specific memory protection error in its local
memory subsystem.

locally detected error All: Class B

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 402 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

R_Key Violation Responder detected an invalid R_Key while
executing an RDMA Request

NAK-Remote
Access Error

RC: Class B
RD: Class B
else: NA

Remote Operation Error Responder encountered an error, (local to
the responder), which prevented it from
completing the request.

NAK-Remote Opera-
tion Error

RC: Class B
RD: Class B
else NA

Local Operation Errora -
WQE

An error occurred in the requester’s local
channel interface that can be associated
with a certain WQE.

locally detected error All: Class B

Local Operation Errora -
affiliated or unaffiliated

An error occurred in the requester’s local
channel interface that cannot be associated
with a certain WQE.

locally detected error All: Class C

Local RDD Violation Requester’s EE Context detected an invalid
RDD on an outbound packet

locally detected error RD: Class B
else NA

Remote RDD Violation Responder’s Receive Queue detected a
RDD violation

NAK-Invalid RD
Request

RD: Class B
else NA

Remote Q_Key Violation Responder’s Receive Queue detected a
Q_Key violation

NAK-Invalid RD
Request

RD: Class B
else NA

Length error RDMA READ response message contained
too much or too little payload data.

locally detected error RC: Class B
RD: Class B
else NA

Bad response Unexpected opcode for the response
packet received at the expected response
PSN.b

locally detected error RC: Class B
RD: Class B
else NA

Ghost Acknowledge Requester received an acknowledge mes-
sage at other than the expected response
PSN.

locally detected error RC: Class E
RD: Class E
Else NA

CQ overflow Despite actual execution of the message,
and acknowledgement, the completion noti-
fication could not be written to the CQ.

locally detected error All: Class F

a. Local operations errors tend to be very implementation specific; not all CA’s may have or detect these.
b. For example; RDMA read instead of Acknowledge, NAK code in AETH of an RDMA read, or “RDMA READ
Response last” instead of middle. Note that there are specific exceptions that an implementation may elect to not
treat as a bad response which are: Out of order RDMA READ Response Opcodes in the case where the requester
had generated a duplicate RDMA READ Request, or the reception of an ACK instead of an RDMA READ Response
of Atomic Response. This ACK may be the result of an unsolicited ACK sent by the responder that arrives at the
requester before the expected RDMA READ or Atomic Response. The requester may drop this ACK packet with no
ill effects.

Table 56 Requester Side Error Behavior (Continued)

Error Description Syndrome Requestor Fault
Behavior Class

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 403 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.9.2.4 REQUESTER SIDE ERROR RESPONSE

There are five different sets of error response behaviors that the requester
must implement. Which behavior is executed for any given error is shown
above in Table 56. This section specifies the error response behaviors.

9.9.2.4.1 REQUESTER CLASS A FAULT BEHAVIOR

Class A errors are those that are recoverable by the transport through a
retry mechanism. If the retry succeeds, there is no visible impact to the
transport’s client (e.g. verbs layer).

The only Class A errors are Packet Sequence Error, Implied NAK se-
quence error, Local Ack Timeout error and an RNR NAK. Packet Se-
quence Error and RNR NAK are both remotely detected. A Local Ack
Timeout error and an Implied NAK sequence error are detected locally by
the requester.

C9-212: For an HCA using Reliable Connection service, each time the
transport retries a Requester Class A error, it shall decrement a retry
counter. There is one retry counter associated with Packet Sequence Er-
rors and Local Ack Timeout errors, and a different retry counter associ-
ated with RNR NAKs. As long as the retry count has not expired the
transport may continue to retry these errors. The protocol for retrying
these errors is given in Section 9.7 Reliable Service on page 280.

o9-153: If a TCA requester implements Reliable Connection service, or if
a CA requester implements Reliable Datagram service, each time the re-
quester retries a Requester Class A error, it shall decrement a retry
counter. There is one retry counter associated with Packet Sequence Er-
rors and Local Ack Timeout errors, and a different retry counter associ-

Table 57 Summary of Requester Fault Behavior Classes

Fault Behavior
Class

Current Send Queue
WQE

Subsequent Send
Queue WQEs

Final Send
Queue State

Requester Class A no impact no impact no change

Requester Class B completed in error flushed error state

Requester Class C completed in errora flusheda error statea

a. It is possible that this class of error will render the entire HCA unable to continue work
in which case the queue error states may be unknown.

Requester Class Db

b. Classes B and D are similar, however Class D applies to reliable datagram service
only and also specifies that the requester’s EE Context transition to the error state.

completed in error flushed error state

Requester Class Ec

c. Classes A and E look similar, but Class A requires a retry, Class E results in no action.

no impact no impact no change

Requester Class F unknown unknown error state

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 404 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ated with RNR NAKs. As long as the retry count has not expired the
transport may continue to retry these errors. The protocol for retrying
these errors is given in Section 9.7 Reliable Service on page 280.

C9-213: For an HCA requester using Reliable Connection service, since
Requester Class A errors are recoverable, the requester shall not report
them to the transport’s client unless the retry count expires.

o9-154: If a TCA requester implements Reliable Connection service, or if
a CA requester implements Reliable Datagram service, since Requester
Class A errors are recoverable, the requester shall not report them to the
transport’s client unless the retry count expires.

See Section 10.10.2.2 Completion Errors on page 531 for a discussion of
how errors are reported for an HCA once the retry count has expired.

9.9.2.4.2 REQUESTER CLASS B FAULT BEHAVIOR

C9-214: In response to a Requester Class B error, for services other than
Reliable Datagram, the requester shall complete the current WQE in error,
transition the Send Queue to the error state and mark any subsequent
WQEs posted to the Send Queue as flushed.

o9-154.a1: For CAs that implement Reliable Datagram service, the re-
questor, in response to a Requester Class B error, shall perform the ac-
tions described in Section 9.7.8.5 Handling QP errors - RESYNC on page
368. If, following the RESYNC process described, the message is still in
error, the requester shall complete the current WQE in error, transition the
Send Queue to the error state and mark any subsequent WQEs posted to
the Send Queue as flushed.

IF (packet sequence error or Local Ack Timeout error)
THEN decrement Error retry counter.
IF (RNR NAK)
THEN decrement RNR NAK retry counter.
IF ~(packet sequence error or timeout error or RNR NAK)
THEN reload retry counters

IF (Error retry counter expired)
If (RC mode) GOTO Class B
 Else GOTO Class D
IF (RNR NAK retry counter expired)
 GOTO Class B

Figure 116 Requester Class A Fault Behavior

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 405 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For an HCA, the error is posted as “Completion - Processing type” with
the appropriate error type (See 10.10.2.2 Completion Errors on page 531
for more details).

The queue shall be transitioned to the error state by the transport layer to
prevent a race condition that can occur if the client (e.g. the verbs layer
for an HCA) posts further WQEs to the Send Queue before it discovers
that an error has occurred. This is consistent with the Send Queue state
diagram as shown in Figure 124 QP/EE Context State Diagram on page
452.

Finally, all WQEs in the Send Queue behind the failed WQE are also com-
pleted with the “Completed - Flushed in Error” status.

For RC mode, note that some of these requests may have been com-
mitted to the wire by the requester, and may even have been executed
and completed by the responder. It is not possible to prevent this since the
responder may have executed the request before the requester detects a
local error. Therefore, the responder’s local state must be considered un-
known.

For reliable datagram service, the requester’s EE Context terminates the
current message transfer, signals the error to the currently scheduled
Send Queue, and removes the currently scheduled Send Queue from the
scheduler. The EE Context then schedules the next Send Queue re-
questing service and proceeds. The Send Queue which caused the error
behaves as described above.

C9-215: While the Send Queue is in the error state, it must silently discard
any acknowledge messages that arrive.

9.9.2.4.3 REQUESTER CLASS C FAULT BEHAVIOR

Since a Class C error cannot be associated with any particular WQE, it is
not possible to mark a specific WQE as completed in error.

Currently active WQE is completed in error

Subsequent WQEs (those behind the failed WQE in
the queue) are completed with the “Completed -
Flushed in Error” status

Figure 117 Requester Class B Fault Behavior

Send Queue is transitioned to the Error State

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 406 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-216: If the Requester Class C error can be associated with a QP, the
Send Queue shall be transitioned to the error state, and all uncompleted
WQEs are completed with the “Completed - Flushed in Error” status.

o9-155: If a CA requester implements Reliable Datagram service, and if
the Requester Class C error can be associated with an EE Context, its
send side shall be transitioned to the error state, and for an HCA, the error
posted is, “Affiliated Asynchronous Error”.

See 11.6.3.2 Affiliated Asynchronous Errors on page 639 for more details
on HCA error reporting.

If the Requester Class C error cannot be associated with a particular re-
source, then the error may not be reportable in any detail or at all. See
11.6.3.4 Unaffiliated Asynchronous Errors on page 641 for HCA error han-
dling in this case.

9.9.2.4.4 REQUESTER CLASS D FAULT BEHAVIOR

A Class D error only occurs for reliable datagram service.

o9-156: If a CA requester implements Reliable Datagram service, it shall
behave as follows. For the Requester Class D error class, the transport
shall transition the requester’s EE Context to the error state, terminate the
current message transfer, signal the error to the currently scheduled Send
Queue, and de-queue the currently scheduled Send Queue. While re-
maining in error state, the EE Context continues to transition to error state
any other Send Queue requesting service.

Each Send Queue (QP) behaves as though for a Class B error; it marks
its current WQE as completed in error, transitions the QP to the error
state, and flushes all subsequent WQEs.

Currently active WQE is completed in error

Subsequent WQEs (those behind the failed WQE in
each Send Queue in error state) are completed with
the “Completed - Flushed in Error” status

Figure 118 Requester Class D Fault Behavior

EEC Send Side is transitioned to the Error State

All Send Queues currently and subsequently linked to
the EEC Send side are transitioned to error state

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 407 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.9.2.4.5 REQUESTER CLASS E FAULT BEHAVIOR

A Class E error occurs when the requester receives an acknowledge mes-
sage with a PSN which does not match its expected PSN. These errors
occur only for reliable classes of service.

These errors are not reported to upper layers.

An acknowledge message with an unexpected PSN is presumed to rep-
resent a “ghost” acknowledge message, or a duplicate acknowledge mes-
sage.

A ghost acknowledge message is an acknowledge message that has
been in the fabric long enough that it has survived the destruction of a con-
nection and the subsequent establishment of a new connection.

A duplicate acknowledge message occurs when the requester, believing
that its original request message is lost in the fabric, re-sends the request
message. If both request messages eventually arrive at the responder,
the responder may generate an acknowledge message for each of them.

C9-217: For an HCA requester using Reliable Connection service, in re-
sponse to a Requester Class E error, the requester shall drop the ac-
knowledge message. There is, however, an exception to this rule. For
reliable connected service, a duplicate acknowledge message may be
used by the responder to carry end-to-end flow control credits to the re-
quester (an “unsolicited acknowledge”). Thus, if the PSN of the acknowl-
edge message is one less than the requester’s expected PSN, the
requester must recover the end-to-end credits and discard the remainder
of the message. This behavior is detailed in section 9.7.7.2 End-to-End
(Message Level) Flow Control on page 347.

o9-157: If a TCA requester implements Reliable Connection service, or if
a CA requester implements Reliable Datagram service, in response to a
Requester Class E error, the requester shall drop the acknowledge mes-
sage. There is, however, an exception to this rule. For reliable connected
service, a duplicate acknowledge message may be used by the responder
to carry end-to-end flow control credits to the requester (an “unsolicited
acknowledge”). Thus, if the PSN of the acknowledge message is one less
than the requester’s expected PSN, the requester must recover the end-
to-end credits and discard the remainder of the message. This behavior is
detailed in 9.7.7.2 End-to-End (Message Level) Flow Control on page
347.

It should be noted that even if the Acknowledgment was an actual ghost,
with wrong credits, the credit mechanism would eventually recover with no
errors reported to the upper layers.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 408 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.9.2.4.6 REQUESTER CLASS F FAULT BEHAVIOR

C9-218: A Requester Class F error occurs when the CQ is inaccessible
or full and an attempt is made to complete a WQE. The Affected QP shall
be moved to the error state and affiliated asynchronous errors generated
as described in 11.6.3.1 Affiliated Asynchronous Events on page 637.
The current WQE and any subsequent WQEs are left in an unknown
state.

9.9.3 RESPONDER SIDE BEHAVIOR13

Table 58 lists the errors that must be detected by the responder, and the
Fault Behavior Class for each error. The Fault Behavior Class specifies
whether the responder returns a NAK code, whether the error is reported
to the local client, and the subsequent behavior of the Receive Queue.
The syndrome column lists the NAK code that is returned to the requester.

For convenience, a summary of the fault behavior classes is shown in
Table 59 Summary of Responder Fault Class Behaviors on page 412.

The error detection for reliable service is described in section 9.7 Reliable
Service on page 280, and error detection for unreliable service is specified
in section 9.8 Unreliable Service on page 375.

C9-219: This compliance statement is obsolete and has been replaced
byC9-219.1.1:.

C9-219.1.1: For the implemented subset of transport services, re-
sponders shall conform to the error behavior as specified in Table 58.
Also, the responder’s Receive queue shall behave as specified for each

13. For Unreliable services, a better title might be Receiver side Behavior.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 409 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Fault Behavior Class shown in Table 59 and each of the sub-sections
below.

Table 58 Responder Error Behavior Summary

Error Description Service Syndrome
Fault

Behavior
Class

Malformed WQE Responder detected a malformed
Receive Queue WQE while processing
the packet.

RC, RD NAK-Remote Operational Error Responder Class A

Else NA Responder Class A

Unsupported or
Reserved
OpCode

Inbound request OpCode was either
reserved, or was for a function not sup-
ported by this QP. E.G. RDMA or ATOMIC
on QP not set up for this. For RC this is
“QP Async affiliated”

RC

NAK-Invalid Request

Responder Class C

RDd Responder Class B
or
Responder Class F

else NA Responder Class D

Misaligned
ATOMIC

VA does not point to an aligned address
on an atomic operation

RC

NAK-Invalid Request

Responder Class C

RDd Responder Class B
or
Responder Class F

Too many RDMA
READ or ATOMIC
Requests

There were more requests received and
not ACKed than allowed for the connec-
tion

RC
NAK-Invalid Request

Responder Class C

RD Responder Class B

Out of Sequence
Request Packet

PSN of the inbound request is outside the
responder’s valid PSN window.

RC, RD NAK-Sequence error Responder Class B

UC NA Responder Class D

Out of Sequence
OpCode, current
packet is “first” or
“Only”

The Responder detected an error in the
sequence of OpCodes; a missing “Last”
packet

RC NAK-Invalid Request Responder Class C

RDd Responder Class B
or
Responder Class F

UC NA Responder Class D1

Out of Sequence
OpCode, current
packet is not “first”
or “Only”

The Responder detected an error in the
sequence of OpCodes; a missing “First”
packet

RC

NAK-Invalid Request

Responder Class C

RDd Responder Class B
or
Responder Class F

UC NA Responder Class D

RESYNC Opcode
incomplete WQE

The Responder has a partially complete
WQE when a valid RESYNC arrives
“Requestor Aborted”

RD
NA

Responder Class E

R_Key Violation Responder detected an R_Key violation
while executing an RDMA request.

RC NAK-Remote Access Violation Responder Class C

RDd NAK-Remote Access Violation Responder Class B
or
Responder Class F

UC NA Responder Class D

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 410 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Local QP Error Responder detected a local QP related
error while executing the request mes-
sage. The local error prevented the
responder from completing the request.
The local QP includes the shared receive
queue, if one exists.
A local QP error also occurs if a receive
queue which is associated with a shared
receive queue is unable to fetch a WQE
from the shared receive queue due to an
error condition in the shared receive
queue.

RC, RD NAK-Remote Operational Error Responder Class A

Else NA Responder Class A

Q_Key Violation Responder’s Receive Queue detected an
invalid Q_Key in the request messagea

RDd NAK-Invalid RD Request Responder Class B
or
Responder Class F

UD NA Responder Class D

Packet Header
Violation

Responder detected a header violation
that requires a silent drop as described in
9.6 Packet Transport Header Validation
on page 269

RC, RD
UC, UD

none Responder Class D

RDD Violation Responder’s Receive Queue detected an
invalid RDD

RD NAK-Invalid RD Request Responder Class B

Invalid Dest QP Dest QP does not exist or is not config-
ured for RD service

RD NAK-Invalid RD Request Responder Class B

Table 58 Responder Error Behavior Summary (Continued)

Error Description Service Syndrome
Fault

Behavior
Class

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 411 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Resources Not
Ready Error

A WQE or other resource is not currently
available.

RC, RD RNR-NAKb Responder Class B

UCc, UD none Responder Class D

Length errors 1) Inbound “Send” request message
exceeded the responder’s available
buffer space: “Local Length Error”
2) RDMA WRITE request message con-
tained too much or too little payload data
compared to the DMA length advertised
in the first or only packet.
3) Payload length was not consistent with
the opcode:
 a: 0 byte <= “only” <= PMTU bytes
 b: (“first” or “middle”) == PMTU bytes
 c: 1byte <= “last” <= PMTU bytes
4) Inbound message exceeded the size
supported by the CA port

RC
NAK-Invalid Request

Responder Class C

RD Responder Class F

UC NA Responder Class D

UD (non
SRQ)

NA Responder Class D

UD
(SRQ)

NA Responder Class E

Invalid duplicate
ATOMIC Request

A duplicate ATOMIC request packet is
received, but the PSN does not match the
PSN of a saved ATOMIC Request.

RC, RD none Responder Class D

CQ overflow Despite actual execution of the message,
and acknowledgement, the completion
notification could not be written to the
CQ.

All none Responder Class G

Local EEC Error Responder detected a local EEC related
error while executing the request mes-
sage. The local error prevented the
responder from completing the request.

RD
none

Responder Class H

Remote Invali-
date Error

Incoming Send with Invalidate contains
an invalid R_Key, or the R_Key contained
in the IETH cannot be invalidated.

RC NA Responder Class J
Fault Behavior

a. Q_Key violations require the incrementing of a counter and a potential trap as described in 10.2.5 Q_Keys on page 439
b. A TCA which does not support the generation of RNR-NAK, should not simply delay responding beyond the usual response time.
c. An RDMA Write with immediate in Unreliable Connected mode may perform the RDMA Write portion of the packet, before
dropping the “immediate” portion because there is no WQE available.
d. For some RD error cases, it is desirable for the responder to have the option to complete the receive WQE in error, rather than
leave the WQE on the receive queue. For those cases, the responder is permitted to use Class F responder behavior instead of
Class B error behavior. Class F differs from Class B primarily in that it allows the receive WQE to be completed in error.

Table 58 Responder Error Behavior Summary (Continued)

Error Description Service Syndrome
Fault

Behavior
Class

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 412 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.9.3.1 RESPONDER SIDE ERROR RESPONSE

There are a total of eight classes of fault behavior described for the re-
sponder side. The fault behaviors are grouped according to whether or not
an error is reported to the client on the responder side, whether or not the
error is reported to the requester via a NAK code, and whether or not a
WQE is consumed from the Receive Queue.

9.9.3.1.1 RESPONDER CLASS A FAULT BEHAVIOR

Class A errors are traceable to a poorly formed or invalid WQE, or other
error associated with the receiver QP. These errors are not caused by the
sender.

C9-220: For a Responder Class A error, the error shall be reported to the
responder’s client, the QP is placed into the error state, and, for reliable
services, a “NAK-Remote Operational Error” is generated.

Table 59 Summary of Responder Fault Class Behaviors

Fault Behavior Class NAK Codes Returned Current Receive WQEa Subsequent
Receive WQEs

Final Receive
Queue State

Responder Class A For reliable services:
Remote Operational Error

WQE completed in error flushed error state

Responder Class B Invalid Request
Invalid RD Request
Remote Access Violation
Sequence error
RNR-NAK

no WQE consumed no impact no change

Responder Class C Invalid Request completed in error flushed error state

Responder Class D, D1 none no WQE consumed no impact no change

Responder Class E none may be completed in errorb may be completed in
errorc

no change

Responder Class F Invalid Request
Invalid RD Request
Remote Access Violation

completed in error no impact no change

Responder Class G none unknown unknown error state

Responder Class Hd none completed in error no impact no change

Responder Class J None Completed in error Flushed Error State
a. A WQE is only completed if open for Sends and RDMA WRITE with Immediate data.
b. Disposition of the current receive WQE is dependent on whether the receive queue is associated with a shared receive queue or
not. Please see section 9.9.3.1.6 Responder Class E Fault Behavior on page 416 for full details and associated compliance
statements.
c. Disposition of subsequent receive WQEs is dependent on whether the receive queue is associated with a shared receive queue
or not. Please see section 9.9.3.1.6 Responder Class E Fault Behavior on page 416 for full details and associated compliance
statements.
d. This error class results in the EEC being put into the Error state.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 413 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For Reliable Datagram service, the EEC continues operation.

If the responder is an HCA, these errors are reported to the verbs layer as
a “Completion error” or Affiliated Asynchronous error”. See 10.10.2.2
Completion Errors on page 531 for a discussion of Completion errors and
10.10.2.3 Asynchronous Errors on page 531 for a discussion of Asynchro-
nous errors.

If the responder detects a Class A error, its behavior is as follows:

o9-157.2.1: In addition to the error behavior described above for Class A
errors, if a Class A error is detected by a QP which is associated with a
shared receive queue, both the WQE on which the error was originally de-
tected and all subsequent WQEs on both the send and receive queues in-
cluding WQEs subsequently fetched by the same receive queue from the
associated shared receive queue, shall be marked in error. The QP on
which the error was detected shall be transitioned to the error state. There
shall be no state change for the shared receive queue nor is there any
change in state for any other receive queues sharing the same SRQ.

o9-157.2.2: If a Class A error is detected by a shared receive queue, the
error shall be reported to the responder’s client and the QP shall be
placed in the error state. If the responder is an HCA, these errors are re-
ported to the verbs layer as a “Completion error” or “Affiliated Asynchro-
nous error”.

Note that if the error is detected by the shared receive queue (as opposed
to being detected by the receive queue), a “NAK-Remote Operational
Error” may not be returned since the SRQ is not required to generate ac-
knowledgements. This is slightly different from the case where the error is

Currently active receive WQE (if any) is Completed in
Error

All other WQEs on both queues, and all WQEs subse-
quently posted to either Queue, are completed with
the “Completed - Flushed in Error” status

For reliable services, “NAK-Remote Operational Error”
returned to the requester

Figure 119 Transport Class A Responder Behavior

Send and Receive Queues are transitioned to the
Error State

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 414 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

detected by the receive queue, in which case the receive queue is re-
quired to returned a “NAK-Remote Operational Error”.

o9-157.2.3: If a receive queue attempts to fetch a WQE from a shared re-
ceive queue which is in the error state, the QP shall be transitioned to the
error state. If the responder is an HCA, this error is reported to the verbs
layer as an “Affiliated Asynchronous error”.

9.9.3.1.2 RESPONDER CLASS B FAULT BEHAVIOR

Class B errors are reported to the requester, but are not reported to the
responder’s local client.

C9-221: For an HCA requester using Reliable Connection service, and for
a Responder Class B responder side error, the transport shall generate a
NAK code, but shall not consume a WQE from the Receive Queue or
transit the receive queue to the error state.

o9-158: If a TCA responder implements Reliable Connection service, or if
a CA responder implements Reliable Datagram service, it shall behave as
follows. For a Responder Class B responder side error, the transport shall
generate a NAK code, but shall not consume a WQE from the Receive
Queue or transit the receive queue to the error state.

Note that this fault behavior class is limited to reliable services only.

If the responder detects a Class B error, it behaves as follows:

9.9.3.1.3 RESPONDER CLASS C FAULT BEHAVIOR

C9-222: This compliance statement is obsolete and has been replaced by
C9-222.1.1:.

C9-222.1.1: For an HCA responder using Reliable Connection service, for
a Class C responder side error, the error shall be reported to the requester
by generating the appropriate NAK code as specified in Table 58 Re-
sponder Error Behavior Summary on page 409. If the error can be related
to a particular QP but cannot be related to a particular WQE on that re-
ceive queue (e.g. the error occurred while executing an RDMA Write Re-
quest without immediate data), the error shall be reported to the
responder’s client as an Affiliated Asynchronous error. See Section
10.10.2.3 Asynchronous Errors on page 531 for details. If the error can be

Appropriate NAK code is returned to the requester

Resume waiting for a valid inbound request packet

Figure 120 Responder Class B Fault Behavior

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 415 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

related to a particular WQE on a given receive queue, the QP shall be
placed into the error state and the error shall be reported to the re-
sponder’s client as a Completion error. See Section 10.10.2.2 Completion
Errors on page 531.

o9-159: This compliance statement is obsolete and has been replaced by
o9-159.1.1:.

o9-159.1.1: If a TCA responder implements Reliable Connection service,
for a Class C responder side error, the error shall be reported to the re-
sponder’s client and the QP is placed into the error state. A Class C error
shall also be reported to the requester by generating the appropriate NAK
code as specified in Table 58.

The Receive Queue’s behavior is as follows:

See Section 10.10.2.2 Completion Errors on page 531 for more details on
HCA error reporting.

9.9.3.1.4 RESPONDER CLASS D FAULT BEHAVIOR

C9-223: This compliance statement is obsolete and replaced by C9-
223.1.1:.

C9-223.1.1: An inbound request packet which causes a Responder Class
D error shall cause the Transport to respond as specified in 9.9.3.1.4: Re-
sponder Class D Fault Behavior.

In this case the transport shall:

• silently drop the packet (as detailed in 9.6: Packet Transport Header
Validation)

• Not generate an ACK or NAK code to the requester

Current WQE (if any) is completed in error. An appro-
priate error code is returned to the upper layer

Appropriate NAK code is generated

Send and Receive Queues are transitioned to the
error state. New inbound requests are dropped.

Figure 121 Transport Class C Receive Queue

All other WQEs on both queues, and all WQEs subse-
quently posted to either Queue, are completed with
the “Completed - Flushed in Error” status

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 416 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Not notify the responder’s client

9.9.3.1.5 RESPONDER CLASS D1 FAULT BEHAVIOR

An inbound request packet which causes a Class D1 error only occurs in
Unreliable Connection mode.

C9-224: For an HCA responder using Unreliable Connection service, an
inbound request packet which causes a Responder Class D1 error shall
cause the Transport to respond as specified in 9.9.3.1.5: Responder
Class D1 Fault Behavior.

In this case the transport shall:

• silently drop the packet

• Not notify the responder’s client

• terminate the current message without consuming the current receive
WQE (if any)

• wait for the first packet of a new message (which may be greater than
the expected PSN.)

If the present packet, (which caused the Class D1 error) has a BTH op-
code of “first” or “only”; it shall be treated as the first packet of a new mes-
sage.

The Current WQE (if any) shall be reset to accept the next incoming Send
or RDMA WRITE with Immediate message.

“Current message” means all the packets received since the most re-
cently received “first” or “only” OpCode, excluding the present packet
(which caused the Class D1 error).

A “new message” is denoted by a packet with a BTH opcode of “first” or
“only”.

o9-160: If a TCA responder implements Unreliable Connection service, it
shall conform to the Class D1 HCA responder behavior described in the
preceding compliance statement.

9.9.3.1.6 RESPONDER CLASS E FAULT BEHAVIOR

This fault class is intended primarily for services where a failure of a par-
ticular request packet should not impact the ability of the Receive Queue
to continue receiving messages.

o9-161: If a CA implements Reliable Datagram service, then a Responder
Class E error shall cause the responder to do the following:

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 417 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) Abort the current message, if it is not complete. This is done by ei-
ther:

a) Reset the WQE so that it can be reused for a future message

b) Mark the current WQE (if any) as completed in error “Requester
Aborted Error”

2) Receive the new inbound message. The Receive Queue shall con-
tinue operation without a transition to the error state.:

Compliance statement o9-161.2.1: defines more stringent requirements
which apply only to a receive queue which is associated with a shared re-
ceive queue.

o9-161.2.1: If a QP implements Unreliable Datagram service and is asso-
ciated with a shared receive queue, then a Responder Class E error shall
cause the responder to do the following:

1) The WQE on the receive queue that detected the error shall be com-
pleted in error.

2) Subsequent receive WQEs that had already been fetched by the
same receive queue from an associated shared receive queue shall
also be completed in error. Other WQEs on the shared receive queue
but not fetched by the QP which detected the error remain un-
changed and are not completed in error.

3) The receive queue shall continue operation without a transition to the
error state.

4) The operation of the shared receive queue is not impacted by these
errors.

9.9.3.1.7 RESPONDER CLASS F FAULT BEHAVIOR

Class F error behavior is for RD service only and is used to both return a
NAK code to the requester and to complete a WQE in error. There are
several instances where an implementation has an option to select either
Class B error behavior or Class F error behavior. For these cases, the only
substantial difference between Class B and Class F is in the disposition of
the receive WQE which is either completed in error or left on the receive
queue to be re-used. For many implementations, it is significantly simpler
to complete the receive WQE in error.

Current WQE (if any) may be reset or is completed in
error with an appropriate error code written to the
WQE

Resume waiting for a valid inbound request packet

Figure 122 Transport Class E Receive Queue Behavior

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 418 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-162: This compliance statement is obsolete and has been replaced by
o9-162.1.1:

o9-162.1.1: If a CA implements Reliable Datagram service, then a Re-
sponder Class F error shall be reported both to the requester and (when
a receive WQE is involved) to the responder’s client. The Transport shall
return the appropriate NAK code as defined in Table 58 on page 409 to
the requester, and complete the current WQE (if any) in error. The Re-
ceive Queue shall continue operation without a transition to the error
state.

In the case of an HCA, the error reported is a “Completion - Process
Error”.

Both the EEC and destination QP remain in operation.

The Receive Queue’s behavior is as follows:

9.9.3.1.8 RESPONDER CLASS G FAULT BEHAVIOR

A Class G error occurs when the CQ is inaccessible or full and an attempt
is made to complete a WQE.

C9-225: A Responder Class G error occurs when the CQ is inaccessible
or full and an attempt is made to complete a WQE. The Affected QP shall
be moved to the error state and affiliated asynchronous errors generated
as described in 11.6.3.2 Affiliated Asynchronous Errors on page 639. The
current WQE and any subsequent WQEs are left in an unknown state.

9.9.3.1.9 RESPONDER CLASS H FAULT BEHAVIOR

Class H errors are traceable to a local error associated with the receiver
EEC. These errors are not caused by the sender.

For a Responder Class H error, the error shall be reported to the re-
sponder's client, and the EEC is placed in the error state.

The currently active WQE should be completed in error.

Current WQE (if any) is completed in error. An appro-
priate error code is written to the WQE

Appropriate NAK code is generated

Resume waiting for a valid inbound request packet

Figure 123 Transport Class F Receive Queue Behavior

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 419 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the responder is an HCA, these errors are reported to the verbs layer as
either a Completion error (see Section 10.10.2.2 Completion Errors on
page 531) or an Affiliated Asynchronous error (see Section 10.10.2.3
Asynchronous Errors on page 531).

9.9.3.1.10 RESPONDER CLASS J FAULT BEHAVIOR

This class of locally detected error occurs only for RC QPs. A Class J
error is reported to the responder side client, but is not reported via a
NAK code to the requester.

A responder class J error occurs when a responder receives a SEND
with Invalidate request (either SEND last with Invalidate or SEND only
with Invalidate) which contains an invalid R_Key in the IETH.

In terms of error precedence, all other errors associated with validating
the packet headers and executing the SEND operation onto which the
Invalidate is piggybacked are reported before an R_Key violation is
reported.

o9-162.2.1: The following statements constitute the requirements for de-
tecting and reporting an R_Key violation associated with a SEND with In-
validate request:

1) An R_Key violation, if one occurs, shall not be reported until such
time as the SEND request onto which the invalidate has been piggy-
backed has been successfully executed. Any errors resulting from
executing the SEND request must be reported before an error re-
sulting from the invalidate operation is reported.

2) If an error occurs due to execution of the underlying SEND operation,
no error related to the invalidate operation shall be reported.

3) If the underlying SEND operation executes normally, a receive WQE
shall be consumed regardless of the success or failure of the asso-
ciated invalidate operation. In other words, as a result of executing
the underlying SEND request onto which the invalidate has been
piggy-backed, a receive WQE will have been consumed. Thus, even
if the invalidate operation fails, the receive WQE is always con-
sumed.

4) The receive WQE which receives the SEND with Invalidate request
shall not be completed until the corresponding invalidate operation
has been completed.

5) If an error is detected in the course of executing the invalidate oper-
ation, the following actions shall occur:

a) The WQE that experienced the SEND with Invalidate error is
marked as completed in error.

b) The QP is transitioned to the Error State.

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 420 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

c) Subsequent WQEs on the same RQ are marked as completed -
flushed in error.

d) No NAK is sent to the Requestor.

9.10 HEADER AND DATA FIELD SOURCE

9.10.1 FIELD SOURCE WHEN GENERATING PACKETS

The following tables provide an indication of the source of the various
header and data fields in the data packets for the various IBA services.
The following terms are used in the table:

Link This indicates the value is attached to the packet based on either a fixed
value, or values dependent on the service, or values looked up based on
parameters loaded into the logical port. Done by the link layer.

Tr This indicates that the value is fixed or calculated by the transport layer.

QP This indicates that the value is derived from the QP context

EE This indicates that the value is derived from the EE context

QP+EE This indicates that the values are derived from the QP and EE contexts

NA Not Applicable

WQE The value is directly or indirectly (via Address vector) derived from infor-
mation in the WQE

Table 60 Packet Fields and Parameters by Service

Parameter Description RC UC RD UD Raw
IP

Raw
ET

LRH VL The VL to use for requests. Based on SL and the port
SL to VL mapping table.

link link link link link link

LRH LVer The version of the link level. This field depends on the
revision of the device.

link link link link link link

LRH SL The SL to use for requests and responses QP QP EE WQE WQE WQE

LRH LNH IBA IBA transport bit, indicates that BTH follows 1 1 1 1 0 0

LRH LNH GRH GRH bit, indicates that a GRH follows QP QP EE WQE 1 0

LRH DLID Destination local ID used for routing QP QP EE WQE WQE WQE

LRH Packet Length Length of the local packet; calculated by the transport
based on the message length.

WQE WQE WQE WQE WQE WQE

LRH SLID (high bits not
covered by LMC)

Source local ID in outgoing packets. From the port.
With LMC low order bits (0s) added, the value is
called “Base LID”.

link link link link link link

LRH SLID (low bits cov-
ered by the LMC)

Source logical ID in outgoing packets. These LMC (as
a number) bits are called the “path” bits.

QP QP EE WQE WQE WQE

GRH IPVer” CA’s set to 6 Tr Tr Tr Tr Tr NA

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 421 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

GRH Tclass CA’s set to 0; it will then be loaded with another value
at the first encountered router.
Alternately set according to application.

QP QP EE WQE WQEa NA

GRH FlowLabel CA’s set to 0; it will then be loaded with another value
at the first encountered router.
Alternately set according to application.

QP QP EE WQE WQEa NA

GRH Paylen Length of the global packet; calculated by the trans-
port based on the message length.

WQE WQE WQE WQE WQEa NA

GRH NxtHdr CA’s set to IBA (0x1B) Tr Tr Tr Tr WQEa NA

GRH HopLmt CA’s set to 0; it will then be loaded with another value
at the first encountered router.
Alternately set according to application.

QP QP EE WQE WQEa NA

GRH SGID Source Global ID, from the port table and the index
found in:

QP QP EE WQE WQEa NA

GRH DGID Destination Global ID QP QP EE WQE WQEa NA

BTH OpCode Depends on operation, set by the transport layer. Tr Tr Tr Tr NA NA

BTH TVer The version of the transport. This field depends on the
revision of the device (0).

Tr Tr Tr Tr NA NA

BTH P_Key Partition Key, from the port table and the Index found
in:

QP QP EE QP NA NA

BTH DestQP Destination QP *For RD mode responses, this is from
the Request Packet Source QP as stored in the EEC

QP QP WQE* WQE NA NA

BTH Pad Length of packet pad; used to calculate actual data
size. Calculated by the transport layer based on data
size.

WQE WQE WQE WQE NA NA

BTH SE Solicited Event WQE WQE WQE WQE NA NA

BTH M Migrate. Set by the transport dependent on the migra-
tion state.

Tr Tr Tr Tr NA NA

BTH AckReq Acknowledge request Tr 0 Tr 0 NA NA

BTH PSN Packet Sequence Number QP QP EE QP NA NA

RDETH EEC Destination EE Context NA NA EE NA NA NA

DETH Q_Key Key which protects datagram QPs NA NA WQE WQE NA NA

DETH Source QP Source QP. Set by transport for datagram services. NA NA Tr Tr NA NA

RETH All fields of the RDMA Extended Transport Header
(when used) are taken from the WQE

WQE WQE WQE NA NA NA

AtomicETH All fields of the ATOMIC Extended Transport Header
(when used) are taken from the WQE

WQE NA WQE NA NA NA

Table 60 Packet Fields and Parameters by Service (Continued)

Parameter Description RC UC RD UD Raw
IP

Raw
ET

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 422 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.10.2 TRANSPORT CONNECTION PARAMETERS

The following are not sent “on the wire” but are needed to implement the
protocol. This table is included to provide a better understanding of the pa-
rameters used by the transport layer to provide a connection. This list only

AETH MSN Message Sequence number (ACKs only) QP NA EE NA NA NA

AETH Syndrome Acknowledge syndrome, computed based on opera-
tion for reliable services

QP NA EE+
QP

NA NA NA

AETH RNR-NAK timer
(TTTTT)

This value is placed in the AETH.TTTTT field when
sending an RNR NAK. It denotes the minimum time to
wait before retrying the request.

QP NA QPb NA NA NA

AETH credit count
(CCCCC)

This value is placed in the AETH.CCCCC field when
sending an Ack in RC mode. It denotes the number of
receive WQEs available to receive Send or RDMA
write with immediate messages.

QP NA NA NA NA NA

AtomicAckETH ATOMIC data returned; the data is loaded as defined
by the R_Key and Virtual Address, stored per WQE

WQE NA WQE NA NA NA

IETH R_Key This is the R_KEY that the responder is being asked
to invalidate in a SEND with Invalidate operation.

WQE NA NA NA NA NA

Immediate data Dependent on operation WQE WQE WQE WQE NA NA

Payload Dependent on operation WQE WQE WQE WQE WQE WQE

ICRC Calculated by transport; data dependent link link link link NA NA

VCRC Calculated by Link layer; data dependent link link link link link link
a. Raw IP does not have a GRH, it has the similar looking IPv6 header. The Parameters are labeled GRH for convenience. This
entire header is loaded from a data segment provided by the WQE.
b. The actual value of the TTTTT field depends on the reason for generating an RNR. For HCA’s, when a WQE is not ready, this
value comes from the QP. Otherwise, the value is determined by the implementor.

Table 60 Packet Fields and Parameters by Service (Continued)

Parameter Description RC UC RD UD Raw
IP

Raw
ET

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 423 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

covers elements mentioned in the IBA specification, other elements may
be needed to completely implement connections.

Table 61 Connection Parameters by Transport Service

Parameter Description RC UC RD UD Raw
IP

Raw
ET

Connect state State of connection (Reset, RTR, RTS, Error etc.) QP QP EE+
QP

QP QP QP

Port number Used only if there is more than a single port QP QP EE QP QP QP

Global/Local header Determines if global header is to be attached or not. QP QP EE WQE NA NA

MTU Max Size of the packets allowed on this connection. QP QP EE NA NA NA

RNR NAK retry time Time before performing a retry due to RNR; this is ini-
tialized by the AETH.TTTTT field in the RNR-NAK,
and counts down from there.

QP NA QP or
EEa

NA NA NA

RNR Retry init Send Queue RNR retry count Initialization value QP NA EE NA NA NA

RNR Retry counter Send Queue RNR Retry counter value QP NA QP NA NA NA

Local ACK Timeout The exponent used to calculate the delay before an
ACK is declared “lost”.

QP NA EE NA NA NA

Error Retries Send Queue retry count for sequence or time-out
errors

QP NA EE NA NA NA

MigState Migration State (Migrated, Armed, ReArm) QP QP EE QP NA NA

Disable_E2E_Credits Send queue use E2E protocol (depends on remote
side’s ability to send credits)

QP NA NA NA NA NA

Path Speed (IPD) Controls packet emission for slower links QP QP EE WQE WQE WQE

PD Protection Domain for this QP QP QP QP QP QP QP

RDD Reliable Datagram Domain NA NA QP+
EE

NA NA NA

XmitPSN Sequence number used when sending QP QP EE QP NA NA

AckPSN Sequence number expected for the ACKs QP NA EE NA NA NA

Rx ePSN Sequence number expected when receiving QP QP EE NA NA NA

RxAckPSN Number of unacknowledged Rx packets QP NA EE NA NA NA

SSN Transmit messages Sent Sequence Number QP NA NA NA NA NA

Rx MSN Message Sequence Number QP NA NA NA NA NA

Rx credits Rx queue elements posted QP NA NA NA NA NA

LSN Limit Sequence number (credit accounting) QP NA NA NA NA NA

SchQP_dequeue QP at head of schedule queue (RD mode) NA NA EE NA NA NA

SchQP_enqueue QP at tail of schedule queue (RD mode) NA NA EE NA NA NA

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 424 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SchQP_Next Pointer to next QP to be scheduled (RD mode) NA NA QP NA NA NA

Num_RDMA_Reads Number of RDMA READs or ATOMICs supported by
remote side

QP NA 1 NA NA NA

RDMAR/VA/R_Key/Size or
ATOMIC “result”

The “hidden” stored address(s) of RDMA READ
request(s) or ATOMIC results

QP NA EE NA NA NA

RDMA PSN# or
ATOMIC PSN #

Sequence number of requested op, used to match
response on a repeat, and store reply PSN

QP NA EE NA NA NA

RDMAR/ATOMIC Use Usage of the resource; 1=RDMAR, 0=ATOMIC QP NA EE NA NA NA

Rx Completion Q QP QP QP QP QP QP

Tx Completion Q QP QP QP QP QP QP

Tx WQE pointer Points to current Send WQE and its data segments for
requests

QP QP QP QP QP QP

Tx ACK WQE pointer Points to current Send WQE and its data segments for
Completions

QP QP QP QP QP QP

Rx WQE pointers Points to current Receive descriptor QP QP QP QP QP QP
a. This value is stored with the QP or EE at the implementor’s option; depending on whether the requester implements ’suspend’ for
RNR-NAK.

Table 61 Connection Parameters by Transport Service (Continued)

Parameter Description RC UC RD UD Raw
IP

Raw
ET

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 425 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.10.3 PACKET HEADER AND DATA FIELD VALIDATION

The following tables provide an indication of the validation responsibility
of the various header and data fields in the data packets for the various
IBA services. The following terms are used in the table:

Link This indicates the value is checked by the link layer.

Tr This indicates that the value is checked against fixed values or used by
the transport layer to select among choices.

QP This indicates that the value is checked against values from the QP con-
text

EE This indicates that the value is checked against values from the EE con-
text

NC The value is Not checked

NA Not Applicable

WQE The value is checked against information derived from the WQE

Table 62 Packet Fields Validation source by Service

Parameter Description RC UC RD UD Raw
IP

Raw
ET

LRH VL The VL on incoming packet. link link link link link link

LRH LVer The version of the link level. This field depends on the
revision of the device.

link link link link link link

LRH SL The SL to use for requests NC NC NC NC NC NC

LRH LNH IBA IBA transport bit, indicates that BTH follows Tr(1) Tr(1) Tr(1) Tr(1) Tr(0) Tr(0)

LRH LNH GRH GRH bit, indicates that a GRH follows QP QP EE Tr Tr(1) Tr(0)

LRH DLID Destination local ID used for routing
This is always checked at the link layer against Base
LID and LMC.

link
QP

link
QP

link
EE

link link link

LRH Packet Length Length of the local packet; checked against MTUCap
and NeighborMTU at link, valid packet size at Trans-
port, and data buffer size and protection values.

WQE WQE WQE WQE WQE WQE

LRH SLID Source local ID in ongoing packets. QP QP EE NCa NCa NCa

GRH IPVer” Checked for the value ’6’ Tr Tr Tr Tra Trab NA

GRH Tclass Traffic Class NC NC NC NCa NCab NA

GRH FlowLabel Flow label NC NC NC NCa NCab NA

GRH Paylen Length of the global packet; may be checked against
PMTU and LRH Packet Length at link, valid packet
size at Transport, and data buffer size and protection
values.

WQE WQE WQE WQEa WQEa
b

NA

GRH NxtHdr Checked for the value 0x1B Tr Tr Tr Tra NCab NA

GRH HopLmt Hop Limit NC NC NC NCa NCab NA

GRH SGID Source Global ID QP QP EE NCa NCb NA

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 426 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

GRH DGID Destination Global ID QP QP EE NCa NCab NA

BTH OpCode Depends on operation Tr Tr Tr Tr NA NA

BTH TVer The version of the transport. Tr Tr Tr Tr NA NA

BTH P_Key Partition Key; checked against the port partition tablec QP QP EE QP NA NA

BTH DestQP Destination QP; checked against the valid set and QP
mode by transport.

Tr Tr Tr Tr NA NA

BTH Pad Length of packet pad; supplements LRH Packet
Length.

WQE WQE WQE WQE NA NA

BTH SE Solicited Event; passed to upper layers for each mes-
sage

Tr Tr Tr Tr NA NA

BTH M Migrate. Checked and used by transport to select
alternate path parameters

Tr Tr Tr NC NA NA

BTH AckReq Acknowledge request Tr NC Tr NC NA NA

BTH PSN Packet Sequence Number QP QP EE NC NA NA

RDETH EEC Destination EE Context; checked against the valid set
and EE mode by transport.

NA NA Tr NA NA NA

DETH Q_Key Key which protects datagram QPs NA NA QP QP NA NA

DETH Source QP Source QP. Passed to upper layers for each mes-
sage.

NA NA NC NC NA NA

RETH All fields of the RDMA Extended Transport Header
(when used) are validated against protection parame-
ters associated with QP state.

QP QP QP NA NA NA

AtomicETH All fields of the ATOMIC Extended Transport Header
(when used) are validated against protection parame-
ters associated with QP state.

QP NA QP NA NA NA

AETH MSN Message Sequence number (ACKs only) QP NA Tr NA NA NA

AETH Syndrome Acknowledge syndrome Tr NA Tr NA NA NA

AtomicAckETH Atomic data returned; Passed to upper layers for each
message.

NC NA NC NA NA NA

IETH R_Key This is the R_KEY that the responder is being asked
to invalidate in a SEND with Invalidate operation.

d NA NA NA NA NA

Immediate data Dependent on operation; Passed to upper layers for
each message.

NC NC NC NC NA NA

Payload Dependent on operation; Passed to upper layers for
each message.

NC NC NC NC NC NC

ICRC Checked by transport link link link link NA NA

VCRC Checked by Link layer; data dependent link link link link link link
a. For HCAs, this information is provided to upper layers.
b. Raw IP does not have a GRH, it has the similar looking IPv6 header. The Parameters are labeled GRH for convenience. This
entire header is loaded from a data segment provided by the WQE
c. For QP1, the P_Key need only be a member of the port’s Partition table, it is not checked against a QP index..
d. See details in 9.4.1.1.3 R_Key Validation for Remote Memory Invalidate on page 251

Table 62 Packet Fields Validation source by Service (Continued)

Parameter Description RC UC RD UD Raw
IP

Raw
ET

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 427 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

9.11 STATIC RATE CONTROL

As the traffic load increases in a fabric, resource contention increases.
Congestion management is used to smooth operation, improve fabric ef-
ficiency, improve effective bandwidth, and improve average packet la-
tency in the face of such contention.

There are a variety of mechanisms to address this problem. For this ver-
sion of IBA, only static rate control will be defined. Future versions of the
specification may provide definition of additional mechanisms.

Static rate control is the ability of an endnode to keep the rate of data
sourcing into the fabric below a pre-configured value.

IBA supports Static Rate control in CAs to reduce congestion caused by
a higher-speed CA injecting packets onto a path within a subnet at a rate
that exceeds the path or destination CA’s ability to sink. For example, a
CA with a 10 Gbps link transmitting packets to a CA with a 2.5 Gbps link
through an intermediate switch. In this case, the switch would be required
to introduce “back-pressure” (limit the link-level flow control credits re-
turned to the faster link) in order to prevent the slower link from being over-
run.

IBA provides three mechanisms to manage static rate control.

• Device provided port rate information (see 16.3.3.1 ClassPortInfo on
page 991)

• FM supported reporting of best possible rates for a source/destina-
tion pair (see 15.2.5.16 PathRecord on page 899).

• CA “Inter Packet delay” parameters in the connection setup MADs
(described below)

9.11.1 STATIC RATE CONTROL FOR HETEROGENEOUS LINKS

A channel adapter has the ability to limit the rate of packets injected. This
rate is based on the subnet-local destination port.

o9-163: If a port can support injection into the fabric at a rate greater than
2.5 Gbits/sec, this port shall provide static rate control as defined in this
section.

The link rate supported is defined by the PortInfo:LinkWidthSupported
and PortInfo:LinkSpeedSupported attributes. See Table 145 PortInfo on
page 822 for a description of these.

o9-164: If a port is configured for injection into the fabric at a rate greater
than 2.5 Gbits/sec, it shall not schedule a packet for injection into the local
subnet until a programmable amount of time has passed since the last

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 428 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

packet was scheduled for injection from this source port to the same des-
tination port.

The link rate configured is defined by the PortInfo:LinkWidthActive and
PortInfo:LinkSpeedActive attributes. See Table 145 PortInfo on page 822
for a description of these.

In the above, destination port refers to the full DLID (i.e. base DLID plus
path bits) of the destination port within the local subnet, even for globally
routed packets, while source port refers to the ingress port regardless of
SLID (I.e. applies to all the SLIDs associated with this port).

The time to wait before transmitting a subsequent packet is based on the
time it takes to transmit the current packet.

o9-165: If a port can support injection into the fabric at a rate greater than
2.5 Gbits/sec, the time to wait between scheduling packets destined for
the same DLID and originating from the same port is determined by the
Inter Packet Delay (IPD). Specifically, if a packet b is to be sent to the
same DLID and using the same source port as packet a, then packet b
shall not be scheduled until a time Ts has passed since packet a was
scheduled, where Ts is calculated as: (IPD + 1) multiplied by the time it
takes to transmit the first packet. Further, the time it takes to transmit a
packet is calculated as LRH:PktLen*4/Lr where Lr is the port speed as ob-
tained from the PortInfo:LinkWidthActive and PortInfo:LinkSpeedActive
attributes.

The Inter Packet Delay (IPD) value is an 8-bit integer and is interpreted as
depicted in the table below. Note that all 256 possible values are legal.

Note also that the above table is a sample and does not include all re-
quired IPDs. See 17.2.6 Static Rate Control on page 1029 for which
values of IPD CAs are required to support.

Table 63 Inter Packet Delay

IPD rate Comment

0 100% Suited for matched links

1 50%

2 33% Suited for 30 Gbps to 10
Gbps conversion

3 25% Suited for 10 Gbps to 2.5
Gbps conversion

11 8% Suited for a 30 Gbps to 2.5
Gbps conversion

InfiniBandTM Architecture Release 1.2 Transport Layer October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 429 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-226: If a CA is requested to use an unsupported value, the CA shall
pick a supported value, and return that value in the appropriate MADs or
verbs.

If the requested IPD value is not supported, it is recommended that the
CA use the nearest supported value that is larger than the requested
value.

Each connected QP (EE context for RDs) should have a programmed IPD
value. UDs should include the IPD in the WQE.

The same value of IPD should be programmed for each connected QP
and WQE using the same port and same DLID. If different values of IPD
are programmed, the CA may use any of these values for any of this
traffic.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 430 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 10: SOFTWARE TRANSPORT INTERFACE

10.1 OVERVIEW

This chapter describes the software transport layer of the IBA. The soft-
ware transport defines the capabilities and behavior of the Channel Inter-
face (CI), the presentation of the channel to the Verbs Consumer. This
interface is implemented as a combination of the Host Channel Adapter
(HCA), its associated firmware, and host software. Specification of the API
used by the Verbs Consumer to access the capabilities of the CI is outside
of the scope of this architecture.

A concept frequently encountered in this specification is that of Verbs
Consumer. The precise meaning of the phrase varies, as a function of
context, but it always means, as defined in the Glossary, the executing en-
tity employing the capabilities of the CI to accomplish some objective. In
some instances the Verb Consumer may be a OS kernel thread, in others
a user-level application, and in still others, some special, privileged pro-
cess. Where the difference is important to the correct behavior of an im-
plementation, it is defined explicitly, as in 11.1 Verbs Introduction and
Overview on page 546; elsewhere, it is left unspecified.

While the Partitioning section is not strictly part of the software transport
layer, it describes ideas that connect intimately with the semantics of the
Queue Pair (QP), and are therefore reasonably elaborated in this chapter.
In addition, giving the descriptions of the necessary entities here ensures
their inclusion in the architecture specification.

10.1.1 INTRODUCTION

The CI is the locus of interaction between the consumer of IBA services
and the instantiation of an IBA fabric. Access to the HCA is via Verbs,
which enable creation and management of QPs, management of the
HCA, and coping with error indications from the CI that may be surfaced
via the Verbs. All these activities must be carried out so as to enable Verbs
consumers to enjoy the same level of protection and security as are guar-
anteed other entities supported by the host operating system.

Fundamental to CI interaction is management of HCAs, which includes ar-
ranging access to them, accessing and modifying selected of their at-
tributes, and shutting them down. These activities are described below,
and details of the corresponding Verbs layer semantics are given in the
next chapter.

Entities with central importance to CI operation are QPs. They must be
created, associated with protection domains, modified as required, and

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 431 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

destroyed to free up resources when no longer needed. In use, they pro-
vide repositories for addressing information needed by Verbs consumers,
as well as protection information to guarantee the operational integrity of
themselves and the host system. QPs provide for various modes of oper-
ation, depending upon the requirements of the consumer. Details of these
modes, as well as the means of establishing them for a QP are described
below, and corresponding Verbs semantics are detailed in the next
chapter. For a graphical depiction of the QP, see Figure 11 on page 91.

As a central mode of QP operation, direct, protected access to consumer
memory is critical to realizing the performance potential of the IBA. This
chapter describes the semantics of memory access defined for the archi-
tecture, detailing the ideas of memory regions and windows, and their reg-
istration, access keys for local and remote access to registered memory,
and the management of errors that may arise in this context.

A Work Request (WR) is an elementary object in the software transport
layer, used by consumers to enqueue Work Queue Elements (WQEs) to
the Send and Receive queues of a QP. The WQE is what identifies the in-
dividual events of communication over the IBA fabric. A graphical depic-
tion of the WQE and QP can be seen in Figure 12 on page 92. The WR
types, and the dynamics of their creation, use, and disposition via entries
in Completion Queues (CQEs) are described in the sections to follow, as
are the disposition of errors that may arise as they are used. Details of
their contents are given in the next chapter.

10.2 MANAGING HCA RESOURCES

10.2.1 HCA
Verbs allow the Consumer to open an HCA, retrieve HCA attributes,
modify HCA attributes that can be changed by the Consumer, and close
the HCA.

Queue Pairs, Completion Queues and other resources associated with a
specific HCA instance cannot be shared across multiple HCAs, even if
they are managed by the same device driver software.

The intent of the architecture is to allow an implementation to pass Work
Requests and Completion Status to and from a user space Consumer pro-
cess to the HCA without kernel involvement.

10.2.1.1 OPENING AN HCA
The Verb used to open an HCA returns an opaque object or handle to
uniquely reference each HCA so that Consumers can distinguish between
HCAs in the endnode.

Opening an HCA prepares the HCA for use by the Consumer. Once
opened an HCA cannot be opened again until after it has been closed.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 432 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.2.1.2 HCA ATTRIBUTES

HCA Attributes are device characteristics. These attributes must be able
to be retrieved by the Consumer. The full list of HCA Attributes are defined
in 11.2.1.2 Query HCA on page 551.

Additional attributes associated with the Post-1.1 Verb Extensions defined
in section 11.1.1 Verb Extensions are described in section 11.2.1.2 Query
HCA on page 551.

10.2.1.3 MODIFYING HCA ATTRIBUTES

Modification of a restricted set of HCA attributes is permitted. This is pri-
marily restricted to performance and error counter management informa-
tion. Most HCA Attributes are either fixed or manipulated through the
Fabric Management Interface or General Services Interface.

10.2.1.4 CLOSING AN HCA

Close restores the HCA to its initialized condition, and deallocates any re-
sources allocated during the HCA open.

It is not the responsibility of the Channel Interface to track any resources
which were not allocated by the HCA open.

10.2.2 ADDRESSING

10.2.2.1 SOURCE ADDRESSING

For global addressing, each HCA Source Port has a GID Table containing
the valid GIDs for the Source Port. The GID Table is obtained via the
Query HCA Verb.

C10-1: For each HCA Source Port, the CI shall maintain a GID Table con-
taining the valid GIDs for the Source Port.

Each Address Vector contains a Source GID Index. The Source GID
Index specifies an index into the Source GID Table. The entry referenced
by the Source GID Index defines the Source GID associated with the Ad-
dress Vector.

C10-2: For each GID Table, the first entry in the table shall contain the
read-only invariant value of GID index 0.

For local addressing, IBA enables the use of multiple LIDs with each HCA
port through the use of a Base LID, LMC and Path Bits.

C10-3: Each Address Vector shall contain specific Source Port LID Path
Bits.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 433 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When the HCA constructs an SLID by taking the most significant bits from
the port’s Base LID and the least significant bits from an Address Vector’s
Path Bits, the port’s LMC specifies how many bits come from the latter.

10.2.2.2 DESTINATION ADDRESSING

Addressing of destination endpoints is determined based on the Service
Type of the QP:

C10-4: For Connection-oriented QPs, the destination address shall be
stored in the QP Context, and shall be manipulated exclusively through
the Modify Queue Pair Attributes Verbs.

o10-1: If the CI supports the RD Service, then for Reliable Datagram QPs,
the destination address shall be stored in the EE Context, and shall be
manipulated exclusively through the Modify EE Context Attributes Verb,
and an EE Context shall be referenced by each individual Work Request
(see 10.2.7 End-to-End Contexts).

o10-2: If the CI supports Raw Datagram Service, then for Raw QPs, the
destination address shall be supplied via each individual Work Request.

o10-2.1.1: If the CI supports Address Handle port number checking, op-
erations on unreliable datagram queue pairs that access an Address
Handle shall be allowed only if the Queue Pair's primary physical port
matches the physical port of the Address Handle. If there is a mismatch,
the CI shall return either Invalid Address Handle as an immediate error or
Local QP Operation Error as a completion error.

If the CI does not support Address Handle port number checking, and
while processing operations on UD QPs, if the Queue Pair’s primary phys-
ical port number does not match the physical port number in the Address
Handle, then no error is generated because of the port number mismatch.

C10-5: For Unreliable Datagram QPs, the destination address of the node
shall be contained in an Address Handle, and an Address Handle shall
be referenced by each individual Work Request.

An Address Handle is a consumer-opaque object that refers to a local or
global destination. Verbs are used to create, modify and destroy Address
Handles. Address handles are associated with protection domains. Pro-
tection domains are described in 10.2.3 Protection Domains .

The verbs consumer should avoid modifying or destroying an Address
Handle while there are outstanding WRs that reference that Address
Handle. In any case the CI must process any WR, which references a de-
stroyed or modified Address Handle, and complete it either successfully
or in error (according to the normal CQE generation rules). The CA may

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 434 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

emit the packet only when the completion is successful, however, the des-
tination address may be indeterminate. When the completion is in error,
no packet is emitted at all.

C10-5.2.1: The CI shall process any WR that references an Address
Handle which was modified or destroyed while the WR has been out-
standing. The WR shall be completed either successfully or in error
(normal CQE generation rules apply). A packet shall only emitted when
the operation completes successfully, though the destination address may
be indeterminate. If the completion is in error the CI shall not emit the
packet and the reported completion return status shall be Local QP Oper-
ation Error.

C10-6: The CI shall support sending messages from a QP or EE ad-
dressed to the same or a different QP/EE on the same port in the sending
HCA. Such messages shall not be transmitted through the fabric, but
shall remain contained within that HCA.

No special addressing mechanisms are necessary to accomplish this; in-
stead, the destination information in the source QP, EE, Address Vector,
or Work Request is the same as that which any other node on the fabric
would use to address the destination QP/EE.

Address Vector information can be obtained from the Subnet Adminis-
trator via the SubnAdmGet method on the PathRecord attribute. The
PathRecord information is used as part of an Address Vector in an Ad-
dress Handle, End to End Context or Queue Pair Context. This informa-
tion is then taken from those locations as per Table 64 to create the
packet. If parameters other than those obtained from exactly one appli-
cable PathRecord are used as part of an Address Vector, this can have
undesirable consequences including, but not limited to, packet discard
and connection teardown.

10.2.3 PROTECTION DOMAINS

A Protection Domain (PD) is used to associate Queue Pairs (QPs) and
Shared Receive Queues with Memory Regions, as a means for enabling
and controlling HCA access to Host System memory.

Additionally, a Protection Domain (PD) is used to associate Queue Pairs
(QPs) with Unbound Memory Windows, as a means for enabling and con-
trolling HCA access to Host System memory.

PDs are also used to associate Queue Pairs with Bound Memory Win-
dows as follows:

• for Type 1 Memory Windows, the PD is used to associate the Queue
Pairs to a Bound Type 1 Memory Window;

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 435 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• for Type 2A Memory Windows, the QP Number is used to associate
the Queue Pairs to a Bound Type 2A Memory Window; and

• for Type 2B Memory Windows, the PD and QP Number are used to
associate the Queue Pairs to a Bound Type 2B Memory Window.

See section 10.6.7.2.2 Remote Access Through Memory Windows on
page 492 for a description of the different Memory Window Types.

PDs are also used to associate Unreliable datagram queue pairs with Ad-
dress Handles, as a means of controlling access to UD destinations.
Queue Pairs are described in 11.2.4 Queue Pair on page 566. Memory
Regions and Memory Windows are described in detail in Section 11.2.8
Memory Management on page 592. PDs are specific to each HCA.

C10-7: Each Queue Pair in an HCA shall be associated with a single PD.
Multiple Queue Pairs shall be able to be associated with the same PD.

o10-2.2.1: If the HCA supports SRQ, each Shared Receive Queue in an
HCA shall be associated with a single PD. Multiple Shared Receive
Queues and Queue Pairs shall be able to be associated with the same
PD.

Note, the SRQ has its own PD. The SRQ may be associated with the
same PD as used by one or more of its associated QPs or a different PD.

C10-8: Each Memory Region, Unbound Memory Window, or Address
Handle shall be associated with a single PD. Multiple Memory Regions,
Unbound Memory Windows, or Address Handles shall be able to be as-
sociated with the same PD.

C10-9: This compliance statement has been obsoleted.

C10-9.2.1: If a QP is not associated with an SRQ, operations on a Queue
Pair that access a Memory Region shall be allowed only if the Queue
Pair’s PD matches the PD of the Memory Region.

o10-2.2.2: If the HCA supports SRQ and a QP is associated with an SRQ,

• incoming send operations that access a MR or PMR shall be allowed
only if the SRQ’s PD matches the PD of the Memory Region,

• incoming RDMA or Atomic operations that access an MR shall be al-
lowed only if the QP’s PD matches the PD of the Memory Region,
and

• incoming RDMA, Atomic, or Invalidate operations that access a PMR
shall be allowed only if the QP’s PD matches the PD of the Memory
Region.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 436 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Access to Memory Windows is dependent on the type of Memory Window
selected by the Consumer when the Memory Window was Allocated
through the Allocate Memory Window Verb (see section 11.2.8.9 Allocate
Memory Window on page 606).

C10-10: Operations on unreliable datagram queue pairs that access an
Address Handle shall be allowed only if the Queue Pair’s PD matches the
PD of the Address Handle. If there is a mismatch, the Channel Interface
shall return either Invalid Address Handle as an immediate error or Local
QP Operation Error as a completion error.

10.2.3.1 ALLOCATING A PROTECTION DOMAIN

Protection Domains are allocated through the Verbs.

A PD is required when creating a Queue Pair, registering a Memory Re-
gion, allocating a Memory Window, or creating an Address Handle.

A PD has no IB architected attributes. Operating Systems are commonly
expected to enforce the policy that when a Verbs consumer creates a
Queue Pair, registers a Memory Region, allocates a Memory Window, or
allocates an Address Handle, it must specify a PD for association with the
IB resources owned by it (that is, that were allocated by it).

10.2.3.2 DEALLOCATING A PROTECTION DOMAIN

Protection Domains are deallocated through the Verbs.

C10-11: This compliance statement has been obsoleted.

C10-11.2.1: If the CI does not support SRQ, the PD shall not be deallo-
cated if it is still associated with any Queue Pair, Memory Region, Memory
Window, or Address Handle. If this is attempted, the Verbs shall return an
immediate error.

C10-11.2.2: If the CI supports SRQ, aPD shall not be deallocated if it is
still associated with any Queue Pair, Memory Region, Memory Window,
Address Handle, or Shared Receive Queue. If this is attempted, the Verbs
shall return an immediate error.

10.2.4 QUEUE PAIRS

The Verb consumer uses a Verb to submit a Work Request (WR) to a
Send queue or a Receive queue. Associated Send and Receive queues
are collectively called a Queue Pair (QP); these QPs drive the channel in-
terface. A QP, which is a component of the channel interface, is not di-
rectly accessible by the Verbs consumer and can only be manipulated
through the use of Verbs. See 10.8 Work Request Processing Model for
a description of the WR submission process.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 437 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.2.4.1 CREATING A QUEUE PAIR

Queue Pairs are created through the Verbs.

When a QP is created, a complete set of initial attributes must be specified
by the Consumer. The attributes that need to be defined when the QP is
created are denoted in 11.2.4.1 Create Queue Pair on page 566.

The maximum number of Work Queue Entries (WQEs) the Consumer ex-
pects to be outstanding on each work queue of the Queue Pair must be
specified when the QP is created. The actual number of entries is returned
through the Channel Interface for each work queue.

When setting the maximum number of outstanding work requests on a
work queue, the consumer must take into account that this number must
be large enough to encompass the number of work requests on that
queue that have not completed plus the number of completed work re-
quests for that queue that have not been freed through the associated CQ
(see 10.8.5.1 Freed Resource Count on page 520). Note for unsignaled
completions, the consumer cannot consider the work request completed
until the work request has been confirmed completed as per 10.8.6 Unsig-
naled Completions on page 521.

10.2.4.2 QUEUE PAIR ATTRIBUTES

Queue Pairs have attributes that can be retrieved through the Query
Queue Pair Verb. The complete list of QP Attributes is described in
11.2.4.3 Query Queue Pair on page 576.

10.2.4.3 MODIFYING QUEUE PAIR ATTRIBUTES

Certain QP Attributes may be modified after the QP has been created.
The subset of QP Attributes which can be modified are defined in 11.2.4.2
Modify Queue Pair on page 568.

It is possible to modify the QP Attributes with Work Requests outstanding
on the QP. Any Work Requests outstanding on the specified QP may not
execute properly when the attributes are changed.

When setting the maximum number of outstanding work requests on a
work queue, the consumer must take into account that this number must
be large enough to encompass the number of work requests on that
queue that have not completed plus the number of completed work re-
quests for that queue that have not been freed through the associated CQ
(see 10.8.5.1 Freed Resource Count). Note for unsignaled completions,
the consumer cannot consider the work request completed until the work
request has been confirmed completed as per 10.8.6 Unsignaled Comple-
tions.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 438 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A CI may support the ability to modify the maximum number of out-
standing Work Requests on a QP. If it does so, it must be able to support
it while Work Requests are outstanding. In addition, it must support re-
sizing both work queues on every QP. If immediate errors are returned,
the work queue(s) must be in the same state as it was prior to the attempt
to resize the work queue(s). It is understood that this may adversely affect
performance, but it must not be the cause of immediate, completion or
asynchronous errors, with the exception of immediate errors returned by
the Modify Queue Pair Verb. Note that a resize operation may adversely
affect other QPs attempting to communicate with the QP during the resize
operation in the form of timeouts and retries. It may also result in the loss
of data in the form of dropped packets for unreliable service type QPs.

10.2.4.4 DESTROYING A QUEUE PAIR

Queue Pairs are destroyed through the Channel Interface.

When a QP is destroyed, any outstanding Work Requests are no longer
considered to be in the scope of the Channel Interface. It is the responsi-
bility of the Consumer to be able to clean up any associated resources.

Destruction of a QP releases any resources allocated below the Channel
Interface on behalf of the QP. Outstanding Work Requests will not com-
plete after this Verb returns.

o10-2.2.3: If the CI supports IBA Unreliable Datagram Multicast (see 10.5
Multicast Services on page 465), and the Destroy Queue Pair Verb is in-
voked while the target QP is still attached to one or more multicast groups,
the CI shall return an immediate error and the QP shall not be destroyed.

It is good programming practice to modify the QP into the Error state and
retrieve the relevant CQEs prior to destroying the QP. Destroying a QP
does not guarantee that CQEs of that QP are deallocated from the CQ
upon destruction. Even if the CQEs are already on the CQ, it might not be
possible to retrieve them. It is good programming practice not to make any
assumption on the number of CQEs in the CQ when destroying a QP. In
order to avoid CQ overflow, it is recommended that all CQEs of the de-
stroyed QP are retrieved from the CQ associated with it before resizing
the CQ, attaching a new QP to the CQ or reopening the QP, if the CQ ca-
pacity is limited.

If this QP is part of a connection, the connection should be released be-
fore the QP is destroyed. See section 12.9.4 State Diagram Notes on
page 686 for further information.

Type 1 MWs are never bound to a QP. Therefore, Type 1 MWs do not af-
fect the ability to destroy a QP.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 439 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-2.2.4: If an HCA supports the Base Memory Management extensions
and supports Type 2A Memory Windows, then the HCA must return an
error if the Consumer attempts to destroy a QP while Type 2A MWs are
still bound to the QP.

o10-2.2.5: If an HCA supports the Base Memory Management extensions
and supports Type 2B Memory Windows, then the HCA must allow the
Consumer to destroy the QP while Type 2B MWs are still bound to the QP.

For a description of Memory Window types see section 10.6.7.2.2.

10.2.4.5 SPECIAL QPS

QPs designated as special are the SMI QP (QP0), GSI QP (QP1) and the
Raw IPv6 and Raw Ethertype QPs. These QP types are special because
they have different and more restrictive properties than QPs designed for
more general use.

Incoming messages to the SMI or GSI QPs may be consumed below the
Verbs by a subnet management agent (SMA) or general services agent
(GSA), respectively. If a MAD is consumed below the Verbs, the seman-
tics must be consistent from the Verbs Consumer’s point of view.

C10-12: Any message processing performed below the Verbs, e.g., by a
SMA, must not disturb any WQEs and CQEs posted on behalf of the
Verbs Consumer.

C10-13: The CI shall allow direct access to the SMI and GSI QPs only by
privileged mode Consumers.

SMI and GSI QPs can share a completion queue, but neither can share
one with any QP that is not of the SMI or GSI type.

Multiple Raw IPv6 and Raw Ethertype QPs are allowed on a single HCA.
However, the demultiplexing algorithm that is applied to receiving mes-
sages between QPs is outside the scope of this specification.

10.2.5 Q_KEYS

A Queue Key (Q_Key) is a construct used in Datagram Service QPs to
validate a remote sender’s right to access a local Receive Queue. They
are set through the Modify Queue Pair Verb, as well as within Work Re-
quests. The values used for Q_Keys are not managed below the Verbs.
Q_Keys are contained in the headers for IB Datagram packets.

Q_Keys have the following properties:

• A Q_Key must be established in the QP Context before Receive De-
scriptors can be posted to a QP.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 440 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The Q_Key is a modifier in the Post Send Request Verb.
C10-14: For UD Service type QPs, except QP0 and QP1, the Q_Key in
the QP Context shall be used to validate incoming packets. If the Q_Key
does not match, the packet shall be silently dropped. See Section
9.6.1.4.1 for rules on validating the Q_Key in incoming packets on QP0
and QP1.

o10-3: If the CI supports the RD Service, then for RD QPs, the Q_Key in
the QP Context shall be used to validate incoming packets. If the Q_Key
does not match, the packet shall be NAK’d. This NAK shall result in the
Send Queue at the remote node being placed into the appropriate error
state as per the state diagram.

C10-15: A Q_Key shall be a modifier in the Post Send Request Verb for
Datagram Service Type queue pairs. The Channel Interface shall ex-
amine the Q_Key in the Work Request. If the high order bit of the Q_Key
is set, the outgoing packet shall contain the Q_Key from the QP Context.
If the high order bit of the Q_Key is not set, the outgoing packet shall con-
tain the Q_Key from the Work Request.

For the RD service class, Q_Key violation results in the source Send
Queue transitioning to the error state. The destination has the option to
support a Q_Key violation counter and trap. This optional counter may be
queried and set through the Verbs.

Q_Keys are not enforced on Raw QPs.

10.2.6 COMPLETION QUEUES

A CQ can be used to multiplex work completions from multiple work
queues across queue pairs on the same HCA.

C10-16: The CI shall support Completion Queues (CQ) as the notification
mechanism for Work Request completions. A CQ shall have zero or
more work queue associations. Any CQ shall be able to service send
queues, receive queues, or both. Work queues from multiple QPs shall
be able to be associated with a single CQ.

10.2.6.1 CREATING A COMPLETION QUEUE

Completion Queues are created through the Channel Interface.

The maximum number of Completion Queue Entries (CQEs) that may be
outstanding on a CQ must be specified when the CQ is created; this is
known as the CQ’s capacity. The actual capacity is returned through the
Channel Interface. If the number of CQEs outstanding on a CQ is equal to
its capacity, and another entry is added, the CQ overflows. It is the respon-
sibility of the Consumer to ensure that the capacity chosen is sufficient for

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 441 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the Consumer’s operations; it must, in any case, arrange to handle an
error resulting from CQ overflow.

C10-17: Overflow of the CQ shall be detected and reported by the CI be-
fore the next WC is retrieved from that CQ. This error must be reported
as an affiliated asynchronous error -- see 11.6.3.2 Affiliated Asynchronous
Errors on page 639.

10.2.6.2 COMPLETION QUEUE ATTRIBUTES

The only Completion Queue attribute is the capacity of the CQ. This at-
tribute can be retrieved through the Query Completion Queue Verb.

Note that no Verb is provided which retrieves a CQ’s set of associated
Work Queues; the consumer is responsible for keeping track of this infor-
mation, if needed.

10.2.6.3 MODIFYING COMPLETION QUEUE ATTRIBUTES

It must be possible to change the capacity of the CQ through the Channel
Interface while Work Requests are outstanding on the queues associated
with the specified CQ. It is understood that this may adversely affect per-
formance, but it must not be the cause of immediate or completion errors,
with the exception of immediate errors returned by the Resize Completion
Queue Verb.

10.2.6.4 DESTROYING A COMPLETION QUEUE

Completion Queues are destroyed through the Channel Interface.

C10-18: If the Verb to destroy a CQ is invoked while Work Queues are still
associated with the CQ, the CI shall return an error and the CQ shall not
be destroyed.

Destruction of a CQ releases any resources allocated below the Channel
Interface on behalf of the CQ.

10.2.7 END-TO-END CONTEXTS

An End-to-End Context (EE Context) is a local HCA resource, used by the
local HCA to track messages transferred between itself and another HCA,
to support Reliable Datagram Service QPs. EE Contexts are established
in an HCA by the Consumer through the Verbs.

o10-4: If the CI supports RD Service, the CI shall support an EE Context
for use by the Consumer to provide the connection between two HCA
ports. Each local EE Context shall be connected to exactly one destina-
tion EE Context.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 442 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Consumer must establish a communication channel between a pair
of EE Contexts, one on each HCA, before RD messaging can begin be-
tween the two HCAs. This communication channel must be established
using the normal connection style semantics described in Chapter 12,
Communication Services.

o10-5: If the CI supports RD Service, multiple connected EE Contexts
(RD channels) shall be allowed between HCA port pairs. These EE Con-
texts are allowed to have either the same or different sets of attributes.

Any Work Requests outstanding on the specified EE Context may not ex-
ecute properly when the attributes are changed.

The Consumer submits RD Work Requests to an RD type QP’s Send
Queue. The Work Request specifies the EE Context to use to perform the
actual message transfer. Work Requests may be submitted to a single RD
QP that specify different EE Contexts as long as the EE Context specified
is in the same RDD as the RD QP.

It is the responsibility of the Consumer to create, modify and destroy the
EE Context, to use the Communication Services to gather the information
necessary to transition the EE Context through the states as well as to fill
out the necessary attributes for use.

It is important to note that Verbs manipulating EE Contexts, such as
Create EE Context and Modify EE Context, use an EE Context handle,
but Communication Management and submission of Work Requests to
the Send Queue require the EE Context number. This number can be re-
trieved through the Query EE Context Verb.

10.2.7.1 CREATING AN EE CONTEXT

EE Contexts are created through the Channel Interface.

When an EE Context is created, a complete set of initial attributes must
be specified by the Consumer. The attributes that need to be defined
when the EE Context is created are denoted in Section 11.2.7.1 Create
EE Context on page 584.

10.2.7.2 EE CONTEXT ATTRIBUTES

EE Contexts have attributes that can be retrieved through the Query EE
Context Verb.

The complete list of EE Context Attributes is described in Section 11.2.7.3
Query EE Context on page 590.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 443 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.2.7.3 MODIFYING EE CONTEXT ATTRIBUTES

Certain EE Context Attributes may be modified after the EE Context has
been created. The subset of EE Context Attributes which can be modified
are defined in Section 11.2.7.2 Modify EE Context Attributes on page 585.

It is possible to modify the EE Context Attributes when Work Requests re-
quiring the EE Context are outstanding. Any outstanding WR which re-
quires the specified EE context may not execute properly when the
attributes are changed.

10.2.7.4 DESTROYING AN EE CONTEXT

EE Contexts are destroyed through the Channel Interface.

When an EE Context is destroyed, any outstanding Work Requests which
depend on the EE Context are expected to complete with an appropriate
error.

Destruction of an EE Context releases any resources allocated below the
Channel Interface on behalf of the EE Context.

If this EEC is part of a Reliable Datagram Channel, the RDC should be re-
leased before the EEC is destroyed. See section 12.9.4 State Diagram
Notes on page 686 for further information.

10.2.8 RELIABLE DATAGRAM DOMAINS

A Reliable Datagram Domain (RDD) is a means to associate Queue Pairs
with EE contexts.

o10-6: If the CI supports RD Service, each RD QP shall be associated
with only one RDD. Multiple RD QPs shall be able to be associated with
the same RDD.

o10-7: If the CI supports RD Service, each EE context shall be associ-
ated with only one RDD. Multiple EE contexts shall be able to be associ-
ated with the same RDD.

o10-8: If the CI supports RD Service, WRs which specify an EE Context
on an RD Queue Pair shall be allowed only if the RDD in the EE Context
matches the RDD in the QP. If the RDDs do not match, the initiator’s work
request will complete with a Local RDD Violation Error, with no effect on
the destination’s receive queue (see 11.6.2 Completion Return Status on
page 634 for the correct error code).

o10-9: If the CI supports RD Service, the CI shall support at least two
RDDs.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 444 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The purpose of defining the RDD construct is to ensure that it is possible
reliably to separate user and kernel I/O RD traffic through an HCA. Note
also that realizing that separation requires two EE contexts, as well.

10.2.8.1 ALLOCATING A RELIABLE DATAGRAM DOMAIN

Reliable datagram domains are allocated through the Channel Interface,
using a privileged operation.

10.2.8.2 DEALLOCATING A RELIABLE DATAGRAM DOMAIN

Reliable datagram domains are deallocated through the Channel Inter-
face.

o10-10: If the CI supports RD Service, an RDD shall not be deallocated
if it is still associated with any Queue Pair or EE Context. If this is at-
tempted, the CI shall return an immediate error.

10.2.9 SHARED RECEIVE QUEUE

The semantics defined in this section are applicable if the Consumer as-
sociates a QP to a Shared Receive Queue.

10.2.9.1 MOTIVATION FOR SUPPORTING SRQ
Without SRQ, an RC or UD Consumer must post the number of receive
WRs necessary to handle incoming receives on a given QP. If the Con-
sumer cannot predict the incoming rate on a given QP, because, for ex-
ample, the connection has a bursty nature, the Consumer must either:
post a sufficient number of RQ WRs to handle the highest incoming rate
for each connection, or, for RC, let message flow control cause the remote
sender to back off until local Consumer posts more WRs.

Either approach is inefficient:

• Posting sufficient WRs on each QP to hold the possible incoming
rate, wastes WQEs, and the associated Data Segments, when the
Receive Queue is inactive. Furthermore, the HCA doesn’t provide a
way of reclaiming these WQEs for use on other connections.

• Letting the RC message flow control cause the remote sender to
back off can add unnecessary latencies, specially if the local Con-
sumer is unaware that the RQ is starving.

A Shared Receive Queue solves this problem by allowing multiple Queue
Pairs to share Receive Work Requests and, more importantly, the Data
Segments associated with Receive Work Requests. When an incoming
Receive Message arrives on any QP that is associated with an SRQ, the
HCA uses the next available SRQ WQE to receive the incoming data. The
HCA returns Work Completions through the Completion Queue that is as-
sociated with the QP that received the incoming Send operation.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 445 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RC or UD QPs can be associated with an SRQ.

10.2.9.2 SHARED RECEIVE QUEUE CREATION

The Consumer creates an SRQ through the Create SRQ Verb.

When the SRQ is created through the Create SRQ verb:

• The Consumer requests the maximum number of WQEs that can be
outstanding on the SRQ and the maximum number of scatter/gather
elements per WQE on the SRQ. The CI returns the actual maximum
number of WQEs that can be outstanding on the SRQ and the actual
number of scatter/gather elements per WQE on the SRQ. Each must
be greater than or equal to the number requested.

The full list Create SRQ attributes is described in section 11.2.3.1 Create
Shared Receive Queue on page 563.

10.2.9.3 SHARED RECEIVE QUEUE MODIFICATION

The Consumer sets the SRQ Limit through the Modify SRQ verb. The
SRQ Limit is armed when the Consumer sets the SRQ Limit to any value
greater than zero. An SRQ Limit Reached Affiliated Asynchronous Event
is generated whenever the number of SRQ WQEs is less than the SRQ
Limit. The Consumer can use the SRQ Limit Reached Affiliated Asynchro-
nous Event as an indicator that more WQEs need to be posted. The CI
shall reset the SRQ Limit to zero when the SRQ Limit Reached Affiliated
Asynchronous Event has been generated.

Note: A user mode Consumer can use the following sequence to reduce
the number of user to privilege mode transitions upon SRQ and QP initial-
ization:

• User mode Consumer invokes Create SRQ. This step requires a
user-privileged-user mode transition. When the Create SRQ returns
the Consumer is given an SRQ Handle.

• The user mode Consumer uses the SRQ Handle as an input modifier
to the Post Receive verb, and posts Work Requests to the SRQ. The
Consumer should post sufficient WRs, such that the total number of
WRs is at least greater than the SRQ Limit the Consumer will set for
SRQ.

• User mode Consumer invokes a combined Create QP and Modify
SRQ, passing the SRQ Handle in the process. This step requires a
user-privileged-user mode transition. A privileged mode Consumer
turns the Create QP and Modify SRQ as two separate verb calls. The
Create QP associates the newly create QP to the SRQ referenced by
the SRQ Handle. The Modify SRQ sets the SRQ Limit for the SRQ
referenced by the SRQ Handle.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 446 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note, if the Consumer sets the SRQ Limit greater than zero on a Modify
SRQ, the CI will re-arm the SRQ with the new SRQ Limit. The SRQ may
be armed more than once through the Modify SRQ verb, even while it is
already armed. The CI maintains one SRQ Limit value per SRQ and re-
arming will overwrite this value.

Note: If the SRQ Limit is armed more than once, the Modify SRQ may re-
turn stating the SRQ Limit is armed, when in fact it is not and 1 or 2 Limit
Reached Affiliated Asynchronous Events may surface. If the Consumer
arms the SRQ more than once and then receives an event, then there is
an ambiguity regarding which arming triggered the event. Therefore the
Consumer should Query the SRQ to determine if the SRQ is still armed.

If the HCA supports the modification of the maximum number of out-
standing SRQ WRs, then Consumer may request to change the maximum
number of outstanding WRs through the Modify SRQ verb. The CI returns
the actual maximum number of WQEs that can be outstanding on the
SRQ, this value must be greater than or equal to the number requested.

o10-10.2.1: If the HCA supports modifying the maximum number of out-
standing SRQ WRs, then for each SRQ supported by the HCA, the HCA
shall allow the maximum number of outstanding SRQ WRs to be changed,
even if WRs are still outstanding on the SRQ.

Similar to the QP resize operation, an SRQ resize may adversely affect
HCA performance.

o10-10.2.2: If the HCA supports modifying the maximum number of out-
standing SRQ WRs and the Consumer performs a resize operation
through the Modify SRQ verb, then the HCA shall not return an error as a
direct result of performing the Modify SRQ verb. The only exceptions are:

• when the SRQ size is decreased below the current number of out-
standing WQEs on the SRQ, in this case, the CI must return an im-
mediate error and not affect the SRQ state; and

• when the HCA supports modifying the maximum number of outstand-
ing SRQ WRs and the Consumer performs a resize operation
through the Modify SRQ verb that decreases the SRQ size below the
SRQ Limit, the CI must return an immediate error and not affect the
SRQ state.

When the local HCA is performing a resize operation, remote QPs that
target local QPs associated with the SRQ being resized may experience
message time-outs. These message timeouts may indirectly lead to con-
nection teardown. Therefore, it is recommended that the Consumer either
use a Consumer level message quiesce or a QP level Quiesce (i.e.
through SQD) before resizing an SRQ.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 447 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.2.9.4 SHARED RECEIVE QUEUE DESTRUCTION

The Consumer destroys an SRQ through the Destroy SRQ Verb. The at-
tributes of the Destroy SRQ Verb are described in 11.2.3.4 Destroy
Shared Receive Queue on page 565.

o10-10.2.3: If the HCA supports SRQ and the Consumer invokes the De-
stroy SRQ verb while there are QPs still associated with the SRQ, the CI
shall return an Immediate Error.

o10-10.2.4: If the HCA supports SRQ and the Consumer invokes the De-
stroy SRQ verb while there are WRs still outstanding on the SRQ, the
HCA shall perform the destroy SRQ operation.

o10-10.2.5: If the HCA supports SRQ, when the CI successfully returns
from the Destroy SRQ verb, the CI shall free all resources associated with
the SRQ, including any WRs that were posted to the SRQ, but not com-
pleted.

10.2.9.5 SRQ STATES

The SRQ only has two states: Non-Error State and Error State.

In the Non-Error State: the Consumer is allowed to post Work Requests
to the SRQ; and QPs are allowed to retrieve Receive Queue WQEs from
the SRQ. In the Error State: the Consumer may be able to post Work Re-
quests to the SRQ; but QPs cannot retrieve Receive Queue WQEs from
the SRQ.

When an SRQ is created it is placed in the Non-Error State. If an SRQ Cat-
astrophic Error occurs, the SRQ is placed in the Error State. Attempting to
Query or Modify an SRQ in the Error State shall return an Immediate Error.
The only way for the SRQ to exit the Error State is through a Destroy SRQ.
Upon successful completion of a Destroy SRQ, the SRQ exits the SRQ
State logic.

10.2.10 INFINIBAND HEADER DATA AND SOURCES

The following table lists each of the data items present in an IBA protocol
header, as well as some internal state needed to send packets. For each
Transport Service Type, it lists the source of that data or state. The
sources for each of these are accessed through the Verbs. This table is
provided to establish the correlation between the packet fields and the

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 448 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

constructs established through the Verbs. Note that the legend for Table
64 is Table 65, below.

Table 64 Packet Fields, Queue Parameters, and their Sources

Header Field RC UC RD UD Raw IP Raw ET

LRH Virtual lane Computed from SL and CAP SL->VL table

LRH LRH version Fixed

LRH Service level QP EE AV WR

LRH LRH next header – IBA trans-
port bit

Fixed=1 Fixed=0

LRH LRH next header – GRH bit QP EE AV Fixed=1 Fixed=0

LRH Destination local identifier QP EE AV WR

LRH Packet length Computed from data/header length

LRH Source local identifier (part not
covered by LMC)

CAP

LRH Source local identifier (part
covered by LMC)

QP EE AV WR

LRH Reserved Fixed=0

GRH IP version Fixed=6 N/A

GRH Traffic class QP EE AV N/A

GRH Flow label QP EE AV N/A

GRH Payload length Computed from data/header length N/A

GRH Next header Fixed N/A

GRH Hop limit QP EE AV N/A

GRH Source GID Computed from
CAP table and

index in QP

Com-
puted
from
CAP
table
and

index in
EE

Com-
puted
from
CAP
table
and

index in
AV

N/A

GRH Destination GID QP EE AV N/A

BTH OpCode WR N/A

BTH BTH version Fixed=0 N/A

BTH Partition key QP EE QP N/A

BTH Destination queue pair QP WR N/A

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 449 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

BTH Pad count Computed from data & header length N/A

BTH Solicited event WR N/A

BTH Packet sequence number Computed from QP
state

Com-
puted

from EE
state

Com-
puted

from QP
state

N/A

BTH Reserved Fixed=0 N/A

RDETH Remote EE context N/A EE N/A

RDETH Reserved N/A Fixed=0 N/A

DETH Queue key N/A WR or QP depend-
ing on WR

N/A

DETH Source queue pair N/A QP N/A

DETH Reserved Fixed=0 N/A

RETH Virtual address WR N/A

RETH R_Key WR N/A

RETH DMA length WR N/A

AtomicETH Virtual address WR N/A WR N/A

AtomicETH R_Key WR N/A WR N/A

AtomicETH Swap data WR N/A WR N/A

AtomicETH Compare data WR N/A WR N/A

IETH R_Key WR N/A

AETH Message sequence number Com-
puted

N/A Com-
puted

N/A

AETH Syndrome Com-
puted

N/A Com-
puted

N/A

RWH Reserved N/A Fixed

RWH EtherType N/A WR

AtomicAck-
ETH

Original remote data Memory N/A Memory N/A

ImmDT Immediate Data WR N/A

Local EE context N/A WR N/A

Port number QP EE QP

Transport Timeout QP N/A EE N/A

Table 64 Packet Fields, Queue Parameters, and their Sources (Continued)

Header Field RC UC RD UD Raw IP Raw ET

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 450 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table is the legend for the previous one.

Retry count QP N/A EE N/A

RNR retry count QP N/A EE N/A

PMTU QP EE N/A

Maximum static rate QP EE AV WR

Protection domain QP

Reliable datagram domain N/A QP/EE N/A

Send PSN QP EE N/A

Receive PSN QP EE N/A

Outstanding atomics/RDMA
reads supported at destination

QP N/A EE N/A

Send CQ QP

Receive CQ QP

Table 64 Packet Fields, Queue Parameters, and their Sources (Continued)

Header Field RC UC RD UD Raw IP Raw ET

Table 65 Legend for Table 64

Abbreviation Meaning

AETH Acknowledgement extended transport header

AtomicAck-
ETH

Atomic acknowledgement extended transport header

AtomicETH Atomic extended transport header

AV Part of the address vector object defined by the Verbs

BTH Base transport header

CA Property of the channel adapter

CAP Property of the channel adapter port

Computed... Calculated from other values as specified

DETH Datagram extended transport header

DS Field taken from data segment pointed to by work request

EE Taken from the EE context (RD service only)

Fixed Value is determined by the specification and is the same in all pack-
ets.

GRH Global routing header

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 451 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.3 RESOURCE STATES

10.3.1 QUEUE PAIR AND EE CONTEXT STATES

This section contains the QP and EE Context state diagram. The same
state diagram is used for both QPs and EE Contexts. This section will use
the term QP/EE for this and, where differences are important, will note
them. This section will contain a definition of the QP/EE states. The
QP/EE states defined here and the transition order between the states are
shown in Figure 124. EE Contexts are created only for the Reliable Data-
gram Service Type, whereas QPs are used for all Transport Service
Types.

Note that while QPs and EE Contexts share the same state diagram, the
EE Context state has no relationship to the states of the sending and re-
ceiving RD QPs using that EE Context. The reader should not assume
that because a QP made a state transition that a EE Context associated
with that RD QP will also transition, and vice versa.

Even though a subset of the states could occur in any order for some of
the Transport Service Types, the states must transition in the order spec-

IETH Invalidate Extended Transport Header

ImmDT Immediate Data Extended Transport Header

LRH Local routing header

Memory Retrieved from host memory by CA

N/A Not applicable to this Service Type

PMTU Path maximum transfer unit

QP Taken from Queue Pair state (the real QP in the case of RD service)

Raw Raw Packet service

RC Reliable Connected service

RD Reliable Datagram service

RDETH Reliable datagram extended transport header

RNR Receiver not ready

RWH Raw ethertype header

UC Unreliable Connected service

UD Unreliable Datagram service

WR Taken from a Work Request

Table 65 Legend for Table 64 (Continued)

Abbreviation Meaning

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 452 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ified. This is to keep the state definitions consistent and error semantics
simplified. The order chosen is that required to support the Reliable Con-
nection Service Type, and to provide for completeness of the information
needed to transfer data using an EE Context.

Figure 124 QP/EE Context State Diagram

Note, for QPs that are associated with an SRQ, the Consumer should take
the QP through the Error State before invoking a Destroy QP or a Modify
QP to the Reset State. The Consumer may invoke the Destroy QP without
first performing a Modify QP to the Error State and waiting for the Affiliated

Initialized

SQ DrainError

Reset

Ready to
 Receive

SQ Error Ready to
 Send

Create QP/EE

Modify QP/EE

Modify
QP/EEModify

QP/EE

Modify
QP/EE

Modify QP/EE

Modify QP

Receive WR
Completion Error or

Async Error

QP: Send WR
Completion Error

QP: Send WR
Completion Error

Processing
 Error
(Dependent
on QP type)

QP: Can Post Recv
 WRs
EE: Can be connected
 with another EE
 Context

QP: Can post & process
 Recv WRs &

EE: EE can be used to
 process incoming
 messages on RDs

QP: Can Post & process
 Recv & Send WRs
EE: EE can be used for
 outgoing WRs on RDs
 & process incoming
 messages on RDs

QP: Can post & process
 Recv WRs &

 Can post Send WRs.
EE: EE can be used to
 process incoming
 messages on RDs

QP: Can Post &
 process Receive WRs,
 Send WRs are
 completed in error.

Notes:

Destroy QP/EE Context can be
called from any state and exits
the state diagram

It is possible to transition from any
state to either the Error state or the
Reset state with the Modify QP/EE Verb.

An error can be forced from any
state with the Modify QP/EE Verb.

 Send ACKs.

 Send ACKs.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 453 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Asynchronous Last WQE Reached Event. However, if the Consumer
does not wait for the Affiliated Asynchronous Last WQE Reached Event,
then WQE and Data Segment leakage may occur. Therefore, it is good
programming practice to tear down a QP that is associated with an SRQ
by using the following process:

• Put the QP in the Error State;

• wait for the Affiliated Asynchronous Last WQE Reached Event;

• either:

• drain the CQ by invoking the Poll CQ verb and either wait for CQ
to be empty or the number of Poll CQ operations has exceeded
CQ capacity size; or

• post another WR that completes on the same CQ and wait for this
WR to return as a WC;

• and then invoke a Destroy QP or Reset QP.

o10-10.2.6: If an HCA supports the Base Memory Management exten-
sions and supports Type 2A Memory Windows, then the HCA must return
an error if the Consumer attempts a Modify QP transition from any State
to the Reset State while Type 2A MWs are still bound to the QP.

o10-10.2.7: If an HCA supports the Base Memory Management exten-
sions and supports Type 2B Memory Windows, then the HCA must allow
the Consumer to transition the QP from the any State to the Reset State
while Type 2B MWs are still bound to the QP.

It is important to understand that the QP/EE states are intended to be
used as an integral part of the connection process. A thorough under-
standing of the connection process and the connection state diagram is
assumed. This is discussed in detail in 12.9.7.1 Active States on page 689
and 12.9.7.2 Passive States on page 691.

C10-19: With one exception, the CI shall implement the Reset, Init, RTR,
RTS, SQD, SQEr, and Error states for each QP. The CI shall not imple-
ment the SQEr state for RC QPs. Transitions between those states must
be restricted to those shown in Figure 124.

o10-11: If the CI supports RD Service, the CI shall implement the Reset,
Init, RTR, RTS, SQD, and Error states for each EE Context. Transitions
between those states must be restricted to those shown in Figure 124.

10.3.1.1 RESET

The characteristics of the Reset state are:

C10-20: A newly created QP/EE shall be placed in the Reset state.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 454 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• It is possible to transition to the Reset state from any state by
specifying the Reset state when modifying the QP/EE attributes.

• Any resources required to implement the QP/EE have been allo-
cated. For example, some implementations require WQEs and/or
control structures to be allocated.

• The Modify Queue Pair and Modify EE Context Attributes Verbs
are the only way for the Verbs Consumer to cause a transition out
of the Reset State, without destroying the EE/QP.

C10-21: Upon creation, or transition to the Reset state, all QP/EE at-
tributes must be set to the initialization defaults, as documented in the
Create Queue Pair and Create EE Context Verbs.

• Transition out of the Reset state can be effected by calling the
Destroy Queue Pair or Destroy EE Context Verbs, thus exiting
the state diagram.

For EEs:

• It is an error for a Work Request to specify an EE Context in the
Reset state.

o10-12: If the CI supports RD Service, and a Work Request is submitted
to the Send Queue of an RD QP specifying an EE Context in the Reset
state, the Work Request shall be completed in error.

• No work requests can be outstanding which use an EE Context in
this state.

o10-13: If the CI supports RD Service, any incoming messages which
target an EE in the Reset state must be silently dropped.

For QPs:

C10-22: If a Work Request is submitted to a Work Queue while its corre-
sponding QP is in the Reset State, an immediate error shall be returned.

• The Work Queues are empty. No Work Requests are outstanding
on the work queues.

• All Work Queue processing is disabled
C10-23: Incoming messages which target a QP in the Reset state must
be silently dropped.

10.3.1.2 INITIALIZED (INIT)

The characteristics for the Initialized state are:

• The basic QP/EE attributes have been configured as defined in
Modify Queue Pair and Modify EE Context Attributes Verbs.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 455 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Transition into this state is only possible from the Reset state.
• The Modify Queue Pair or Modify EE Context Attributes Verbs are

the only way for the Verbs Consumer to cause a transition out of
the Init state, without destroying the EE/QP.

• Transition out of the Init state can be effected by calling the De-
stroy Queue Pair or Destroy EE Context Verbs, thus exiting the
state diagram.

For EEs:

o10-14: If the CI supports RD Service, any incoming messages which
target an EE in the Init state must be silently dropped.

• It is an error for a Work Request to specify an EE Context in the
Init state.

o10-15: If the CI supports RD Service, and a Work Request is submitted
by the Consumer to the Send Queue of an RD QP specifying an EE Con-
text in the Init state, the Work Request shall be completed in error.

For QPs:

• Work Requests may be submitted to the Receive Queue but in-
coming messages are not processed.

C10-24: The CI shall allow Work Requests to be submitted to a Receive
Queue while its corresponding QP is in the Init State.

• It is an error to submit Work Requests to the Send Queue.
C10-25: If a Work Request is submitted to a Send Queue while its corre-
sponding QP is in the Init State, an immediate error shall be returned.

• Work Queue processing on both queues is disabled.
C10-26: Incoming messages which target a QP in the Init state must be
silently dropped.

10.3.1.3 READY TO RECEIVE (RTR)
The characteristics for the Ready to Receive state are:

C10-27: The CI shall support posting Work Requests to Receive Queue
of a QP in the RTR state.

C10-28: Incoming messages targeted at a QP in the RTR state shall be
processed normally.

o10-16: If the CI supports RD Service, and an incoming message is ad-
dressed to an EE Context in the RTR state, the message shall be pro-
cessed normally.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 456 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Transition into this state is possible only from the Init state, using
the Modify Queue Pair or Modify EE Context Attributes Verbs.

• Transition out of the RTR state can be effected by calling the De-
stroy QP or Destroy EE Context Verbs, thus exiting the state dia-
gram.

For EEs:

• It is an error for a Work Request to specify an EE Context in the
RTR state.

o10-17: If the CI supports RD Service, and a Work Request is submitted
by the Consumer to the Send Queue of an RD QP specifying an EE Con-
text in the RTR state, the Work Request shall be completed in error.

For QPs:

• Work Queue processing on the Send Queue is disabled. It is an
error to post Work Requests to the Send Queue.

C10-29: If a Work Request is submitted to a Send Queue while its corre-
sponding QP is in the RTR State, an immediate error shall be returned.

10.3.1.4 READY TO SEND (RTS)

Before transitioning to this state, the QP/EE communication establish-
ment protocol must be completed.

The characteristics for the Ready to Send state are:

• The channel between the requester’s QP/EE and responder’s
QP/EE has been established for connected Service Types and
RD channels.

• Transition into this state is possible only from the RTR and SQD
states.

• The Modify Queue Pair or Modify EE Context Attributes Verbs are
the only way for the Verbs Consumer to cause a transition out of
the RTS state, without destroying the EE/QP.

• Transition out of the RTS state can be effected by calling the De-
stroy Queue Pair or Destroy EE Context Verbs, thus exiting the
state diagram.

C10-30: The CI shall support posting Work Requests to a QP in the RTS
state.

C10-31: Work Requests on a QP in the RTS state shall be processed nor-
mally.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 457 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-32: Incoming messages targeted at a QP in the RTS state shall be
processed normally.

o10-18: If the CI supports RD Service, and an incoming or outgoing mes-
sage utilizes an EE Context in the RTS state, the message shall be pro-
cessed normally.

10.3.1.5 SEND QUEUE DRAIN (SQD)

The characteristics for the Send Queue Drain state are:

C10-33: The CI shall support posting Work Requests to a QP in the SQD
state.

C10-34: Incoming messages targeted at a QP in the SQD state shall be
processed normally.

o10-19: If the CI supports RD Service, and an incoming message utilizes
an EE Context in the SQD state, the message shall be processed nor-
mally.

• Transition into this state is possible only from the RTS state, us-
ing the Modify Queue Pair or Modify EE Context Attributes Verbs.

C10-35: When transitioning into the SQD state, the QP/EE’s send logic
must cease processing any additional messages. It must also complete
any outstanding messages on a message boundary, and process any in-
coming acknowledgements. The CI must not begin processing additional
messages which had not begun execution when the state transition oc-
curred.

C10-36: When all expected acknowledgements have been received, and
processing of send queue work requests has ceased, and if event notifi-
cation has been requested, an Affiliated Asynchronous Event shall be
generated.

• The consumer can use the asynchronous event to determine
when a state transition is possible.

• It is possible to enter the RTS state or error states from the SQD
state via Modify Queue Pair or Modify EE Context Attributes
Verbs.

• Attributes may be modified during the transition from SQD to
RTS, but both sides must have received the affiliated asynchro-
nous event in order to safely change attributes.

o10-19.a1: If the CI supports the ability to change the physical port asso-
ciated with an RC QP when transitioning from SQD to RTS, the CI shall
associate the physical port, if a different physical port is specified, with the
QP before the transition from SQD to RTS has completed. The physical

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 458 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

port is an optional attribute in the Modify QP verb during the transition from
SQD to RTS.

o10-19.a2: If the CI supports RD service and supports the ability to
change the physical port associated with the EE Context when transi-
tioning from SQD to RTS, the CI shall associate the physical port, if a dif-
ferent physical port is specified, with the EE Context before the transition
from SQD to RTS has completed. The physical port is an optional attribute
in the Modify EE Context verb during the transition from SQD to RTS.

• It is also possible to transition out of the SQD state by calling the
Destroy Queue Pair or Destroy EE Context Verbs, thus exiting
the state diagram.

For EEs:

• Work Queue processing on the Send side of the EE Context is
disabled.

o10-20: If the CI supports RD Service, Work Requests submitted to the
Send Queue of an RD QP, which specify an EE Context in the SQD state,
must not be processed but shall remain enqueued.

• QPs associated with an EE do not transition to the SQD state au-
tomatically, nor is it inherently necessary they do so.

For QPs:

• Work Queue processing on the Send Queue is disabled.

C10-37: Work Requests submitted to the Send Queue of a QP in the SQD
state must not be processed but shall remain enqueued.

SQD to SQD state transition can be performed when the SQ draining is
completed, i.e. the CI has completed processing any outstanding mes-
sage on a message boundary and processed any incoming acknowledge-
ments, or while the SQ draining is in progress.

However, changing some of the optional attributes on a SQD to SQD tran-
sition if the SQ has not been fully drained is not allowed. The CI shall re-
port an immediate error if the verbs consumer performs a SQD to SQD
state transition and attempts to change such an optional attribute while
the SQ has not been drained yet. Refer to 11.2.3.2 and 11.2.6.2 for the list
of attributes that can not be changed while the SQ is still draining. To de-
termine if the SQ has been drained, Software can use the Affiliated Asyn-
chronous Event or to use the Query QP or Query EE verb.

It is not allowed to perform SQD to RTS state transition if the SQ has not
been drained yet. The CI shall report an immediate error if the consumer

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 459 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

attempts to move the QP/EE from SQD to RTS if the SQ has not been
drained.

10.3.1.6 SEND QUEUE ERROR (SQER)

The characteristics for the Send Queue Error state are:

• Transition into this state can only happen as the result of a Com-
pletion Error, which occurred during the processing of a Work Re-
quest on the Send Queue while in the RTS state.

• The transition into the Send Queue Error state applies to all QPs
except for RC QPs.

C10-38: Receive Work Requests which were submitted to a Receive
Queue prior to that queue’s transition into the SQEr state shall continue
to be processed normally. New Receives must be able to be posted to
such a Receive Queue. Incoming messages which target a QP in the
SQEr state must be processed normally.

C10-39: A Work Request which caused the Completion Error leading to
the transition into the SQEr state must return the correct Completion Error
Code for the error through the Completion Queue.

• This WR may have been partially or fully executed, and thus may
have affected the state of the receiver, as follows:

Send operations may have been partially or fully completed; be-
cause of this, a completion queue entry may or may not have been
generated on the receiver.

RDMA Read operations may have been partially completed; be-
cause of this, the contents of the memory locations pointed to by
the data segments of their Work Requests are indeterminate.

RDMA Write operations may have been partially completed; be-
cause of this, the contents of the memory locations pointed to by
the remote address of their Work Requests are indeterminate. If
the operation specified Immediate Data, a completion queue entry
may or may not have been generated on the receiver.

Atomic operations may, or may not have been attempted; because
of this, the contents of the memory locations pointed to by the re-
mote address of the Work Request may have a value consistent
with either event. At the local node, the contents of the memory lo-
cations pointed to by the data segments of their Work Requests
are indeterminate.

C10-40: Work Requests on the Send Queue, subsequent to that which
caused the Completion Error leading to the transition into the SQEr state,
must return the Flush Error completion status through the Completion
Queue.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 460 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Depending on the Service Type of the QP, some of the subse-
quent WRs may have been in progress when the error occurred.
This may have affected state on the remote node. The possible
effects depend on the WR type as noted above.

• The Modify Queue Pair Verb can be used to transition from the
SQEr state to the RTS state.

• The Modify Queue Pair Verb can be used to transition from the
SQEr state to the Reset or the Error state.

• A Receive Queue Error or an Asynchronous Error will result in a
transition to the Error State.

• Transition out of the SQEr state can be effected by calling the De-
stroy Queue Pair Verb, thus exiting the state diagram.

10.3.1.7 ERROR

The characteristics for the Error state are:

• Normal processing on the QP/EE is stopped.

C10-41: A Work Request which caused the Completion Error leading to
the transition into the Error state must return the correct Completion Error
Code for the error through the Completion Queue.

• This WR may have been partially or fully executed, and thus may
have affected the state of the receiver, as follows:

Send operations may have been partially or fully completed; be-
cause of this, a completion queue entry may or may not have been
generated on the receiver.

RDMA Read operations may have been partially completed; be-
cause of this, the contents of the memory locations pointed to by
the data segments of their Work Requests are indeterminate.

RDMA Write operations may have been partially completed; be-
cause of this, the contents of the memory locations pointed to by
the remote address of their Work Requests are indeterminate. If
the operation specified Immediate Data, a completion queue entry
may or may not have been generated on the receiver.

Atomic operations may, or may not have been attempted; because
of this, the contents of the memory locations pointed to by the re-
mote address of the Work Request may have a value consistent
with either event. At the local node, the contents of the memory lo-
cations pointed to by the data segments of their Work Requests
are indeterminate.

C10-41.2.1: Incoming messages which target a QP in the Error state must
be silently dropped.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 461 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-42: Work Requests subsequent to that which caused the Completion
Error leading to the transition into the Error state, including those sub-
mitted after the transition, must return the Flush Error completion status
through the Completion Queue.

• Depending on the Service Type of the QP, some of the subse-
quent WRs may have been in progress when the error occurred.
This may have affected state on the remote node. The possible
effects depend on the WR type as noted above.

• The Modify Queue Pair or Modify EE Context Attributes Verbs,
specifying a transition to the Reset state, are the only means to
effect a transition from the Error state to the Reset state.

• Transition out of the Error state can also be effected by calling the
Destroy Queue Pair or Destroy EE Context Verbs, thus exiting
the state diagram.

For EEs:

• If a Work Request is in process when the error occurred, the
Work Request is completed with a completion error.

o10-21: If the CI supports RD Service, and an RD Work Request uses an
EE context which is in the error state, that WR must be completed in error.
This shall place the Sending QP into the SQEr state.

• Errors that occur on an EE may not have a corresponding effect
on the QP state.

For QPs:

• For Affiliated Asynchronous Errors, it may not be possible to con-
tinue to process Work Requests. In this case, outstanding Work
Requests will not be completed.

• When handling the error notification, it is the responsibility of the
Consumer to ensure that all error processing has completed prior
to forcing the QP to reset.

10.4 AUTOMATIC PATH MIGRATION

Automatic Path Migration is an optional facility that enables connection re-
covery in the case of failures. Automatic path migration is available for Re-
liable and Unreliable Connected QP Service Types and Reliable
Datagram EE Contexts.

This section explains Automatic Path Migration from the software trans-
port perspective. A hardware-centric description is contained in the
Channel Adapter section, 17.2.8 Automatic Path Migration on page 1031.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 462 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Modify Queue Pair and Modify EE Context Attributes Verbs provide
the basic capability to load an alternate path and to transition the path mi-
gration states defined in 10.4.1 Path Migration State Diagram.

Automatic path migration is enabled or re-enabled by loading an alternate
path on the pair of connected QP or EE Contexts and setting the path mi-
gration state to Rearm. The Communication Manager defines protocols
and mechanisms, which may be used to enable or re-enable Automatic
Path Migration on both the local and the remote, connected QP or EE
Context. The Communication Manager support for Automatic Path Migra-
tion is described in 12.6 Communication Management Messages on page
655 and in 12.8 Alternate Path Management on page 680.

Once Automatic Path Migration has been enabled on both ends of a con-
nected QP/EE, it is possible for the migration to be initiated by transi-
tioning the QP/EE path migration state from Armed to Migrated either from
above or below the Verbs interface. The policy used by the Verbs Con-
sumer or the CI to determine when a path migration should be attempted
is outside the scope of the architecture.

10.4.1 PATH MIGRATION STATE DIAGRAM

o10-22: If Automatic Path Migration is supported, the CI shall implement
the Migrated, Rearm, and Armed path migration states for each Reliable
Connected and Unreliable Connected queue pair. Transitions between
those path migration states must be restricted to those shown in Figure
125.

o10-23: If Automatic Path Migration and Reliable Datagram service are
supported, the CI shall implement the Migrated, Rearm, and Armed path
migration states for each EE Context. Transitions between those path mi-
gration states must be restricted to those shown in Figure 125.

The path migration states apply to a QP or EE Context, but are only tan-
gentially related to the QP/EE Context states described in 10.3.1 Queue
Pair and EE Context States.

o10-24: If Automatic Path Migration is supported, and the Verbs Con-
sumer attempts to change the path migration state from Migrated to
Rearm during a transition to a QP/EE state other than RTS, an immediate
error shall be returned.

o10-25: If Automatic Path Migration is supported, and the Verbs Con-
sumer attempts to change the path migration state from Armed to Mi-
grated during a transition from a QP/EE state other than RTS or SQD, an
immediate error shall be returned.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 463 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The relationship of the path migration states to the communication estab-
lishment process is defined in 12.9.7 State and Transition Definitions on
page 689.

It is permissible to replace the existing alternate path with a new alternate
path while the path migration state is Armed (Automatic Path Migration is
enabled). The mechanism to load a new alternate path is the same as the
one used to reload an alternate path after a path migration has occurred
as described in 12.8: Alternate Path Management.

The path migration states are shown in Figure 125.

Figure 125 Path Migration State Diagram

10.4.1.1 MIGRATED

o10-26: If Automatic Path Migration is supported, the initial path migration
state for a QP/EE shall be Migrated.

The Automatic Path Migration capability is suppressed while the state is
set to Migrated.

The Verbs Consumer should leave the path migration state for the QP/EE
to Migrated under the following circumstances:

Armed

Rearm

Migrated

Alternate path
loaded

Create
QP/EE

Modify
QP/EE

CI causes
transition on

local and
remote nodes

Modify
QP/EE

CI causes
transition

Ready for
migration

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 464 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The local CI does not support Automatic Path Migration. If the
Verbs Consumer attempts to change the path migration state us-
ing the Modify Queue Pair or Modify EE Context Attributes Verbs,
an immediate error will be returned.

• The Verbs Consumer does not wish to enable Automatic Path Mi-
gration on the QP/EE pair.

• The remote CI does not support or desire Automatic Path Migra-
tion. If the Verbs Consumer changes the path migration state to
Armed using the Modify Queue Pair or Modify EE Context At-
tributes Verbs, the path migration state for the QP/EE is changed
accordingly and no errors are generated. The local CI shall not
transition the QP/EE from Rearm to Armed. Handling this condi-
tion is outside of the scope of the architecture.

The Verbs Consumer or the CI may set the path migration state to Mi-
grated when the current path migration state is Armed and the QP/EE
state is SQD or RTS. The decision of when to migrate is a matter of policy,
which is outside the scope of the architecture.

o10-27: If Automatic Path Migration is supported, a transition from Armed
to Migrated shall result in a migration to the alternate path on the local
QP/EE. The CI shall raise the Path Migrated affiliated asynchronous
event and shall send the next data packet using this QP/EE on the new
path with a migration request.

The remote, connected QP/EE validates this request as defined in section
17.2.8 Automatic Path Migration on page 1031.

o10-28: If Automatic Path Migration is supported, upon successfully vali-
dating an incoming packet’s migration request, the CI shall set the path
migration state for that QP/EE to Migrated, shall migrate to the alternate
path, and shall also raise the Path Migrated affiliated asynchronous event
for that QP/EE.

o10-29: If Automatic Path Migration is supported, upon failing to validate
an incoming packet’s migration request, the CI shall not modify the path
migration state for that QP/EE, shall not migrate to the alternate path, but
shall raise the Path Migration Request Failed affiliated asynchronous
error for that QP/EE.

The Verbs Consumer should set the path migration state to Migrated only
when the current path migration state is Armed and the QP/EE state is
SQD or RTS. The Modify Queue Pair or Modify EE Context Attributes
Verbs shall generate an immediate error when the Verbs Consumer at-
tempts to set the path migration state to Migrated under any other condi-
tion.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 465 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-30: If Automatic Path Migration is supported, the CI shall change the
local path migration state to Migrated only when the current state is Armed
and the QP/EE state is SQD or RTS.

10.4.1.2 REARM

Only the Verbs Consumer is allowed to initiate the transition from Migrated
to Rearm using the Modify Queue Pair or Modify EE Context Attributes
Verbs.

o10-31: If Automatic Path Migration is supported, the CI shall not change
the local path migration state from Migrated to Rearm except at the re-
quest of the Verbs Consumer.

The Verbs Consumer should load or reload the alternate path and ensure
the remote node has accepted the alternate path prior to transitioning the
state from Migrated to Rearm. A transition to the Rearm state indicates to
the CI that the Verbs Consumer believes this QP/EE is ready to be transi-
tioned to the Armed state. An invalid or stale alternate path will not gen-
erate any errors when the Verbs Consumer transitions the state to Rearm.
Handling this condition is outside the scope of the architecture.

o10-32: If Automatic Path Migration is supported, a transition to the
Rearm state shall cause the CI to attempt to coordinate with the remote,
connected QP/EE to move both the local and the remote connected
QP/EE into the Armed state in a lock-step manner.

The details regarding how the CIs perform this transition are contained in
17.2.8 Automatic Path Migration on page 1031.

The QP/EEs at both ends of the connection must be in the Rearm state
before the CI can transition them to the Armed state.

10.4.1.3 ARMED

The Armed state indicates that the CIs associated with the connected
QP/EEs on both the local and the remote node are ready to perform a path
migration.

10.5 MULTICAST SERVICES

Multicast is the ability to send a message to a single multicast address and
have it delivered to multiple queue pairs which may be on multiple end-
ports. A multicast address is defined by a MGID and a MLID. Multiple
MGIDs can be associated with a single MLID. However, a given MGID
cannot be associated with more than one MLID on the same subnet.
There are two types of multicast specified by IBA: IBA unreliable multi-
cast, and raw packet multicast.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 466 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IBA Unreliable Multicast is an optional feature for HCAs. An HCA can be
queried to determine the number of multicast groups supported by that
HCA. The number of multicast groups is set to zero if the HCA does not
support IBA unreliable multicast.

o10-33: If the CI supports IBA Unreliable Multicast, it must support at
least one multicast group.

Raw packet multicast is an optional feature for HCAs. An HCA can be
queried to determine whether it supports raw packet multicast.

10.5.1 MULTICAST GROUPS AND MULTICAST MESSAGE RECEPTION

A multicast group is a collection of endnodes which receive multicast mes-
sages sent to a single multicast address. Multicast groups are a fabric
management responsibility and are targeted through the use of a multi-
cast address.

10.5.1.1 IBA UNRELIABLE MULTICAST RECEPTION

o10-34: If the CI supports IBA Unreliable Multicast, a UD QP must be at-
tached to a multicast group in order to receive IBA Multicast messages.

A QP is attached to or detached from a multicast group through the Verbs.
The only function of the Attach QP to Multicast Verb is to assign a receive
QP to the multicast group. If the HCA does not have the ability to allow the
QP to attach to the multicast group, it shall return an immediate error indi-
cating that there are insufficient resources.

One or more QPs, up to the maximum supported by the HCA, can be at-
tached to each multicast group. In order to receive packets sent to the
Multicast group, every QP attached to a particular multicast group should
be a member of the same partition as the partition of the incoming packet.

Only Unreliable Datagram QPs can be used for IBA unreliable multicast.
Therefore, all Unreliable Datagram semantics also apply to IBA unreliable
multicast.

When a valid multicast packet is received successfully, the CI delivers the
multicast packet to each UD QP that is associated with the multicast ad-
dress as defined by the MGID and MLID of the incoming packet.

Note, the incoming multicast packet is received on all the UD QPs asso-
ciated with the multicast address whether some of those UD QPs share
an SRQ or not. That is, if a multicast packet arrives then all UD QPs as-
sociated with the packet’s multicast address must receive the incoming
packet, even if the UD QPs share the same SRQ.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 467 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For multiple UD QPs that attach to the same SRQ and have the same mul-
ticast address, when a multicast packet arrives that references the multi-
cast UD QPs’ multicast address, for each UD QP that is associated with
the multicast address on the port the multicast packet was received, the
CI must:

• retrieve a WQE from the SRQ; note, if a WQE is not available, then
the incoming message will be dropped;

• receive (or copy) the incoming multicast packet into the UD QP’s Re-
ceive Queue, and

• generate a Work Completion on the CQ associated with the UD QP.

10.5.1.2 RAW PACKET MULTICAST RECEPTION

Raw packet QPs are not attached to multicast groups in order to receive
raw packet multicast messages. If an HCA supports only one raw IPv6 QP
per port, all raw IPv6 multicast messages received on a port are delivered
to that port’s raw IPv6 QP; if multiple raw IPv6 QPs are supported, raw
IPv6 multicast messages are delivered to a subset of those QPs based on
an implementation-defined policy which is outside the scope of IBA. Sim-
ilarly, if an HCA supports only one raw ethertype QP per port, all raw
ethertype multicast messages received on a port are delivered to that
port’s raw ethertype QP; otherwise, the distribution of those messages is
again implementation-defined.

Only raw packet QPs can be used for raw packet multicast. Therefore, all
raw semantics also apply to raw packet multicast.

10.5.2 MULTICAST WORK REQUESTS

10.5.2.1 IBA UNRELIABLE MULTICAST WORK REQUESTS

IBA unreliable multicast Work Requests must be submitted through the
Post Send Request Verb to a single destination multicast address. This
destination multicast address is specified with an Address Handle as part
of the Work Request. Any Unreliable Datagram QP can be used to initiate
an IBA unreliable multicast Work Request. A QP is not required to be at-
tached to a Multicast Group in order to initiate an IBA Unreliable Multicast
Work Request.

Send is the only operation allowed on an Unreliable Datagram Send Work
Queue. Atomic and RDMA operations are not allowed. Unreliable Data-
gram messages should be no larger than the PMTU between the re-
quester and the responder. UD restrictions apply to IBA unreliable
multicast.

10.5.2.2 RAW PACKET MULTICAST WORK REQUESTS

Raw packet Multicast Work Requests must be submitted through the Post
Send Request Verb to a single destination multicast address. This desti-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 468 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

nation multicast address is specified as a modifier to the Post Send Re-
quest Verb. Any raw packet QP can be used to initiate a raw packet
multicast Work Request.

Send is the only operation allowed on a raw packet Send Work Queue.
Atomic and RDMA operations are not allowed. Raw packet messages
should be no larger than the PMTU between the requester and the re-
sponder. Raw restrictions apply to Raw packet multicast.

10.5.3 MULTICAST DESTINATION ESTABLISHMENT

A multicast group is defined by a MGID.

o10-35: If the CI supports IBA Unreliable Multicast, then the CI shall drop
all IBA Unreliable Multicast packets if the destination QP number is not
0xFFFFFF.

The special multicast QP number does not have to be the QP number
used by the destination to receive a multicast.

C10-43: The method for preparing a multicast address as a destination
shall be the same as any other address specified in a Work Request on
an Unreliable Datagram or Raw Packet Service Type.

Creating & Destroying multicast groups are fabric management issues.
Permitting nodes to join and leave a multicast group is a fabric manage-
ment issue. The MTU of a multicast group is the MTU specified when the
multicast group is created and is a parameter in the multicast MAD.

o10-36: If the CI supports IBA Unreliable Multicast, then Multicast loop-
back, which is sending an IBA unreliable multicast message to a multicast
group to which QPs within the sending node are attached, must be sup-
ported by the CI.

As with multicast reception, loopback for raw packet multicast depends on
the number of raw packet queue pairs per port which an HCA supports. If
an HCA supports only one raw queue pair of each type per port, then no
loopback is performed; multicast messages sent on such a QP are not re-
ceived on that same QP. If an HCA supports multiple raw QPs of each
type per port, then multicast messages sent on one may or may not be
received on another; the details of this are an implementation-defined
policy which is outside the scope of IBA.

10.6 MEMORY MANAGEMENT

10.6.1 OVERVIEW

The InfiniBandTM Architecture provides sophisticated high performance
operations like remote DMA and user mode IO. To achieve this goal, The

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 469 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

InfiniBandTM Architecture has to specify appropriate memory manage-
ment mechanisms. The overriding goals are performance, robustness
and simplicity.

10.6.2 MEMORY REGISTRATION

An HCA, like a typical I/O bus host bridge, accesses Host System memory
using what this specification refers to as physical memory addresses14.
Physical address space for Host System memory is typically organized
into pages of fixed or varying sizes, and a given logical data buffer that
spans page boundaries usually has a non-contiguous physical address
range.

Memory Registration provides mechanisms that allow Consumers to de-
scribe a set of virtually contiguous memory locations or a set of physically
contiguous memory locations to the Channel Interface in order to allow
the HCA to access them as a virtually contiguous buffer using Virtual Ad-
dresses.

All Consumers must explicitly register the memory locations containing
data buffers before the HCA can access them.

C10-44: This compliance statement has been obsoleted.

C10-44.2.1: If the CI doesn’t support the Base Memory Management Ex-
tensions defined in this specification and the CI processes a WR or in-
coming RDMA or Atomic request that attempts to access memory
locations that have not been registered, the CI must not perform the ac-
cess, and the CI must return an appropriate error.

o10-36.2.1: If the CI supports the Base Memory Management Extensions
defined in this specification and the CI:

• processes a WR that attempts to access memory locations that use
the Reserved L_Key, but the QP is prohibited from using the Re-
served L_Key, then the CI must not perform the access, and the CI
must return an appropriate error;

• processes a Post Send Queue WR that attempts to register memory
locations through a Fast Register Physical MR, but the QP is prohib-
ited from using Fast Register Physical MRs, then the CI must not
perform the access, and the CI must return an appropriate error;

14. On some Host Systems, such “physical addresses” are actually mapped by
the Host System memory controller to provide features such as memory
interleaving or memory sparing, but this specification still refers to them as
physical addresses.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 470 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• processes an incoming Send, RDMA, or Atomic request that at-
tempts to access memory locations that do not have a valid registra-
tion (i.e is in the Invalid or Free State), then the CI must not perform
the access, and the CI must return an appropriate error.

Registration may fail due to unavailability of the necessary Channel Inter-
face resources. No memory is registered in this case.

C10-45: Registration must either fully succeed or fail in an atomic
fashion.

10.6.2.1 MEMORY REGIONS

A set of memory locations that have been registered are referred to as a
Memory Region.

The products of a memory registration operation are:

• MemoryRegionHandle
The Memory Registration Verbs produce a MemoryRegionHandle
that is used to identify a specific Memory Region to the Memory
Management Verbs.

• L_Key
The Memory Registration Verbs produce an L_Key. The L_Key,
along with a Virtual Address that is within the bounds of the region
is used in a Work Requests’s data segment to identify a memory
location within a specific Memory Region to the CI.

• R_Key
The Memory Registration Verbs produce, when requested, an
R_Key. The R_Key, along with a Virtual Address that is within the
bounds of the region is used in RDMA and Atomic operations to
identify a memory location within a specific Memory Region to the
CI.

• Virtual Address (VA) and Zero Based Virtual Address (ZBVA)
The Memory Registration Verbs are supplied (or in some cases
produce) either a Virtual Address or a Zero Based Virtual Address.
Both correspond to the first memory location in the set of memory
locations supplied to the Memory Registration Verbs. However, for
a Virtual Address, the first memory location of a Memory Region
must have the Virtual Address modulo the buffer size of the first
physical buffer equal the first byte offset. For a Zero Based Virtual
Address, the first memory location of a MR has a Virtual Address
of zero.

When registering a Memory Region, the Consumer specifies the max-
imum number of memory locations that are to be reserved for future use
in Memory Registrations or in Fast Register Physical MRs. For a more de-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 471 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tailed description of the attributes associated with the Memory Registra-
tion, refer to the various Memory Registration Verbs in Chapter 11.2.8
Memory Management on page 592.

C10-45.2.1: The CI must allow memory registrations and Memory Win-
dows to use Virtual Addresses.

o10-36.2.2: If the CI supports Zero Based Virtual Addresses (Zero Based
VAs), the CI must:

• allow VA based Memory Windows to be bound to VA based Memory
Regions,

• allow Zero Based VA Memory Windows to be bound to VA based
Memory Regions, and

• return an error if the Consumer attempts to bind a Memory Window to
a Zero Based VA Memory Region.

10.6.2.2 ALLOCATION OF MEMORY REGISTRATION RESOURCES

Allocation of an L_Key allows a Privileged Consumer to reserve, with the
CI, memory registration resources for use in future Memory Region Reg-
istrations. L_Key allocation is performed through the Allocate L_Key verb.

The products of the Allocate L_Key are:

• MemoryRegionHandle

A MemoryRegionHandle that is used to identify a specific L_Key
to the Memory Management Verbs.

• L_Key

The Allocate L_Key Verb produces an L_Key. The L_Key is not as-
sociated with a Memory Region until it is registered through: Re-
register Memory Region, Reregister Physical Memory Region, or
Fast Register Physical MR.

• R_Key

The Allocate L_Key Verb produces, when requested, an R_Key.
The R_Key is not associated with a Memory Region until it is reg-
istered through: Reregister Memory Region, Reregister Physical
Memory Region, or Fast Register Physical MR.

When Allocating Memory Registration resources, the Consumer specifies
the maximum number of Physical Buffer List entries (see section
10.6.4.4.1 Physical Buffer lists on page 484) that are to be reserved for
future use in Memory Registrations. For a more detailed description of the
attributes associated with the Allocate L_Key Verb see section 11.2.8.1
Allocate L_Key on page 593.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 472 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.6.2.3 MEMORY REGION TYPES

There are two types of Memory Regions: Non-Shared Memory Regions
and Shared Memory Regions.

• Non-Shared Memory Region

• A Non-Shared Memory Region has a valid Memory Registration
that is associated with a set of physical memory locations which
are not shared. A Non-Shared Memory Region is created through
the following verbs: Register Memory Region, Register Physical
Memory Region, and Fast Register Physical MR. A Non-Shared
Memory Region is also created through the Reregister Memory
Region or Reregister Physical Memory Region if the translations
are changed.

• Shared Memory Region

• A Shared Memory Region has a valid Memory Registration that is
associated with a set of physical memory locations which are
shared. Upon successful return from the Register Shared Memo-
ry Region verb: the output Memory Region is a Shared Memory
Region and the input Memory Region becomes a Shared Memo-
ry Region. A Shared Memory Region is converted into a Non-
Shared Memory Region through the Reregister Memory Region
and Reregister Physical Memory Region if the translations are
changed. Changing a Shared MR to a Non-Shared MR does not
affect the state of the other MRs that are sharing the PBL.

A Memory Region is used to refer to both a Non-Shared Memory Region
and a Shared Memory Region.

Every Memory Region L_Key or R_Key has three possible states:

• Invalid State - No resources have been allocated for the L_Key or
R_Key. An L_Key or R_Key in the Invalid State cannot be used to ac-
cess host memory. An L_Key or R_Key that is in the Invalid State
cannot be invalidated through a Send with Invalidate.

• Free State - A Physical Buffer List and PD have been associated with
the L_Key or R_Key, but the L_Key or R_Key is not associated with a
Memory Region. An L_Key or R_Key in the Free State cannot be
used to access host memory. An L_Key or R_Key that is in the Free
State can be invalidated through a Send with Invalidate.

• Valid State - The L_Key or R_Key is associated with a Memory Re-
gion. An L_Key or R_Key in the Valid State can be used to access
host memory. An L_Key or R_Key that is in the Valid State can be in-
validated through a Send with Invalidate.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 473 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes the states of Memory Regions L_Keys
and R_Keys and the operations allowed on each state:

The following table summarizes Memory Regions L_Keys and R_Keys
state transitions through the verbs and remote operations (non verbs op-
erations are marked in italic):

Note, when a Memory Region is successfully invalidated through either a
Local Invalidate WR or an incoming Send with Invalidate Operation (Re-
move Invalidate), both the L_Key and R_Key, if any, associated with the

Table 66 Memory Region States Summary

Property / Operation
Allowed Invalid Free Valid

Resources Allocated No Yes Yes

Zero length access Allowed Allowed Allowed

Host Memory Access Prohibited Prohibited Allowed

Remote Invalidate Prohibited Allowed Allowed

Fast Register Prohibited Allowed Prohibited

Local Invalidate Prohibited Allowed Allowed

Table 67 Memory Region State Transitionsa

a. Note: The MR returned as an output from the Reregister MR or Reregister PMR may
either be the existing MR or a new MR. If the existing MR is returned, then it is placed in
the Valid state. If a new MR is returned, then the existing MR is placed in the Invalid state
and the new MR is in the Valid state. The table above refers to the existing MR state
transitions when the MR is reused on a Reregister MR or Reregister PMR.

State Entered Through Exited Through

Invalid Initial State
Deregister MR

Allocate L_Key
Register MR
Register PMR
Register Shared MR

Free Allocate L_Key
Local Invalidate
Incoming Send with Invalidate

Deregister MR
Reregister MR
Reregister PMR
Fast Register

Valid Register MR
Reregister MR
Register PMR
Reregister PMR
Fast Register
Register Shared MR

Deregister MR
Local Invalidate
Incoming Send with Invalidate

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 474 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Memory Region are placed in the Free State. See section 10.6.5 for a de-
scription of Invalidated L_Key.

o10-36.2.3: If the CI supports the Base Memory Management Extensions,
the CI must allow a Non-Shared Memory Region to be used as an input
modifier for the following verbs: Reregister Memory Region, Query
Memory Region, Reregister Physical Memory Region, Register Shared
Memory Region, Bind Memory Window, Post Send Queue Bind Work Re-
quest, Fast Register Physical MR, and Deregister MR.

o10-36.2.4: If the CI supports the Base Memory Management Extensions,
the CI must allow a Shared Memory Region to be used as an input mod-
ifier for the following verbs: Reregister Memory Region, Query Memory
Region, Reregister Physical Memory Region, Register Shared Memory
Region, Bind Memory Window, Post Send Queue Bind WR, and Dereg-
ister MR.

o10-36.2.5: If the CI supports the Base Memory Management Extensions,
the CI must return an error if a Shared Memory Region is used as an input
modifier for the Fast Register Physical MR or Local Invalidate.

10.6.3 ACCESS TO REGISTERED MEMORY

C10-46: The CI shall support the following access rights: Local Read,
Local Write, Remote Read, and Remote Write.

o10-37: If the CI supports Atomic operations, the CI shall support the Re-
mote Atomic access right.

10.6.3.1 LOCAL ACCESS TO REGISTERED MEMORY

A Memory Region is always accessible by the local HCA (i.e. a local HCA
is an HCA in the same Host system as the Consumer) it was registered
with, the type of access allowed depends on the Access Rights assigned
to that Memory Region.

C10-47: The CI shall automatically include Local Read in every Memory
Region’s Access Rights.

The Consumer may request that Local Write be assigned to a Memory
Region’s Access Rights. If desired, policies related to preventing the as-
signment of Local Write to a Memory Region can be implemented by the
Consumer.

10.6.3.2 REMOTE ACCESS TO REGISTERED MEMORY

The Consumer may, in addition to the Local access rights, assign Remote
access rights to a Memory Region. Remote access rights are Remote
Read, Remote Write and Remote Atomic. Remote access rights are indi-
vidually selectable and when selected, allow one or more specific opera-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 475 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tion types to access the Memory Region. The Consumer is not allowed to
assign Remote Write or Remote Atomic to a Memory Region that has not
been assigned Local Write.

C10-48: If a Memory Registration specifies Remote Write or Remote
Atomic without specifying Local Write, the CI must return an Immediate
Error.

10.6.3.3 LOCAL ACCESS KEYS

When resources are allocated to hold a set of memory locations an object
called an L_Key is created by the CI and returned to the Consumer. The
L_Key is associated with the reserved resources that will be used to hold
a set of memory locations. It is considered to be a free L_Key, because it
is not associated with any Memory Region. The L_Key returned from the
Allocate L_Key, can be used as an input modifier for a Fast Register PMR
to associate the L_Key with a Memory Region.

An L_Key is also created through the following Memory Registration
verbs: Register Memory Region, Reregister Memory Region, Register
Physical Memory Region, Reregister Physical Memory Region, and Reg-
ister Shared Memory Region.

When a set of memory locations are registered, the L_Key used in the reg-
istration is associated with the set of registered memory locations. An
L_Key that is associated with a specific set of memory locations is consid-
ered to be in the valid state. The Fast Register Physical MR does not
create an L_Key, it simply associates an existing free L_Key to a set of
memory locations.

The L_Key returned from a Memory Registration can be used as an input
modifier for a Reregister Memory Region, Reregister Physical Memory
Region, Post Send Local Invalidate WR, Bind Memory Window, Post
Send Queue Bind Work Request, Shared Memory Region, and Fast Reg-
ister Physical MR.

o10-37.2.1: If the CI supports the Base Memory Management Extensions
defined in this specification, the L_Key format must consist of:

• 24 bit index in the most significant bits of the L_Key, and

• 8 bit key in the least significant bits of the L_Key.

o10-37.2.2: If the CI supports the Base Memory Management Extensions
defined in this specification, then when an L_Key is created:

• through a successful Allocate L_Key verb invocation, the CI must let
the Consumer own the key portion of the returned L_Key;

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 476 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• through a successful Register Memory Region, Reregister Memory
Region, or Register Shared Memory Region verb invocation, the CI
must not let the Consumer own the key portion of the returned
L_Key;

• through a successful Register Physical Memory Region or Reregister
Physical Memory Region verb invocation, the CI must let the Con-
sumer choose between having the key portion of the L_Key owned
by the Consumer or owned by the CI.

Note, the index portion of the L_Key is always owned by the CI.

Memory Regions are described to the CI for local access by either:

• a combination of a Virtual Address within that Memory Region and
the L_Key that was returned to the Consumer when the region was
registered; or

• If the CI supports the ZBVA Extension defined in this specification, a
combination of an offset within that Memory Region and the L_Key
that was returned to the Consumer when the region was registered.

10.6.3.4 REMOTE ACCESS KEYS

When resources are allocated to hold a set of memory locations and the
Consumer selected Remote Access Enablement, an object called an
R_Key is created by the CI and returned to the Consumer. The R_Key is
associated with the reserved resources that will be used to hold a set of
memory locations. It is considered to be a free R_Key, because it is not
associated with any Memory Region. The R_Key returned from the Allo-
cate L_Key, can be used as an input modifier for a Fast Register PMR to
associate the R_Key with a Memory Region.

A Memory Region R_Key is also created through the following Memory
Registration verbs: Register Memory Region, Reregister Memory Region,
Register Physical Memory Region, Reregister Physical Memory Region,
and Register Shared Memory Region.

When a set of memory locations are registered with Remote Access
Rights, the R_Key used in the registration is associated with the set of reg-
istered memory locations. An R_Key that is associated with a specific set
of memory locations is considered to be in the valid state. The Fast Reg-
ister Physical MR does not create an R_Key, it simply associates an ex-
isting free R_Key to a set of memory locations.

The R_Key returned from a local Memory Registration can be used as an
input modifier for a Reregister Physical Memory Region, Post Send Local
Invalidate WR, and Fast Register Physical MR. The local Consumer can
use an R_Key that was previously exposed by a remote Consumer as an
input modifier of a Post Send with Local Invalidate WR.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 477 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.3: If the CI supports the Base Memory Management Extensions
defined in this specification, the R_Key format must consist of:

• 24 bit index in the most significant bits of the R_Key, and

• 8 bit key in the least significant bits of the R_Key.

o10-37.2.4: If the CI supports the Base Memory Management Extensions
defined in this specification, then when an R_Key, that is used in Memory
Registration verbs, is created:

• through a successful Allocate L_Key verb invocation, the CI must let
the Consumer own the key portion of the returned R_Key;

• through a successful Register Memory Region, Reregister Memory
Region, or Register Shared Memory Region verb invocation, the CI
must not let the Consumer own the key portion of the returned
R_Key;

• through a successful Register Physical Memory Region or Reregister
Physical Memory Region verb invocation, the CI must let the Con-
sumer choose between having the key portion of the R_Key owned
by the Consumer or owned by the CI.

Note, the index portion of the R_Key is always owned by the CI.

Note: For an L_Key that has an associated R_Key, if the R_Key is Con-
sumer owned, then the key portion of the R_Key must equal the key por-
tion of the L_Key. Additionally, either both the R_Key and L_Key are
owned by the Consumer; or both are owned by the CI. Ownership cannot
be intermixed.

Memory Regions are described to the CI for remote access by either:

• a combination of a Virtual Address within that Memory Region and
the R_Key that was returned to the Consumer when the region was
registered; or

• if the CI supports the ZBVA Extension defined in this specification, a
combination of an offset within that Memory Region and the R_Key
that was returned to the Consumer when the region was registered.

10.6.3.5 PROTECTION DOMAINS

A Protection Domain (PD) associates Memory Regions and Queue Pairs.
Protection Domains are specific to each HCA. Each Memory Region must
be associated with a single Protection Domain. Multiple Memory Regions
may be associated with the same PD. Each Queue Pair in an HCA must
be associated with a single Protection Domain. Multiple Queue Pairs may
be associated with the same PD. Access to Memory Regions described
in Work Requests and Remote Operation requests are allowed only when
the Protection Domain of the Memory Region and of the Queue Pair that

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 478 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

is processing the request are identical. The setting of protection domains
is expected to be controlled by a Privileged Consumer.

10.6.3.6 SCOPE OF ACCESS

Memory is registered for use on a specific HCA. L_Keys and R_Keys are
specific to an HCA and do not grant access to the Memory Region by
other local HCAs. The CI is not required to enforce that L_Keys or R_Keys
associated with one HCA will always result in an error if used with a dif-
ferent HCA.

10.6.3.7 FAST REGISTRATION

When a QP is created, a Privileged Consumer can request that Fast Reg-
istration be enabled on the QP. If Fast Registration is enabled, the CI must
allow the Consumer to perform Fast Registrations (i.e. Fast Register
Physical MRs). If the QP does not have Fast Registration enabled and the
Consumer attempts to perform a Fast Registration, the CI must return a
Memory Management Operation Error.

A Fast Registration associates a free L_Key with a set of memory loca-
tions (see section 10.6.4.4.1 Physical Buffer lists on page 484 for a de-
scription of how Physical Buffers Lists are used to reference host memory
locations). If the free L_Key has an accompanying free R_Key, and the
Consumer requests Remote Access Rights, a Fast Registration associ-
ates the R_Key with a set of memory locations.

o10-37.2.5: For an HCA that supports the Base Memory Management Ex-
tensions, the CI must return an error if:

• the set of memory locations passed in through the Fast Registration
are not less than or equal to the resources reserved for memory loca-
tions by the verb that created the L_Key used in the Fast Registra-
tion;

• the PD associated with the L_Key passed in through the Fast Regis-
tration is not the same as the PD associated with the QP performing
the Fast Registration;

• QP performing the Fast Registration does not have Fast Registration
enabled;

• the L_Key passed in through the Fast Registration is in the Invalid or
Valid State; or

• remote access is requested by the Consumer, but the R_Key is not
enabled.

o10-37.2.6: If the HCA supports the Base Memory Management Exten-
sions, the Fast Registration must take place before any subsequent Work
Request on the same Send Queue is started.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 479 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note, the Consumer may rely on having the Fast Registration complete
before the HCA begins processing any subsequent WQEs. After suc-
cessful posting, if the Fast Registration fails, then the QP goes to the Error
state and all subsequent WQEs are flushed.

When the Fast Registration completes successfully:

• the L_Key is considered to be in the Valid State, because the Memory
Registration was successfully applied to the Free State L_Key; and

• if the Fast Registration:
• requested an R_Key and the Free State L_Key has an accompa-

nying Free State R_Key, the R_Key is considered to be in the Val-
id State, because the Memory Registration was successfully
applied to the Free State R_Key.

• did not request an R_Key, but an R_Key is associated with the
L_Key (e.g. the Allocate L_Key verb returned an R_Key), then a
remote node will not be allowed to access the Memory Region
through the R_Key.

When the Fast Registration does not complete successfully, the state of
the L_Key, and it’s associated R_Key, is unaffected.

10.6.3.8 MULTIPLE REGISTRATION OF MEMORY REGIONS

The same set of memory locations may be registered multiple times, re-
sulting in multiple MemoryRegionHandles, L_Keys and R_Keys. Each
Registration is considered a separate and distinct Memory Region and
may be independently associated with a Protection Domain.

C10-49: The CI shall support independent registration of partially or com-
pletely overlapping sets of memory locations.

For cases where it’s desired to have multiple registrations of a specific set
of memory locations, provision for optimizing the use of Channel Interface
resources is provided. See Section 11.2.8.8 Register Shared Memory Re-
gion on page 605.

10.6.4 ADDRESSING MEMORY

10.6.4.1 VIRTUAL ADDRESSES (“POINTERS”)

Some processor architectures support global virtual address spaces of 80
bits or more. However, the virtual addresses (“pointers”) most applications
can readily manipulate and supply as parameters are typically either 32
bits or 64 bits, and actually serve as offsets into the handful of processor
memory “segments” associated with the process. Thus, the virtual ad-
dress parameters passed in by Consumers at the Verbs layer must each
be interpreted in the proper context of their associated process. The

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 480 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

L_Key or R_Key that accompanies each virtual address parameter helps
the CI identify the appropriate context.

The virtual addresses (“pointers”) that Consumers manipulate and pass
as parameters are referred to simply as Virtual Addresses in this specifi-
cation. The size of the Virtual Addresses used to specify a memory region
to be registered and for local memory locations in Work Requests is im-
plementation dependent. The size of Virtual Addresses used to specify re-
mote memory locations in Work Requests is 64 bits.

10.6.4.2 VIRTUAL TO PHYSICAL TRANSLATIONS

Figure 126 Registered Virtual Buffer to Physical Page Relationship

10.6.4.3 REGISTRATION OF VIRTUALLY ADDRESSED REGIONS

A virtually contiguous set of memory locations are specified by a Virtual
Address that points to the first byte of the set and the length of the set in
bytes. Figure 126 illustrates an example of a virtually contiguous set of

Virtual Buffer Offset = 9999
Physical Address = 0x8B90F

Physical Memory Pages

4K Page,
Physical Base address = 0x74000

4K Page,
Physical Base address = 0x61000

4K Page,
Physical Base address = 0x8B000

First 3584 bytes
of the

Virtual Buffer

Middle 4096 bytes
of the

Virtual Buffer

Last 2320 bytes
of the

Virtual Buffer

Length
10000
bytes

Virtual Buffer Offset = 0
Physical Address = 0x61200

Virtual Buffer Offset = 3583
Physical Address = 0x61FFF

Virtual Buffer Offset = 3584
Physical Address = 0x74000

Virtual Buffer Offset = 7679
Physical Address = 0x74FFF

Virtual Buffer Offset = 7680
Physical Address = 0x8B000

Actual Bounds
 of
Registered Area

Requested Bounds
 of
Registered Area

Virtual Buffer
Base Address = 0x141200

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 481 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

memory locations backed by three physical pages. The size of the pages
that back the region depend on the Host System hardware and Host Op-
erating system.

The pages in the illustration are 4096 bytes each. The actual page size
depends on the host hardware and host operating system.

In the example above, access to the memory locations at Virtual Ad-
dresses 0x141000 through 0x1411FF may be allowed even though they
precede the first address of the region requested to be registered.

10.6.4.3.1 REGISTRATION OF ZERO BASED VIRTUAL ADDRESS (ZBVA) MEMORY REGIONS

The first byte of a ZBVA Memory Region is assigned a virtual address of
zero. A ZBVA set of memory locations is specified by an offset from zero,
which represents the start of the ZBVA, and the length of the set in bytes.
The virtual addresses used in ZBVA Memory Regions do not have any rel-
evant processor context.

10.6.4.3.2 RESERVED L_KEY

If the CI supports the Base Memory Management Extensions, the Con-
sumer can use the Reserved L_Key to identify Post Send and Post Re-
ceive Work Request Data Segments. A Data Segment referenced through
the L_Key is referenced by a physical address that points to the start of
the Data Segment and the length of the Data Segment.

Use of the Reserved L_Key is intended for local use by privileged mode
Consumer. When a QP is created, the Consumer must either enable or
disable memory access through Fast Register Physical MRs and the Re-
served L_Key.

o10-37.2.7: For a CI that supports the Base Memory Management Exten-
sions, if the Consumer enables Fast Register Physical MR and Reserved
L_Key access through the Create QP, then on that QP the CI must allow
the Consumer to:

• use the Reserved L_Key in WRs, and

• use Fast Register Physical MRs.

Note, the Reserved L_Key is a local key and remote access cannot be
performed through the Reserved L_Key.

o10-37.2.8: For a CI that supports the Base Memory Management Exten-
sions, the CI must return an error if the Consumer attempts to: bind a
Memory Window to the Reserved L_Key, Invalidate the Reserved L_Key,
destroy the Reserved L_Key, or any type of Registration using the Re-
served L_Key.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 482 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.6.4.3.3 BYTE ALIGNMENT AND LENGTH OF MEMORY REGIONS

C10-50: The CI shall support arbitrary byte alignment for the virtually con-
tiguous buffer being registered.

C10-51: The CI shall support arbitrary length for the virtually contiguous
buffer being registered, up to the limit specified by the HCA attribute.

The address translation and access rights of the region applies to each
complete physical buffer within that Memory Region.

• If the HCA does not support the Base Memory Management Exten-
sions, the CI is not required to enforce access checks and rights for
local or remote accesses with byte-level granularity.

• If the HCA supports the Base Memory Management Extensions, the
CI is required to enforce access checks and rights for local and re-
mote accesses with byte-level granularity.

10.6.4.3.4 REGISTERED MEMORY RESIDENCY

C10-52: This compliance statement has been obsoleted.

C10-52.2.1: Using the Verbs defined in this specification, when a Memory
Region is registered through a Register Memory Region and Reregister
Memory Region, the CI must pin down in physical memory every physical
buffer within the Memory Region.

Prior to invoking a Register Physical Memory Region or Reregister Phys-
ical Memory Region Verb, the Consumer should pin down in physical
memory every physical buffer within the Memory Region.

If the HCA supports the Base Memory Management Extensions, when a
Memory Region is registered through a Fast Register PMR, the Con-
sumer should pin down in physical memory every physical buffer within
the Memory Region.

Pinning down in physical memory every physical buffer within a Memory
Region guarantees to the HCA that the Memory Region is physically res-
ident (not swapped out) and that the virtual to physical translation remains
fixed while the region is registered.

The Register Memory Region and Reregister Memory Region Verbs are
responsible for requesting that the OS pin the associated physical buffers
and for requesting from the OS any required per physical buffer Virtual to
Physical translation information. The Channel Interface is not required to
track physical buffers common to Multiple registrations. The Channel In-
terface must be able to assume that the OS service that accepts requests
for pinning and unpinning physical buffers will maintain the appropriate
reference counts on those physical buffers such that pinned physical

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 483 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

buffers are not actually unpinned until the number of unpin requests equal
the number of pin requests for any specific physical buffer.

The Register Memory Region and Reregister Memory Region Verbs are
expected to request that the OS pin the physical buffers associated with
the region every time a region is registered regardless of any association
with previously registered regions. The Channel Interface is not prohibited
from implementing optimizations that reduce the number of OS service re-
quests it makes for pinning and unpinning memory.

10.6.4.4 REGISTRATION OF PHYSICALLY ADDRESSED REGIONS

As an alternative to specifying a Region by a contiguous range in the Con-
sumer's virtual address space mapped by the processor, Privileged Con-
sumers can specify a Region by a list of physically addressed buffers,
which correspond to physical buffers mappable by the HCA. The Con-
sumer also supplies a first byte offset that specifies where the Region be-
gins within the first physical buffer.

There are two types of physically addressed regions: VA based “I/O Vir-
tual Address” and Zero Based “I/O Virtual Address”.

• For VA based IOVA, the Consumer supplies a requested “I/O Virtual
Address” to be associated with the first byte of the Region, which is
allowed to begin anywhere within the first physical buffer. The Chan-
nel Interface returns the I/O Virtual Address that is actually assigned
for the Region. A Channel Interface that does not support the Base
Memory Management Extensions is not required to assign the I/O
Virtual Address requested by the Consumer, but is encouraged to do
so wherever possible. A Channel Interface that supports the Base
Memory Management Extensions must check that the IOVA modulo
the buffer size of the first physical buffer matches the first byte offset
and if they match, the CI must assign the IOVA passed in by the Con-
sumer.

• For Zero based IOVA on a Channel Interface that supports the Base
Memory Management Extensions, the first byte of the Region, which
is allowed to begin anywhere within the first physical buffer, is as-
signed the address of Zero.

The Consumer also supplies the length of the Region in bytes. The last
byte of the Region, as specified by the Region length, must fall within the
last physical buffer, but is allowed to fall anywhere within the last physical
buffer.

The Virtual Address in this context is called an “I/O Virtual Address” since,
depending on the Memory Management Extensions supported by the CI,
it may not be mapped in the processor’s virtual address space, and might
be used solely for local or remote accesses performed by the HCA.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 484 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Maximum size of an I/O Virtual Address is 64 bits.

10.6.4.4.1 PHYSICAL BUFFER LISTS

C10-53: This compliance statement has been obsoleted.

Two physical buffer lists are supported: page lists and block lists.

Page lists used for registration consist of one or more physically contig-
uous set of memory locations that must start and end on an CI supported
page boundary.

C10-53.2.1: If a page list in a physical memory registration contains an el-
ement that does not start and end on a CI-supported page boundary, the
CI shall return an error.

o10-37.2.9: Block lists used for registration consist of one or more physi-
cally contiguous set of memory locations that may have an arbitrary byte
alignment, but must all be of the same size.

The Allocate L_Key verb reserves physical buffer list entries for use in fu-
ture Memory Region Registrations.

o10-37.2.10: If the CI supports the Base Memory Management Exten-
sions, the CI must return the size reserved for physical buffer list from the
following verbs: Allocate L_Key, Query Memory Region, Register Physical
Memory Region, and Reregister Physical Memory Region.

All of the physical buffers in a physical buffer list must remain accessible
by the CI until after the region has been invalidated or deregistered.

For the case where the physical buffers in the physical buffer list are ac-
tually the pinned physical buffers of a virtually addressed buffer, the Con-
sumer is expected to keep those physical buffers pinned while the region
is registered.

It is the responsibility of the Consumer to determine if and when, after
deregistration the physical buffers should be unpinned. It is the responsi-
bility of the Consumer to ensure proper operation in cases where the
physical buffers in the physically addressed region are also in use in a vir-
tually addressed region that has been registered.

10.6.4.5 MEMORY REGION ERROR CHECKING

It is an error for a Consumer to use Virtual Addresses that are outside of
the registered locations in a Memory Region.

10.6.4.5.1 ERROR CHECKING OF LOCAL ACCESSES TO MEMORY REGIONS

C10-54: This compliance statement has been obsoleted.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 485 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.11: For the Reserved L_Key, the CI must ensure that accesses
through the Reserved L_Key are enabled on the QP.

C10-54.2.1: If the CI doesn’t support SRQ, the CI is required to ensure
that the memory locations being referenced using a Virtual Address and
L_Key are within a physical buffer of a Memory Region with the same PD
as the QP that is processing the WR.

o10-37.2.12: If the CI supports SRQ,

• for a QP that is not associated with an SRQ or for a Send Queue of a
QP that is associated with an SRQ, the CI is required to ensure that
the memory locations being referenced using a Virtual Address and
L_Key are within a physical buffer of a Memory Region with the same
PD as the QP that is processing the WR, and

• for a Receive Queue of a QP that is associated with an SRQ, the CI
is required to ensure that the memory locations being referenced us-
ing a Virtual Address and L_Key are within a physical buffer of a
Memory Region with the same PD as the SRQ.

The CI is allowed to support finer-level granularity of local access control.

Generally, the CI is expected to perform validity checking of the Virtual Ad-
dress and appropriate memory key, L_Key or R_Key, for each Data Seg-
ment specified in the Work Request. The exceptions to this rule are as
follows:

C10-54.1.1: The CI shall not perform any protection checks for zero-
length Data Segments.

C10-54.1.2: For UD messages that do not contain a GRH, UC messages,
RC messages, and RD messages, the CI shall not perform any local pro-
tection checking for any Data Segments specified in the Work Request on
the receipt of a zero-length message. For UD messages that contain a
GRH, the CI shall perform the Data Segment checks and, if the check
pass, surface the GRH. If the checks don't pass, a completion error shall
be surfaced.

C10-55: The CI is required to ensure that the Local Access Rights of that
Memory Region allow the type of access requested.

It is strongly encouraged that the Channel Interface check and ensure that
the Virtual Address is within the Memory Region to which the L_Key is as-
sociated and report any bounds violation at access time. It is not manda-
tory that the Channel Interface enforce such checking.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 486 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.6.4.5.2 ERROR CHECKING OF REMOTE ACCESSES TO MEMORY REGIONS

C10-56: The CI is required to ensure that the memory locations being ref-
erenced using a Virtual Address and R_Key are within a Memory Region
with the same PD as the QP that is processing the Remote Operation. The
CI shall enforce this with a granularity not to exceed 4096 bytes.

C10-57: The CI is required to ensure that the Remote Access Rights of
that Memory Region allow the type of access requested.

It is strongly encouraged that the Channel Interface check and ensure that
the Virtual Address is within the Memory Region to which the R_Key is as-
sociated and report any bounds violation at access time. It is not manda-
tory that the Channel Interface enforce such checking.

10.6.5 INVALIDATION OF MEMORY REGIONS

When the Consumer no longer needs to access a Physical Memory Re-
gion, but wishes to retain the L_Key, and the R_Key (if an R_Key accom-
panied the L_Key), for use in future Memory Registrations, the Consumer
may invalidate the Memory Region, through:

• a local Post Send Local Invalidate WR, or
• a remote Send with Invalidate Operation.
After a local or remote invalidation operation completes successfully, the
L_Key is placed in the Free State. In this state the L_Key can no longer
be used to access local memory, but it still has physical buffer list re-
sources allocated.

Similarly, after a local or remote invalidation operation completes suc-
cessfully, the R_Key is placed in the Free State. In this state the R_Key
can no longer be used to access local memory, but it still has physical
buffer list resources allocated.

For local Invalidates, the Consumer must supply the L_Key, R_Key, and
Memory Region Handle for the Memory Region that is to be invalidated.
The CI may use any of the three to perform the invalidation operation. The
CI is not expected to perform consistency checks between these three
input modifiers. For outbound Send with Invalidate, the Consumer must
supply the remote R_Key for the remote Memory Region that is to be in-
validated.

Memory locations that have been registered multiple times will be repre-
sented by multiple Memory Regions. The invalidation of single Memory
Region prevents HCA access to those memory locations via the L_Key
(and accompanying R_Key if any) associated with that Memory Region.
Access to the memory locations via L_Keys and R_Keys associated with
other Memory Regions is not affected.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 487 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.13: If the Base Memory Management Extensions are sup-
ported, the CI must:

• support local Local Invalidate WRs and incoming Send with Invali-
dates;

• return an error if an invalidation operation is attempted on a Memory
Region created through the: Register Memory Region; Reregister
Memory Region, and Register Shared Memory Region verbs;

• return an error if an invalidation operation is attempted on a Memory
Region that was used as an input modifier to a successful Register
Shared Memory Region;

• support independent invalidation of partially or completely overlap-
ping Registered Memory Regions.

o10-37.2.14: If the Base Memory Management Extensions are sup-
ported, Work Requests or Remote Operation requests that are in process
and actively referencing memory locations in a Memory Region that is in-
validated must fail with a protection violation.

o10-37.2.15: If the Base Memory Management Extensions are sup-
ported, Work Requests that attempt to invalidate a Shared Memory Re-
gion must fail with a Memory Management Operation Error.

o10-37.2.16: If the Base Memory Management Extensions are sup-
ported, incoming Send with Invalidate operations that attempt to invali-
date a Shared Memory Region must fail.

o10-37.2.17: If the Base Memory Management Extensions are sup-
ported, local and remote invalidation of a Memory Region must fail if the
Memory Region still has Memory Windows bound to it.

o10-37.2.18: If the Base Memory Management Extensions are sup-
ported, Work Requests or Remote Operation requests that attempt to ac-
cess memory locations in a Memory Region that has been invalidated
must fail with a protection violation.

Note, invalidation operation are allowed only on Non-Shared Physical
Memory Regions. Therefore the Consumer should negotiate whether the
R_Key associated with the MR can be invalidated or not.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 488 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes the basic rules for Fast-Registration and
Invalidation of Memory Regions:

10.6.5.1 INVALIDATION ORDERING

Two levels of local invalidation ordering are allowed: Relaxed ordered and
Strongly ordered.

o10-37.2.19: Relaxed ordered - The invalidate operation may take place
at any time after it has been posted to the Send Queue but must take
place before a completion is generated and before any subsequent WQE
has begun execution.

o10-37.2.20: If the CI supports Local Invalidate Fencing: Strongly ordered
- The Invalidate operation must take place after all preceding WQEs on
the same Send Queue have completed and before the next WQE (imme-
diately after the Invalidate) on the same Send Queue begins execution.

o10-37.2.21: For incoming Send with Invalidate - The operation may take
place anytime between the reception of the message and the completion
of the message. The invalidate operation must be performed after all pre-
vious non RDMA Read messages have completed processing. The Inval-
idate operation does not have any ordering with subsequent messages
that target the same connection. Note, subsequent messages that target
the same connection may execute partially or completely before the inval-
idation takes place.

Note, when an outbound Send with Invalidate operation completes at the
local CA, there is no guarantee that the Remote Invalidate completed suc-
cessfully at the remote CA. However, when a Send Data Received is re-
turned through a Work Completion and the Send operation was a Send
with Invalidate, the (incoming) Invalidate is guaranteed to have been com-
pleted.

Table 68 Non-Shared Memory Regions Invalidation and Fast-
Registration Rules

Key
Ownership Created Through

Local and
Remote
Invalidation

Fast
Registration

CI Register MR
Reregister MR

Not Allowed Not Allowed

Consumer Allocate L_Key
Register Physical MR
Reregister Physical MR

Allowed Allowed

CI Register Physical MR
Reregister Physical MR

Allowed Not Allowed

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 489 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.22: If the CI supports the Base Memory Management Exten-
sions, then for Non-Shared PMRs the CI must support Relaxed Invalida-
tion Ordering and does not have to support Local Invalidate Fencing.

o10-37.2.23: If the CI supports Local Invalidate Fencing, then for Non-
Shared PMRs the CI must support:

• Strong Invalidation Ordering when the Consumer sets the Local In-
validate Fence on an Local Invalidate WR; and

• Relaxed Invalidation Ordering when the Consumer does not specify
the Local Invalidate Fence on an Local Invalidate WR.

o10-37.2.24: For Non-Shared PMRs, if the Responder CI supports the
Base Memory Management Extensions and the R_Key check fails on an
incoming Send with Invalidation operation, then at the Responder:

• the R_Key must not be invalidated;
• the incoming Send with Invalidate must generate a Completion Error,

and
• the associated QP must be placed in the Error State.

10.6.6 DEREGISTRATION OF REGIONS

When access to a Memory Region by a CI is no longer required, the Con-
sumer may reverse the registration process for that region. The process
of deregistering a Memory Region will revoke all HCA access rights to that
Memory Region.

Memory locations that have been registered multiple times will be repre-
sented by multiple Memory Regions. The deregistration of single Memory
Region prevents HCA access to those memory locations via the L_Key
(and R_Key if any) associated with that Memory Region. Access to the
memory locations via L_Keys and R_Keys associated with other Memory
Regions is not affected.

C10-58: The CI shall support independent deregistration of partially or
completely overlapping Registered Memory Regions.

C10-59: Work Requests or Remote Operation requests that are in pro-
cess and actively referencing memory locations in a Memory Region that
is deregistered must fail with a protection violation.

C10-60: Work Requests or Remote Operation requests that attempt to ac-
cess memory locations in a Memory Region that has been deregistered
must fail with a protection violation.

The Verbs that cause a Memory Region to be deregistered are expected
to request that the OS unpin the pages associated with the region if a re-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 490 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

quest to pin those physical buffers was performed when the region was
registered, regardless of any association with previously registered re-
gions. The Channel Interface is not prohibited from implementing optimi-
zations that reduce the number of OS service requests it makes for
pinning and unpinning memory.

10.6.7 MEMORY ACCESS CONTROL

The immediate Consumer of every memory registration related Verb is
privileged code in the OS. In general, the OS is responsible for deter-
mining and enforcing access control policy for memory registrations it
does on behalf of User-level Consumers. For instance, it is anticipated but
not required that OSs will enforce policies similar to the following:

• A User-level Consumer has control over which of its memory areas
can be accessed by HCA data transfer operations.

• A User-level Consumer can enable any local memory area it has ac-
cess to for access by HCA data transfer operations.

• A User-level Consumer cannot enable HCA read access to memory
areas that the Consumer itself doesn’t have read access to.

• A User-level Consumer cannot enable HCA write access to memory
areas that the Consumer itself doesn’t have write access to.

When a Consumer creates QPs or CQs (through the appropriate Verbs),
the HCA driver automatically allocates and pins any local memory needed
for the associated control structures. Access by the HCA to these control
structures is implicitly enabled. Access by the Consumer to these control
structures is supported only indirectly through Verbs, and any Region
Handles or L_Keys (if they exist) for the control structures are not exposed
to the Consumer.

A Consumer controls which QPs can access which Memory Regions and
which Memory Windows through the use of Protection Domains (PDs).
Prior to creating any QPs, registering any Memory Regions, or allocating
any Memory Windows, the Consumer will allocate one or more PDs.
Then, when creating QPs, registering Memory Regions, or allocating
Memory Windows, the Consumer specifies which PD each is associated
with. QPs can only access Memory Regions or Memory Windows that are
in the same PD.

10.6.7.1 LOCAL ACCESS CONTROL

With Sends and Receives, the Consumer explicitly specifies the buffers
that are accessed through the local Data Segments it passes in the asso-
ciated Work Requests. Each local Data Segment contains an address, its
associated L_Key, and a length parameter. Multiple local Data Segments
can be supplied for each send or receive where scatter/gather operation
is desired.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 491 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Local Data Segments are also used for RDMA Write gather lists, RDMA
Read scatter lists, and AtomicOp return values. Again each local Data
Segment contains an L_Key which governs local access to the corre-
sponding local Memory Region. However, the remote Data Segment as-
sociated with an RDMA Write, RDMA Read, or AtomicOp will contain an
R_Key instead of an L_Key. This is discussed further below.

Two types of local access, read and write, are associated with Memory
Regions. Send buffers and RDMA Write gather buffers require local read
access. Receive buffers, RDMA Read scatter buffers, and AtomicOp re-
turn buffers require local write access.

Though memory registration is required to enforce local access only to
page-level granularity, the local Data Segments used by Sends, Receives,
RDMA Writes, RDMA Reads, and AtomicOps specify byte starting ad-
dresses and byte-count lengths. Thus the Consumer still has byte-level
granularity of access control for local buffers accessed by these locally ini-
tiated operations. The Consumer can determine the actual range of ac-
cess control enforced using the Query Memory Region Verb.

10.6.7.2 REMOTE ACCESS CONTROL

When a Consumer wants to allow remote agents to access its local
memory using RDMA Writes, RDMA Reads, or AtomicOps, the Consumer
must explicitly enable remote access and pass an appropriate R_Key to
the remote agent for it to use when initiating these operations that target
the Consumer’s (local) memory.

A Consumer can use either of two mechanisms to enable remote access
to its memory. The first mechanism involves enabling remote access
when a Memory Region is registered. The second mechanism involves
first allocating and then binding a Memory Window to an existing Memory
Region. Either mechanism results in an R_Key with associated remote
access rights for a specified memory area.

Three types of remote access — read, write, and atomic — are supported.
RDMA Write requires write access at the remote target, RDMA Read re-
quires read access at the remote target, and AtomicOps require atomic
access at the remote target. While perhaps not obvious, it may make
sense for a Consumer to allow atomic access but not allow write access,
since AtomicOps are not required by the architecture to be atomic with re-
spect to RDMA writes.

10.6.7.2.1 REMOTE ACCESS DIRECTLY WITH MEMORY REGIONS

When registering a Memory Region, a Privileged Consumer can generally
specify any combination of remote access rights for the Region, including
all or none. However, if a registration request does not specify local write

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 492 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

access to the region, the CI will return an error if remote write or remote
atomic access is specified.

If any remote access rights are specified, the Verb will return an R_Key.
This R_Key grants the specified remote access rights for the entire
Memory Region as bounded by the byte starting address and byte length,
but the granularity of the access control actually enforced by the Channel
Interface is allowed to be up to 4096 bytes. The Consumer can determine
the actual range of access control enforced using the Query Memory Re-
gion Verb. It is strongly encouraged that the Channel Interface enforce ac-
cess control with byte-level granularity.

10.6.7.2.2 REMOTE ACCESS THROUGH MEMORY WINDOWS

When a Consumer needs more flexible control over remote access to its
memory, the Consumer can use Memory Windows. Memory Windows are
intended for situations where the Consumer:

• wants to grant and revoke remote access rights to a registered Re-
gion in a dynamic fashion with less of a performance penalty than us-
ing deregistration/registration or reregistration.

• wants to grant different remote access rights to different remote
agents and/or grant those rights over different ranges within a regis-
tered Region.

To use a Memory Window, the Consumer allocates one and then binds it
to a specified address range of an existing Memory Region that is enabled
for use with Memory Windows. The range can include the entire Memory
Region or any virtually contiguous subset of it. A Memory Window can
only be bound to a Memory Region that belongs to the same Protection
Domain.

C10-61: The CI shall enforce remote access control for Memory Win-
dows with byte-level granularity.

When binding a Memory Window, a Consumer can request any combina-
tion of remote access rights for the Window. However, if the associated
Region does not have local write access enabled and the Consumer re-
quests remote write or remote atomic access for the Window, the Channel
Interface must return an error either at bind time or access time. See
10.6.7.2.7 Error Checking at Window Bind Time and 10.6.7.2.8 Error
Checking at Window Access Time.

C10-62: If a Memory Region does not have local write access enabled,
the CI shall return an error if a Memory Window Bind request specifies
remote write or remote atomic access to that Region. The CI shall allow
all other requested access rights for Memory Windows.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 493 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A Consumer is allowed and commonly expected to enable remote access
rights when binding a Window that it may not have enabled when it regis-
tered the underlying Region — provided it doesn’t violate the above rule
regarding local write access. For example, a Consumer might register a
Region with no remote access rights, and later bind one or more Windows
to that Region that obviously would grant remote access rights.

Allocating or deallocating a Memory Window requires a kernel transition,
and thus incurs the associated software overhead. Binding a Memory
Window is performed with a Work Request posted to a send queue, and
thus incurs far less software overhead with typical implementations.

C10-63: This compliance statement has been obsoleted.

C10-64: This compliance statement has been obsoleted.

C10-65: This compliance statement has been obsoleted.

C10-66: This compliance statement has been obsoleted.

When a Memory Window is Allocated through the Allocate Memory
Window Verb, if the CI supports the Base Memory Management Exten-
sions, the Consumer selects either a Type 1 Memory Window (defined in
section 10.6.7.2.3) or a Type 2 Memory Window (defined in section
10.6.7.2.4). Memory Window, without any qualifier, is used to refer to both
Type 1 and Type 2 Memory Windows.

Type 1 Memory Windows are addressed only through Virtual Addresses.
Type 2 Memory Windows are addressed through either Virtual Addresses
or Zero Based Virtual Addresses (see section 10.6.2.1 Memory Regions
on page 470 for a description of VA and ZBVA).

Every Memory Window R_Key has three possible states:

• Invalid State - No resources have been allocated for the R_Key. An
R_Key in the Invalid State cannot be used to access host memory.
An R_Key that is in the Invalid State cannot be invalidated through a
Send with Invalidate.

• Free State - The R_Key is not associated with a Memory Region and
cannot be used to access host memory. An R_Key that is in the Free
State can be invalidated through a Send with Invalidate. Note: The
Free state may not be implemented on Type 1 Memory Windows
(see Table 69).

• Valid State - The R_Key is associated with a Memory Region. An
R_Key in the Valid State can be used to access host memory. An
R_Key that is in the Valid State can be invalidated through a Send
with Invalidate.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 494 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes the states of Type 1 Memory Windows
R_Keys and the operations allowed on each state:

The following table summarizes the states of Type 2 Memory Windows
R_Keys and the operations allowed on each state:

Table 69 Type 1 Memory Windows States Summary

Property /
Operation Allowed

Invalid Freea

a. The Free state may not be implemented on Type 1 Memory Windows, instead, the Valid
state with the Memory Window length of zero can be used. For this type of implementation,
an Unbound MW can be considered to be in the Free State.

Valid

Resources Allocated No Yes Yes

Bound to a Memory Region No No Yes

Zero length access Allowed Allowed Allowed

Host Memory Access Prohibited Prohibited Allowed

Send with Invalidate Prohibited Prohibited Prohibited

Local Invalidate Prohibited Prohibited Prohibited

Post Send Bind MW Prohibited Prohibited Prohibited

Bind Memory Window Prohibited Allowed Allowed

Table 70 Type 2 Memory Windows States Summary

Property /
Operation Allowed

Invalid Free Valid

Resources Allocated No Yes Yes

Bound to a Memory Region No No Yes

Zero length access Allowed Allowed Allowed

Host Memory Access Prohibited Prohibited Allowed

Send with Invalidate Prohibited Allowed Allowed

Local Invalidate Prohibited Allowed Allowed

Post Send Bind MW Prohibited Allowed Prohibited

Bind Memory Window Prohibited Prohibited Prohibited

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 495 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes Type 2 Memory Windows R_Keys state
transitions through the verbs and remote operations (non verbs opera-
tions are marked in italic):

10.6.7.2.3 TYPE 1 MEMORY WINDOWS

Type 1 Memory Windows are Bound through the Bind Memory Window
Verb. The CI owns the R_Key associated with a Type 1 Memory Window.

Type 1 Memory Windows have the same PD access control semantics as
defined in the InfiniBandTM Architecture Specification, Volume 1, Release
1.1.

C10-66.2.1: An HCA must support Type 1 Memory Windows.

C10-66.2.2: Each time a given Type 1 Memory Window is bound through
the Bind Memory Window Verb, the CI shall return an R_Key whose value
is different from the immediate previous value. After the bind operation
completes, any access attempts using the immediate previous R_Key
must fail.

When the Type 1 Memory Window is bound through the Bind Memory
Window, the Verb returns the new R_Key immediately after posting the
Work Request, even though the actual binding operation performed by the
HCA hasn’t yet occurred.

Implementation Note: an envisioned implementation for an R_Key is
to have it consist of two fields—an index field and a key field. The
index field is used by the HCA to identify the associated Type 1
Memory Window resource, and remains constant. The key field is
changed each time the R_Key is bound, which guarantees that the im-
mediate previous R_Key is invalidated as required. The use of a suf-
ficient size key field and suitable random number with each binding
can provide some amount of protection against the holder of an inval-

Table 71 Type 2 Memory Windows State Transitions

State Entered Through Exited Through

Invalid Initial State
Deallocate MW

Allocate MW

Free Allocate MW
Local Invalidate
Incoming Send and Invalidate

Deallocate MW
Post Send Bind MW

Valid Post Send Bind MW Deallocate MW
Local Invalidate
Incoming Send with Invalidate

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 496 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

idated R_Key being able to access the Type 1 Memory Window
without authorization.

The Channel Interface software that prepares the Bind Work Request
generates the new key value and places it in the Work Request for the
HCA to record in its Type 1 Memory Window resource when pro-
cessing the request. This way, the new R_Key value is fully deter-
mined and can be returned to the Consumer prior to the HCA
processing the request.

It is not required that Channel Interfaces use this implementation.

For correct operation, a Consumer must ensure that no remote agent at-
tempts to use a new R_Key before its associated binding has been com-
pleted by the HCA. One technique to accomplish this is for the Consumer
to submit the Bind operation to the same Send Queue it uses to send the
message that conveys the new R_Key to the remote agent.

The Bind operation has a unique ordering rule:

C10-66.2.3: Any Work Request posted to a Send Queue subsequent to
an invocation of the Bind Memory Window Verb shall not begin execution
until the Bind operation completes.

o10-37.2.25: If an HCA supports the Base Memory Management Exten-
sions, any Work Request posted to a Send Queue subsequent to an invo-
cation of the Bind Memory Window Verb shall not begin execution until
the Bind operation completes. Local Invalidate WRs posted subsequent
to a Bind Memory Window Verb are an exception (see section 10.8.3.3
Send Queue Ordering Rules on page 516).

If the HCA detects an error with the Bind operation, it will put the QP into
an error state. With the technique described earlier, the Bind operation is
guaranteed to complete before the remote agent can possibly receive the
new R_Key.

An envisioned common usage model is for a Type 1 Memory Window to
be allocated once and then used for multiple bindings. When a previously
bound Type 1 Memory Window is bound again, the previous R_Key and
its associated bindings are automatically invalidated. Any remote agents
needing to use the new Type 1 Memory Window bindings must use the
new R_Key.

If the Consumer wants to invalidate a Type 1 Memory Window’s bindings
without deallocating the Type 1 Memory Window or enabling remote ac-
cess to new areas, the Consumer can submit a Bind request specifying a
length of zero.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 497 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-66.2.4: After a zero-length Type 1 Memory Window Bind completes,
the CI shall not allow any remote access to be performed to that Type 1
Memory Window until a subsequent Bind re-enables remote access.

C10-66.2.5: The CI shall support multiple Type 1 Windows bound to the
same Memory Region, each with independent remote access rights, and
their associated areas shall be allowed to be overlapping or disjoint.

o10-37.2.26: For an HCA that supports the Base Memory Management
Extensions, Local Invalidate WRs shall not allowed on Type 1 Memory
Windows.

o10-37.2.27: For an HCA that supports the Base Memory Management
Extensions, if an incoming Send with Invalidate targets an R_Key associ-
ated with a Type 1 Memory Window, the CI shall:

• surface a Memory Management Operation completion error;

• not affect the state of the Type 1 Memory Window; and

• place the QP in the Error state.

10.6.7.2.4 TYPE 2 MEMORY WINDOWS

o10-37.2.28: If the CI supports the Base Memory Management Exten-
sions defined in this specification, the CI must support Type 2 Memory
Windows.

Type 2 Memory Windows are Bound through the Post Send Bind Memory
Window Work Request.

Two types of access controls are defined for Type 2 Memory Windows:

o10-37.2.29: If an HCA supports Type 2A Memory Window, then it must
provide the following semantics for a Type 2A MW:

• Post Send Bind WRs are allowed if the Type 2A MW is in the Free
state and the QP performing the Bind WR is associated with the
same PD as the PD associated with R_Key referenced in the Bind
WR.

• Invalidate operations are allowed if the Type 2A MW is in the Valid
state and the QP Number (QPN) of the QP performing the Invalidate
operation matches the QPN associated with the Bound Type 2A MW.
Invalidate operations are also allowed if the Type 2A MW is in the
Free state and the QP performing the Invalidate operation is associ-
ated with the same PD as the PD associated with the R_Key refer-
enced in the Bind WR.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 498 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• MW access operations (i.e. RDMA Write, RDMA Reads, and Atom-
ics) are only allowed if the Type 2A MW is in the Valid state and the
QP Number (QPN) of the QP performing the MW access operation
matches the QPN associated with the Bound Type 2A MW.

• A QP can be destroyed or placed in the Reset State only if it has no
Type 2A MWs associated with the QP.

o10-37.2.30: If an HCA supports Type 2B Memory Window, then it must
provide the following semantics for a Type 2B Memory Window:

• Post Send Bind WRs are allowed if the Type 2B MW is in the Free
state and the QP performing the Bind WR is associated with the
same PD as the PD associated with R_Key referenced in the Bind
WR.

• Invalidate operations are allowed if the Type 2B MW is in the Valid
state and the QP Number (QPN) and PD of the QP performing the In-
validate operation matches the QPN and PD associated with the
Bound Type 2B MW. Invalidate operations are also allowed if the
Type 2B MW is in the Free state and the QP performing the Invalidate
operation is associated with the same PD as the PD associated with
the R_Key referenced in the Bind WR.

• MW access operations (i.e. RDMA Write, RDMA Reads, and Atom-
ics) are only allowed if the Type 2B MW is in the Valid state and the
QP Number (QPN) and PD of the QP performing the MW access op-
eration matches the QPN and PD associated with the Bound Type 2B
MW.

• A QP can be destroyed or placed in the Reset State, even if it still has
Type 2B MWs associated with it.

o10-37.2.31: If an HCA supports the Base Memory Management exten-
sions, the HCA shall support either Type 2A or Type 2B MWs, but not
both.

In this specification, the term Type 2 MW is used to describe semantics
that are common to both Type 2A and Type 2B MWs.

A Type 2 MW that is in the Invalid State, cannot be used in a Bind or In-
validate operation.

o10-37.2.32: If the CI supports the Base Memory Management Exten-
sions defined in this specification, the R_Key format for a Type 2 Memory
Window must consist of:

• 24 bit index in the most significant bits of the R_Key, which is owned
by the CI, and

• 8 bit key in the least significant bits of the R_Key, which is owned by
the Consumer.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 499 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.33: If the CI supports the Base Memory Management Exten-
sions, each time a given Type 2 Memory Window is bound through the
Post Send Bind Memory Window Work Request, the CI shall use the key
value provided by the Consumer for the bind operation. After the bind op-
eration completes, the R_Key must consist of the 24 bit index associated
with the Type 2 Memory Window and the 8 bit key supplied by the Con-
sumer in the Post Send Bind Memory Window Work Request.

o10-37.2.34: If the CI supports the Base Memory Management Exten-
sions, the CI must return an error (either an immediate error or a comple-
tion error) if the Consumer attempts to use a Type 1 MW R_Key on a Post
Send Bind Memory Window Work Request (i.e. on a Type 2 MW).

o10-37.2.35: If the CI supports the Base Memory Management Exten-
sions, the CI must return an error (either an immediate error or a comple-
tion error) if the Consumer attempts to use a Type 2 MW R_Key on a Bind
Memory Window verb (i.e. on a Type 1 MW).

When a Type 2 Memory Window is bound through the Post Send Bind
Memory Window Work Request, the CI does not return the R_Key. Note:
it is the Consumer's responsibility to remember the R_Key index gener-
ated by Allocate Memory Window and construct R_Key values for trans-
mission to the remote Consumer by combining the 24 bit index and the
Consumer-chosen 8 bit key.

For correct operation, a Consumer must ensure that no remote agent at-
tempts to use a new R_Key before its associated binding has been com-
pleted by the HCA. One technique to accomplish this is for the Consumer
to submit the Bind operation to the same Send Queue it uses to send the
message that conveys the new R_Key to the remote agent.

The Bind MW and Post Send Bind WR have a unique ordering rule:

o10-37.2.36: Any Work Request posted to a Send Queue subsequent to
a Post Send Bind WR shall not begin execution until the Post Send Bind
WR completes. Local Invalidate WRs posted subsequent to a Post Send
Bind WR are an exception (see section 10.8.3.3 Send Queue Ordering
Rules on page 516).

If the HCA detects an error with the Bind operation, it will put the QP into
an error state. With the technique described earlier, the Bind operation is
guaranteed to complete before the remote agent can possibly receive the
new R_Key.

An envisioned common usage model is for a Type 2 Memory Window to
be allocated once and then used for multiple bindings. Before a Type 2
Memory Window can be bound again, it must be invalidated through ei-
ther a local invalidate or a remote invalidate.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 500 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The Local Invalidate WR is used to perform a local invalidate on a
Type 2 Memory Window.

• An incoming Send with Invalidate Operation is used to perform a re-
mote invalidate on a Type 2 Memory Window.

The same levels of invalidation ordering area allowed on Type 2 Memory
Window invalidation as on Memory Regions (see section 10.6.5.1 Invali-
dation Ordering on page 488 for a description of Invalidation ordering).

Note, when an outbound Send with Invalidate operation completes at the
local HCA, there is no guarantee that the Remote Invalidate completed
successfully at the remote CA. However, when a Send Data Received is
returned through a Receive Work Completion and the incoming Send op-
eration was a Send with Invalidate, the (incoming) Invalidate is guaran-
teed to have been completed.

o10-37.2.37: If the CI supports the Base Memory Management Exten-
sions, then the CI must support Relaxed Invalidation Ordering for Type 2
MWs.

o10-37.2.38: If the CI supports Strong Invalidation Ordering, then for Type
2 MWs the CI must: support Strong Invalidation Ordering, and provide an
Local Invalidate Fence bit for the Consumer to choose between Relaxed
or Strong Invalidation Ordering on Local Invalidates.

o10-37.2.39: For a Type 2 MW, if the CI supports the Base Memory Man-
agement Extensions and the R_Key check fails on an incoming Send with
Invalidation operation:

• the R_Key must not be invalidated;

• the incoming Send with Invalidate must generate a Completion Error,
and

• the QP must go to the Error state.

o10-37.2.40: For a Type 2 MW, if the CI supports the Base Memory Man-
agement Extensions and the Consumer attempts to Invalidate a Type 2
Memory Window through either the invocation of a Bind Memory Window
or a Post Send Bind WR with a length of zero, the CI must return an error.

o10-37.2.41: If the CI supports the Base Memory Management Exten-
sions, the CI shall support multiple Type 1, Type 2, or both Type 1 and
Type 2 Memory Windows bound to the same Memory Region, each with
independent remote access rights, and their associated areas shall be al-
lowed to be overlapping or disjoint.

Note, invalidation operation are allowed on Type 2 Memory Windows, but
not on Type 1 Memory Windows. Therefore the local Consumer should

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 501 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

negotiate with the remote Consumer whether the R_Key associated with
the MW can be invalidated or not.

The following tables depict the differences between type 2A and type 2B
MWs. Other rules associated with Type 2A and Type 2B MWs also apply.

Table 72 Post Send Bind WR Rules

MW Type MW State PD Rule

Type 2A Free PD associated with R_Key in the Post Send Bind WR
must be the same as the PD associated with the QP on
which the WR was posted.Type 2B Free

Table 73 Type 2 Memory Window Invalidation Rules

MW Type MW State QP Rule PD Rule

Type 2A Valid Invalidate operation
only allowed via QP
on which MW was
bound

N/A

Type 2A Free N/A Invalidate operation
only allowed via QP
associated with same
PD as MW

Type 2B Valid Invalidate operation
only allowed via QP
on which MW was
bound

Type 2B Free N/A

Table 74 Type 2 Memory Window Access Rules

MW Type MW State QP Rule PD Rule

Type 2A Valid MW access opera-
tions only allowed via
QP on which MW
was bound

N/A

Type 2B Valid MW access opera-
tions only allowed via
QP on which MW
was bound

MW access operations
only allowed if the PD
associated with the
R_Key is the same as
the PD associated with
the QP

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 502 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table summarizes the basic rules for Memory Windows In-
validation (Note that fast registration is never allowed on Memory Win-
dows):

10.6.7.2.5 REBINDING OR DEALLOCATING ACTIVE WINDOWS

Under normal operation, it is improper for a Consumer to deallocate or
change the binding of a Memory Window while it is being accessed by a
remote agent. However, this can occur if remote agents misbehave, or it
can occur under error recovery circumstances.

C10-67: Any Remote Operation requests that are in process and actively
using a Memory Window when its binding is changed must fail with a pro-
tection violation.

C10-68: Once the Bind operation has been reported to the Consumer as
having completed, the Channel Interface must guarantee that no addi-
tional accesses can be performed under the immediate previous binding.

C10-69: Any Remote Operation requests that are in process and actively
using a Memory Window when it is deallocated must fail with a protection
violation.

C10-70: Once the Deallocate Memory Window Verb completes, the
Channel Interface must guarantee that no additional accesses can be
performed through that Memory Window while it remains deallocated.

10.6.7.2.6 DEREGISTERING REGIONS WITH BOUND WINDOWS

It is an error for a Consumer to deregister or reregister a Memory Region
while it still has any Memory Windows bound to it. Such Windows are said
to be “orphaned”. The Channel Interface must handle this error case as
follows.

The Channel Interface is allowed to detect this error case and return an
error without carrying out the deregister or reregister operation.

C10-71: If the CI allows a Memory Region deregister or reregister opera-
tion to create orphaned Windows, the CI must guarantee that any remote
accesses attempted through the orphaned Windows will undergo the ac-

Table 75 Memory Windows Invalidation Rules

MW Type Key
Ownership

Local and Remote
Invalidation

Bind using already
Bound MW

Type I CI Not Allowed Allowed

Type II Consumer Allowed Not Allowed

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 503 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cess checks and enforcement described in 10.6.7.2.8 Error Checking at
Window Access Time.

10.6.7.2.7 ERROR CHECKING AT WINDOW BIND TIME

The following checks must be performed at Memory Window “bind time”,
which is either when the Channel Interface is executing the Bind Memory
Window Verb that prepares and queues the associated Work Request, or
when the HCA is processing that Work Request.

C10-72: The Channel Interface must check and enforce that the Memory
Window and QP belong to the same PD.

C10-73: The Channel Interface must check and enforce that Memory
Windows are allowed to be bound to the specified Memory Region.

C10-74: The Channel Interface must check and enforce write permis-
sions with the specified Memory Region, as described in 10.6.7.2.2 Re-
mote Access Through Memory Windows .

C10-75: The Channel Interface must perform address bounds checks
and PD checks with regard to the specified Memory Region.

10.6.7.2.8 ERROR CHECKING AT WINDOW ACCESS TIME

When the HCA processes an inbound RDMA or Atomic request that ac-
cesses a:

C10-76: This compliance statement has been obsoleted.

C10-76.2.1: Type 1 Memory Window, the CI must check and enforce that
the Memory Window and QP are associated with the same PD.

o10-37.2.42: For Type 2A Memory Windows, the CI must check and en-
force that the Type 2A MW is in the Valid state and is associated with the
QPN of the QP performing the inbound remote operation.

o10-37.2.43: For Type 2B Memory Windows, the CI must check and en-
force that the Type 2B MW is in the Valid state and is associated with the
QPN and PD of the QP performing the inbound remote operation.

C10-77: The Channel Interface must check and enforce the address
bounds and access rights associated with the Window.

C10-78: This compliance statement has been obsoleted.

C10-79: This compliance statement has been obsoleted.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 504 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-79.2.1: The Channel Interface must check and enforce the access
rights associated with each accessed physical buffer.

C10-79.2.2: For any previously undetected error cases where the Con-
sumer orphaned the Window as described in 10.6.7.2.6 Deregistering Re-
gions with Bound Windows on page 502, the Channel Interface must
check and enforce that any physical buffers accessed are in some
Memory Region that belongs to the same PD as the Window.

The Channel Interface is not required to enforce that such physical buffers
are necessarily in the same Region to which the Window was bound.
Again, it is strongly encouraged that the Channel Interface check and re-
port these error cases at bind or deallocation time instead of access time.

10.6.7.2.9 ERROR CHECKING AT TYPE 2 MEMORY WINDOW INVALIDATE TIME

o10-37.2.44: When the HCA processes an inbound Send with Invalidate
request that has an R_Key which references a Memory Window, the CI
must check and enforce that:

• The Memory Window is a Type 2 Memory Window;
• if the R_Key references a Type 2 MW that is in the Free State, the PD

associated with the Type 2 MW matches the PD that is associated
with the QP (note, in this case, the invalidate will be treated as a no-
op);

• if the R_Key references a Type 2A MW that is in the Valid State, the
QPN associated with the type 2A MW matches the QPN of the QP
that received the Send with Invalidate operation;

• if the R_Key references a Type 2B MW that is in the Valid State, the
PD and QPN associated with the Type 2B MW matches the QPN and
PD of the QP that received the Send with Invalidate operation.

10.7 WORK REQUESTS

Work Requests are used to submit units of work to the channel interface.
There are different types of work requests supported and are abstracted
throughout the Verbs.

How a work request targets its destination is dependent upon the work re-
quest and QP type. The target memory location is contained in the work
requests’s remote node address information (in the case of RDMA and
Atomics) or in the remote receive QP WR’s scatter/gather list (in the case
of Send/Receive). The target QP depends on the QP type. Connected
QPs have the destination QP contained in the local QP context. Datagram
QPs have the destination QP contained as part of the work request. Raw
QPs don’t target a specific QP at the destination.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 505 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.7.1 CREATING WORK REQUESTS

Work Requests are the only mechanism available to Consumers to gen-
erate work on work queues. Work requests are used only to pass the op-
eration from the Consumer to the CI.

Work Requests are created by the Consumer above the Channel Inter-
face using mechanisms provided by the OSV.

10.7.2 WORK REQUEST TYPES
The operations which may be posted to the Work Queues by the Con-
sumer:

• Send/Receive
• RDMA Write
• RDMA Read
• Atomic Operations
• Bind Memory Window
• Local Invalidate - If the Base Memory Management Extensions are

supported.
• Fast Register Physical MR - If the Base Memory Management Exten-

sions are supported.
The Base Queue Management Extensions also provide the Consumer
with a mechanism to post a list of Work Requests to the Send Queue, Re-
ceive Queue, or Shared Receive Queue.

10.7.2.1 SEND/RECEIVE

C10-80: The CI shall support Send and Receive Operations on all Trans-
port Service Types supported on the CI.

Sends must be posted to the Send Queue.

Receives must be posted to the Receive Queue.

C10-81: The responder’s Receive QP shall consume a Work Request on
reception of an incoming send message.

C10-82: The CI shall provide segmentation and reassembly for RC and
UC Transport Service Types.

o10-38: If the CI supports RD Service, the CI shall provide segmentation
and reassembly for RD.

o10-38.2.1: If the CI supports the Base Memory Management Extensions,
the CI must support Send with Invalidate Operations on RC Service QPs.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 506 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.7.2.2 RDMA

There are two types of RDMA: RDMA Read and RDMA Write.

RDMA Read Operations are supported only on the two reliable Transport
Service Types—Reliable Connection and Reliable Datagram. RDMA
Write Operations are supported on the two reliable Service Types plus the
Unreliable Connection Service Type.

C10-83: The CI shall support RDMA Read Operations on the RC Trans-
port Service Type.

C10-84: The CI shall support RDMA Write Operations on the RC and UC
Transport Service Types.

o10-39: If the CI supports RD Service, the CI shall support both RDMA
Read and Write Operations on the RD Transport Service Type.

RDMA Read and RDMA Write requests are submitted to the Send Queue.

C10-85: The responder’s Receive Queue shall not consume a Work Re-
quest for an incoming RDMA Read.

C10-86: The responder’s Receive Queue shall consume a Work Request
when Immediate Data is specified in a successfully completed incoming
RDMA Write.

C10-87: The responder’s Receive Queue shall not consume a Work Re-
quest when Immediate Data is not specified in an incoming RDMA Write
or the incoming RDMA Write was not successfully completed.

The target address of an RDMA request is the remote node’s virtual ad-
dress, a valid R_Key and length. The R_Key must be associated either a
Memory Region or a Memory Window containing that virtual address.

Queue Pairs and Memory Regions or Memory Windows have RDMA
Read attributes and RDMA Write attributes. These attributes are checked
at the target end and are not checked at the source end.

C10-88: The CI shall not transfer data from an RDMA operation into the
target memory unless the RDMA operation is enabled for the target QP.

10.7.2.3 ATOMIC OPERATIONS

IB Atomic Operations are architected as an optional feature to enable
high-performance synchronization for distributed applications running on
multiple hosts on the IB fabric.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 507 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Two operation types are supported: Compare & Swap and Fetch & Add.
The operand size for these operations is 64 bits. It is the responsibility of
the Channel Interface at the local endnode to do any transformation to
match the endnode endian convention.

o10-40: If the CI supports Atomic operations, the CI shall support two
types of Atomic operations, Compare & Swap and Fetch & Add.

o10-41: If the CI supports Atomic operations, the CI at the local endnode
shall perform any byte ordering transformation required to match the en-
dian endnode convention.

o10-42: If the CI supports Atomic operations, the CI shall implement
Fetch & Add using two’s complement arithmetic without saving the carry.

o10-43: If the CI supports Atomic operations, the CI shall return an error
if the remote address of the Atomic operation is not aligned on a 64-bit
boundary.

It is up to the Consumer to interpret whether the numbers are signed or
unsigned.

Atomic Operations are supported only on the two reliable Transport Ser-
vice Types—Reliable Connection and Reliable Datagram.

o10-44: If the CI supports Atomic operations, the CI shall support Atomic
operations for the RC Transport Service Type.

o10-45: If the CI supports Atomic operations and the RD Transport Ser-
vice Type, then the CI shall support Atomic operations for an RD QP.

o10-46: If the CI supports Atomic operations, the CI shall not support
Atomic operations on any other Transport Service Types other than RC
and RD.

Atomic Operation requests are posted to the Send Queue. The Atomic
Operation request is made using the Post Send Request Verb. The results
are contained in the data segment. The completion status of the request
posted to the Send Queue indicates only if the Atomic Operation was suc-
cessfully attempted. The Consumer must check the result to determine if
a conditional operation took place.

o10-47: If the CI supports Atomic operations, the CI shall return the re-
sults of the operation in the Data Segment.

If an HCA supports atomics, then all atomic operation requests made to
that HCA, referencing the same physical memory, are guaranteed to ap-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 508 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

pear to be serialized with respect to each other. These operations may be
directed at one or more queue pairs.

o10-48: If the CI supports Atomic operations, the CI shall provide the ap-
pearance that all Atomic operation requests made to the same HCA, ref-
erencing the same physical memory are serialized with respect to each
other.

Atomic operation requests made to an HCA are not guaranteed to be se-
rialized with respect to RDMA operation requests made to it or other HCAs
in the system, or with respect to operations performed by other system
components such as processors. Because of this behavior, if atomic op-
erations on a particular area of memory are used to implement locks, all
accesses to that memory must be done using atomic operations. In par-
ticular, it is not safe to use an RDMA read or Send/Receive to see if a lock
is held, and it is not safe to use an RDMA write or Send/Receive to clear
a lock.

Optionally, some systems may choose to provide a stronger guarantee:
that all atomic operation requests made to all HCAs in the system, as well
as all atomic operations performed on memory by other system compo-
nents such as processors, referencing the same physical memory, are
guaranteed to appear to be serialized with respect to each other. Again,
these operations may be directed at one or several separate queue pairs.
The definition of an “atomic operation” as performed by a system compo-
nent which is not an HCA is implementation-dependent; for instance, a
processor might be required to execute a particular instruction to produce
an atomic operation.

o10-49: If the CI supports Atomic operations and the system provides
Atomic access across the system, the CI shall provide the appearance
that all Atomic operation requests that reference the same physical
memory are serialized with respect to each other.

10.7.2.4 BIND MEMORY WINDOWS

The Bind Memory Window operation associates a previously allocated
Memory Window to a specified address range within an existing Memory
Region, along with a specified set of remote access privileges.

Bind Operations are supported only on the Reliable Connection, Unreli-
able Connection, and Reliable Datagram Service Types.

C10-89: The CI shall support Bind operations for RC and UC Transport
Service Types.

o10-50: If the CI supports RD Service, the CI shall support Bind opera-
tions for the RD Transport Service Type.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 509 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Bind operations must be posted to the Send Queue. Binds affect only local
HCA memory mapping resources and do not cause any packets to be is-
sued over the link. No resources at the destination QP are affected.

10.7.2.5 LOCAL INVALIDATE

The Local Invalidate Operation is allowed on Non-Shared Physical
Memory Regions or Type 2 Memory Windows for the RC, RD, and UC
Service Types.

Local Invalidate Operations must be posted to the Send Queue. Local In-
validates Operations affect only local HCA memory mapping resources
and do not cause any packets to be issued over the link. No resources at
the destination QP are affected.

10.7.2.6 FAST REGISTER PHYSICAL MR
The Fast Register Physical MR Operation is allowed on Non-Shared
Physical Memory Regions that were created with a Consumer owned key
portion of the L_Key, and any associated R_Key, for the RC, RD, and UC
Service Types.

When any Service Type QP is created, the Consumer selects whether to
enable Fast Register Physical MR Operations or not. If the Consumer en-
abled Fast Register Physical MR Operations, Fast Register Physical MR
Operations must be allowed.

Fast Register Physical MR Operations must be posted to the Send
Queue. Fast Register Physical MR Operations affect only local HCA
memory mapping resources and do not cause any packets to be issued
over the link. No resources at the destination QP are affected.

10.7.3 WORK REQUEST CONTENTS

A Work Request contains all of the information required to perform the re-
quested operation.

The contents of a Work Request for an operation posted to the Send
Queue are described in Section 11.4.1.1 Post Send Request on page 612.
The contents of a Work Request for an operation posted to the Receive
Queue are described in Section 11.4.1.2 Post Receive Request on page
621.

10.7.3.1 SIGNALED COMPLETIONS

Work Requests always generate a Work Completion by default. This is re-
ferred to as a Signaled Completion. There is a mechanism where Work
Requests posted to the Send Queue may not generate a Work Comple-
tion in the associated Completion Queue. This is referred to as an Unsig-
naled Completion. In order to use Unsignaled Completions, the QP has to

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 510 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

be configured to support Unsignaled Completions and the Work Request
must use the Signaling Indicator to request an Unsignaled Completion.
Note that if a completion error occurs, a Work Completion will always be
generated, even if the signaling indicator requests an Unsignaled Com-
pletion.

C10-90: The CI shall support both signaled and unsignaled completions.

C10-91: The CI shall generate a CQE when a Work Request completed
under any of the following conditions:

• The Work Request completed in error.

• The Work Request was submitted to the Receive Queue.

• The Work Request was submitted to a Send Queue configured for
only Signaled Completions.

• The Work Request was submitted to a Send Queue configured for
Unsignaled Completions but the Work Request requested a Signaled
Completion.

C10-92: The CI shall not generate a CQE when all of the following con-
ditions have been met for a completed Work Request that was submitted
to the Send Queue:

• The Send Queue has been configured to support Unsignaled Com-
pletions.

• The Work Request submitted to that Send Queue set the Signaling
Indicator to request an Unsignaled Completion

• That Work Request completed successfully.

Work Requests using Unsignaled Completions can be determined to have
been completed according to the rules in 10.8.6 Unsignaled Completions.

10.7.3.2 SCATTER/GATHER

A scatter/gather list may contain zero or more Data Segments. The
buffers specified in a Work Request scatter/gather list must be registered
with the Channel Interface prior to submission. These buffers must be
considered to be in the scope of the Channel Interface from the time sub-
mitted to a work queue until completion of the Work Request has been
confirmed. See 10.8.5 Returning Completed Work Requests and 10.8.6
Unsignaled Completions for a full description on when the completion of
a Work Request is confirmed.

C10-93: If the total sum of all of the buffer lengths exceeds the maximum
message payload size specified for an RC or UC QP, the CI shall report
an error.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 511 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-93.1.1: If the total sum of all the buffer lengths specified for a UD
message exceeds the MTU of the port as returned by QueryHCA, the CI
shall not emit any packets for this message. Further, the CI shall not gen-
erate an error due to this condition.

o10-51: If the CI supports RD Service, and if the total sum of all of the
buffer lengths exceeds the maximum message payload size specified for
an RD QP, the CI shall report an error.

A Data Segment is defined by a Virtual Address, L_Key and Length.

C10-94: The CI shall support scatter lists for Receive and RDMA Read
operations.

C10-95: The CI shall support gather lists for Send and RDMA Write op-
erations.

The order in which the Channel Interface accesses the memory described
by a scatter/gather list is not defined by the architecture. In particular, this
means that after completion of a Work Request whose scatter list contains
overlapping Data Segments, the contents of the overlapped memory are
undefined.

10.8 WORK REQUEST PROCESSING MODEL

10.8.1 OVERVIEW

The Work Request processing model describes how requests are sub-
mitted, processed by the HCA, and the results returned to the Consumer.

10.8.2 SUBMITTING WORK REQUESTS TO A WORK QUEUE

Work Requests are submitted to the HCA through the Verbs abstraction.

Work Queue Elements are abstract. This means that they are not acces-
sible directly by the Consumer of the Channel Interface.

The intent of the architecture is to allow an implementation to pass Work
Requests from a User-level Consumer process to the HCA without kernel
involvement.

The QP can accept Send Work Requests only when the QP is in states
that allow them to be submitted. The rules are as follows:

C10-96: The QP shall process Work Requests submitted to the Send
Queue as described in the rules that follow:

• Return an immediate error if the QP is in the Reset, Init and RTR
states.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 512 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Are processed when the QP is in the RTS state.

• Are completed in error, assuming that processing is able to continue
when the QP is in the SQEr or Error state.

• Are enqueued but not processed when the QP is in the SQD state.

For QP’s that are not associated with an SRQ, the QP can accept Receive
Work Requests only when the QP is in states that allow them to be sub-
mitted. The rules are as follows:

C10-97: This compliance statement has been obsoleted.

C10-97.2.1: If the QP is not associated with an SRQ, the QP shall pro-
cess Work Requests submitted to the Receive Queue as described in the
rules that follow:

• Return an immediate error if the QP is in the Reset state.

• Are accepted, but incoming messages are not processed when the
QP is in the Init state.

• Are processed when incoming messages arrive and the QP is in the
RTR, RTS, SQD, or SQEr state.

• Are completed in error, assuming that processing is able to continue
when the QP is in the Error state.

Figure 127 shows the transformation of a Work Request into a WQE to be
processed by the HCA.

For QP’s that are associated with an SRQ, the SRQ can accept Receive
Work Requests regardless of the SRQ's state. However, if a Consumer’s
Post Receive Work Request exceeds the SRQ's capacity, an Immediate
Error will be returned. The rules are as follows:

o10-51.2.1: If the HCA supports Shared Receive Queues, the SRQ shall
process Work Requests submitted to it as described in the rules that
follow:

O
SV

 A
PI

O
SV

 A
PI

WR

Prepared
Work

Requests
Abstracted

Work Queue

WQE WQE WQE

Ve
rb

s

HCA
Hardware

Work Queue Abstraction - Work Requests

Figure 127 Work Queue Abstraction

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 513 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The HCA must return an Async error when an SRQ goes into an er-
ror state.

• Are accepted, but incoming messages are not processed (WQE is
not retrieved from the SRQ) if the SRQ is not associated with any QP
or the SRQ is in the Error state.

• Are processed when incoming messages arrive on a QP that is asso-
ciated with an SRQ that is not in the error state and that QP is in the
RTR, RTS, SQD, or SQEr state.

• Are accepted, but incoming messages are not processed (WQE is
not retrieved from the SRQ) if the QP is in the Init, Reset, or Error
state.

o10-51.2.2: If the HCA supports Shared Receive Queues and the Con-
sumer posts a Receive WR on a QP that is associated with an SRQ, the
CI shall return an Immediate Error.

The modifiers in the Work Request are instantiated into the next free WQE
in the specified Work Queue and the CI is informed that a new WQE has
been added to the queue.

10.8.2.1 SUBMITTING A LIST OF WORK REQUESTS

If the CI supports the Base Queue Management Extensions, the CI must
allow:

• a list of Send Queue Work Request to be submitted to the Send
Queue,

• a list of Receive Queue Work Request to be submitted to the Receive
Queue, and

• if the HCA supports SRQ, a list of Shared Receive Queue Work Re-
quests to be submitted to the SRQ.

The CI must consume one WQE for each WR in the list of WRs. The CI
must maintain the same order for the consumed WQEs as the order of the
WRs in the list of WRs.

If the list of Work Requests are submitted to a Work Queue is larger than
the number of free Work Queue Elements available on the Work Queue,
the CI must return an Immediate Error. If an Immediate Error is detected
in any Work Request within a list of WRs, the CI must:

• convert all WRs prior to the Immediate Error into WQEs and enqueue
the WQEs onto the Work Queue;

• not convert into a WQE the WR that caused the Immediate Error;
• not convert into WQEs, any of the WR that immediately follow the

WR that caused the Immediate Error;
• return the first Immediate Error encountered; and

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 514 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• must return an indication of the Number of WRs that were success-
fully converted into WQEs and placed on the Work Queue.

10.8.3 WORK REQUEST PROCESSING

Processing of Work Requests submitted to a Work Queue are initiated in
the order submitted. There is no ordering between WRs submitted to the
send queue and WRs submitted to the receive queue. Send WRs are ini-
tiated in the same order they were passed to the Verbs layer with respect
to other sends WRs submitted to the same send queue. Likewise, receive
WRs are initiated in the same order they were passed to the Verbs layer
with respect to other receive WRs submitted to the same receive queue.

Resources associated with a Work Request must be considered to be in
the scope of the Channel Interface from the time the Work Request is sub-
mitted to a Work Queue until the completion for that Work Request has
been confirmed. See 10.8.5 Returning Completed Work Requests and
2.0.4 “Unsignaled Completions” for a description of when a Work Request
completion is confirmed.

C10-98: This compliance statement has been obsoleted.

C10-98.2.1: The CI shall initiate Send, RDMA Read, RDMA Write and
ATOMIC Operations Work Requests in the same order in which they were
submitted to a single Send Queue. Work Requests posted to a Send
Queue subsequent to a Bind Work Request shall not begin execution
until the Bind Work Request completes. A Bind Work Request may begin
execution before prior Work Requests have completed.

C10-99: This compliance statement has been obsoleted.

C10-99.2.1: For all Service types except RD and Service types that use
an SRQ, Work Requests submitted to the same Receive Queue shall
complete in the same order in which they were submitted.

Work Requests submitted to a single Send Queue complete in the same
order as the requests were submitted, according to the Ordering Rules.

The two exception to this rule are: 1) reliable datagrams are permitted to
complete out of order on the Receive Queue; and 2) RC and UD QPs that
are associated with an SRQ may have Receive WRs completed out of
order.

An SRQ can be associated with QPs that may or may not be enabled to
use Reserved L_Key. When a WQE is retrieved from an SRQ that refers
to memory locations through the Reserved L_Key and the targeted QP
does not have Reserved L_Key enabled, the QP shall be put into the error
state. The WQE that attempted the Reserved L_Key access will be com-
pleted in error, subsequent WQEs pulled from the SRQ onto the same RQ

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 515 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

will be completed with Flushed error, and all other WQEs on the SRQ, in-
cluding subsequently posted WQEs, are unaffected by the error.

10.8.3.1 RELIABLE DATAGRAM ORDERING RULES

Reliable datagrams originating from a specific Send Queue complete in
the same order they were submitted when they are sent to the same Re-
ceive Queue.

o10-52: If the CI supports RD Service, Work Requests submitted to the
same RD Send Queue shall complete in the same order in which they
were submitted.

o10-53: If the CI supports RD Service, Work Requests submitted to the
same RD Receive Queue shall complete in the same order in which they
were submitted when the requests originate from the same remote RD
Send Queue.

Receive completions from reliable datagrams sent from multiple Send
Queues are allowed to be interleaved on the Receive Queue.

10.8.3.2 SHARED RECEIVE QUEUE ORDERING RULES

If the HCA supports Shared Receive Queues, QPs associated with an
SRQ, must dequeue WQEs from the SRQ in sequential order.

o10-53.2.1: If the HCA supports Shared Receive Queues, when the HCA
receives a message that targets a QP associated with an SRQ, the HCA
shall retrieve the next available WQE from the SRQ and use it to receive
the incoming message.

Multiple QPs that are associated with the same SRQ may dequeue WQEs
from the same SRQ. As a result, multiple QPs dequeuing WQEs from a
single SRQ destroys any Receive WR posting order that was present.

o10-53.2.2: If the HCA supports Shared Receive Queues:

• Work Requests submitted through the SRQ shall be returned as
Work Completion through the CQ associated with the QP that re-
ceived the incoming message;

• for Receive WRs submitted through the SRQ, Receive Work Comple-
tions on an RC Service QP must be returned in the order the Send
WRs were submitted on the remote Send Queue; and

• Successful poll of a WQE must guarantee that reposting of a WQE is
possible. That is, successful poll of a Work Completion that is associ-
ated with a Work Request posted through an SRQ guarantees that
posting of another Work Request to the same SRQ is possible.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 516 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.8.3.3 SEND QUEUE ORDERING RULES

As shown in Table 76 Work Request Operation Ordering, ordering seman-
tics for WRs submitted to the Send Queue vary according to the operation
type. Some operations can begin processing within the CI while other op-
erations are still outstanding, potentially yielding out-of-order semantics
for certain operation sequences. For cases enumerated below, in-order
semantics can be guaranteed by setting the Fence Indicator for appro-
priate WRs. When the Fence Indicator is set for a given WR, that WR
cannot begin to be processed until all prior RDMA Read and Atomic op-
erations on the same Send Queue have completed.

C10-100: When the Fence Indicator has been set in a Work Request, the
Send Queue shall not begin processing that Work Request until all prior
RDMA Read and Atomic Operations on that Send Queue have com-
pleted.

Here are the cases where the Fence Indicator can be used to guarantee
in-order semantics:

• An RDMA Read won’t necessarily complete before subsequent
Sends, RDMA Writes, or Atomics are initiated and observed by the
target. If the target Consumer then modifies memory locations being
returned by the RDMA read, the RDMA read could return the newly
modified data instead of the original data. Setting the Fence Indicator
for the subsequent operation in each case guarantees that the opera-
tion will not be observed by the target until all prior RDMA Reads
complete.

• An RDMA Read can return data that’s been modified by subsequent
Sends, RDMA Writes, or Atomics if they target memory locations be-
ing returned by the RDMA Read. Setting the Fence Indicator on the
subsequent operation in each case guarantees that the operation will
not affect data being returned by a prior RDMA read.

• RDMA Read or Atomic operations won’t necessarily complete before
subsequent Sends, RDMA Writes, or Atomics are initiated and ob-
served by the target. If one of the former operations completes in er-
ror on the initiator side because its ACKs fail to return successfully,
the subsequent operation could still be observed by the target, and
the target Consumer might take some undesired action. Setting the
Fence Indicator on the subsequent operation in each case guaran-
tees that it can’t be observed by the target unless all prior RDMA
Reads and Atomics complete successfully on the initiator side.

• RDMA Read operations may be executed at the target after subse-
quent Send and Invalidate operation already performed the invalida-
tion at the target. That may cause the RDMA Read operation to fail.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 517 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Setting the Fence Indicator on the subsequent operations guarantees
that the RDMA Read will fully complete before the invalidation takes
place.

The Bind operation has a unique ordering rule: any Work Request posted
to a Send Queue subsequent to a Bind must not begin execution until the
Bind operation completes. However, note that a Bind operation itself can
begin execution in some cases before prior operations have necessarily
completed. Also note, a Fast Register PMR or local Relaxed Ordered In-
validate operation submitted after a Bind operation, may be performed be-
fore the Bind operation is started.

o10-53.2.3: If the HCA supports the Base Memory Management Exten-
sions, the invalidate operation may take place at any time after it has been
posted to the Send Queue, but must take place before a completion is
generated and before any subsequent WQE has begun execution.

o10-53.2.4: If the HCA supports Local Invalidate Fencing, when the Local
Invalidate Fence Indicator has been set in a Local Invalidate Work Re-
quest, the Send Queue shall not begin processing that Work Request
until all prior Work Requests on that Send Queue have completed. Addi-
tionally, the Send Queue shall not begin processing the Work Request
immediately after the Local Invalidate Work Request, until the Local Inval-
idate Work Request has finished processing.

The Local Invalidate Fence Indicator can be used to guarantee in-order
semantics. If the Memory Region referenced by the Local Invalidate is in
use at the time the Local Invalidate operation is posted, the HCA may In-
validate the Memory Region. To prevent this from occurring, if the HCA
supports fencing on Local Invalidate, the Local Invalidate Fence indicator
can be set on the Local Invalidate operation. Setting the Local Invalidate
Fence indicator on the Local Invalidate will assure all previous WQEs on
the same Send Queue that reference the Memory Region being Invali-
dated have completed before the Invalidate operation takes place.

Ordering guarantees for processing and completion notifications exist
only between Work Requests submitted to the same queue. The ordering
across multiple Work Queues is undefined.

C10-101: This compliance statement has been obsoleted.

C10-101.2.1: The CI shall provide the guarantees for processing and
completion notifications between Work Requests submitted to the same
Send Queue as specified by the ordering rules in Table 76 Work Request
Operation Ordering.

Ordering Rules:

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 518 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Receive Queues are FIFO queues with the exception of the reliable
datagram and SRQ issues described above.

• Send Queues are FIFO queues, according to the rules in Table 76
Work Request Operation Ordering. The Fence Indicator can be used
to require strict ordering.

10.8.4 COMPLETION PROCESSING

The results from a Work Request operation are placed in a Completion
Queue Entry (CQE) on the CQ associated with the Work Queue when the
request has completed.

Table 76 Work Request Operation Ordering

Second Operation

Send Bind
Window

RDMA
Write

RDMA
Read Atomic Op

Fast
Register
Physical

MR

Local
Invalidate

Fi
rs

t O
pe

ra
tio

n

Send # # # # # NR L

Bind
Window

NR L

RDMA Write # # # # # NR L

RDMA Read F F F # F NR L

Atomic Op F F F # F NR L

Fast
Register

Physical MR

L

Local
Invalidate

#

Table 77 Ordering Rules Key

Symbol Description

Order is always maintained.

NR Order is not required to be maintained between the Fast Register and the previous operations.

F Order maintained only if second operation has Fence Indicator set

L Order maintained only if Invalidate operation has Local Invalidate Fence Indicator set

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 519 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A CQE must be generated before a Work Completion can be returned to
the Consumer. Note that not all Work Requests will generate a comple-
tion, due to unsignaled completions. The rules for when a CQE is gener-
ated are outlined in 10.8.5 Returning Completed Work Requests.

C10-102: For completed Work Requests that generate a Work Comple-
tion, the CI shall place that Work Completion on the CQ associated with
the Work Queue.

A CQE is an internal representation of the Work Completion.

10.8.5 RETURNING COMPLETED WORK REQUESTS

All completions are abstracted through the Verbs. The only method of re-
trieving a Work Completion is through the Verbs.

Except for RD Receive Work Queues and Receive Work Queues associ-
ated with an SRQ, Work Completions are always returned in the order
submitted to a given Work Queue with respect to other Work Requests on
that Work Queue.

For QPs associated with an SRQ, Send Work Completions are always re-
turned in the order submitted to a given work queue with respect to other
Work Requests on that work queue. Receive Work Completions may be
returned in a different order than the order submitted to the Shared Re-
ceive Queue.

Ordering rules of completion entries from multiple work queues associ-
ated with a given completion queue are not mandated by this specifica-
tion.

A retrieved Work Completion is no longer in the domain of the Channel In-
terface. Therefore, a Work Completion can only be retrieved once.

C10-103: The CI shall not allow a specific Work Completion to be re-
trieved more than once.

The Work Completion contents are specified in 11.4.2.1 Poll for Comple-
tion on page 623.

A Consumer can find out when a Work Completion can be retrieved
through polling or notification.

C10-104: The CI shall return a Work Completion for a Work Request that
completed with a signaled completion.

C10-105: The CI shall return a Work Completion for a Work Request sub-
mitted to a Send Queue that completed in error.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 520 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-106: This compliance statement has been obsoleted.

C10-106.2.1: For QPs that are not associated with an SRQ, the CI shall
return a Work Completion for the completion of a Work Request submitted
to a Receive Queue.

o10-53.2.5: If the CI supports SRQ, for QPs that are associated with an
SRQ, the CI shall return a Work Completion for the completion of a Work
Request submitted to a Shared Receive Queue.

o10-53.2.6: If the CI supports SRQ, for a QP that is associated to an SRQ,
Work Completions shall be returned to the Completion Queue that is as-
sociated with the QP’s Receive Queue.

C10-107: The CI shall not access any buffers associated with the Work
Request once the associated Work Completion has been retrieved.

10.8.5.1 FREED RESOURCE COUNT

One of the modifiers returned with the completion is a count that informs
the Consumer of the number of work request resources freed by this com-
pletion. This applies only to Reliable Datagram Receive Queues. Work re-
quest resources refers to Channel Interface resources allocated on behalf
of the Consumer, such as available WQEs for a given Work Queue, and
not direct Consumer resources, such as buffers.

If this count is zero, this indicates that no receive queue work queue ele-
ments have been freed when this Work Completion was generated. If this
count is greater than zero, the Consumer can assume that the counter in-
dicates the number of work requests released from the RD RQ. This is
useful for the Consumer to keep track of the number of available work re-
quests which can be outstanding.

Buffers associated with the outstanding work request associated with this
work completion are no longer considered to be in the scope of the HCA,
regardless of the Freed Resource Count.

For most implementations, this count is expected to be one with every
work completion.

o10-54: If the CI supports RD Service, when a Work Completion associ-
ated with a Work Request posted to an RD RQ is retrieved, the CI shall
return a count of the number of Work Request resources freed through the
Verbs.

10.8.5.2 COMPLETION QUEUE ERRORS

Under certain conditions, a Completion Queue may encounter errors. Two
types of CQ errors can occur: the CQ can overrun or it can become inac-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 521 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cessible. CQ errors are reported to the Consumer through Affiliated Asyn-
chronous Errors, which are discussed in section 10.10.2.3 Asynchronous
Errors on page 531.

CQ overflow occurs when the CQ attempts to generate a CQE and the CQ
is already full. Inaccessible CQ is an implementation dependent error
where a CQE can not be reported to the CQ, although the CQ is not full.
The HCA detects CQ errors and surface them to the CI. When the con-
sumer retrieves completions, the CI only reports good completions or in-
dicates that the CQ is empty.

Following a CQ error, the consumer may still retrieve completions which
were outstanding on the CQ at the time the error occurred. After all the
outstanding completions have been returned, the CI will indicate that the
CQ is empty. Corrupted CQEs are never returned to the consumer as
Work Completions.

Following a CQ error, QPs can still be associated, through Create QP, with
the CQ that has encountered the error. It is also allowed to modify, query
and destroy QPs that are attached to a CQ that has encountered an error.
Any attempt to query or resize a CQ that has encountered an error will re-
port an immediate error. Destroy CQ is allowed on such a CQ.

When a CQ encounters an error, in order to be able to use the CQ again,
the consumer should:

• Destroy all the QPs that are attached to the CQ
• Destroy the CQ
• Recreate the CQ through the Create Completion Queue verb
If the Consumer requests notification on a CQ that has experienced an Af-
filiated Asynchronous Error (i.e. a CQ that has overrun or become inac-
cessible), the CI will not report a completion event.

10.8.6 UNSIGNALED COMPLETIONS

An unsignaled Work Request that completed successfully is confirmed
when all of the following rules are met:

• A Work Completion is retrieved from the same CQ that is associ-
ated with the Send Queue to which the unsignaled Work Request
was submitted.

• That Work Completion corresponds to a subsequent Work Re-
quest on the same Send Queue as the unsignaled Work Request.

C10-108: The CI shall not access buffers associated with an Unsignaled
Work Request once a Work Completion has been retrieved that corre-
sponds to a subsequent Work Request on the same Send Queue.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 522 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.8.7 ASYNCHRONOUS COMPLETION NOTIFICATION

The Consumer may register multiple completion notification routines, one
per Completion Event, to be called when a new entry is added to the CQ
using the Set Completion Event Handler Verb.

C10-109: This compliance statement has been obsoleted.

C10-109.2.1: A CI shall support registering a single CQ Event Handler per
HCA. The CI must ensure that the Consumer can successfully set one
completion event handler.

o10-54.2.1: If the CI supports the Base Queue Management Extensions,
then the CI must:

• Support one or more Completion Event Handlers;

• Return the number of Completion Event Handlers supported by the
HCA through the Query HCA verb;

• Through the Set Completion Event Handler Verb, associate a Com-
pletion Handler Address to a Completion Handler Identifier;

• Through the Set Completion Event Handler Verb, clear an existing
Completion Event Handler; and

• Through the Create CQ verb, associate the Completion Handler
Identifier to a CQ

C10-110: This compliance statement has been obsoleted.

C10-110.2.1: If HCA does not support the Base Queue Management Ex-
tensions, the CI shall replace any previous handler associated with a
Completion Event identifier with the handler specified in a new Set Com-
pletion Event Verb notification.

o10-54.2.2: If HCA supports the Base Queue Management Extensions
and the Consumer specifies a non-zero Completion Event Handler Ad-
dress, the CI shall replace any previous handler associated with a Com-
pletion Event identifier with the handler specified in a new Set Completion
Event Verb notification. If the Consumer specifies a zero Completion
Event Handler Address, the CI shall clear any previous handler.

If the Consumer references an existing Completion Event Handler Identi-
fier and clears a previous handler as described above, then the Consumer
cannot use the same Completion Event Handler Identifier until it is re-
turned from a Set Completion Event Handler Verb.

The Request Completion Notification Verb is set on a per-CQ basis. This
is a one-shot notification; at most, one notification will be generated per
call to this Verb. Once CQ notifications have been enabled, additional Re-

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 523 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

quest Completion Notification calls have no effect. The handler will be
called once when the next entry is added to the CQ specified as a modifier
to this Verb. The presence of Solicited Events may impact this behavior.
See 11.4.2.2 Request Completion Notification on page 627 & 9.2.3 Solic-
ited Event (SE) - 1 bit on page 238 for details.

C10-111: A CQ shall have at most one Completion Event notification re-
quest outstanding.

C10-112: A CI shall generate a single Completion Event when a CQ
entry that satisfies the outstanding Completion Event request is added to
the CQ.

C10-113: A CI shall not generate a Completion Event for existing CQ en-
tries on the specified CQ at the time the completion notification request is
registered.

A notification will not be generated until the next entry is added to the CQ.

The following sequence of calls should be used when using Request
Completion Notification in order to ensure that a new CQ entry is not
missed for the specified CQ.

1) Poll for Completion to dequeue existing CQ entries.

2) Request Completion Notification.

3) Poll for Completion to pick up any CQ entries that were added be-
tween the time the first Poll for Completion was called and the notifi-
cation is enabled.

If a handler has not been registered, a notification will not be generated.

When the handler routine is invoked, an indication of which CQ has gen-
erated the completion notification will be supplied. Once the handler rou-
tine has been invoked, the Consumer must call Request Completion
Notification again to be notified when a new entry is added to the CQ.

C10-114: For each Completion Event, the CI shall indicate which CQ
caused the generation of that event.

The Consumer is responsible for polling the CQ to retrieve the work com-
pletion. This function is not performed automatically when the notification
occurs.

10.9 PARTITIONING

This section discusses InfiniBand™ support for partitioning of an Infini-
Band™ network. The Verb support for partitioning is contained in the
Verbs that perform Queue Pair management, read Channel Interface (CI)

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 524 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

content, and set it. These are documented in 11.2 Transport Resource
Management on page 550.

In this discussion, the term “Partition Manager” (PM) refers to the function
of the Subnet Manager that deals with partitioning for the CI being dis-
cussed; see 13.5 MAD Processing on page 749 for how SMPs are di-
rected to that manager.

10.9.1 INTRODUCTION

Partitioning enforces isolation among systems sharing an InfiniBand™
fabric by requiring that packets contain a 16-bit Partition Key (P_Key)
which must match a P_Key stored at the receiver or be discarded; see
definition of “match” below (10.9.3 Partition Key Matching). There are no
Verbs that directly set the P_Keys sent or matched against in a CA. Verbs
instead specify an index into a table of P_Keys: the P_Key_ix, specifying
an entry in the P_Key Table. The contents of the P_Key Table are con-
trolled by the subnet’s Partition Manager (PM), which sets them using
Subnet Management Packets (SMPs) sent through the subnet’s Subnet
Manager.

Subsections appearing below describe the P_Key Table, the matching
process, and the way P_Keys are attached to packets. See 14.2.5 At-
tributes on page 809 for a description of the SMPs which set entries in the
P_Key Table.

10.9.1.1 LIMITED AND FULL MEMBERSHIP

A collection of endnodes with the same P_Key in their P_Key Tables are
referred to as being members of a partition, or in a partition. A P_Key
Table can specify one of two types of partition membership: Limited or
Full. The high-order bit of the partition key is used to record the type of
membership in a partition table: 0 for Limited, and 1 for Full. Limited mem-
bers cannot accept information from other Limited members, but commu-
nication is allowed between every other combination of membership
types.

10.9.1.2 SPECIAL P_KEYS

There are P_Keys that have special meaning: the default partition key,
and the invalid partition keys.

C10-115: The P_Key value 0xFFFF shall represent the default partition
key.

The default partition key provides Full membership in the default partition.

C10-116: The CI shall regard a P_Key as invalid if its low-order 15 bits
are all zero.The CI shall mark a table entry as invalid by filling it with an
invalid P_Key.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 525 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-117: The PM must not use these two P_Key values for any other
purposes.

Any P_Key which is not invalid is referred to as valid. The default partition
key is valid. A P_Key Table entry containing a valid P_Key is referred to
as a valid P_Key Table entry.

10.9.1.3 OPERATION ACROSS SUBNETS

C10-118: Switches or Routers shall not modify P_Key values when
packets are forwarded/routed within or between subnets.

C10-119: A packet’s P_Key must match a P_Key stored at the destination
CI or CA, or the packet shall be discarded; see the definition of “match”
below (10.9.3 Partition Key Matching).

In the above case a P_Key sourced in one subnet must be valid in another
subnet. Since subnets may have different PMs, this must be arranged to
happen, for example by human administration (analogous to assignment
of static IP addresses) or by a program dialog between subnets' PMs. The
definition of the messages used in such an inter-PM dialog is beyond the
scope of this version of the specification.

10.9.2 THE PARTITION KEY TABLE (P_KEY TABLE)

C10-120: Each HCA port and switch SMA port shall contain a Partition
Key Table (P_Key Table). The valid entries in the P_Key Table shall hold
P_Keys for all the endnodes with which this CI can communicate.

If a switch or router supports the optional P_Key Enforcement feature,
then each of its ports shall contain a Partition Key Table (P_Key Table).

C10-121: The P_Key Table size, meaning the maximum number of en-
tries it can hold, must be greater than or equal to one and less than or
equal to 65535.

The maximum number of entries that can be held in a P_Key Table can
be obtained by using the Query HCA Verb or the NodeInfo SMP. (See
11.2.1.2 Query HCA on page 551 and 14.2.5.3 NodeInfo on page 818.)

C10-122: The CI must not provide any interface which allows software
above the Verbs to alter the P_Key Table contents or change the validity
of any entry in the P_Key Table, except through the use of SMPs.

Verbs allow host software to read entries in the P_Key Table. If the value
read is an invalid partition key value, that entry is invalid.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 526 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SMPs sent to the endnode are used to read and write entries in the P_Key
Table. The operations involved when a table is written are described in a
later section.

C10-123: If non-volatile storage is not used to hold P_Key Table contents,
then if a PM (Partition Manager) is not present, and prior to PM initializa-
tion of the P_Key Table, the P_Key Table must act as if it contains a single
valid entry, at P_Key_ix = 0, containing the default partition key. All other
entries in the P_Key Table must be invalid.

10.9.3 PARTITION KEY MATCHING

C10-124: The P_Key field of incoming packets received by an endnode
shall be matched against a resident P_Key as described in the remainder
of this section.

Also see 9.6.1.1.3 BTH:P_Key on page 274 and 18.2.1 Attributes on page
1042.

In the following, let M_P_Key (Message P_Key) be the P_Key in the in-
coming packet and E_P_Key (Endnode P_Key) be the P_Key it is being
compared against in the packet’s destination endnode.

• If:
• neither M_P_Key nor E_P_Key are the invalid P_Key,
• and the low-order 15 bits of the M_P_Key match the low order 15

bits of the E_P_Key;
• and the high order bit (membership type) of both the M_P_Key

and E_P_Key are not both 0 (i.e., both are not Limited members
of the partition)

then the P_Keys are said to match. In this case the incoming packet
is accepted and processed normally.

• In all other cases the P_Keys are said to not match. The incoming
packet must be treated as if it was sent to a nonexistent device,
meaning:
• no ACK is returned
• optionally, a trap SMP is sent to the SM and a counter is incre-

mented; see 10.9.4 Bad P_Key Trap and P_Key Violations
Counter (Optional)

• there is no other effect on the target endnode.

10.9.4 BAD P_KEY TRAP AND P_KEY VIOLATIONS COUNTER (OPTIONAL)
o10-55: If the CA ports and the GSI port for switches and routers support
the trap SMP for P_Key Violations, then if a packet's P_Key does not
match, the destination node shall send a trap SMP to the SM, specifying

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 527 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the partitioning class and the Bad P_Key Notification method. The body
of the trap SMP must contain the offending packet's headers fields as
specified in Table 131, “Traps,” on page 812 and Table 138, “Notice Dat-
aDetails For Traps 257 and 258,” on page 816. Like all traps, this one
shall not be sent at a frequency faster than the Subnet Timeout.

o10-56: If the CA ports and the GSI port for switches and routers support
the trap SMP for P_Key Violations, then if another P_Key mismatch oc-
curs before the trap can be sent, the data for the new mismatch shall re-
place the previously stored data.

o10-57: If the CA ports and the GSI port for switches and routers support
a P_Key Violations counter, then it shall have the following characteris-
tics:

• Its minimum size is one bit; its maximum size is 16 bits (unsigned).

• It is incremented whenever the P_Key on a message arriving on a
given port does not match (as described in 10.9.3 Partition Key
Matching).

• When its value reaches all 1s, further incrementing does not change
its value: i.e., it saturates.

• It is initialized by power on reset to zero.

The P_Key Violations counter can be read and set by using a SMP that
accesses P_Key Violations component of the PortInfo attribute; see
14.2.5.1 Notices and Traps on page 812.

10.9.5 CI PARTITION SUPPORT

C10-125: Except for the subnet management QP (QP0) and QPs pro-
viding RD (Reliable Datagram) or Raw Datagram service, a P_Key must
be associated with each QP before the QP is used. If a CI has multiple
ports, the P_Key Table to which the P_Key index refers shall be the
P_Key Table of the port that the QP is currently using.

This association is done through Verbs that specify the P_Key_ix of the
key to use. If the CI supports automatic path migration, then both the pri-
mary and alternate P_Key_ix should map to the same partition key; oth-
erwise APM may not function properly.

C10-126: The CI shall attach a QP’s P_Key to all packets sent from the
QP’s send queue, except for SMPs, raw datagram packets and packets
sent from RD QPs.

SMPs are always sent with the default P_Key, Raw datagram packets do
not contain a P_Key, and packets from an RD QP get their P_Keys from
the EE context associated with the RD QP.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 528 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-127: The CI shall compare the QP’s P_Key to the P_Key contained
in all incoming packets, except for raw packets and packets destined for
QP0, QP1, and QPs providing RD service. See Section 10.9.8 for rules on
P_Key validation in incoming packets on QP0 and QP1.

The comparison is described in 10.9.3 Partition Key Matching. The excep-
tions to this are described in 10.9.8 Partition Enforcement on Manage-
ment Queue Pairs and 10.9.5.1 EE Context (Reliable Datagram) Support.

10.9.5.1 EE CONTEXT (RELIABLE DATAGRAM) SUPPORT

o10-58: If the CI supports the RD Service, then it must associate a P_Key
with each EE Context before the EE Context is used. If a CI has multiple
ports, the P_Key Table to which the P_Key index refers shall be the
P_Key Table of the port that the EE Context is currently using.

o10-59: If the CI supports the RD Service, then the CI must attach an EE
Context’s P_Key to all outgoing Reliable Datagram (RD) packets emitted
using that EE Context. All incoming packets using a given EE context
shall be compared with that EE Context’s P_Key as described in 10.9.3
Partition Key Matching.

If the CI supports automatic path migration, then both the primary and al-
ternate P_Key_ix should map to the same partition key; otherwise APM
may not function properly.

As stated in that section: if the P_Keys match, the packet is processed
normally; otherwise it is silently discarded and, optionally, a trap is issued
and the Bad P_Key Counter is incremented as described in that section.

RD service is not used on management queue pairs, so this EE Context
support does not apply to them.

10.9.5.2 PARTITION KEY CHANGES

C10-128: When the PM sends a message to a CI port requesting a
change to the value of a P_Key Table element, the CI must return a re-
sponse message indicating that the action has either been carried out
successfully or not performed for some reason.

C10-129: The CI shall guarantee that, after the point in time when it sends
a response message to the PM indicating success, the updated P_Key
Table values will be used to process all subsequent incoming and out-
going packets traversing the associated port.

This behavior may have begun prior to the PM’s receiving the success
reply.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 529 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.9.6 TCA PARTITION SUPPORT

C10-130: TCA support for partitioning must be the same as that for CIs,
with the exception that association of a P_Key with a queue shall be done
in response to messages that initiate creation of queue pairs, as part of
establishing communication with another endnode.

In all other respects, the TCA behaves exactly like a CI in terms of multiple
ports, incoming packets, outgoing packets, and changes to the P_Key
Table.

10.9.7 FABRIC PARTITION SUPPORT

The switches in the InfiniBand™ fabric may optionally also enforce parti-
tioning. How P_Keys are loaded into switches and how they are used is
described in several sections of the chapter describing switches
(18.2.4.2.1 Inbound P_Key Enforcement on page 1046 and 18.2.4.4.1
Outbound P_Key Enforcement on page 1054.

10.9.8 PARTITION ENFORCEMENT ON MANAGEMENT QUEUE PAIRS

The two types of management queues each treat partition enforcement in
a different way.

C10-131: Packets sent to the Subnet Management Interface QP shall al-
ways be accepted, regardless of the P_Key contained in the packet.

Isolation and security of management communication are not provided by
partitioning, but instead by checking of the Management Key.

Packets sent from a Subnet Management Interface QP may have any
P_Key; the default P_Key is used by convention, as described in the man-
agement sections.

C10-132: Packets sent to the General Service Interface QP (QP1) shall
be accepted if the P_Key in the packet matches any valid P_Key in the
P_Key Table of the port on which the packet arrived. Matching is defined
in 10.9.3 Partition Key Matching.

As stated in that section: if the P_Keys match, the packet is processed
normally; otherwise it is silently discarded and, optionally, a trap is issued
and the Bad P_Key Counter is incremented as described in that section.

C10-133: Packets sent from the Send Queue of a GSI QP shall attach a
P_Key associated with that QP, just as a P_Key is associated with non-
management QPs.

C10-134: Each switch shall also check P_Keys on its GSI QP. Switches
shall support a P_Key table with at least one entry against which the

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 530 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

P_Key of packets destined for the switch's GSI shall be matched, ac-
cording to the rules as stated in C10-132: above.

10.9.9 RELATED ENFORCEMENT OF MANAGEMENT MESSAGE CHECKING

Checking of the M_Key (see 14.2.4 Management Key on page 806) can
optionally be used to prevent anything but an authorized subnet manager
from reading any SM data from the SMI, and when the protection test fails,
silently discarding the packet that failed. Similarly preventing the writing of
SM data through the SMI, with silent discard, is mandatory.

In addition, it is an option to store the M_Key(s), the M_KeyProtectBits
which control M_Key checking, and the lease period across power cycles
Table 145 PortInfo on page 822.Thus, for example, system initialization
techniques cannot assume that a constant default value for that data is
present except for first-power-on from the factory.

10.10 ERROR HANDLING SEMANTICS AND MECHANISMS

This section describes the types of errors that are detected at the Channel
interface and the response that is generated when those error events
occur.

10.10.1 ERROR TYPES

Three classes of errors reported through the Verbs have been defined: im-
mediate errors, completion errors and asynchronous errors. Each of these
error classes are described in more detail under their respective headings
within 10.10.2 Error Handling Mechanisms. A brief description of each
error class follows.

Immediate errors are returned as status from the Verbs.

Completion errors are returned to the Verbs Consumer as status within a
Work Completion.

Asynchronous errors are returned through an event handling mechanism.

10.10.2 ERROR HANDLING MECHANISMS

This section describes the mechanisms used to notify the Verb Consumer
of errors in the requested operations.

10.10.2.1 IMMEDIATE ERRORS

C10-135: The CI shall return Immediate errors upon return of control from
the Verb to the Consumer.

The details of these error types are included with each Verb described in
the Verbs chapter.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 531 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-136: If an immediate error is returned from a Verb involved in posting
Work Requests to a queue, the CI shall ensure that the Work Request
has not been posted to the queue.

10.10.2.2 COMPLETION ERRORS

C10-137: A Work Request or WQE that is “completed in error” shall have
the appropriate completion error returned in the Work Completion status.

The complete list of errors that can be returned in the Work Completion
status is described in the Verbs chapter under the Completion Queue Op-
erations (11.4.2.1 Poll for Completion on page 623).

There are two classes of completion errors: Interface checks and pro-
cessing errors. An interface check is an error in the information supplied
to the Channel Interface detected before data is placed onto the link. A
processing error is an error encountered during the processing of the work
request by the Channel Interface.

10.10.2.3 ASYNCHRONOUS ERRORS

Consumers are notified about asynchronous errors through an asynchro-
nous notification mechanism. In order to be notified when asynchronous
errors occur, the Consumer must register a handler using the Set Asyn-
chronous Event Handler Verb.

C10-138: After the asynchronous event handler is registered, all subse-
quent asynchronous errors shall result in a call to the error handler. Asyn-
chronous errors that occur before the error handler is registered shall be
lost.

The details of these errors are discussed in 11.6.3.2 Affiliated Asynchro-
nous Errors on page 639 and 11.6.3.4 Unaffiliated Asynchronous Errors
on page 641.

C10-139: Only one error handler shall be registered per HCA. Subse-
quent calls to the Set Asynchronous Error Handler Verb shall cause the
previous handler address to be overwritten with the new handler address.

There are two Asynchronous error types:

• Unaffiliated Asynchronous Error. Not related to any specific WQ
or CQ.

C10-140: This compliance statement has been deleted.

• Affiliated Asynchronous Error. Related to a specific WQ, CQ or
EE context and unable to report the error in a completion. The QP
or EE context is transitioned to the Error State.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 532 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.10.3 EFFECTS OF ERRORS ON QP SERVICE TYPES

The different types of IB errors defined have varying effects on queue pro-
cessing dependent upon the QP’s Service Type.

It is important to note that catastrophic errors on the local QP have no di-
rect effect on the remote QP. No attempt is made to send a message
below the Verbs to tear down a connection just because a QP has en-
countered an error.

10.10.3.1 RELIABLE CONNECTION QPS:

C10-141: Immediate errors shall not affect QP processing since the
Work Request never gets posted to the QP.

C10-142: For Send Queue completion errors, the Work Request on the
Send Queue in which the error occurred shall be completed in error by
the CI. The QP shall be placed in the Error State. All subsequent Work
Requests shall be completed in error

In the case of local send queue errors, any and all Work Requests on
the Send Queue in which the error occurred are completed in error by
the Channel Interface. If the local error was an interface check, the re-
mote, corresponding Receive Queue will not consume a Work Re-
quest and thus will not surface a completion error. If the local error was
a processing error, the remote, corresponding Receive Queue may or
may not complete a Work Request in error. The condition of the local
and remote memory when a completion error occurs on the send
queue for RDMA and atomic operations is specified in 10.3.1.7 Error.

C10-143: For local Receive Queue completion errors, the Work Request
on the Receive Queue in which the error occurred shall be completed in
error by the CI. The QP shall be placed in the Error State. All subsequent
Work Requests shall be completed in error.

C10-144: Affiliated Asynchronous Errors shall result in the QP processing
being halted such that outstanding Work Requests are not completed suc-
cessfully by the Channel Interface. The QP shall be transitioned to the
Error State. Any request in progress on the corresponding Work Queue
shall be halted and returned with a completion error, unless the CQ has
overflowed or become inaccessible. If the CQ has overflowed or become
inaccessible, then request in progress shall not be returned through the
CQ.

C10-145: Table 78 Completion Error Handling for RC Send Queues and
Table 79 Completion Error Handling for RC Receive Queues are a more
detailed description of the RC error handling actions that must be sup-
ported by the CI according to the error and Work Queue type.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 533 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Descriptions of the error types used in the table are contained in 11.6.2
Completion Return Status on page 634.

Table 78 Completion Error Handling for RC Send Queues

Error Type Completion
Type

Effect on Local QP
State

Effect on Remote QP
State

Bad Response Processing Error None

Local Length Interface Error None

Local Length Processing Error None

Local QP Operation Interface Error None

Local QP Operation Processing Error None

Local Protection Interface Error None

Local Protection Processing Error None

Memory Mgt. Operation Interface Error None

Remote Invalid Request Processing Error Error

Remote Access Processing Error Error

Remote Operation Processing Error Error

RNR NAK Retry Counter
Exceeded

Processing Error None

Transport Retry Counter
Exceeded

Processing Error None

Work Request Flushed Processing None None

Table 79 Completion Error Handling for RC Receive Queues

Error Type Completion
Type

Effect on local
QP state

Effect on remote QP
state

Local Access Processing Error Error when NAK received

Local Length Processing Error Error when NAK received

Local Protection Processing Error Error when NAK received

Local QP Operation Processing Error Error when NAK received

Memory Mgt Operation Interface Error Nonea

Remote Invalid Request Processing Error Error when NAK received

Work Request Flushed Processing None None

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 534 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

10.10.3.2 RELIABLE DATAGRAM QPS:
o10-60: If the CI supports RD Service, immediate errors shall have no ef-
fect on QP/EE processing since the Work Request never gets posted to
the QP/EE.

o10-61: If the CI supports RD Service, completion errors on a Send
Queue shall result in Send Queue processing being halted and the Send
Queue state shall transition to the Send Queue Error State, as per the
state diagram. The Work Request where the error occurred shall be com-
pleted in error.

In the case of local send queue errors, any and all Work Requests on
the Send Queue in which the error occurred are completed in error by
the Channel Interface. If the local error was an interface check, the re-
mote, corresponding Receive Queue will not consume a Work Re-
quest and thus will not surface a completion error. If the local error was
a processing error, the remote, corresponding Receive Queue may or
may not complete a Work Request in error. The condition of the local
and remote memory when a completion error occurs on the send
queue for RDMA and atomic operations is specified in 10.3.1.6 Send
Queue Error (SQEr).

o10-62: If the CI supports RD Service, for local Receive Queue comple-
tion errors, the Work Request on the Receive Queue in which the error oc-
curred shall be completed in error by the CI. All subsequent Work
Requests shall not be affected by the error.

o10-63: If the CI supports RD Service, completion errors shall have no
effect on the EE Context State.

o10-64: If the CI supports RD Service, Affiliated Asynchronous Errors
shall result in the QP processing being halted such that outstanding Work
Requests are not completed successfully by the Channel Interface. The
QP shall transition to the Error State. Any request in progress on the cor-
responding Work Queue shall be halted and returned with a completion
error, unless the CQ has overflowed or become inaccessible. If the CQ
has overflowed or become inaccessible, then request in progress shall
not be returned through the CQ.

o10-65: If the CI supports RD Service, when an Affiliated Asynchronous
Error is associated only with the QP, the error shall have no effect on the
EE context. If an Affiliated Error is associated with the EE context, the EE
context shall transition to the Error state.

a. In the case of Memory Management Operation Error on the local receive queue, no explicit
NAK is sent. Therefore, there is no direct impact on the remote QP. However, the local QP
transitions into the Error state as a result of this error, which may cause the remote QP to timeout
while executing subsequent WQEs. Therefore, a remote QP timeout error may result when the
local QP encounters a Memory Management Operation Error on its Receive Queue.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 535 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-66: If the CI supports RD Service, Table 80 Completion Error Han-
dling for RD Send Queues and Table 81 Completion Error Handling for RD
Receive Queues are a more detailed description of the RD error handling
actions that must be supported by the CI for RD:

Table 80 Completion Error Handling for RD Send Queues

Error Type Completion
Type

Effect on
Local QP

State

Effect on
Remote QP

State

Effect on
Local EE

State

Effect on
Remote EE

State

Error
Handling

Action

Bad Response Processing SQ Error None None None 1

Invalid EE Context Number Processing SQ Error None None None 1

Invalid EE Context State Processing SQ Error Indetermi-
nate

EE Error None 1,3

Local EE Context Opera-
tion

Processing SQ Error Indetermi-
nate

EE Error None 1,3

Local Length Interface SQ Error None None None 1

Local Length Processing SQ Error None None None 1

Local Protection Interface SQ Error None None None 1

Local Protection Processing SQ Error Rcv WC Err None None 1, 2, 4

Local QP Operation Interface SQ Error None None None 1

Local QP Operation Processing SQ Error Rcv WC Err None None 1, 2, 4

Local RDD Violation Processing SQ Error None None None 1

Memory Mgt Operation Interface SQ Error None None None 1

Remote Access Processing SQ Error None None None 1

Remote Invalid Request Processing SQ Error None if 1st
packet.
Opt Rcv
WC Err if
other than
1st packet.

None None 1, 2

Remote Invalid RD
Request

Processing SQ Error None if 1st
packet.
Opt Rcv
WC Err if
other than
1st packet.

None None 1, 2

Remote Operation Processing SQ Error Error None None 1,2

RNR NAK Retry Counter
Exceeded

Processing SQ Error None None None 1

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 536 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Error Handling Actions:

Uninvolved SQs and RQs are unaffected unless they attempt to use an
EE-context or QP that is in the error state.

1) The SQ active over the EE-context at the time the error occurred
goes to the SQEr state.

• Receives for the RQ associated with the local SQ placed in SQEr
state continue as normal (i.e. are not completed in error, unless
they also experience a separate error).

• Remainder of the WQEs in the SQ which experienced the error
are returned in error via Work Completions (WCs).

Transport Timeout Retry
Counter Exceeded

Processing SQ Error None Error None 1

Work Request Flushed Processing None None None None None

Table 81 Completion Error Handling for RD Receive Queues

Error Type Completion
Type

Effect on local
QP state

Effect on
remote QP

state

Effect on
local EE

state

Effect on
remote EE

state

Error
Handling

Action

Invalid EE Context State Processing Rcv WC Err SQ Error EE Error EE Error 1, 2, 3

Local EE Context Operation Processing Rcv WC Err SQ Error EE Error EE Error 1, 2, 3

Local Length Processing Rcv WC Err SQ Error None None 1,2

Local Protection Processing Rcv WC Err SQ Error None None 1, 2

Local QP Operation Processing Rcv WC Err SQ Error None None 1, 2

Remote Aborted Processing Rcv WC Err Indetermi-
natea

None None 1b,2

Remote Invalid Request Processing None if 1st
packet.
Opt Rcv WC Err
if other than 1st
packet.

SQ Error None None 1, 2

Work Request Flushed Processing None None None None None

a. May be in SQError or may retry the message later using a different RQ WQE.
b. Action 1 will only happen in the case where the requester abandoned the operation.

Table 80 Completion Error Handling for RD Send Queues (Continued)

Error Type Completion
Type

Effect on
Local QP

State

Effect on
Remote QP

State

Effect on
Local EE

State

Effect on
Remote EE

State

Error
Handling

Action

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 537 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) RQ active over the EE-context at the time the error occurred has the
WQE which experienced the error returned in error via a WC. The
state of the QP associated with the RQ is not affected.

• All other WQEs in that RQ continue as normal (i.e. are not com-
pleted in error, unless they also experience an error).

• Sends for the SQ associated with the local RQ continue as nor-
mal (i.e. are not completed in error, unless they also experience a
separate error).

3) Local EE-context is placed in the error state. Remote EE-context
state is indeterminate (i.e. may not be in the error state, for example
as a result of a source timeout).

• EE-context cannot be resumed.

• Must re-establish EE-context.

4) When a Local Protection or Operation SQ Error occurs on RD QPs,
the CI on the local side shall emit an InfiniBand no-op (RDMA Write
of length 0 with no immediate data) below the Verbs to the RD RQ
associated with the local error, assuming the RD channel is still oper-
ational. This will cause the in-process RQ Work Request on the
remote side to be completed in error. The Receive side cannot
depend on receiving that message.

10.10.3.3 UNRELIABLE CONNECTED QPS:

C10-146: Immediate errors shall have no effect on QP processing since
the Work Request never gets posted to the QP.

C10-147: Completion errors on a Send Queue shall result in Send Queue
processing being halted and the Send Queue state shall transition to the
Send Queue Error State, as per the state diagram. The Work Request
where the error occurred shall be completed in error.

In the case of local send queue errors, any and all Work Requests on
the Send Queue in which the error occurred are completed in error by
the Channel Interface. The remote, corresponding Receive Queue will
not consume a Work Request and thus will not surface a completion
error. The condition of the remote memory when a completion error
occurs on the send queue for RDMA Write operations is specified in
10.3.1.6 Send Queue Error (SQEr).

C10-148: For local Receive Queue completion errors, the Work Request
on the Receive Queue in which the error occurred shall be completed in
error by the CI. The QP is placed in the Error State. All subsequent Work
Requests shall be completed in error.

C10-149: Table 82 Completion Error Handling for UC Send Queues and
Table 83 Completion Error Handling for UC Receive Queues are a more

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 538 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

detailed description of the UC error handling actions that must be sup-
ported by the CI according to the error and Work Queue type.

Descriptions of the error types used in the table are contained in 11.6.2
Completion Return Status on page 634.

C10-150: Affiliated Asynchronous Errors shall result in the QP processing
being halted such that outstanding Work Requests are not completed suc-
cessfully by the Channel Interface. The QP shall transition to the Error
State. Any request in progress on the corresponding Work Queue shall
be halted and returned with a completion error, unless the CQ has over-
flowed or become inaccessible. If the CQ has overflowed or become inac-
cessible, then request in progress shall not be returned through the CQ.

10.10.3.4 UNRELIABLE DATAGRAM QPS:

C10-151: Immediate errors shall have no effect on QP processing since
the Work Request never gets posted to the QP.

C10-152: Completion errors on a Send Queue shall result in Send Queue
processing being halted and the Send Queue state shall transition to the

Table 82 Completion Error Handling for UC Send Queues

Error Type Completion
Type

Effect on Local QP
State

Effect on Remote QP
State

Local Length Interface SQ Error None

Local QP Operation Interface SQ Error None

Local QP Operation Processing SQ Error None

Local Protection Interface SQ Error None

Local Protection Processing SQ Error None

Memory Mgt Operation Interface Error None

Work Request Flushed Processing None None

Table 83 Completion Error Handling for UC Receive Queues

Error Type Completion
Type

Effect on local
QP state

Effect on remote QP
state

Local Length Processing Error None

Local Protection Processing Error None

Local QP Operation Processing Error None

Work Request Flushed Processing None None

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 539 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Send Queue Error State, as per the state diagram. The Work Request
where the error occurred shall be completed in error.

In the case of local send queue errors, any and all Work Requests on
the Send Queue in which the error occurred are completed in error by
the Channel Interface. The remote, corresponding Receive Queue will
not consume a Work Request and thus will not surface a completion
error.

C10-153: For local Receive Queue completion errors, the Work Request
on the Receive Queue in which the error occurred shall be completed in
error by the CI. The QP is placed in the Error State. All subsequent Work
Requests shall be completed in error.

C10-154: Table 84 Completion Error Handling for UD Send Queues and
Table 85 Completion Error Handling for UD Receive Queues provide a
more detailed description of the UC error handling actions that must be
supported by the CI according to the error and Work Queue type.

Descriptions of the error types used in the table are contained in 11.6.2
Completion Return Status on page 634.

C10-155: Affiliated Asynchronous Errors shall result in the QP processing
being halted such that outstanding Work Requests are not completed suc-
cessfully by the Channel Interface. The QP shall transition to the Error
State. Any request in progress on the corresponding Work Queue shall
be halted and returned with a completion error, unless the CQ has over-

Table 84 Completion Error Handling for UD Send Queues

Error Type Completion
Type

Effect on Local QP
State

Effect on Remote QP
State

Local QP Operation Interface SQ Error None

Local QP Operation Processing SQ Error None

Local Protection Interface SQ Error None

Local Protection Processing SQ Error None

Work Request Flushed Processing None None

Table 85 Completion Error Handling for UD Receive Queues

Error Type Completion
Type

Effect on local
QP state

Effect on remote QP
state

Local Protection Processing Error None

Local QP Operation Processing Error None

Work Request Flushed Processing None None

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 540 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

flowed or become inaccessible. If the CQ has overflowed or become inac-
cessible, then request in progress shall not be returned through the CQ.

10.10.3.5 RAW QPS:
C10-156: Immediate errors shall have no effect on QP processing since
the Work Request never gets posted to the QP.

C10-157: Completion errors on a Send Queue shall result in Send Queue
processing being halted and the Send Queue state shall transition to the
Send Queue Error State, as per the state diagram. The Work Request
where the error occurred shall be completed in error.

In the case of local send queue errors, any and all Work Requests on
the Send Queue in which the error occurred are completed in error by
the Channel Interface. The remote, corresponding Receive Queue will
not consume a Work Request and thus will not surface a completion
error.

C10-158: For local Receive Queue completion errors, the Work Request
on the Receive Queue in which the error occurred shall be completed in
error by the CI. The QP is placed in the Error State. All subsequent Work
Requests shall be completed in error.

C10-159: Table 86 Completion Error Handling for Raw Datagram Send
Queues and Table 87 Completion Error Handling for Raw Datagram Re-
ceive Queues provide a more detailed description of the UC error han-
dling actions that must be supported by the CI according to the error and
Work Queue type.

Descriptions of the error types used in the table are contained in 11.6.2
Completion Return Status on page 634.

Table 86 Completion Error Handling for Raw Datagram Send Queues

Error Type Completion
Type

Effect on Local QP
State

Effect on Remote QP
State

Local Length Interface SQ Error None

Local QP Operation Interface SQ Error None

Local QP Operation Processing SQ Error None

Local Protection Interface SQ Error None

Local Protection Processing SQ Error None

Work Request Flushed Processing None None

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 541 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-160: Affiliated Asynchronous Errors shall result in the QP processing
being halted such that outstanding Work Requests are not completed suc-
cessfully by the Channel Interface. The QP shall transition to the Error
State. Any request in progress on the corresponding Work Queue shall
be halted and returned with a completion error, unless the CQ has over-
flowed or become inaccessible. If the CQ has overflowed or become inac-
cessible, then request in progress shall not be returned through the CQ.

10.10.4 EFFECTS OF TRANSPORT LAYER ERRORS

The different types of errors defined in the Transport Layer 9.9 Error de-
tection and handling on page 396 have varying effects on the Software
Transport Interface. Some Transport Layer errors are not visible through
the CI. Other Transport Layer errors cause corresponding error(s) to be
reported through the Verbs. In general, a single Transport Layer error gen-
erates only one corresponding error completion (though other work re-
quests may be flushed) or a single asynchronous error per resource (QP,
EEC or CQ) involved in the error.

C10-160.2.1: A requestor CI shall conform to the behavior specified in
Table 88: Verbs Level Behavior for Requester Side Errors for all Transport
Layer errors specified in Table 56 Requester Side Error Behavior on page
401.

Table 87 Completion Error Handling for Raw Datagram Receive Queues

Error Type Completion
Type

Effect on local
QP state

Effect on remote QP
state

Local Length Processing Error None

Local Protection Processing Error None

Local QP Operation Processing Error None

Work Request Flushed Processing None None

Table 88 Verbs Level Behavior for Requester Side Errors

Transport Error(s)a Service/
Caseb Verbs Level Behavior

Packet Sequence Error -
 Retry Limit Exceeded
Implied NAK Sequence Error -
 Retry Limit Exceeded
Local ACK Timeout Error -
 Retry Limit Exceeded

RC Transport Retry Counter Exceeded completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Transport Retry Counter Exceeded completion
QP to SQEr state
EEC to Error statec

other WQEs on Send Queue: Work Request Flushed Error completion

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 542 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RNR NAK Retry Error -
 Retry Limit Exceeded

RC RNR Retry Counter Exceeded completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD RNR Retry Counter Exceeded completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Unsupported OpCode
Unexpected OpCode

RC Remote Invalid Request Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Remote Invalid Request Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Local Memory Protection Error RC Local Protection Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

other Local Protection Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

R_Key Violation RC Remote Access Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Remote Access Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Remote Operation Error RC Remote Operation Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Remote Operation Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Local Operation Error - WQE RC Local QP Operation Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Local QP Operation Error completion OR
 Local EE Context Operation Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

other Local QP Operation Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Table 88 Verbs Level Behavior for Requester Side Errors (Continued)

Transport Error(s)a Service/
Caseb Verbs Level Behavior

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 543 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Local Operation Error -
 Affiliated or Unaffiliated

(only one of these cases will
 occur)

QP Local Work Queue Catastrophic Asynchronous Error
QP to Error state
other WQEs: Work Request Flushed Error completion

EEC Local EE Context Catastrophic Asynchronous Error
EEC to Error statec

unknown
 resource

Local Catastrophic Asynchronous Error

Local RDD Violation RD Local RDD Violation Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Remote RDD Violation
Remote Q_Key Violation

RD Remote Invalid RD Request
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Length Error RC Local Length Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Local Length Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

Bad Response RC Bad Response Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

RD Bad Response Error completion
QP to SQEr state
other WQEs on Send Queue: Work Request Flushed Error completion

CQ Overflow all Local Work Queue Catastrophic Asynchronous Error AND
 CQ Asynchronous Errord
QP to Error state
current and other WQEs: completion can’t be reported

All other combinations of Transport Error and
Service/Case from Table 56

no effect

a. Transport errors in this table are those cases from section 9.9.2.3 - Table 56 with requester class B, C, D, or F
behavior.

b. If a particular transport service type is not listed, then either the error case does not apply to that service type or the
error does not manifest any verb level behavior for that service type.

c. When other RD QPs linked to this EEC in the Error state request Send Queue service, those RD QPs will return an
Invalid EE Context State completion and transition to the SQEr state.

d. CQ Overflows are to be reported on both the CQ that overflowed as well as all QPs which caused an overflow to
occur. When a CQ overflows for the first time, asynchronous errors are generated on both the QP generating the
CQE as well as on the overflowing CQ. If the CQ overflows again due to the same QP, no new error is required to
be generated. However, if the CQ overflows again due to a different QP (which has previously not caused an
overflow), then the Local Work Queue Catastrophic Asynchronous Error must be reported on the new QP.

Table 88 Verbs Level Behavior for Requester Side Errors (Continued)

Transport Error(s)a Service/
Caseb Verbs Level Behavior

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 544 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-160.2.2: A responder CI shall conform to the behavior specified in
Table 89: Verbs Level Behavior for Responder Side Errors for all Trans-
port Layer errors specified in Table 58 Responder Error Behavior Sum-
mary on page 409.

Table 89 Verbs Level Behavior for Responder Side Errors

Transport Error(s)a Service/
Caseb Verbs Level

Malformed WQE
Local QP Error

all Local QP Operation Error completion
QP to Error state
other WQEs: Work Request Flushed Error completion

Unsupported or Reserved
 Opcode
Out of Sequence Opcode -
 current packet is First or Only
Out of Sequence Opcode -
 current packet is not First or
 Only

RC Remote Invalid Request Error completion (if using Receive Queue WQE)
 OR Invalid Request Local Work Queue Asynchronous Errorc
QP to Error state
other WQEs: Work Request Flushed Error completion

Misaligned Atomic
Too many RDMA Read or
 Atomic Requests

RC Local Access Violation Work Queue Asynchronous Error
QP to Error state
other WQEs: Work Request Flushed Error completion

Resync Opcode Incomplete
 WQE

RD Remote Aborted Error completion (or reset WQE for reuse)

R_Key Violation RC Local Access Error completion (if using Receive Queue WQE) OR
 Local Access Violation Work Queue Asynchronous Errorc

QP to Error state
other WQEs: Work Request Flushed Error completion

Length Errors RC Remote Invalid Request Error completion (if using Receive Queue WQE)
 OR Local Access Violation Work Queue Asynchronous Errorc

QP to Error state
other WQEs: Work Request Flushed Error completion

RD Remote Invalid Request Error completion (if using Receive Queue WQE)

CQ Overflow all Local Work Queue Catastrophic Asynchronous Error AND
 CQ Asynchronous Errord
QP to Error state
current and other WQEs: completion cannot be reported

Local EEC Error RD Local EE Context Operation completion (if using Receive Queue WQE)
 OR Local EE Context Catastrophic Asynchronous Errorc

EEC to Error statee

All other combinations of Transport Error and
Service/Case from Table 58

no effect

a. Transport errors in this table are those cases from section 9.9.3 - Table 58 with responder class A, C, E, F, G or H
behavior.

b. If a particular transport service type is not listed, then either the error case does not apply to that service type or the
error does not manifest any verb level behavior for that service type.

InfiniBandTM Architecture Release 1.2 Software Transport Interface October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 545 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

c. If a Receive Queue WQE was consumed by this operation, then a completion error is generated. Otherwise, the
asynchronous error is generated.

d. CQ Overflows are to be reported on both the CQ that overflowed as well as all QPs which caused an overflow to
occur. When a CQ overflows for the first time, asynchronous errors are generated on both the QP generating the
CQE as well as on the overflowing CQ. If the CQ overflows again due to the same QP, no new error is required to
be generated. However, if the CQ overflows again due to a different QP (which has previously not caused an
overflow), then the Local Work Queue Catastrophic Asynchronous Error must be reported on the new QP.

e. When other RD QPs linked to this EEC in the Error state request Send Queue service, those RD QPs will return an
Invalid EE Context State completion and transition to the SQEr state.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 546 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 11: SOFTWARE TRANSPORT VERBS

11.1 VERBS INTRODUCTION AND OVERVIEW

The Verbs described in this chapter provide an abstract definition of the
functionality provided to a host by a host channel interface. Host CIs
which are compliant with this specification must exhibit the semantic be-
havior described by the Verbs.

Since the Verbs define the behavior of the host CI, they may influence the
design of software constructs, such as application programming inter-
faces (APIs), which provide access to the host CI. However, this specifi-
cation explicitly does not define any such API. In particular, there is no
requirement that an API used with a compliant host CI be semantically
consistent with the Verbs.

11.1.1 VERB EXTENSIONS

This version of the specification adds the following list of Post-1.1 Verb
Extensions to the InfiniBandTM Architecture Specification, Volume 1, Re-
lease 1.1:

• Base Queue Management Extensions:
• enable a list of Work Requests to be submitted to the Send

Queue or to the Receive Queue, and
• enable multiple Completion Event Handlers per HCA.

• Shared Receive Queue:
• enables multiple RC QPs or UD QPs to reduce the number of re-

ceive resources by using a Shared Receive Queue.
• Base Memory Management Extensions:

• allow the Consumer to allocate Memory Region resources for use
in future registrations,

• allow the Consumer to perform non-pipelined15 local Memory Re-
gion registrations through the Send Queue,

• allow the Consumer to perform non-pipelined1 local invalidations
of registered Memory Regions and Memory Windows through the
Send Queue,

• allow Consumer to perform remote invalidation of Memory Re-
gions and Memory Windows,

15. For a queue operation, a non-pipelined operation may be performed before
the preceding operations posted to the same queue complete.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 547 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• enable the direct access of physical addresses by the HCA
through the use of a Reserved L_Key,

• provide the following additions to existing memory management
verbs:
• enable Memory Windows to be associated with a single QP,
• enable the Consumer to own the key portion of the L_Key

field for Memory Regions and the key portion of the R_Key for
Memory Regions and Memory Windows,

• explicitly define whether a Memory Region is Shared or Non-
Shared.

• Block List based Physical Buffer List, requires Base Memory Man-
agement Extensions to also be supported.

• Zero Based Virtual Address (ZBVA), requires Base Memory Manage-
ment Extensions to also be supported.

• Local Invalidate Fencing, requires Base Memory Management Ex-
tensions to also be supported.

o11-0.2.1: If the HCA supports an extension, then it must support all the
verbs and modifiers associated with that extension in this specification.

11.1.2 VERB CLASSES

11.1.2.1 MANDATORY VS. OPTIONAL VERBS

Some Verbs are mandatory, and some are required only if an optional fea-
ture is supported.

C11-1: A CI shall support all Verbs classified as mandatory in Verb
Classes.

C11-2: If a CI claims conformance to an optional feature, the CI shall sup-
port all Verbs associated with that optional feature as indicated in Verb
Classes.

11.1.2.2 MANDATORY VS. OPTIONAL VERB FUNCTIONALITY

Some Verbs define functionality that applies only if certain optional fea-
tures are supported.

C11-3: If a CI supports a given Verb, the CI shall support all functionality
defined for that Verb that’s not indicated as being optional.

C11-4: If a CI supports a given Verb and claims conformance to an op-
tional feature, the CI shall support all functionality defined for that Verb
that’s associated with that optional feature.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 548 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

11.1.2.3 CONSUMER ACCESSIBILITY

Verb Consumers are the direct users of the Verbs, and are sub-divided
into two classes, Privileged and User-Level.

Privileged Consumers are typically those Consumers that operate at a
privilege level sufficient to access OS internal data structures directly, and
that have the responsibility to control access to the Channel Interface. All
Verbs are available for use by Privileged Consumers.

User-Level Consumers are those Consumers that must rely on another
agent, having a sufficient high level of privilege, to manipulate OS data
structures. Only those Verbs specifically labeled as such are available for
use by User-Level Consumers

Table 90 Verb Classes

Verb Mandatory/Optional
Classification

Consumer
Accessibility

Open HCA Mandatory Privileged

Query HCA Mandatory Privileged

Modify HCA Attributes Mandatory Privileged

Close HCA Mandatory Privileged

Allocate Protection Domain Mandatory Privileged

Deallocate Protection Domain Mandatory Privileged

Allocate Reliable Datagram Domain RD Service Privileged

Deallocate Reliable Datagram Domain RD Service Privileged

Create Address Handle Mandatory User-Level
and Privileged

Modify Address Handle Mandatory User-Level
and Privileged

Query Address Handle Mandatory User-Level
and Privileged

Destroy Address Handle Mandatory User-Level
and Privileged

Create Shared Receive Queue SRQ Privileged

Modify Shared Receive Queue SRQ Privileged

Query Shared Receive Queue SRQ Privileged

Destroy Shared Receive Queue SRQ Privileged

Create Queue Pair Mandatory Privileged

Modify Queue Pair Mandatory Privileged

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 549 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Query Queue Pair Mandatory Privileged

Destroy Queue Pair Mandatory Privileged

Get Special QP Mandatory Privileged

Create Completion Queue Mandatory Privileged

Query Completion Queue Mandatory Privileged

Resize Completion Queue Mandatory Privileged

Destroy Completion Queue Mandatory Privileged

Create EE Context RD Service Privileged

Modify EE Context Attributes RD Service Privileged

Query EE Context RD Service Privileged

Destroy EE Context RD Service Privileged

Allocate L_Key Base MM Extensions Privileged

Register Memory Region Mandatory Privileged

Register Physical Memory Region Mandatory Privileged

Query Memory Region Mandatory Privileged

Deregister Memory Region Mandatory Privileged

Reregister Memory Region Mandatory Privileged

Reregister Physical Memory Region Mandatory Privileged

Register Shared Memory Region Mandatory Privileged

Allocate Memory Window Mandatory Privileged

Query Memory Window Mandatory Privileged

Bind Memory Window Mandatory User-Level
and Privileged

Deallocate Memory Window Mandatory Privileged

Attach QP to Multicast Group UD Multicast Service Privileged

Detach QP from Multicast Group UD Multicast Service Privileged

Post Send Request Mandatory User-Level
and Privileged

Post Receive Request Mandatory User-Level
and Privileged

Poll for Completion Mandatory User-Level
and Privileged

Table 90 Verb Classes (Continued)

Verb Mandatory/Optional
Classification

Consumer
Accessibility

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 550 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

11.2 TRANSPORT RESOURCE MANAGEMENT
11.2.1 HCA
11.2.1.1 OPEN HCA

Description:

Opens the specified HCA and returns an opaque object or handle to
uniquely reference each HCA so that Consumers can distinguish be-
tween HCAs in the endnode.

C11-5: The handles returned for different HCAs within a system shall all
be unique.

Once opened, a specific HCA cannot be opened again until after it is
closed. Opening the HCA prepares the HCA for use by the Consumer.

C11-6: If Open HCA is called for an HCA that is currently open, the CI
shall return the HCA already in use error.

An HCA can be opened in either: block or page mode, but not both modes
concurrently. All HCAs are required to support page mode. If an HCA is
opened in block mode and if it does not support block mode, the Open
HCA must return an immediate error.

Input Modifiers:

• The unique identifier for this HCA. The naming scheme is defined
by the OSV.

• The type of Physical Buffer that will be used on the HCA: Block or
Page.

Output Modifiers:

• A handle for the HCA instance used as a modifier to other Verbs
to specify the desired target HCA.

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.

Request Completion Notification Mandatory User-Level
and Privileged

Set Completion Event Handler Mandatory Privileged

Set Asynchronous Event Handler Mandatory Privileged

Table 90 Verb Classes (Continued)

Verb Mandatory/Optional
Classification

Consumer
Accessibility

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 551 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Invalid HCA name.

• HCA already in use.

• Block type Physical Buffers are not supported.

11.2.1.2 QUERY HCA

Description:

Returns the attributes for the specified HCA.

The maximum values defined in this section are guaranteed not-to-ex-
ceed values. It is possible for an implementation to allocate some HCA
resources from the same space. In that case, the maximum values re-
turned are not guaranteed for all of those resources simultaneously.

Input Modifiers:

• HCA handle.

Output Modifiers:

• The HCA attributes returned are:

• Vendor specific information such as:

• Vendor ID.

• Vendor supplied Part ID.

• Hardware version.

These three vendor specific items correspond to the information
found in the components NodeInfo:VendorID, NodeInfo:DeviceID
and NodeInfo:Revision respectively (see Section 14.2.5.3).

HCA specific values:

• The maximum number of QPs supported by this HCA.

• The maximum number of outstanding work requests on any
Work Queue supported by this HCA.

• The maximum number of scatter/gather entries per Work Re-
quest supported by this HCA, for all Work Requests other
than Reliable Datagram Receive Queue Work Requests.

• The maximum number of scatter/gather entries per Reliable
Datagram Receive Queue Work Request supported by this
HCA. Zero if RD Service is not supported.

• The maximum number of CQs supported by this HCA.

• The maximum CQE capacity per CQ supported by this HCA.

• The maximum number of Memory Regions supported by this
HCA.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 552 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The largest contiguous block that can be registered by this
HCA, specified in bytes.

• The maximum number of Protection Domains supported by
this HCA.

• The memory page sizes supported by this HCA.

• Ability of this HCA to support Address Handle port number
checking.

• Number of physical ports on this HCA.

• Port Attribute list (one list for each port on this HCA):

• MTU and message size supported for each port of this
HCA. The MTU contains the same information found in
the PortInfo:MTUCap component for that port (see
Section 14.2.5.6).

• Base LID & LMC for each port of this HCA. These values
are valid only when the Port State of the port is Armed or
Active. For other port states the values returned are
indeterminate. (For more information on the port state see
14.4.5 Port State Transitions on page 877).

• Contents and length of the Source GID Table. The value
of Assigned GIDs are valid only when Port State is Armed
or Active. For other states the value of assigned GIDs is
indeterminate.

• PortState of each port of this HCA. see 7.2.7 State
Machine Terms on page 169.

• Contents and length of the partition table. A partition table
is required per port. The contents of the partition table are
valid only when the Port State is Armed or Active. For
other states the contents of the partition table are
implementation dependent.

• The maximum number of virtual lanes supported by this
HCA. This value represents the same information as the
PortInfo:VLCap component for that port (see Section
14.2.5.6).

• Optional Bad P_Key counter for each port supported by
the HCA.

• Q_Key Violation counter for each port supported by the
HCA.

• Optional InitTypeReply value (see PortInfo:InitTypeReply
component in Section 14.2.5.6). Shall be zero if
InitTypeReply is not supported.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 553 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Contents of the Subnet Manager address information for
each port of this HCA. This is a table, with entries
arranged on a per HCA port basis, which contains the LID
and Service Level of the Subnet Manager for that port. If
this has not been set by the Subnet Manager (Port State
is Armed or Active), this should be set to the permissive
LID (0xFFFF).

• Subnet Time Out value for this HCA port. (see 14.2.5.6
PortInfo)

• The following CapabilityMask bits for each port on this
HCA as defined in the PortInfo CapabilityMask:
• IsSM.
• IsSMDisabled.
• IsSNMPTunnelingSupported.
• IsDeviceManagementSupported.
• IsVendorClassSupported.
• IsClientReregistrationSupported.

• Maximum number of partitions supported by this HCA. The
number of partitions supported must be at least one.

• Node GUID for this HCA.
• Optional System Image GUID. (See Section 14.2.5.3 NodeIn-

fo)
• Indicator that the RNR-NAK generation for RC service is sup-

ported.
• The Local CA ACK Delay. This value specifies the maximum

expected time interval between the local CA receiving a mes-
sage and it transmitting the associated ACK or NAK. This is
suggested for use in computing the “Local ACK Timeout” field
in a CM REQ message, or the “Target ACK Delay” field in a
CM REP message. See Local ACK Timeout and Target ACK
Delay in Message Field Details. The delay value in microsec-
onds is computed using 4.096µs * 2(Local CA ACK Delay). The
delay value is not a guaranteed upper bound for the CA’s re-
sponse time, but rather one that can be used as a “maximum
expected value” for timeouts.

• Shutdown port capability support indicator.
• InitType support indicator. Indicates InitTypeReply and ability

to set InitType value is supported.
• Port Active event support indicator.
• System Image GUID support Indicator.
• Bad P_Key counter support indicator.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 554 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Q_Key Violation counter support indicator.

• Max Responder Resources per QP: The maximum number of
RDMA Reads & atomic operations that can be outstanding
per QP with this HCA as the target. Shall apply to atomics
only if this HCA supports atomic operations.

• Max Responder Resources per EEC: The maximum number
of RDMA Reads & atomic operations that can be outstanding
per EEC with this HCA as the target. Shall apply to atomics
only if this HCA supports RD & atomic operations. For this
version of the specification, this value is one.

• Max Responder Resources per HCA: The maximum number
of resources used for RDMA Reads & atomic operations by
this HCA with this HCA as the target. Shall apply to atomics
only if this HCA supports atomic operations.

• Max Initiator Depth per QP: The maximum depth per QP for
initiation of RDMA Read & atomic operations by this HCA.
Shall apply to atomics only if this HCA supports atomic opera-
tions.

• Max Initiator Depth per EEC: The maximum depth per EEC
for initiation of RDMA Read & atomic operations by this HCA.
Shall apply to atomics only if this HCA supports RD & atomic
operations. For this version of the specification, this value is
one.

• Ability of this HCA to support atomic operations as well as se-
rialization of atomic operations between itself and other sys-
tem components such as processors and other HCAs. Three
levels of atomicity are defined for this version of the specifica-
tion:

• Atomic operations not supported.

• Atomicity is guaranteed only between QPs on this HCA
only.

• Atomicity is guaranteed between this HCA and any other
component, such as CPUs and other HCAs.

• The maximum number of EE contexts that can be supported
by this HCA. Shall be zero if the HCA does not support Reli-
able Datagrams.

• Maximum number of RDDs supported by this HCA. The num-
ber of RDDs supported must be at least two. Shall be zero if
the HCA does not support Reliable Datagrams.

• The maximum number of Memory Windows supported by this
HCA.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 555 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The maximum number of Raw IPv6 Datagram QPs supported
by this HCA. Shall be zero if Raw IPv6 Datagrams are not
supported.

• The maximum number of Raw Ethertype Datagram QPs sup-
ported by this HCA. Shall be zero if Raw Ethertype Data-
grams are not supported.

• Ability of this HCA to support modifying the maximum number
of outstanding Work Requests per QP.

• Maximum number of multicast groups supported by this HCA.
Shall be zero if this HCA does not support IBA unreliable mul-
ticast.

• Maximum number of QPs which can be attached to multicast
groups for this HCA. Shall be zero if this HCA does not sup-
port IBA unreliable multicast.

• Maximum number of QPs per multicast group supported by
this HCA. Shall be zero if this HCA does not support IBA un-
reliable multicast.

• Ability of this HCA to support raw packet multicast.

• Ability of this HCA to support automatic path migration.

• Maximum number of Address Handles supported by this
HCA.

• Ability of this HCA to change the primary port for a QP or EEC
when transitioning from SQD to SQD state.

• Ability of this HCA to support the Current QP State modifier
for Modify Queue Pair.

• The ability of this HCA to support multiple Physical Buffer siz-
es per Memory Region. This output modifier is returned only if
the Base Memory Management Extensions are not support-
ed.

• Ability of this HCA to support the Base Memory Management
Extensions. If HCA supports the Base Memory Management
Extensions:

• Value of Reserved L_Key.

• Maximum Physical Buffer List size supported by this HCA
when invoking the Allocate L_Key verb.

• List of Page sizes supported by this HCA.

• Bound Type 2 Memory Window Association mechanism:

• Type 2A - QP Number Association; or

• Type 2B - QP Number and PD Association.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 556 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Type of Physical Buffer currently in use by this HCA: Page or
Block.

• Ability of this HCA to support multiple page sizes per Memory
Region.

• Ability of this HCA to support Block List Physical Buffer Lists.

• Range of Block sizes supported by this HCA.

• Ability of this HCA to support Zero Based Virtual Addresses.
• Ability of this HCA to support Local Invalidate Fencing.

• Ability of this HCA to support the Base Queue Management
Extensions. If HCA supports the Base Queue Management
Extensions:

• Maximum number of CQ Event Handlers.

• Ability of this HCA to support the Shared Receive Queues. If
HCA supports the Shared Receive Queues:

• Maximum number of SRQs.
• Maximum number of WRs per SRQ.

• Maximum number of Scatter/Gather entries per SRQ WR.

• Ability to modify the maximum number of WRs per SRQ.

• Verb Results:
• Operation completed successfully.

• Insufficient resources to complete this request.

• Invalid HCA handle.

11.2.1.3 MODIFY HCA ATTRIBUTES

Description:

Modifies certain attributes in the HCA, as specified by a separate list
for each port on the HCA.

If any of the HCA attributes to be modified are invalid, none of the HCA
attributes shall be modified. An immediate error shall be returned and
the HCA state shall remain unchanged.

Input Modifiers:

• HCA handle.

• Optional System Image GUID.

• Port Attribute list (one list for each port on this HCA):

• Optional Shutdown Port indicator. If the shutdown port indica-
tor is set, then the port will transition to the Down state. (see
PortState in Section 7.2.7)

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 557 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Optional InitType value. (see PortInfo:InitType component in
Section 14.2.5.6)

• Q_Key Violation counter reset bit. This bit applies only if the
HCA supports the Q_Key Violation counter. When this bit is
set, the Q_Key Violation counter shall be cleared.

• The following CapabilityMask bits as defined in the PortInfo
CapabilityMask:
• IsSM.
• IsSNMPTunnelingSupported.
• IsDeviceManagementSupported.
• IsVendorClassSupported.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid Counter specified.

11.2.1.4 CLOSE HCA

Description:

Closes and resets the specified HCA. This Verb is responsible only for
deallocating resources allocated by the Channel Interface to prepare
the HCA for use by the Consumer. All other resources are no longer
associated or connected with the CI and are the responsibility of the
Consumer to handle as deemed necessary.

Input Modifiers:

• HCA handle.
Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.

11.2.1.5 ALLOCATE PROTECTION DOMAIN

Description:

Allocates an unused Protection Domain object. Protection Domain ob-
jects are required when creating a Queue Pair, Shared Receive
Queue, Address Handle, registering memory and allocating Memory
Windows. A Protection Domain object provides an association be-

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 558 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tween Queue Pairs, Shared Receive Queues, Address Handles,
Memory Regions and Memory Windows.

Operations on an unreliable datagram queue pair are allowed only
when the Protection Domain of the Queue Pair and the Protection Do-
main of the Address Handle contained in the work request are iden-
tical.

Input Modifiers:

• HCA Handle.
Output Modifiers:

• Protection Domain Object.
• Verb Results:

• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.

11.2.1.6 DEALLOCATE PROTECTION DOMAIN

Description:

Returns a previously Allocated Protection Domain object for reuse by
the Allocate Protection Domain Verb. The Protection Domain object
cannot be deallocated if it is still associated with any Queue Pair,
Memory Region or Memory Window, or Address Handle.

Input Modifiers:

• HCA Handle.
• Protection Domain object.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid Protection Domain.
• Protection Domain is in use.
• Invalid HCA handle.

11.2.1.7 ALLOCATE RELIABLE DATAGRAM DOMAIN

Description:

Allocates an unused Reliable datagram domain object. Reliable data-
gram domain objects are required when setting up a reliable datagram
Queue Pair and EE contexts. A reliable datagram domain object pro-
vides an association between Queue Pairs and EE contexts. Opera-

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 559 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tions on a reliable datagram queue pair directed at an EE context are
allowed only when the reliable datagram domain of the queue pair and
the reliable datagram domain of the EE context are identical.

Input Modifiers:

• HCA Handle.
Output Modifiers:

• Reliable datagram domain object.
• Verb Results:

• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Reliable Datagrams not supported.

11.2.1.8 DEALLOCATE RELIABLE DATAGRAM DOMAIN

Description:

Returns a previously allocated reliable datagram domain object for
reuse by the Allocate Reliable Datagram Domain Verb. The reliable
datagram domain object cannot be deallocated if it is still associated
with a Queue Pair or an EE context.

Input Modifiers:

• HCA Handle.
• Reliable datagram domain object.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid reliable datagram domain.
• Reliable datagram domain is in use.
• Invalid HCA handle.
• Reliable Datagrams not supported.

11.2.2 ADDRESS MANAGEMENT VERBS

These Verbs create, manipulate and destroy address handles. These ad-
dress handles are only used for Work Requests submitted to Unreliable
Datagram Service Type QPs.

11.2.2.1 CREATE ADDRESS HANDLE

Description:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 560 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The purpose of the Create Address Handle Verb is to create an ad-
dress handle for the address vector passed in through the Verbs. The
normal completion for this Verb returns the address handle. The ad-
dress handle is used to reference a local or global destination in all UD
QP Post Sends.

Input Modifiers:

• HCA Handle.
• Protection domain
• Address vector, for UD transports only, containing:

• Service level.
• Send Global Routing Header Flag.
• Destination LID. If destination is in same subnet, LID = final

destination; otherwise LID = router LID. DLID = 0xFFFF is ille-
gal except when the destination QP is QP0.

• For global destination:
• Flow label.
• Hop limit.
• Traffic class.
• Source GID index.

• For global destination or Multicast address:
• Destination’s GID or MGID.

• Maximum Static Rate.
• Source Path Bits. When the DLID = 0xFFFF, the processing

described in Section 14.2.2.1 applies, which may result in the
Source Path Bits being ignored.

• Physical Port
Output Modifiers:

• Address Handle.
• Verb results:

• Operation completed successfully.
• Invalid HCA handle.
• Invalid protection domain
• Insufficient resources to complete request.
• Invalid Port

11.2.2.2 MODIFY ADDRESS HANDLE

Description:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 561 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The purpose of the Modify Address Handle Verb is to change an ad-
dress vector associated with the address handle passed in by the
Consumer.

If any of the Address Handle attributes to be modified are invalid, none
of the Address Handle attributes shall be modified. An immediate error
shall be returned and the Address Handle state shall remain un-
changed.

Input Modifiers:

• HCA Handle.
• Address Handle.
• Address vector, for UD transports only, containing:

• Service level.
• Send Global Routing Header Flag.
• Destination LID. If destination is in same subnet, LID = final

destination; otherwise LID = router LID. DLID = 0xFFFF is ille-
gal except when the destination QP is QP0.

• For global destination:
• Flow label.
• Hop limit.
• Traffic class.
• Source GID index.

• For global destination or Multicast address:
• Destination’s GID or MGID.

• Maximum Static Rate.
• Source Path Bits. When the DLID = 0xFFFF, the processing

described in Section 14.2.2.1 applies, which may result in the
Source Path Bits being ignored.

• Physical Port
Output Modifiers:

• Verb results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid address handle.
• Invalid Port

11.2.2.3 QUERY ADDRESS HANDLE

Description:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 562 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The purpose of the Query Address Handle Verb is to obtain the ad-
dress vector associated with the address handle passed in by the
Consumer.

Input Modifiers:

• HCA Handle.

• Address Handle.

Output Modifiers:

• Address vector, for UD transports only, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If destination is in same subnet, LID = final
destination; otherwise LID = router LID.

• For global destination:

• Flow label.

• Hop limit.

• Traffic class.

• Source GID index.

• For global destination or Multicast address:

• Destination’s GID or MGID.

• Maximum Static Rate.

• Source Path Bits.

• Protection domain

• Physical Port

• Verb results:

• Operation completed successfully.

• Invalid HCA handle.

• Invalid address handle.

11.2.2.4 DESTROY ADDRESS HANDLE

Description:

The purpose of the Destroy Address Handle Verb is to remove an ad-
dress vector and its associated address handle from the CI. After the
address handle is removed, it can no longer be used to reference the
destination.

Input Modifiers:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 563 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• HCA Handle.
• Address Handle.

Output Modifiers:

• Verb results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid address handle.

11.2.3 SHARED RECEIVE QUEUE

11.2.3.1 CREATE SHARED RECEIVE QUEUE

Description:

Creates an SRQ for the specified HCA.

A set of initial SRQ attributes must be specified by the Consumer.

o11-0.2.2: If the CI supports SRQ and any of the required initial attributes
are illegal or missing, an error shall be returned and the SRQ shall not be
created.

On success, a handle to the newly created SRQ is returned.

Input Modifiers:

• HCA handle.
• Protection Domain.
• The maximum number of outstanding Work Requests the Con-

sumer expects to submit to the Shared Receive Queue.
• The maximum number of scatter elements the Consumer will

specify in a Work Request submitted to the Shared Receive
Queue.

Output Modifiers:

• The SRQ handle for the newly created SRQ.
• The actual number of outstanding Work Requests supported on

the Shared Receive Queue. If an error is not returned, this is
guaranteed to be greater than or equal to the number requested.
(This may require the Consumer to increase the size of the CQ.)

• The actual number of scatter elements that can be specified in
Work Requests submitted to the Shared Receive Queue. If an er-
ror is not returned, this is guaranteed to be greater than or equal
to the number requested.

• Verb Results:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 564 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Maximum number of Work Requests requested exceeds HCA

capability.
• Maximum number of scatter elements requested exceeds

HCA capability.
• Invalid Protection Domain.
• HCA does not support SRQ.

11.2.3.2 QUERY SHARED RECEIVE QUEUE

Description:

Returns the attributes of the specified SRQ.

Input Modifiers:

• HCA handle.
• SRQ Handle.

Output Modifiers:

• Protection Domain.
• The actual number of outstanding Work Requests supported on

the Shared Receive Queue.
• The actual number of scatter elements that can be specified in

Work Requests submitted to the Shared Receive Queue.
• SRQ Limit. If the SRQ Limit is armed, returns the current SRQ

Limit. If the SRQ is not armed, returns zero.
• Verb Results:

• Operation completed successfully.
• Invalid HCA handle.
• Invalid SRQ handle.
• SRQ is in the Error State.
• HCA does not support SRQ.

11.2.3.3 MODIFY SHARED RECEIVE QUEUE

Description:

Modifies the attributes of an SRQ for the specified HCA.

If any of the modify attributes are invalid, none of the attributes shall
be modified.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 565 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers:

• HCA handle.
• SRQ handle.
• The SRQ attributes to modify and their new values. The SRQ at-

tributes that can be modified after the SRQ has been created are:
• The maximum number of outstanding Work Requests the

Consumer expects to submit to the Shared Receive Queue, if
resizing of the SRQ is supported by the HCA.

• SRQ Limit. If the SRQ Limit is greater than zero, then it shall
be armed upon returning from this verb.

Output Modifiers:

• The actual number of outstanding Work Requests supported on
the Shared Receive Queue. If an error is not returned, this is
guaranteed to be greater than or equal to the number requested.
(This may require the Consumer to increase the size of the CQ.)

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Invalid SRQ handle.
• SRQ is in the Error State.
• HCA does not support resizing SRQ.
• Maximum number of Work Requests requested exceeds HCA

capability.
• SRQ Limit exceeds maximum number of Work Requests al-

lowed on the SRQ.
• More outstanding entries on WQ than size specified.
• HCA does not support SRQ.

11.2.3.4 DESTROY SHARED RECEIVE QUEUE

Description:

Destroys an SRQ for the specified HCA.

Input Modifiers:

• HCA handle.
• SRQ handle.

Output Modifiers:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 566 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Verb Results:

• Operation completed successfully.

• Invalid HCA handle.

• Invalid SRQ handle.

• SRQ still has QPs associated with it.

• HCA does not support SRQ.

11.2.4 QUEUE PAIR

11.2.4.1 CREATE QUEUE PAIR

Description:

Creates a QP for the specified HCA.

A set of initial QP attributes must be specified by the Consumer.

C11-7: If any of the required initial attributes are illegal or missing, an
error shall be returned and the Queue Pair shall not be created.

On success, a handle to the newly created QP and the QP number are
returned.

o11-0.2.3: If an HCA supports SRQ, the CI must allow UD and RC QPs to
be associated with an SRQ.

Input Modifiers:

• HCA handle.

• SRQ Handle, if QP is to be associated to an SRQ.

• The QP attributes that must be specified at QP create time are:

• The CQ to be associated with the Send Queue.

• The CQ to be associated with the Receive Queue.

• The maximum number of outstanding Work Requests the
Consumer expects to submit to the Send Queue.

• The maximum number of outstanding Work Requests the
Consumer expects to submit to the Receive Queue. This val-
ue is ignored if the QP is associated with an SRQ.

• The maximum number of scatter/gather elements the Con-
sumer will specify in a Work Request submitted to the Send
Queue.

• The maximum number of scatter/gather elements the Con-
sumer will specify in a Work Request submitted to the Re-
ceive Queue. This value is ignored if the QP is associated
with an SRQ.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 567 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Reliable datagram domain to be associated with this QP. Ap-
plicable only to RD QPs.

• The Signaling Type must be specified for the Send Queue on
this QP. The valid types are:

• Non-selectable: All Work Requests submitted to the Send
Queue always generate a completion entry.

• Selectable: Consumer must specify on each Work
Request submitted to the Send Queue whether to
generate a completion entry for successful completions.

• The Consumer must specify a Protection Domain.

• The Transport Service Type requested for this QP. Valid Ser-
vice Types are:

• Reliable Connection.

• Reliable Datagram.

• Unreliable Connection.

• Unreliable Datagram.

• Enable or disable Fast Register PMR and Reserved L_Key
operations.

Output Modifiers:

• The handle for the newly created QP.

• QP number.

• The actual number of outstanding Work Requests supported on
the Send Queue. If an error is not returned, this is guaranteed to
be greater than or equal to the number requested. (This may re-
quire the Consumer to increase the size of the CQ.)

• The actual number of outstanding Work Requests supported on
the Receive Queue. If an error is not returned, this is guaranteed
to be greater than or equal to the number requested. (This may
require the Consumer to increase the size of the CQ.) This value
is not returned if an SRQ is associated with the QP.

• The actual number of scatter/gather elements that can be speci-
fied in Work Requests submitted to the Send Queue. If an error is
not returned, this is guaranteed to be greater than or equal to the
number requested.

• The actual number of scatter/gather elements that can be speci-
fied in Work Requests submitted to the Receive Queue. If an er-
ror is not returned, this is guaranteed to be greater than or equal
to the number requested. This value is not returned if an SRQ is
associated with the QP.

• Verb Results:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 568 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid CQ handle.

• Maximum number of Work Requests requested exceeds HCA
capability.

• Maximum number of scatter/gather elements requested ex-
ceeds HCA capability.

• Invalid Protection Domain.

• Invalid Service Type for this QP.

• Invalid Reliable Datagram Domain.

• Invalid SRQ handle.

• HCA doesn’t support Base Memory Management Extensions.

• HCA does not support SRQ.

11.2.4.2 MODIFY QUEUE PAIR

Description:

C11-8: Upon invocation of this Verb, the CI shall modify the attributes for
the specified QP and then shall cause the QP to transition to the specified
QP state.

Only a subset of the QP attributes can be modified in each of the QP
states.

C11-9: If any of the QP attributes to be modified are invalid or the re-
quested state transition is invalid, none of the QP attributes shall be mod-
ified. An immediate error shall be returned and the QP state shall remain
unchanged.

Some QP attributes can be modified with outstanding Work Requests.
WRs can be outstanding on the Receive Queue when the QP is in the
Init, RTR, RTS, SQD & SQEr state and on the Send Queue when the
QP is in the RTS & SQD state. Any outstanding Work Request on a
Work Queue may not execute as expected if the QP modifiers are
changed. For instance, if RDMA Reads, which were successfully
posted, are outstanding when the QP is modified to no longer allow
RDMA Reads, some outstanding in-flight RDMA Reads may complete
while pending WRs may fail.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 569 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C11-10: The properties and requirements of the QP state transitions shall
be supported as shown in Table 91.

Table 91 QP State Transition Properties

Transition Required Attributes Optional Attributes Actions

Reset to
Init

Enable/disable RDMAa
and Atomic Operations.
P_Key index.
Primary Physical port.
Q_Key for uncon-
nected Service Types.

None. Enable posting to the
Receive Queue.

Init to Init None. Enable/disable RDMAa
and Atomic Operations.
P_Key index.
Primary Physical port.
Q_Key for uncon-
nected Service Types.

No transition.

Init to RTR Remote Node Address
Vector (Connected QPs
only).
Destination QP Num-
ber (RC/UC QPs only).
RQ PSN.
Number of responder
resources for RDMA
Read/atomic ops.
Minimum RNR NAK
Timer Field (RC and RD
QPs only).

Alternate path address
information (RC/UC
QPs only).
Enable/disable RDMAa
and Atomic Operations.
P_Key index.
Q_Key.
Number of WQEs.

Activate receive processing.

RTR to RTS Local ACK Timeout (RC
QP only)
Retry count (RC QP
only)
RNR retry count (RC
QP only)
SQ PSN.
Number of Outstanding
RDMA Read/atomic ops
at destination.

Enable/disable RDMAa
& Atomic Operations.
Q_Key.
Alternate path address
information (RC/UC
QPs only).
Path migration state.
Number of WQEs.
Current QP State.
Minimum RNR NAK
Timer Field (RC and RD
QPs only).

Activate send processing.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 570 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RTS to RTS
(no transition)

None. Enable/Disable RDMA
and Atomic Opera-
tions.a

Q_Key.
Alternate path address
information (RC/UC
QPs only).
Path Migration state.
Number of WQEs.
Current QP State.
Minimum RNR NAK
Timer Field (RC and RD
QPs only).

No transition.

SQEr to RTS None. Enable/disable RDMA &
Atomic Operations.a
Q_Key.
Number of WQEs.
Current QP State.
Minimum RNR NAK
Timer Field (RD QPs
only)

Activate send processing.

RTS to SQD None. None. Deactivate send processing.

Table 91 QP State Transition Properties (Continued)

Transition Required Attributes Optional Attributes Actions

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 571 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SQD to SQD None. Enable/Disable RDMA
& Atomic Operations. a
Remote Node Address
Vector (Connected QPs
only).b c

Alternate path address
information (RC/UC
QPs only).
Path migration state.
Number of Outstanding
RDMA Read/atomic ops
at destination. b
Number of local RDMA
Read/atomic responder
resources. b

Q_Key.
P_Key index. b

Local ACK Timeout (RC
QP only). b

Retry count (RC QP
only). b

RNR retry count (RC
QP only). b

Number of WQEs.
Primary physical port
associated with QP if
HCA supports the capa-
bility to change the pri-
mary physical port for a
QP when transitioning
from SQD to SQD state
(RC QPs only).b
Minimum RNR NAK
Timer Field (RC and RD
QPs only).

Modify QP attributes

Table 91 QP State Transition Properties (Continued)

Transition Required Attributes Optional Attributes Actions

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 572 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers:

• HCA handle.

• QP handle.

• The QP attributes to modify and their new values. The QP at-
tributes that can be modified after the QP has been created are:

• Next QP state. If specify the current state, only the QP at-
tributes will be modified.

• Enable or disable Send Queue Drained, Asynchronous
Affiliated Event Notification. This modifier is only
applicable when the next QP state chosen is SQD.

SQD to RTS None. Enable/Disable RDMA
and Atomic Opera-
tions.a
Q_Key.
Alternate path address
information (RC/UC
QPs only).
Path migration state.
Number of WQEs.
Current QP State.
Minimum RNR NAK
Timer Field (RC and RD
QPs only).

Activate send processing.

Any State to Error None. None allowed. Queue processing is
stopped.
Work Requests pending or
in process are completed in
error, when possible.

Any state to Reset None. None allowed. QP attributes are reset to
the same values after the
QP was created.
Outstanding Work Requests
are removed from the
queues without notifying the
Consumer.

a. If disable RDMA is requested while incoming RDMAs to that queue are in process, it is indeterminate when
the disable will take effect. It is up to the Consumer to coordinate the disable with the remote QPs.
b. It is allowed to change this attribute only when the SQ is drained.
c. When changing the Remote Node Address Vector, the Path MTU cannot be changed in the SQD2SQD
transition.

Table 91 QP State Transition Properties (Continued)

Transition Required Attributes Optional Attributes Actions

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 573 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Primary P_Key index. Not applicable on a Raw Datagram or
Reliable Datagram QPs.

• The Q_Key that incoming Datagram messages are checked
against and possibly used as the outgoing Q_Key (based on
the WR Q_Key). This applies only to UD & RD QPs.

• PSN for Send QP. Applicable only for RC, UD & UC QPs.

• The maximum number of outstanding Work Requests the
Consumer expects to submit to the Send Queue, if resizing of
the work queues is supported by the HCA.

• The maximum number of outstanding Work Requests the
Consumer expects to submit to the Receive Queue, if resizing
of the work queues is supported by this HCA. This value is ig-
nored if the QP is associated with an SRQ.

The following attributes are not applicable if the QP specified is a
Special QP: SMI QP (QP0), GSI QP (QP1), Raw IPv6 and Raw
Ethertype.

• Primary physical port associated with this QP. Not applicable
on RD QPs. Applicable for the SQD to RTS transition on RC
QPs, if supported by the HCA. Applicable for the Init to Init
transition on all QPs.

• PSN for Receive QP. Applicable only for RC & UC QPs.

• Enable or disable incoming RDMA Reads on this QP. Not ap-
plicable on Unreliable Service Type QPs.

• Enable or disable incoming RDMA Writes on this QP. Not ap-
plicable on UD Service Type QPs.

• Enable or disable incoming Atomic Operations on this QP. Not
applicable on Unreliable Service Type QPs.

• Destination QP number. Applicable only to RC & UC QPs.

• Initiator Depth: Number of RDMA Reads & atomic operations
outstanding at any time. Applicable only to RC QPs.

• Responder Resources: Number of responder resources for
handling incoming RDMA Reads & atomic operations. This
value may be rounded up to a supported value, not to exceed
the maximum value allowable for QPs for this HCA. Applica-
ble only to RC QPs.

• Minimum RNR NAK Timer Field Value. When a message ar-
rives which is targeted at a local receive queue, and that re-
ceive queue has no receive work requests outstanding, the CI
may respond to the initiator with an RNR NAK packet. This
modifier is the minimum value which shall be sent in the Timer
Field of such an RNR NAK packet; it does not affect RNR
NAKs sent for other reasons. If the value specified is not one

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 574 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of the RNR NAK Timer Field values defined in Table 45 En-
coding for RNR NAK Timer Field on page 330, the CI shall re-
turn an immediate error. Applicable only to RC and RD QPs.

• Current QP State. This modifier is only valid when moving to
the RTS state.

• Address vector, for RC & UC transports only, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If destination is in same subnet, LID =
final destination; otherwise LID = router LID.

• Path MTU.

• Maximum Static Rate.

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678). Applicable only to RC QPs.

• Retry count. Applicable only to RC QPs.

• RNR retry count. Applicable only to RC QPs.

• Source Path Bits.

• For global destination:

• Traffic class.

• Flow label.

• Hop limit.

• Source GID index.

• Destination’s GID.

• Alternate path address information, applicable only for RC & UC
QPs when this CI support automatic path migration. Note: the
path MTU for the alternate path must be the same as for the pri-
mary path. The specifics are:

• Alternate path P_Key index. The alternate path P_Key index
should map to the same partition key as the primary P_Key
index; otherwise APM may not function properly

• Alternate path Primary Physical port.

• Alternate path address vector, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If the destination is in the same subnet,
LID = final destination; otherwise LID = router LID.

• Maximum Static Rate.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 575 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678). Applicable only to RC QPs.

• Source Path Bits.

For global destination:

• Traffic class.

• Flow label.

• Hop limit.

• Source GID index.

• Destination’s GID.

• Path Migration state. Valid only if this HCA supports automatic
path migration. Valid states to set are:

• Migrated.

• Rearm.

Output Modifiers:

• The actual number of outstanding Work Requests supported on
the Send Queue, if resizing of the work queues is supported by
the HCA. If an error is not returned, this is guaranteed to be great-
er than or equal to the number requested. (This may require the
Consumer to increase the size of the CQ.)

• The actual number of outstanding Work Requests supported on
the Receive Queue. If an error is not returned, this is guaranteed
to be greater than or equal to the number requested. (This may
require the Consumer to increase the size of the CQ.) This value
is not returned if an SRQ is associated with the QP.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid QP handle.

• Cannot change QP attribute.

• Atomic operations not supported.

• P_Key index out of range.

• P_Key index specifies invalid entry in P_Key table.

• Invalid QP state.

• Invalid path migration state.

• MTUCap of HCA port exceeded.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 576 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Invalid Port.
• Invalid Service Type for this QP
• Maximum number of Work Requests requested exceeds HCA

capability.
• Invalid RNR NAK Timer Field value.
• More outstanding entries on WQ than size specified.
• QP still has Type 2A MWs bound to it.

11.2.4.3 QUERY QUEUE PAIR

Description:

Returns the attribute list and current values for the specified QP. This
QP handle can be any QP handle supplied by the Verbs.

Input Modifiers:

• HCA handle.
• QP handle.

Output Modifiers:

• The QP attributes. The list of attributes returned by the query are:
• The QP number.
• SRQ Handle, returned if QP is associated with an SRQ.
• Handle of the Completion Queue associated with the Send

Queue.
• Handle of the Completion Queue associated with the Receive

Queue.
• The actual number of outstanding requests supported on the

Send Queue.
• The actual number of outstanding Work Requests supported

on the Receive Queue. This value is not returned if an SRQ is
associated with the QP.

• The actual number of scatter/gather entries supported on
Work Requests submitted to the Send Queue.

• The actual number of scatter/gather elements that can be
specified in Work Requests submitted to the Receive Queue.
This value is not returned if an SRQ is associated with the QP.

• Fast Register PMR and Reserved L_Key operations enabled
or disabled.

• Current QP State. Where the state is one of the following:
• Reset

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 577 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Initialized

• Ready to Receive (RTR)

• Ready to Send (RTS)

• SQ Error

• SQ Drain (SQD)
The following modifiers are valid only when the QP is in
the SQD state:

• Send Queue Draining

• Send Queue Drained

• Error

The following attributes are not defined if the QP is in the Reset state.

• PSNs for Send & Receive QPs. Applicable only for RC & UC
QPs.

• RDMA Read enable.

• RDMA Write enable.

• Atomic Operation enable.

• Primary physical port associated with this QP. Not applicable
on RD QPs.

• Primary P_Key index. Not applicable for RD & Raw Datagram
QPs.

• Q_Key for the Receive Queue. Not applicable to RC, UC &
Raw Datagram QPs.

• Reliable Datagram Domain. Applicable only to RD QPs.

• Destination QP number. Applicable only to RC & UC QPs.

• Initiator Depth: Number of RDMA Reads & Atomic Operations
outstanding at any time on the destination QP. Applicable only
to RC QPs.

• Responder Resources: Number of responder resources for
handling incoming RDMA Reads & atomic operations. Appli-
cable only to RC QPs.

• Minimum RNR NAK Timer Field Value. When a message ar-
rives which is targeted at a local receive queue, and that re-
ceive queue has no receive work requests outstanding, the CI
may respond to the initiator with an RNR NAK packet. This
modifier is the minimum value which shall be sent in the Timer
Field of such an RNR NAK packet; it does not affect RNR
NAKs sent for other reasons. Applicable only to RC and RD
QPs.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 578 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Primary Address vector, for RC & UC transports only, contain-
ing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If destination is in same subnet, LID =
final destination; otherwise LID = router LID.

• Path MTU.

• Maximum Static Rate.

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678). Applicable only to RC QPs.

• Retry count. Applicable only to RC QPs.

• RNR retry count. Applicable only to RC QPs.

• Source Path Bits.

• For global destination:

• Traffic class.

• Flow label.

• Hop limit.

• Source GID index.

• Destination’s GID.

• Alternate path address information, returned only for RC &
UC QPs. Valid only when automatic path migration is en-
abled.

• Alternate path P_Key index.

• Alternate physical port.

Path address vector, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If the destination is in the same subnet,
LID = final destination; otherwise LID = router LID.

• Maximum Static Rate.

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678). Applicable only to RC QPs.

• Source Path Bits.

For global destination:

• Traffic class.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 579 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Flow label.
• Hop limit.
• Source GID index.
• Destination’s GID.

• Path migration state. Valid only if this HCA supports automatic
path migration.

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid QP handle.

11.2.4.4 DESTROY QUEUE PAIR

Description:

Destroys the specified QP.

C11-11: Any resources allocated by the Channel Interface in order to pro-
cess Work Requests on the QP must be deallocated as part of the de-
stroy operation.

A QP instance is allowed to have Work Requests outstanding when a
request to destroy the QP is made. When a QP is destroyed, any out-
standing Work Requests are no longer considered to be in the scope
of the Channel Interface. It is the responsibility of the Consumer to
clean up resources associated with a Work Request.

C11-12: Incoming operations destined for a QP that has been destroyed
shall be discarded.

The CI does not guarantee that CQEs generated for a QP prior to its de-
struction can be retrieved from the CQ after that QP has been destroyed.

Input Modifiers:

• HCA handle.
• QP handle.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid QP handle.
• QP still has Type 2A MWs bound to it.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 580 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The QP is still attached to one or more multicast groups.

11.2.5 GET SPECIAL QP

Description:

Returns the handle for the specified QP type for the specified HCA
port. The special QP types include: SMI QP (QP0), GSI QP (QP1),
Raw IPv6 and Raw Ethertype.

C11-13: This Verb must support QP0 and QP1.

HCA support for both Raw Datagram types is optional.
o11-1: If the HCA supports the Raw Datagram QP types, this Verb must
also support them.

C11-14: Handles associated with the SMI QP and the GSI QP must only
be given out once for each QP per HCA port. Subsequent invocations of
this Verb, without an intervening Destroy QP, must return an error.

The single QP per port restriction does not apply to either Raw Data-
gram QP types.

o11-2: If Raw Datagram Service is supported, the number of Raw Data-
gram type QPs supported per port shall be returned by the Query HCA
Verb.

Any fixed QP attributes for the specified QP type required by the spe-
cific implementation are set up before returning from this Verb. For ex-
ample, the appropriate Transport Service Type may need to be
initialized for the QP.

C11-15: SMI/GSI QPs shall not share a completion queue with any non-
SMI/GSI QP. An attempt to do so shall result in an Invalid CQ Handle
error.

Input Modifiers:

• HCA Handle.
• HCA port number.
• The QP type requested. The allowed types are:

• SMI QP (QP0).
• GSI QP (QP1).
• Raw IPv6.
• Raw Ethertype.

• The CQ to be associated with the Send Queue.
• The CQ to be associated with the Receive Queue.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 581 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The maximum number of outstanding Work Requests the Con-
sumer expects to submit to the Send Queue.

• The maximum number of outstanding Work Requests the Con-
sumer expects to submit to the Receive Queue.

• The maximum number of scatter/gather elements the Consumer
expects to specify in a Work Request submitted to the Send
Queue.

• The maximum number of scatter/gather elements the Consumer
expects to specify in a Work Request submitted to the Receive
Queue.

• The Signaling Type for the Send Queue on this QP. The valid
types are:
• All Work Requests submitted to the Send Queue always gen-

erate a completion entry.
• Consumer must specify on each Work Request submitted to

the Send Queue whether to generate a completion entry for
successful completions.

• Protection Domain.
Output Modifiers:

• QP handle.
• The actual number of outstanding Work Requests supported on

the Send Queue. If an error is not returned, this is guaranteed to
be greater than or equal to the number requested. (This may re-
quire the Consumer to increase the size of the CQ.)

• The actual number of outstanding Work Requests supported
through the Verbs on the Receive Queue. If an error is not re-
turned, this is guaranteed to be greater than or equal to the num-
ber requested. (This may require the Consumer to increase the
size of the CQ.)

• The actual number of scatter/gather elements that can be speci-
fied in Work Requests submitted to the Send Queue. If an error is
not returned, this is guaranteed to be greater than or equal to the
number requested.

• The actual number of scatter/gather elements that can be speci-
fied in Work Requests submitted to the Receive Queue. If an er-
ror is not returned, this is guaranteed to be greater than or equal
to the number requested.

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 582 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Invalid Special QP type.
• QP already in use (applies only to SMI and GSI QPs).
• Number of available Raw Datagram QPs exceeded.
• Invalid Port.
• Invalid CQ handle.
• Maximum number of Work Requests requested exceeds HCA

capability.
• Maximum number of scatter/gather elements requested ex-

ceeds HCA capability.
• Invalid Protection Domain.
• Raw Datagrams not supported.

11.2.6 COMPLETION QUEUE

11.2.6.1 CREATE COMPLETION QUEUE

Description:

Creates a CQ on the specified HCA.

The Consumer must specify the minimum capacity of the CQ.

The actual capacity of the specified CQ is returned on successful cre-
ation. The number returned differs only when the actual capacity is
more than the Consumer requested. If the maximum capacity sup-
ported by the HCA is less than the capacity requested, an error is re-
turned.

On success, a handle to the newly created Completion Queue is re-
turned.

Input Modifiers:

• HCA handle.
• The minimum capacity of the CQ.
• Completion Event Handler Identifier. If non-zero, associates the

CQ with a Completion Event Handler.
Output Modifiers:

• The handle of the newly created CQ.
• The actual capacity of the CQ.
• Verb Results:

• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 583 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• CQ capacity requested exceeds HCA capability.
• Invalid Completion Event Handler Identifier.
• HCA doesn’t support Base Queue Management Extensions.

11.2.6.2 QUERY COMPLETION QUEUE

Description:

Returns the capacity of the specified CQ.

Input Modifiers:

• HCA handle.
• CQ handle.

Output Modifiers:

• The capacity of the CQ.
• Completion Event Handler Identifier. If zero, no Completion Event

Handler is associated with the CQ.
• Verb Results:

• Operation completed successfully.
• Invalid HCA handle.
• Invalid CQ handle.
• CQ has overrun or has become inaccessible.

11.2.6.3 RESIZE COMPLETION QUEUE

Description:

Modifies the capacity of the CQ.

C11-16: The CI must support resizing a CQ with outstanding Work Com-
pletions and while Work Requests are outstanding on queues associated
with the specified CQ. Completions must not be lost as a result of a re-
size.

The resize operation is allowed to adversely affect the performance
while the CQ is being resized. The act of resizing is not allowed to di-
rectly generate completion or asynchronous errors.

Input Modifiers:

• HCA handle.
• CQ handle.
• The minimum capacity of the CQ.

Output Modifiers:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 584 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The actual capacity of the CQ.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid CQ handle.

• CQ capacity requested exceeds HCA capability.

• More outstanding entries on CQ than capacity specified.

• CQ has overrun or has become inaccessible.

11.2.6.4 DESTROY COMPLETION QUEUE

Description:

Destroys the specified CQ. Resources allocated by the Channel Inter-
face to implement the CQ must be deallocated during the destroy op-
eration.

C11-17: The CI shall return an error if this Verb is invoked while a Work
Queue is still associated with the CQ.

Any completions that have not been retrieved from the CQ prior to
being destroyed are discarded.

Input Modifiers:

• HCA handle.

• CQ handle.

Output Modifiers:

• Verb Results:

• Operation completed successfully.

• Invalid HCA handle.

• Invalid CQ handle.

• One or more Work Queues is still associated with the CQ.

11.2.7 EE CONTEXT

11.2.7.1 CREATE EE CONTEXT

Description:

Creates an EE Context for the specified HCA.

On success, a handle to the newly created EE Context is returned.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 585 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The values for Remote Node Address Handle, Send Sequence
Number, Receive Sequence number are all zero. The EE Context is
created in the Reset state.

Input Modifiers:

• HCA handle.

• Reliable Datagram Domain.

Output Modifiers:

• The handle for the newly created EE Context.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Reliable Datagrams not supported.

• Invalid Reliable Datagram Domain.

11.2.7.2 MODIFY EE CONTEXT ATTRIBUTES

Description:

o11-3: If the CI supports RD Service, upon invocation of this Verb the CI
shall modify the attributes for the specified EE Context and then shall
cause the EE Context to transition to the specified EE Context state.

Only a subset of the attributes can be modified once the EE Context
has been created.

EE Context attributes can be modified with Work Requests out-
standing which use the EE handle, but any such Work Requests might
not execute correctly if the modifiers are changed.

WRs can be outstanding on the Receive Queue when the EE is in the
Init, RTR, and RTS state and on the Send Queue when the EE is in
the RTS state. Any outstanding Work Requests on the QP may not
execute as expected if the EE modifiers are changed.

If any of the EE attributes to be modified are invalid or the requested
state transition is invalid, none of the EE attributes shall be modified.
An immediate error shall be returned and the EE state shall remain un-
changed.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 586 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o11-4: If the CI supports RD Service, the properties and requirements of
the EE Context state transitions shall be supported as shown in Table 92.

Table 92 EE Context State Transition Properties

Transition Required Attributes Optional Attributes Actions

Reset to
Init

Primary Physical port.
P_Key index.

None. Enable posting to the
receive queue.

Init to Init None. Primary Physical port.
P_Key index.

No transition.

Init to RTR Remote Node Address
Vector.
Destination EEC Number.
RQ PSN.
Number of responder
resources for RDMA
Read/atomic ops. (Note
this is 1 for this revision.)

Alternate path address
information.
P_Key index.

Activate receive process-
ing.

RTR to RTS Local ACK Timeout.
Retry count.
RNR retry count.
SQ PSN.
Number of Outstanding
RDMA Read/atomic ops
at destination.

Alternate path address
information.
Path migration state.

Activate send processing.

RTS to RTS
(no transition)

None. Alternate path address
information.
Path migration state.

No transition.

RTS to SQD None. None. Deactivate send process-
ing.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 587 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers:

• HCA handle.

• EE Context handle.

SQD to SQD None. Remote Node Address
Vector (Connected QPs
only).a b

Alternate path address
information.
Path migration state.
Local ACK Timeout.a

Retry count.a

RNR retry count.a

Number of Outstanding
RDMA Read/atomic ops
at destination.a

Number of local RDMA
Read/atomic responder
resources.a

P_Key index.a

Primary physical port
associated with EE if
HCA supports this capa-
bility.a

Modify EE attributes

SQD to RTS None Alternate path address
information.
Path migration state.

Activate send processing.

Any State to Error None. None allowed. Queue processing is
stopped.
Work Requests in pro-
cess are completed in
error, when possible.

Any state to Reset None. None allowed. EE attributes are reset to
the same values after the
EE was created.
Outstanding Work
Requests are removed
from the queues without
notifying the Consumer.

a. It is allowed to change this attribute only when the SQ is drained.
b. When changing the Remote Node Address Vector, the Path MTU cannot be changed in the SQD2SQD
transition.

Table 92 EE Context State Transition Properties (Continued)

Transition Required Attributes Optional Attributes Actions

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 588 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The EE Context attributes to modify and their new values. The EE
Context attributes that can be modified after the EE Context has
been created are:

• Primary physical port. Applicable for the Init to Init transition.
Applicable for the SQD to RTS transition, if supported by the
HCA.

• Primary path P_Key Index.

• PSNs for Sends & Receives.

• EE Context State.Enable or disable Send Queue Drained,
Asynchronous Affiliated Event Notification. This modifier
is only applicable when the next EE state chosen is SQD.

• Initiator Depth: Number of RDMA Reads & Atomic Operations
outstanding at any time on the destination EE.

• Responder Resources: Number of responder resources for
handling incoming RDMA Reads & atomic operations. This
value may be rounded up to a supported value, not to exceed
the maximum value allowable for EEs for this HCA. Note for
this version of the specification, this value is one.

• Destination EE Context number

• Primary Address vector, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If destination is in same subnet, LID =
final destination; otherwise LID = router LID.

• Path MTU.

• Maximum Static Rate.

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678).

• Retry count.

• RNR retry count.

• Source Path Bits.

• For global destination:

• Traffic class.

• Flow label.

• Hop limit.

• Source GID index.

• Destination’s GID.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 589 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Alternate path address information. Valid only when automatic
path migration is enabled.

• Alternate path P_Key index. Note that the alternate path
P_Key index should map to the same partition key as the
primary P_Key index; otherwise APM may not function
properly.

• Alternate physical port.

Alternate path address vector, containing:

• Service level.

• Send Global Routing Header Flag.

• Destination LID. If the destination is in the same subnet,
LID = final destination; otherwise LID = router LID.

• Maximum Static Rate.

• Local ACK Timeout (see Sections 12.7.33 Target ACK
Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678).

• Source Path Bits.

For global destination:

• Traffic class.

• Flow label.

• Hop limit.

• Source GID index.

• Destination’s GID.

• Path migration state. Valid only if this HCA supports automatic
path migration. Valid states to set are:

• Migrated.

• Rearm.

Output Modifiers:

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid EE Context handle.

• Cannot change EE Context attribute.

• Invalid EE Context state.

• Invalid path migration state.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 590 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Reliable Datagrams not supported.

11.2.7.3 QUERY EE CONTEXT

Description:

Returns the attribute list and current values for the specified EE Con-
text.

Input Modifiers:

• HCA handle.
• EE Context handle.

Output Modifiers:

• The EE Context attributes. The list of attributes returned by the
query are:
• Current EE Context State. Where the state is one of the fol-

lowing:
• Reset
• Initialized
• Ready to Receive (RTR)
• Ready to Send (RTS)
• SQ Error
• SQ Drain (SQD)

The following modifiers are valid only when the EE
Context is in the SQD state:
• Send Queue Draining
• Send Queue Drained

• Error
• EE Context Number.
The following attributes are not defined if the EE is in the Reset
state.

• Primary physical port.
• Primary path P_Key Index.
• PSNs for Sends & Receives.
• Reliable Datagram Domain.
• Initiator Depth: Number of RDMA Reads & Atomic Operations

outstanding at any time on the destination EE.
• Responder Resources: Number of responder resources for

handling incoming RDMA Reads & atomic operations.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 591 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Destination EE Context number.
• Primary Address vector, containing:

• Service level.
• Send Global Routing Header Flag.
• Destination LID. If destination is in same subnet, LID =

final destination; otherwise LID = router LID.
• Path MTU.
• Maximum Static Rate.
• Local ACK Timeout (see Sections 12.7.33 Target ACK

Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678).

• Retry count.
• RNR retry count.
• Source Path Bits.
• For global destination:

• Traffic class.
• Flow label.
• Hop limit.
• Source GID index.
• Destination’s GID.

• Alternate path address information. Valid only when automatic
path migration is enabled.
• Alternate path P_Key index.
• Alternate physical port.
Alternate path address vector, containing:
• Service level.
• Send Global Routing Header Flag.
• Destination LID. If the destination is in the same subnet,

LID = final destination; otherwise LID = router LID.
• Maximum Static Rate.
• Local ACK Timeout (see Sections 12.7.33 Target ACK

Delay on page 678 and 12.7.34 Local ACK Timeout on
page 678).

• Source Path Bits.
For global destination:

• Traffic class.
• Flow label.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 592 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Hop limit.
• Source GID index.
• Destination’s GID.

• Path migration state. Applicable only if this HCA supports au-
tomatic path migration.

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid EE Context handle.
• Reliable Datagrams not supported.

11.2.7.4 DESTROY EE CONTEXT

Description:

Destroys the specified EE Context. Any resources allocated by the
Channel Interface for use by the EE Context are freed from use.

o11-5: If the CI supports RD Service, after this Verb is invoked, any out-
standing or subsequently submitted Work Requests which depend on the
EE Context shall complete with an Invalid EE Context Number error.

Input Modifiers:

• HCA handle.
• EE Context handle.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid EE Context handle.
• Reliable Datagrams not supported.

11.2.8 MEMORY MANAGEMENT

Memory Management Verbs are partitioned into two categories:

1) Memory Region Verbs

• Allocate L_Key.
• Register Memory Region.
• Register Physical Memory Region.
• Query Memory Region.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 593 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Deregister Memory Region.
• Reregister Memory Region.
• Reregister Physical Memory Region.
• Register Shared Memory Region.
• Fast Register Physical MR (a.k.a. Post Send Register Non-

Shared MR)
• Local Invalidate
• Send with Invalidate

2) Memory Window Verbs

• Allocate Memory Window.
• Query Memory Window.
• Bind Memory Window.
• Post Send Bind Memory Window
• Deallocate Memory Window.

11.2.8.1 ALLOCATE L_KEY

Description:

Allocates physical buffer list resources for use in memory registra-
tions. Note, the Consumer owns the key portion of the L_Key and
R_Key, if any was requested, that is returned from this verb.

This verb either completes entirely or not at all.

Input Modifiers:

• HCA Handle.
• Protection Domain.
• Requested size of the PBL resources to be allocated.
• Remote Access Requested. Requests that an R_Key be re-

turned.
Output Modifiers:

• Memory Region Handle - used to identify this specific registered
region to the Memory Management Verbs.

• L_Key - used for local access.
• R_Key - used for remote access.

The R_Key is returned only when Remote Access was requested.
• Actual size of the PBL resources allocated. The actual size of the

PBL resources allocated must be equal to or greater than the size
of the PBL resources requested.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 594 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Invalid Protection Domain.
• HCA doesn’t support Base Memory Management Extensions.

11.2.8.2 REGISTER MEMORY REGION

Description:

Prepares a virtually addressed memory region for use by an HCA. A
description of the registered memory suitable for use in Work Re-
quests to describe locally accessible memory locations is returned.
When specifically requested, a description of the registered memory
suitable for use by inbound RDMA and/or atomic operations is re-
turned.

This Verb depends on OSV supplied functions to perform the pinning
of memory pages and creating the virtual to physical translations that
represent the memory region.

The L_Key, and if requested R_Key, returned from this verb are
owned by the CI.

Input Modifiers:

• HCA Handle.
• Virtual Address - the address of the first byte of the region to be

registered. The Maximum size of a Virtual Address is 64 bits.
• Length of region to be registered in bytes.
• Protection Domain to be assigned to the registered region.
• Access Control - The following may be selected in any combina-

tion except as noted.
• Enable Local Write Access.
• Enable Remote Write Access.

Remote Write Access requires Local Write Access to be en-
abled.

• Enable Remote Read Access.
• Enable Remote Atomic Operation Access (If Atomic Ops sup-

ported).
Remote Atomic Operation Access requires Local Write Ac-
cess.

• Enable Memory Window Binding.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 595 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note: Local Read Access is always implied.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

Output Modifiers:

• Memory Region Handle - used to identify this specific registered
region to the Memory Management Verbs.

• L_Key - used for local access.

• R_Key - used for remote access.

The R_Key is returned only when Remote Access was requested.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid Virtual Address.

• Invalid Length

• Invalid Protection Domain.

• Invalid Access Control specifier.

• HCA doesn’t support ZBVA.

11.2.8.3 REGISTER PHYSICAL MEMORY REGION

Description:

Prepares a physically addressed Memory Region for use by an HCA.
A description of the registered memory suitable for use in Work Re-
quests to describe locally accessible memory locations is returned.
When specifically requested, a description of the registered memory
suitable for use by inbound RDMA and/or atomic operations is re-
turned.

In addition to a list of physical buffers, the Consumer supplies a re-
quested “I/O Virtual Address” to be associated with the first byte of the
Region. The Consumer also supplies the length of the entire Region
plus a byte offset that specifies where the Region begins within the
first physical buffer.

If the CI doesn’t support the Base Memory Management extensions,
the Channel Interface returns the I/O Virtual Address that is actually
assigned for the Region. If the CI supports the Base Memory Manage-
ment extensions, the CI returns the I/O Virtual Address supplied by the
Consumer.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 596 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers:

• HCA Handle.

• Key ownership requested. Consumer requests ownership of the
key portion of L_Key and R_Key, if any was requested. Note, if
the Consumer doesn’t request ownership of the key portion, then
the L_Key and R_Key, if any was requested, returned from this
verb cannot be used in a Fast Register Physical MR.

• Key to use on the new L_Key and R_Key.

• Physical Buffer List.

Starting physical address of each physical buffer.

• If the PBL is a Page Type, each buffer must begin and end on
an HCA-supported page boundary.

• If the PBL is a Block Type, each buffer may begin at an arbi-
trary physical address

Page size. Used only if the HCA supports multiple page sizes per
MR.

• Physical buffer size. All Block Sizes in the list must be the same
for Block Type Physical Buffers. All Page Sizes in the list must be
the same, if the HCA doesn't support multiple page sizes per MR.
Not applicable if the HCA supports multiple page sizes per MR. A
buffer size must match one of the buffer sizes supported by the
HCA.

• Total number of Physical Buffers in the list.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

• If VA type is VA, the IOVA requested by the Consumer for the first
byte of the region. Note, for ZBVA no IOVA is passed.

• Length of Region to be registered in bytes.

• Offset of Region’s starting IOVA within the first physical buffer.

• Protection Domain to be assigned to the registered region.

• Access Control - The following may be selected in any combina-
tion except as noted.

• Enable Local Write Access.

• Enable Remote Write Access.

Remote Write Access requires Local Write Access to be en-
abled.

• Enable Remote Read Access.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 597 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Enable Remote Atomic Operation Access (If Atomic Ops sup-
ported).
Remote Atomic Operation Access requires Local Write Ac-
cess.

• Enable Memory Window Binding.
Note: Local Read Access is always implied.

Output Modifiers:

• Memory Region Handle - used to identify this specific registered
region to the Memory Management Verbs.

• I/O Virtual Address - IOVA actually assigned by the Channel In-
terface for the first byte of the Region. The IOVA is returned if this
verb completes successfully.

• L_Key - used for local access.
• R_Key - used for remote access. The R_Key is returned if the Ac-

cess Control input modifier has any of the Remote Accesses en-
abled.

• Actual size of the PBL resources allocated. The actual size of the
PBL resources allocated shall be greater than or equal to the size
of the PBL resources passed in by the Consumer as an input
modifier.

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Invalid Physical Buffer List entry.
• Invalid Length.
• Invalid Offset.
• Invalid Protection Domain.
• Invalid Access Control specifier.
• HCA doesn’t support Base Memory Management Extensions.
• HCA doesn’t support ZBVA.
• HCA was not opened in Page mode.
• HCA was not opened in Block mode.
• HCA doesn’t support multiple PB sizes per MR.

11.2.8.4 QUERY MEMORY REGION

Description:

Retrieves information about a specific memory region.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 598 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers:

• HCA Handle.

• Memory Region Handle - as issued when region was registered.

Output Modifiers:

• L_Key.

• R_Key. R_Key is returned only if it was previously allocated.

• L_Key state.

• Ownership attributes for the key portion of L_Key and R_Key, if
any R_Key exists for the Memory Region: Consumer owns vs. CI
owns.

• Sharing attributes of the Memory Region: Shared vs. Not Shared.

• Actual number of allocated Physical Buffer List entries for Physi-
cal Memory Region referenced by the L_Key or R_Key.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

• Actual Local Protection Bounds enforced by the Channel Inter-
face.

• Actual Remote Protection Bounds enforced by the Channel Inter-
face.

The Remote Protection Bounds are returned only when Local and
Remote Access to the region was requested.

• Protection Domain assigned to the registered region.

• Access Control settings for the registered region.

• Verb Results:

• Operation completed successfully.

• Invalid HCA handle

• Invalid Memory Region handle.

11.2.8.5 DEREGISTER MEMORY REGION

Description:

Removes a memory region from the HCA translation table. The region
is unpinned if pinned in the associated registration Verb. This Verb is
responsible only for deallocating resources allocated as part of the as-
sociated registration operation. All other resources are the responsi-
bility of the Consumer.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 599 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

It is an error for a Consumer to attempt to deregister a Memory Region
while it still has any Memory Windows bound to it. Channel Interface
implementations have options on how to deal with the error, described
in 10.6.7.2.6 Deregistering Regions with Bound Windows on page
502.

Work Requests or Remote Operation requests that are in process and
actively referencing memory locations in a Memory Region that is
deregistered must fail with a protection violation. Work Requests or
Remote Operation requests that attempt to access memory locations
in a Memory Region that has been deregistered must fail with a pro-
tection violation.

This Verb depends on the availability of OSV supplied functions to per-
form the unpinning of memory pages.

Input Modifiers:

• HCA Handle.
• Memory Region Handle - as issued when region was registered.

Output Modifiers:

No output modifiers.
• Verb Results:

• Operation completed successfully.
• Invalid HCA handle.
• Invalid Memory Region handle.
• Operation denied; Region still has bound Window(s)

11.2.8.6 REREGISTER MEMORY REGION

Description:

Modifies the attributes of an existing Memory Region. Any existing Re-
gion owned by the Consumer can be modified, regardless of which
Verb created it initially16, or which Verb (if any) reregistered it most re-
cently17. A description of the Memory Region suitable for use in Work
Requests to describe locally accessible memory locations is returned.
When specifically requested, a description of the Memory Region suit-
able for use by inbound RDMA and/or atomic operations is returned.

This Verb conceptually performs the functions Deregister Memory Re-
gion followed by Register Memory Region. Where possible, resources
below the Verb layer are expected to be reused instead of deallocated

16. For instance, a Region created with Register Physical Memory Region can
later be modified by Reregister Memory Region.
17. For instance, a Region modified by Reregister Physical Memory Region can
later be modified by Reregister Memory Region.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 600 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

and reallocated. This Verb may be used to change the access rights
and/or protection domain of a region, as well as changing the memory
locations that are registered.

The L_Key and R_Key output modifiers from this Verb must be used
in place of any previously issued for this region.

This Verb depends on the availability of OSV supplied functions to per-
form the pinning and unpinning of memory pages and creating the vir-
tual to physical translations that represent the memory region.

It is an error for a Consumer to attempt to reregister a Memory Region
while the Region still has any Memory Windows bound to it. Channel
Interface implementations have options on how to deal with the error,
as described in 10.6.7.2.6 Deregistering Regions with Bound Win-
dows on page 502.

C11-18: If the CI returns the "Operation denied" (due to a bound Window)
error, the CI shall make no change to the current registration.

C11-19: If the CI returns either the "Invalid HCA handle" or "Invalid
Memory Region handle" error, the CI shall make no change to the current
registration (assuming that it even exists).

C11-20: If the CI returns any other error, the CI shall invalidate both "old"
and "new" registrations, and release any associated resources.

C11-21: For the error case where a remote agent is accessing a Memory
Region while it is in the process of being reregistered, the CI must present
the same semantics as a deregistration operation followed by a separate
registration operation.

The L_Key, and if requested R_Key, returned from this verb are
owned by the CI. Note, the L_Key, and any accompanying R_Key, that
is passed in as an input modifier may have been owned by the Con-
sumer. However, upon successful completion of this verb the CI owns
the key portion of the L_Key and R_Key, if any was requested.

A shared MR becomes a non-shared MR upon successful completion
of this verb, if the Change Translation Input Modifier is set. Otherwise
the shared MR remains a shared MR.

Input Modifiers:

• HCA Handle.
• Memory Region Handle - as issued when region was registered.
• Change Request type - The following may be selected in any

combination, the input modifiers required to support the request
are listed below each request.
• Change Translation.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 601 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Input Modifiers required.

• Virtual Address.

• Length.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

• Change Protection Domain.

Input Modifiers required.

• Protection Domain.

• Change Access Control.

 Input Modifiers required.

• Access Control Selections.

Output Modifiers:

• Memory Region Handle - must be used for future references to
this Memory Region. Might or might not be the same as the previ-
ous Region Handle.

• L_Key - used for local access.

• R_Key - used for remote access.

The R_Key is returned only when Remote Access was requested.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid Memory Region handle.

• Invalid Virtual Address.

• Invalid Length.

• Invalid Protection Domain.

• Invalid Access Control specifier.

• Operation denied; Region still has bound Window(s).

• HCA doesn’t support ZBVA.

Usage Example:

a) To modify only the Access Control of an already registered re-
gion, the Memory Region Handle, a Change Access Control Re-
quest and the new Access Control Selections input modifiers
would be supplied to the Verb.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 602 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

b) To change the address translations of a region the Memory Re-
gion Handle, a Change Translation Request and the new Virtual
Address and length input modifiers would be supplied to the Verb.
The pages previously pinned would be unpinned, the new memo-
ry region would be pinned and registered (and if requested
bound) using the region’s access controls and protection domain.
Previous translations would be removed or replaced as needed.

11.2.8.7 REREGISTER PHYSICAL MEMORY REGION

Description:

Modifies the attributes of an existing Memory Region. Any existing Re-
gion owned by the Consumer can be modified, regardless of which
Verb created it initially18, or which Verb (if any) reregistered it most re-
cently19. A description of the Memory Region suitable for use in Work
Requests to describe locally accessible memory locations is returned.
When specifically requested, a description of the Memory Region suit-
able for use by inbound RDMA and/or atomic operations is returned.

This Verb conceptually performs the functions Deregister Memory Re-
gion followed by Register Physical Memory Region. Where possible,
resources below the Verb layer are expected to be reused instead of
deallocated and reallocated. This Verb may be used to change the ac-
cess rights and/or protection domain of a region, as well as changing
the memory locations that are registered.

Note, the L_Key, and any accompanying R_Key, that is passed in as
an input modifier may have been owned by CI. If the Consumer re-
quests ownership of the key portion of L_Key and R_Key, if any was
requested, then upon successful completion of this verb the Con-
sumer would own the key portion of the L_Key and R_Key, if any was
requested.

The L_Key and R_Key output modifiers from this Verb must be used
in place of any previously issued for this region. The CI can use any
of the following three input modifiers to access the Memory Region:
Memory Region Handle, L_Key, or R_Key. The CI is not expected to
perform consistency checks between these three input modifiers.

It is an error for a Consumer to attempt to reregister a Memory Region
while the Region still has any Memory Windows bound to it. Channel
Interface implementations have options on how to deal with the error,
as described in 10.6.7.2.6 Deregistering Regions with Bound Win-
dows on page 502.

18. For instance, a Region created with Register Memory Region can later be
modified by Reregister Physical Memory Region.
19. For instance, a Region modified by Reregister Memory Region can later be
modified by Reregister Physical Memory Region.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 603 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C11-22: For the Reregister Physical Memory Region Verb, the CI shall
conform to all of the compliance statements contained in 11.2.8.6 Rereg-
ister Memory Region on page 599.

A shared MR becomes a non-shared MR upon successful completion
of this verb, if the Change Translation Input Modifier is set. Otherwise
the shared MR remains a shared MR.

Input Modifiers:

• HCA Handle.

• Memory Region Handle

• L_Key

• R_Key. R_Key is supplied only if the L_Key has an accompany-
ing R_Key.

• Change Request type - The following may be selected in any
combination, the input modifiers required to support the request
are listed below each request.

• Change Translation. Input modifiers required:

• Key ownership requested. Consumer requests ownership
of the key portion of L_Key and R_Key, if any was
requested. Note, if the Consumer doesn’t request
ownership of the key portion, then the L_Key and R_Key,
if any was requested, returned from this verb cannot be
used in a Fast Register Physical MR.

• Key to use on the new L_Key and R_Key.

• Physical Buffer List.

Starting physical address of each physical buffer.

• If the PBL is a Page Type, each buffer must begin and
end on an HCA-supported page boundary.

• If the PBL is a Block Type, each buffer may begin at
an arbitrary physical address

Page size. Used only if the HCA supports multiple page
sizes per MR.

• Physical buffer size. All Block Sizes in the list must be the
same for Block Type Physical Buffers. All Page Sizes in
the list must be the same, if the HCA doesn't support
multiple page sizes per MR. Not applicable if the HCA
supports multiple page sizes per MR. A buffer size must
match one of the buffer sizes supported by the HCA.

• Total number of Physical Buffers in the list.

• Type of VA:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 604 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Virtual Address
• Zero Based Virtual Address.

• If VA type is VA, the IOVA requested by the Consumer for
the first byte of the region. Note, for ZBVA no IOVA is
passed.

• Length of Region to be registered in bytes.
• Offset of Region’s starting IOVA within the first physical

buffer.
• Change Protection Domain.

• Protection Domain to be assigned to the registered region
• Change Access Control

Access Control - The following may be selected in any combi-
nation except as noted.
• Enable Local Write Access.
• Enable Remote Write Access.

Remote Write Access requires Local Write Access to be
enabled.

• Enable Remote Read Access.
• Enable Remote Atomic Operation Access (If Atomic Ops

supported).
Remote Atomic Operation Access requires Local Write Ac-
cess.

• Enable Memory Window Binding.
Note: Local Read Access is always implied.

Output Modifiers:

• Memory Region Handle - used to identify this specific registered
region to the Memory Management Verbs.

• I/O Virtual Address - IOVA actually assigned by the Channel In-
terface for the first byte of the Region. For an HCA that supports
the Base Memory Management Extensions, the returned IOVA is
the same as the IOVA requested.

• L_Key - used for local access.
• R_Key - used for remote access. The R_Key is returned if the Ac-

cess Control input modifier has any of the Remote Accesses en-
abled.

• Actual size of the PBL resources allocated. The actual size of the
PBL resources allocated shall be greater than or equal to the size
of the PBL resources passed in by the Consumer as an input
modifier.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 605 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid Physical Buffer List entry.

• Invalid Length.

• Invalid Offset.

• Invalid Protection Domain.

• Invalid Access Control specifier.

• HCA doesn’t support Base Memory Management Extensions.

• HCA doesn’t support ZBVA.

• HCA was not opened in Page mode.

• HCA was not opened in Block mode.

• HCA doesn’t support multiple PB sizes per MR.

11.2.8.8 REGISTER SHARED MEMORY REGION

Description:

Given an existing Memory Region, a new independent Memory Re-
gion associated with the same physical memory locations is created,
with the intention that the new Memory Region share HCA mapping
resources to the extent possible. Through repeated calls to the Verb,
an arbitrary number of Memory Regions can potentially share the
same HCA mapping resources, all associated with the same physical
memory locations. The memory region created by this verb behaves
identically to memory regions created by the other memory registra-
tion verbs.

The Virtual Address, Protection Domain, and Access Rights specified
for the new Memory Region need not be the same as those of the ex-
isting Memory Region. The lengths are by definition the same.

The Consumer supplies a requested Virtual Address to be associated
with the first page in the new Memory Region, and the Channel Inter-
face returns the Virtual Address that is actually assigned.

The L_Key, and if requested R_Key, returned from this verb are
owned by the CI.

Input Modifiers:

• HCA Handle.

• Memory Region Handle - of an already registered region.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 606 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Virtual Address - requested by the Consumer for the first page of
the buffer.

• Protection Domain.

• Access Control Selections.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

Output Modifiers:

• Memory Region Handle - of the new Memory Region.

• Virtual Address - actually assigned by the Channel Interface for
the first page.

• L_Key - used for local access.

• R_Key - used for remote access.

The R_Key is returned when Remote Access Rights are re-
quested.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle.

• Invalid Memory Region handle.

• Invalid Protection Domain.

• Invalid Access Control specifier.

• HCA doesn’t support ZBVA.

11.2.8.9 ALLOCATE MEMORY WINDOW

Description:

This Verb allocates a memory window which is associated with a protec-
tion domain. It is not inherently associated with any memory region when
allocated.

Input Modifiers:

• HCA Handle.

• Protection Domain to be assigned to the Memory Window.

• Type of Memory Window: Type 1 or Type 2.

Output Modifiers:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 607 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Window Handle - used to identify this specific Memory Window to
other Memory Management Verbs.

• R_Key - an unbound R_Key for use in specifying the Window with
the Bind Memory Window Verb.

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Invalid Protection Domain.
• HCA doesn’t support Type 2 Memory Windows.

11.2.8.10 QUERY MEMORY WINDOW

Description:

This Verb returns the attributes associated with the specified memory
window.

Input Modifiers:

• HCA Handle.
• Window Handle - as issued by an Allocate Memory Window.

Output Modifiers:

• R_Key - the current R_Key associated with the Memory Window.
• Type of Memory Window: Type 1 or Type 2.
• R_Key state.
• Protection Domain associated with the Memory Window.
• Verb Results:

• Operation completed successfully.
• Invalid HCA handle.
• Invalid Memory Window handle.

11.2.8.11 BIND MEMORY WINDOW

Description:

Posts a Work Request to a specified Send Queue, which binds a
Memory Window to a specified VA range and remote access attributes
based on an existing Memory Region. The QP Service Type must be
either Reliable Connection, Unreliable Connection, or Reliable Data-
gram.

The specified VA range must either be the entire Memory Region or a
subset of it. Remote Write Access or Remote Atomic Access must not

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 608 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

be specified unless the Memory Region has Local Write Access. The
QP, Memory Window, and Memory Region must belong to the same
HCA and Protection Domain.

A previously bound Memory Window can be bound to a new VA range
in the same or a different Memory Region, causing the previous
binding to be invalidated. Binding a previously bound Memory Window
to a zero-length VA range will invalidate the previous binding and re-
turn an R_Key that is in the unbound state.

The Bind operation has a unique ordering rule: any Work Request
posted to a Send Queue subsequent to a Bind must not begin execu-
tion until the Bind operation completes.

Under normal operation, it is improper for a Consumer to change the
binding of a Memory Window while it is being accessed by a remote
agent. However, this can occur if remote agents misbehave, or it can
occur under error recovery circumstances. Any Remote Operation re-
quests that are in process and actively using a Memory Window when
its binding is changed must fail with a protection violation. Once the
Bind operation has been reported to the Consumer as having com-
pleted, the Channel Interface must guarantee that no additional ac-
cesses can be performed under the immediate previous binding.

If the bind memory window could not be completed due to an invalid
input modifier, the previous bind memory window settings shall remain
valid and none of the previous window’s attributes shall be modified.
An immediate or completion error shall be returned.

Input Modifiers:

• HCA Handle.
• QP Handle.
• The Work Request containing the information required to perform

the request. The Work Request is defined as follows:
• A user defined 64-bit Work Request ID.
• Memory Window Handle.
• R_Key - The R_Key currently associated with the Memory

Window.
• Memory Region Handle.
• L_Key - The L_Key for the Memory Region that the Memory

Window will be associated with.
• Virtual Address - the address of the first byte of the bound

range. The Maximum size of a Virtual Address is 64 bits.
• Length of range to be bound in bytes.
• Access Control - The following may be selected in any combi-

nation except as noted.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 609 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Enable Remote Write Access. Requires the Memory
Region to have Local Write Access.

• Enable Remote Read Access

• Enable Remote Atomic Operation Access (If Atomic Ops
supported). Requires the Memory Region to have Local
Write Access.

• Completion Notification Indicator. Must be specified if the
Send Queue was created with a Signaling type of Selectable.
Ignored if the Send Queue was created with a Signaling type
of Non-Selectable.

• Fence indicator. If the fence indicator is set, then all prior
RDMA Read and Atomic Work Requests on the queue must
be completed before starting to process this Work Request.
The Fence indicator only has an effect with the Reliable Con-
nection and Reliable Datagram transport services.

Output Modifiers:

• R_Key - The R_Key associated with the new binding, whose val-
ue is different from that of the supplied R_Key.

• Verb Results:

• Operation completed successfully.

• Insufficient resources to complete request.

• Invalid HCA handle

• Invalid QP handle.

• Invalid Service Type for this QP.

• Invalid Memory Window handle.

• Invalid R_Key.

• Invalid Memory Region handle.

• Invalid L_Key.

• Invalid Virtual Address

• Invalid Length.

• Invalid Access Control specifier.

• Too many Work Requests posted.

• Invalid MW Type. Consumer attempted to perform a Bind op-
eration on a Type 2 Memory Window.

11.2.8.12 DEALLOCATE MEMORY WINDOW

Description:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 610 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Under normal operation, it is improper for a Consumer to deallocate a
Memory Window while it is being accessed by a remote agent. How-
ever, this can occur if remote agents misbehave, or it can occur under
error recovery circumstances. Any Remote Operation requests that
are in process and actively using a Memory Window when it is deallo-
cated must fail with a protection violation. Once the deallocation Verb
completes, the Channel Interface must guarantee that no additional
accesses can be performed through that Memory Window.

Input Modifiers:

• HCA Handle.

• Window Handle - as issued by an Allocate Memory Window.

Output Modifiers:

No output modifiers

• Verb Results:

• Operation completed successfully.

• Invalid HCA handle

• Invalid Memory Window handle.

11.3 MULTICAST

11.3.1 ATTACH QP TO MULTICAST GROUP

Description:

Attaches the QP to the specified multicast group. The only function of
this Verb is to assign the Receive Work Queue of this QP to the spec-
ified multicast group; after the attachment completes, this QP will be
provided with a copy of every multicast message addressed to the
group specified by the MGID and received on the HCA port with which
the QP is associated. Creation of the multicast group, and reconfigu-
ration of the fabric such that packets addressed to that group are
routed to a local HCA port, is described in 7.10 IBA and Raw Packet
Multicast on page 213.

The Service Type of the specified QP must be Unreliable Datagram. It
is an error to specify a QP with any other Service Type.

One or more QPs are allowed to be attached to a multicast group on
the HCA. If the maximum number of multicast group attachments has
already been reached for the HCA when a QP attempts to attach to
the multicast group, an error is returned.

If an attempt is made to attach a particular QP to the same multicast
group that it is already attached to, the operation will apparently suc-
ceed (i.e. return operation completed successfully). However, only

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 611 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

one copy of each multicast message will be delivered to the attached
QP.
The input modifier which determines the multicast group to attach to
are the MGID and MLID. Both input modifiers must be supplied.
The IBA unreliable multicast feature is optional. This Verb is required
only if IBA unreliable multicast is supported by the HCA.

Input Modifiers:

• HCA Handle.
• Multicast group MLID.
• Multicast group MGID.
• QP Handle.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Insufficient resources to complete request.
• Invalid HCA handle.
• Invalid multicast MLID.
• Invalid Multicast group MGID.
• Invalid QP handle.
• Invalid Service Type for this QP.
• Number of QPs attached to multicast groups exceeded.

11.3.2 DETACH QP FROM MULTICAST GROUP

Description:

Detaches the specified QP from a multicast group. The only function
of this Verb is to detach the Receive Work Queue of this QP from the
specified multicast group.
All of the input modifiers must be correct for the QP to be detached. If
the QP is attached to a different multicast group or port, an error will
be returned.
This Verb is required only if IBA unreliable multicast is supported by
the HCA. The IBA unreliable multicast feature is optional.

Input Modifiers:

• HCA Handle.
• Multicast group MLID.
• Multicast group MGID.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 612 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• QP Handle.
Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid multicast MLID.
• Invalid Multicast group MGID.
• Invalid QP handle.

11.4 WORK REQUEST PROCESSING
11.4.1 QUEUE PAIR OPERATIONS

11.4.1.1 POST SEND REQUEST

Description:

Builds one or more WQEs for the Send Queue in the specified QP
from the information contained in the list of Work Requests submitted
by the Consumer. These WQEs are added to the end of the Send
Queue and the HCA is notified that one or more WQEs are ready to
be processed. If the HCA does not support the Base Queue Manage-
ment Extensions, the CI must support a list of size one.

Note: the Consumer can post up to the remaining capacity of a WQ
without encountering a Too Many WRs Posted Immediate Error. If the
Consumer posts more than the remaining capacity, an Immediate
Error may be returned.

If the Send Queue is enabled for selectable completion notification, for
each WR, the Consumer must specify whether a successful comple-
tion of the Work Request results in a completion entry on the CQ.

Control returns to the Consumer immediately after the WQEs have
been submitted to the Send Queue and the HCA has been notified
that one or more WQEs are ready to process. When control returns,
the Work Request is in the scope of the Consumer and will no longer
be modified or accessed below the Channel Interface. However, for a
Fast Register PMR operation the PBL is in the scope of the CI until the
Work Request is returned as a Work Completion.

C11-23: If the CI does not support the Base Queue Management Exten-
sions, the CI shall return control to the Consumer immediately after the
Work Request has been submitted to the Send Queue.

o11-5.2.1: If the CI supports the Base Queue Management Extensions,
the CI shall return control to the Consumer immediately after the list of
Work Request has been submitted to the Send Queue.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 613 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C11-24: Once control has been returned to the Consumer the CI shall not
modify or access any of the Work Requests.

Sends, RDMA and atomic operations can all take place on the same
QP. Table 93 Operation Type Matrix shows which operations are al-
lowed for each Service Type of the QP.

o11-5.2.2: For a CI that supports the Base Memory Management Exten-
sions, if a QP is not enabled for Fast Register PMR and Reserved L_Key,
and the Consumer attempts a Fast Register PMR or to use the Reserved
L_Key, the CI must return the appropriate error.

C11-25: This compliance statement has been obsoleted.

C11-25.2.1: The CI shall support the operations based on QP Service
type according to Table 93 Operation Type Matrix .

C11-25.2.2: The ordering and fencing considerations for Atomic Opera-
tions are the same as for RDMA Read.

Not all of the Input Modifiers are valid for all operations. Table 94 Work
Request Modifier Matrix shows which of the Input Modifiers are valid
for each operation. If Input Modifiers are specified that are not valid for
a particular operation, they are ignored.

C11-26: This compliance statement has been obsoleted.

Table 93 Operation Type Matrix

Send RDMA
Read

RDMA
Write

Atomic
Ops

Type 2
MW

Binda

a. Only supported if HCA supports Base Memory Management Extensions.

Fast
Register
Physical

MRa

Local
Invalidatea

RC Yes Yes Yes Yes Yes Yes Yes

RD Yes Yes Yes Yes Yes Yes Yes

UC Yes Not
allowed

Yes Not
allowed

Yes Yes Yes

UD Yes Not
allowed

Not
allowed

Not
allowed

Not
allowed

Not
allowed

Not allowed

Raw Yes Not
allowed

Not
allowed

Not
allowed

Not
allowed

Not
allowed

Not allowed

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 614 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C11-26.2.1: The CI shall ignore all input modifiers in a Work Request that
are not valid for the specified operation as shown in Table 94 Work Re-
quest Modifier Matrix .

Table 94 Work Request Modifier Matrixa

Send RDMA Read RDMA Write Atomic Ops Type 2 MW
Bind

Fast
Register

Physical MR

Local
Invalidate

Work
Request ID

Required Required Required Required Required Required Required

Completion
notification
indicator

Required if
Send
Queue Sig-
naling Type
is Select-
able

Required if
Send Queue
Signaling
Type is
Selectable

Required if
Send Queue
Signaling
Type is
Selectable

Required if
Send Queue
Signaling
Type is
Selectable

Required if
Send Queue
Signaling
Type is
Selectable

Required if
Send Queue
Signaling
Type is
Selectable

Required if
Send Queue
Signaling
Type is
Selectable

Scat-
ter/Gather
list

Requiredb Requiredb Requiredb N/A N/A N/A N/A

of Data
Segments

Requiredb Requiredb Requiredb N/A N/A N/A N/A

Immediate
Data

Optional
except
N/A for Raw
Datagram
QPs

N/A Optional N/A N/A N/A N/A

Fence Indi-
cator

Optional for
Reliable
QPs

Optional for
Reliable QPs

Optional for
Reliable QPs

Optional for
Reliable QPs

Optional for
Reliable QPs

N/A N/A

Remote
Node
Address

Address
Handle
Required for
UD QPs,
DLID,
Source Path
Bits & SL
Required for
Raw

N/A N/A N/A N/A N/A N/A

Remote
Node QP #
and Q_Key

Required for
IB
Datagram
QPsc

Required for
Reliable
Datagram
QPs

Required for
Reliable
Datagram
QPs

Required for
Reliable
Datagram
QPs

N/A N/A N/A

EE Context Required for
Reliable
Datagram
QPs

Required for
Reliable
Datagram
QP

Required for
Reliable
Datagram
QP

Required for
Reliable
Datagram
QP

N/A N/A N/A

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 615 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Remote
address

N/A Required Required Required N/A N/A N/A

Remote
R_Key

Optional for
Send w/ Inv.
Only for RC.

Required Required Required N/A N/A N/A

Atomic
operands

N/A N/A N/A Required N/A N/A N/A

Solicited
Event

Optional N/A Optional with
Immediate
Data

N/A N/A N/A N/A

Ethertype Required for
Raw
Ethertype
QPs

N/A N/A N/A N/A N/A N/A

Maximum
Static Rate

Required for
Raw and
N/A for oth-
ers

N/A N/A N/A N/A N/A N/A

Local Inval-
idate
Fence

N/A N/A N/A N/A N/A N/A Optional for
RC, RD, and
UC QPs

New key to
use on
L_Key and
R_Key

N/A N/A N/A N/A Required Required N/A

MR Handle N/A N/A N/A N/A Required Required Required for
MR

MW Han-
dle

N/A N/A N/A N/A Required N/A Required for
MW

PBL N/A N/A N/A N/A N/A Required N/A

First Byte
Offset

N/A N/A N/A N/A N/A Required N/A

Address-
ing Type

N/A N/A N/A N/A Required Required N/A

VA N/A N/A N/A N/A Required N/A N/A

IOVA N/A N/A N/A N/A N/A Required N/A

L_Key N/A N/A N/A N/A Required Required Required for
MR

Table 94 Work Request Modifier Matrixa (Continued)

Send RDMA Read RDMA Write Atomic Ops Type 2 MW
Bind

Fast
Register

Physical MR

Local
Invalidate

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 616 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If an immediate error is returned, the QP state shall not be affected.

Input Modifiers:

This is the full list of modifiers for all of the operations available on the
Send Queue. Not all modifiers can be used for all queue or operation
types. See Table 93 Operation Type Matrix and Table 94 Work Re-
quest Modifier Matrix for details on which modifiers may be used for
the specified queue and operation types.

• HCA handle.

• QP handle.

• A list of Work Requests. Where each entry consists a Work Re-
quest containing the information required to perform the Work
Request. The WR modifiers that must be specified are dependent
on the operation type specified. Each Work Request is defined as
follows:

• A user defined 64-bit Work Request ID.

• Operation type. Valid operation types for Work Requests sub-
mitted to the Send Queue are:

• Send

• RDMA Read

• RDMA Write

• Compare & Swap (assuming the HCA supports atomic
operations)

• Fetch & Add (assuming the HCA supports atomic
operations)

• Fast Register Physical MR (assuming the HCA supports
Fast Registration)

Local
R_Key

N/A N/A N/A N/A Required Required Required

Access
Control

N/A N/A N/A N/A Required Required N/A

Length N/A N/A N/A N/A Required Required N/A

a. Note: If the Service Type is not mentioned in a field in the above table, the modifier is not applicable for that Service Type.
b. Scatter/Gather list is allowed to have zero elements.
c. UD multicast uses a QPN of 0xFFFFFF. See o7-13.1.1:

Table 94 Work Request Modifier Matrixa (Continued)

Send RDMA Read RDMA Write Atomic Ops Type 2 MW
Bind

Fast
Register

Physical MR

Local
Invalidate

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 617 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Local Invalidate (assuming the HCA supports invalidate
operations)

• Type 2 Memory Window Bind (assuming the HCA
supports Type 2 Memory Windows)

• (Remote) Invalidate indicator. This indicator will select wheth-
er Invalidation will be included in the outgoing Send.

• R_Key that is to be included in the Send with Invalidate.

• Completion notification indicator. Must be specified and is
only valid if the Send Queue was created with a Signaling
Type of Selectable.

• Scatter/Gather list. The scatter/gather list can contain zero or
more Data Segments. The list is specified only for Send and
RDMA operations. Note that for Raw IPv6 QPs, the first 40
bytes of the buffer(s) referred to by the Scatter/Gather list
must contain the IPv6 header of the outgoing message.

• Number of Data Segments in the scatter/gather list. This mod-
ifier is used only when the scatter/gather list must be speci-
fied.

• Immediate Data Indicator. This is set if Immediate Data is to
be included in the outgoing request. Valid only for Send or
Write RDMA operations.

• 4-byte Immediate Data. Valid only for Send or Write RDMA
operations.

• Fence indicator. If the fence indicator is set, then all prior
RDMA Read and Atomic Work Requests on the queue must
be completed before starting to process this Work Request.
The Fence indicator only has an effect with the Reliable Con-
nection and Reliable Datagram transport services.

• Remote node address, required only for operations on Raw or
IB Unreliable Datagram Service Types.

• QP number of the destination QP. Required only for opera-
tions on IB Datagram Service Types. Use 0xFFFFFF for UD
Multicast. See o7-13.1.1:

• The Q_Key for the destination QP. Required only for opera-
tions on IB Datagram Service Types. See 10.2.5 Q_Keys on
page 439 for more detail on how the CI determines which
Q_Key to insert in the packet.

• Ethertype associated with the Work Request. Required only
for Raw Ethertype QPs.

• Maximum Static Rate. Required only for Raw IPv6 and Raw
Ethertype QPs.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 618 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• EE Context. Required only for Reliable Datagram QPs. Note
that this is the EE Context number and not the EE Context
Handle.

• Solicited Event Indicator. Valid only for RDMA Writes with im-
mediate data or Sends.

• Remote address specified by an address and R_Key. Re-
quired and used only for RDMA and atomic operations. For
Atomic operations, the address must point to a location that is
64-bit aligned.

• Compare & Swap (atomic) operation operands. If a Compare
& Swap operation is specified, the following additional oper-
ands must be supplied:

• Compare operand. Must be 64-bit.

• Swap operand. Must be 64-bit.

• A local Data Segment where a copy of the original
contents of the remote memory operation will be
deposited after the Compare & Swap operation completed
at the remote endnode.

• Fetch & Add (atomic) operation operands. If a Fetch & Add
operation is specified, the following additional operands must
be supplied:

• Add operand. Must be 64-bit.

• A local Data Segment where a copy of the original
contents of the remote memory operation will be
deposited after the Fetch & Add operation completed at
the remote endnode.

• Following are the input modifiers specific to the Bind Type 2
Memory Window Work Request:

• New R_Key Key.

• Memory Window Handle.

• R_Key - The R_Key currently associated with the Memory
Window.

• Memory Region Handle.

• L_Key - The L_Key for the Memory Region that the
Memory Window will be associated with.

• Type of VA:

• Virtual Address

• Zero Based Virtual Address.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 619 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Virtual Address - For type 2 MWs, the address of the first
byte of the bound range using the same VA base as the
underlying MR. The Maximum size of a Virtual Address is
64 bits.

• Length of range to be bound in bytes.

• Access Control - The following may be selected in any
combination except as noted.

• Enable Remote Write Access. Requires the Memory
Region to have Local Write Access.

• Enable Remote Read Access

• Enable Remote Atomic Operation Access (If Atomic
Ops supported). Requires the Memory Region to have
Local Write Access.

• Following are the input modifiers specific to the Fast Register
Physical MR Work Request:

• Key to use on the new L_Key and R_Key.

• L_Key

• R_Key - should be supplied if R_Key was assigned when
MR was allocated.

• Memory Region Handle

• Physical Buffer List. It is recommended that the Consumer
keeps the PBL available to the CI until the Fast Register
Physical MR completes, because the CI may access the
PBL until the Work Request is returned as a Work
Completion.

Starting physical address of each physical buffer.

• If the PBL is a Page Type, each buffer must begin and
end on an HCA-supported page boundary.

• If the PBL is a Block Type, each buffer may begin at
an arbitrary physical address

Page size. Used only if the HCA supports multiple page
sizes per MR.

• Physical buffer size. All Block Sizes in the list must be the
same for Block Type Physical Buffers. All Page Sizes in
the list must be the same, if the HCA doesn't support
multiple page sizes per MR. Not applicable if the HCA
supports multiple page sizes per MR. A buffer size must
match one of the buffer sizes supported by the HCA.

• Total number of Physical Buffers in the list.

• Type of VA:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 620 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Virtual Address

• Zero Based Virtual Address.

• If VA type is VA, the IOVA requested by the Consumer for
the first byte of the region. Note, for ZBVA no IOVA is
passed.

• Length of Region to be registered in bytes.

• Offset of Region’s starting IOVA within the first physical
buffer.

• Access Control - The following may be selected in any
combination except as noted.

• Enable Local Write Access.

• Enable Remote Write Access.

Remote Write Access requires Local Write Access to
be enabled and the L_Key to have an accompanying
R_Key.

• Enable Remote Read Access.

Remote Read Access requires the L_Key to have an
accompanying R_Key.

• Enable Remote Atomic Operation Access (If Atomic
Ops supported).

Remote Atomic Operation Access requires Local
Write Access and the L_Key to have an
accompanying R_Key.

• Enable Memory Window Binding.

Note: Local Read Access is always implied.

• Following are the input modifiers specific to the Local Invali-
date Work Request:

• Local Invalidate Fence Indicator

• For a Memory Region

• L_Key

• R_Key - should be supplied if R_Key was assigned
when MR was allocated.

• Memory Region Handle

• For a Memory Window

• R_Key

• Memory Window Handle

Output Modifiers:

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 621 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Number of WQEs successfully posted to the SQ. If verb result is
operation completed successfully, then all WQEs were posted.
Otherwise the verb result refers to the WQE that experienced the
first WR Immediate Error and was not posted.

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid QP handle.
• Too many Work Requests posted.
• Invalid operation type.
• Invalid QP state.

Note: This error is returned only when the QP is in the Reset,
Init, or RTR states. It is not returned when the QP is in the Error
or Send Queue Error states due to race conditions that could
result in indeterminate behavior. Work Requests posted to the
Send Queue while the QP is in the Error or Send Queue Error
states are completed with a flush error.

• Invalid MW Type. Consumer attempted to perform either: a
Bind or Invalidate operation on a Type 1 Memory Window; or
a zero length Bind operation on a Type 2 Memory Window

• Invalid Scatter/Gather list format.
• Invalid Scatter/Gather list length.
• Atomic operations not supported.
• Invalid address handle.
• HCA doesn’t support Base Memory Management Extensions.
• HCA doesn’t support Base Queue Management Extensions.
• HCA doesn’t support Local Invalidate Fencing.
• HCA does not support Block Type Physical Buffers or was not

opened in this mode.
• HCA was not opened in Page mode.
• HCA doesn’t support Zero Based Virtual Address (ZBVA).

11.4.1.2 POST RECEIVE REQUEST

Description:

Builds one or more WQEs for the Receive Queue in the specified QP
or the SRQ from the information contained in the list of Work Request
submitted by the Consumer. These WQEs are added to the end of the
Receive Queue or the SRQ, and the HCA is notified that one or more
WQEs are ready to be processed.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 622 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note: the Consumer can post up to the remaining capacity of a WQ
without encountering a Too Many WRs Posted Immediate Error. If the
Consumer posts more than the remaining capacity, an Immediate
Error may be returned.

Control returns to the Consumer immediately after the WQEs have
been submitted to the Receive Queue or the SRQ and the HCA has
been notified that one or more WQEs are ready to process. When con-
trol returns, the list of Work Requests is in the scope of the Consumer
and will no longer be modified or accessed below the Channel Inter-
face.

C11-27: If the CI does not support the Base Queue Management Exten-
sions, the CI shall return control to the Consumer immediately after the
Work Request has been submitted to the Receive Queue.

C11-27.2.1: If the CI supports the Base Queue Management Extensions,
the CI shall return control to the Consumer immediately after the list of
Work Request has been submitted to the Receive Queue.

o11-5.2.3: If the HCA supports SRQ, the CI shall return control to the
Consumer immediately after the list of Work Request has been submitted
to the SRQ.

If an immediate error is returned, the QP state or SRQ state shall not be
affected.

Input Modifiers:

• HCA handle.

• QP handle. Used when posting to a QP’s Receive Queue and the
QP is not associated with an SRQ.

• SRQ handle. Used when posting to an SRQ.

• A list of Work Requests. Where each entry consists a Work Re-
quest containing the information required to perform the Work
Request. The WR modifiers that must be specified are dependent
on the operation type specified. Each Work Request is defined as
follows:

• A user defined 64-bit Work Request ID.

• Operation type. The only valid operation for the Receive
Queue is the Receive operation.

• Scatter/Gather list. This list can contain zero or more Data
Segments.

Note that for UD QPs, the first 40 bytes of the buffer(s) referred
to by the Scatter/Gather list will contain the GRH of the in-
coming message. If no GRH is present, the contents of first 40

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 623 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

bytes of the buffer(s) will be undefined. The presence of the
GRH will be indicated by a bit in the Work Completion.

Note that for Raw IPv6 QPs, the buffer(s) referred to by the
Scatter/Gather list will contain the IPv6 header(s) of the in-
coming message followed by the message payload. The first
40 bytes will be used for the IPv6 routing header. Other IPv6
headers may follow the routing header before the message
payload.

• Number of Data Segments in the scatter/gather list.

Output Modifiers:

• Number of WQEs successfully posted to the RQ or SRQ. If verb
result is operation completed successfully, then all WQEs were
posted. Otherwise the verb result refers to the WQE that experi-
enced the first WR Immediate Error and was not posted.

• Verb Results:

• Operation completed successfully.

• Invalid HCA handle.

• Invalid QP handle.

• Too many Work Requests posted.

• Invalid operation type.

• Invalid QP state.

• Invalid Scatter/Gather list format.

• Invalid Scatter/Gather list length.

• HCA doesn’t support Base Queue Management Extensions.

• Invalid SRQ handle.

• QP Handle used on a QP that is associated with an SRQ.

11.4.2 COMPLETION QUEUE OPERATIONS

11.4.2.1 POLL FOR COMPLETION

Description:

Polls the specified CQ for a Work Completion. A Work Completion in-
dicates that a Work Request for a Work Queue associated with the CQ
is done.

If an entry is present, the Work Completion at the head of the CQ is
returned to the Consumer.

If an immediate error, associated with executing the Poll CQ verb it-
self, is returned, the CQ and QP state shall not be affected.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 624 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table defines, classifies and associates wire level pro-
tocol NAK codes with completion errors that are possible on Work Re-
quests posted to the Send Queue. Completion errors are returned
through the completion queue as work completions.

C11-28: This compliance statement has been obsoleted.

C11-28.2.1: The CI shall return completion errors for a Work Request in
the associated Work Completion for errors described in Table 95 Comple-
tion Error Types for Send Queues .

A Remote Q_Key violation and a Remote RDD Mismatch will both result
in an Invalid RD Request completion error type for the requester’s WQE.
Since the same NAK code is returned in both cases, it is not possible for
the requester to distinguish between them.

Table 95 Completion Error Types for Send Queues

Error Type Completion
Type

Transport Errors returned by
responder (RC)

Transport Errors sent by
responder (RD)

Bad Response Processing N/A N/A

Invalid (local) EE Context Number Processing N/A N/A

Invalid (local) EE Context State Processing N/A N/A

Local EE Context Operation Processing N/A N/A

Local Length Interface N/A N/A

Local Length Processing N/A N/A

Local Protection Interface N/A N/A

Local Protection Processing N/A Possibly a NAK - Invalid Request

Local QP Operation Interface N/A N/A

Local QP Operation Processing N/A Possibly a NAK - Invalid Request

Local RDD Violation Processing N/A N/A

Memory Management Operation Interface N/A N/A

Remote Access Processing NAK - Remote Access Violation NAK - Remote Access Violation

Remote Invalid RD Request Processing N/A NAK - Invalid RD Request

Remote Invalid Request Processing NAK - Invalid Request NAK - Invalid Request

Remote Operation Processing NAK - Remote Operational Error NAK - Remote Operational Error

RNR Retry Counter Exceeded Processing N/A N/A

Transport Retry Counter
Exceeded

Processing Possibly a NAK - Sequence Error Possibly a NAK - Sequence Error

Work Request Flushed Processing N/A N/A

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 625 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following table defines, classifies and associates wire level protocol
NAK codes with completion errors that are possible on Work Requests
posted to the Receive Queue or Shared Receive Queue. Completion er-
rors are returned through the completion queue as work completions.

C11-29: This compliance statement has been obsoleted.

C11-29.2.1: The CI shall generate the completion errors based on the
NAK codes as shown in Table 96 Completion Error Types for RQs or
SRQs .

Input Modifiers:

• HCA handle.
• CQ handle.

Output Modifiers:

• The Work Completion containing information relating to the com-
pleted Work Request if an entry is present on the CQ. If the status
of the operation that generates the Work Completion is anything
other than success, the contents of the Work Completion are un-
defined except as noted below. The contents of a Work Comple-
tion are:
• The 64-bit Work Request ID set by the Consumer in the asso-

ciated Work Request. This is always valid, regardless of the
status of the operation.

• The operation type specified in the completed Work Request.
• The valid operation types are:

Table 96 Completion Error Types for RQs or SRQs

Error Type Completion
Type

Transport Errors sent to
Requester (RC)

Transport Errors sent to
Requester (RD)

Invalid EE Context State Processing N/A NAK - Invalid RD Request

Local Access Processing NAK - Remote Access Violation NAK - Remote Access Violation

Local EE Context Operation Processing N/A NAK - Invalid RD Request

Local Length Processing NAK - Remote Operational Error NAK - Remote Operational Error

Local Protection Processing NAK - Remote Operational Error NAK - Remote Operational Error

Local QP Operation Processing NAK - Remote Operational Error NAK - Remote Operational Error

Aborted Processing N/A Possibly RNR NAK

Remote Invalid Request Processing NAK - Invalid Request NAK - Invalid Request

Work Request Flushed Processing N/A N/A

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 626 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Send (for WRs posted to the Send Queue)

• RDMA Write (for WRs posted to the Send Queue)

• RDMA Read (for WRs posted to the Send Queue)

• Compare and Swap (for WRs posted to the Send Queue)

• Fetch and Add (for WRs posted to the Send Queue)

• Fast Register Physical MR (for WRs posted to the Send
Queue)

• Local Invalidate (for WRs posted to the Send Queue)

• Memory Window Bind (for WRs posted to the Send
Queue)

• Send Data Received (for WRs posted to the Receive
Queue or Shared Receive Queue)

• RDMA with Immediate Data Received (for WRs posted to
the Receive Queue or Shared Receive Queue)

• The number of bytes transferred.

The number of bytes transferred is returned in Work Comple-
tions for Receive Work Requests for incoming Sends and
RDMA Writes with Immediate Data. This does not include the
length of any immediate data.

The number of bytes transferred is returned in Work Comple-
tions for Send Work Requests for RDMA Read and Atomic Op-
erations.

For the RQ of a UD QP that is not associated with an SRQ or
for an SRQ that is associated with a UD QP, the number of
bytes transferred is the payload of the message plus the 40
bytes reserved for the GRH. For the RQ of a UD QP that is not
associated with an SRQ or for an SRQ that is associated with
a UD QP, the 40 bytes is always included, whether or not the
GRH is present.

• R_Key Invalidated Indicator. If set, Received Message Invali-
dated an R_Key. Note, if an incoming Send with Invalidate
completed with a Memory Management Operation Error, then
the R_Key was not Invalidated.

• Invalidated R_Key. The R_Key invalidated by the
Received Message.

• QP Number. Set if the Base Queue Management Extension
or Shared Receive Queue Extension is supported.

• Immediate data indicator. This is set if immediate data is
present.

• 4-byte immediate data.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 627 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Remote node address and QP. Returned only for Datagram
services. The address information returned for incoming Dat-
agrams is shown in Table 97 Datagram addressing informa-
tion .

• GRH Present indicator, for UD RQs only. If this indicator is
set, the first 40 bytes of the buffer(s) referred to by the Scat-
ter/Gather list will contain the GRH of the incoming message.
If it is not set, the contents of first 40 bytes of the buffer(s) will
be undefined. Contents of the payload of the message will be-
gin after the first 40 bytes

• P_Key index, for GSI only.
• Status of the operation. This is always valid.

• These status codes are covered in Completion Return
Status, with NAK codes reported according to Completion
Error Types for Send Queues and Completion Error Types
for RQs or SRQs.

• Freed Resource Count (see 10.8.5.1 Freed Resource Count
on page 520). This is always valid, regardless of the status of
the operation.

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid CQ handle.
• CQ empty.

11.4.2.2 REQUEST COMPLETION NOTIFICATION

Description:

Requests the CQ event handler be called when the next completion
entry of the specified type is added to the specified CQ. The handler
is called at most once per Request Completion Notification call for a

Table 97 Datagram addressing information

Reliable
Datagrams

Unreliable
Datagrams Raw IPv6 Raw Ethertype

16-bit SLID 16-bit SLID 16-bit SLID 16-bit SLID

4-bit SL 4-bit SL 4-bit SL 4-bit SL

24-bit Source QP 24-bit Source QP 16-bit Ethertype

24-bit local EE
Number

DLID Path Bitsa

a. Note: Not applicable for Multicast messages

DLID Path Bitsa DLID Path Bitsa

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 628 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

particular CQ. Any CQ entries that existed before the notify is enabled
will not result in a call to the handler.

Completion Events are one of two types: solicited or unsolicited. A
Solicited Completion Event occurs when an incoming Send or RDMA
Write with Immediate Data message, with the Solicited Event header
bit set causes a successful Receive Work Completion to be added to
a CQ; or, when an unsuccessful Work Completion is added to a CQ.
An Unsolicited Completion Event occurs when any other successful
Receive Work Completion, or any successful Send Work Completion,
is added to a CQ.

C11-30: The CI shall support both solicited and unsolicited Completion
Event Types.

When the Consumer requests completion notification, it must specify
whether the notification callback is invoked for either:

• the next Solicited Completion Event only, or

• the next Solicited or Unsolicited Completion Event.

C11-30.1.1: When “next Solicited Completion Event only” is outstanding,
the CI shall invoke a notification callback when any of the following condi-
tions occur:

• An incoming Send with the Solicited Event Header bit set causes
a successful Receive Work Completion to be added to the speci-
fied CQ.

• An incoming RDMA Write with Immediate Data with the Solicited
Event Header bit set causes a successful Receive Work Comple-
tion to be added to the specified CQ.

• An unsuccessful Send or Receive Work Completion is added to
the specified CQ.

C11-30.1.2: When “next Solicited or Unsolicited Completion Event” is out-
standing, the CI shall invoke a notification callback when any Work Com-
pletion is added to the specified CQ.

If a Request Completion Notification is pending, subsequent calls to
Request Completion Notification for the same CQ prior to the comple-
tion event affect only when the notification occurs. A Request Comple-
tion Notification for the next completion event takes precedence over
a Request Completion Notification for a solicited event completion for
the same CQ.

If multiple calls to Request Completion Notification have been made
for the same CQ and at least one of the requests set the type to the
next completion, the CQ event handler will be called when the next
completion is added to that CQ. The CQ event handler will be called

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 629 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

only once, even though multiple CQ notification requests were made
prior to the completion event for the specified CQ.

Once the CQ event handler is called, another completion notification re-
quest must be registered before the CQ event handler will be called again.

C11-31: When a completion notification request is outstanding on a CQ
for a solicited completion type and another request for that CQ is made
that specifies a notification for the next completion, the CI shall change
the outstanding completion notification type to the next completion.

C11-32: When a completion notification request is outstanding on a CQ
for the next completion and another notification request for that CQ is
made, the CI shall not change the outstanding completion notification
type.

A CQ event handler must be specified prior to calling this routine. If the
CQ event handler has not been registered when the event is gener-
ated, the handler call will not be made.

When the CQ event handler is called, it only indicates a new entry was
added to the specified CQ. The HCA and CQ handles are passed to
the CQ event handler so the CQ event handler can determine which
CQ caused it to be called.

Once the handler routine has been invoked, the Consumer must call
Request Completion Notification again to be notified when a new entry
is added to that CQ.

It is the responsibility of the Consumer to call the Poll for Completion
Verb to retrieve a Work Completion.

Note: If the Consumer Requests Completion Notification on a CQ
Handle that does not have a CQ Event Handler ID associated with the
CQ, the operation will have no effect. That is, no completion event will
be generated.

Input Modifiers:

• HCA handle.
• CQ handle.
• Type of completion notification requested. The type is either the

next completion or when a solicited completion occurs.
Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid CQ handle.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 630 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Invalid completion notification type.

11.5 EVENT HANDLING

11.5.1 SET COMPLETION EVENT HANDLER

Description:

Associates a Completion Handler Identifier with a Completion Event
Handler Address. If the HCA supports the Base Queue Management
Extensions, more than one CQ event handler can be registered per
HCA.

For a given Completion Handler Identifier, additional calls to this Verb
will overwrite the Completion Event Handler Address associated with
the Completion Handler Identifier.

This call does not automatically request a notification on a completion
event. The Request Completion Notification Verb must be called in
order to request notification.

The parameters passed to the CQ event handler are:

• HCA handle.
• CQ handle.

Input Modifiers:

• HCA handle.
• Completion Event Handler Address.
• Completion Event Handler Identifier:

• If zero, the CI will create a Completion Handler Identifier and
the Completion Event Handler Address will be assigned.

• If non-zero, the CI will replace the Completion Event Handler
Address associated with the existing Completion Handler
identified by the Completion Event Handler Identifier. If the
Completion Event Handler Address is zero, then the Comple-
tion Event Handler Address is cleared. Note: A completion
event must not be generated when the CQ is associated with
a cleared Completion Event Handler.

Output Modifiers:

• Completion Event Handler Identifier. Returned only if the input
modifier “Completion Event Handler Identifier” is set to zero.

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.
• Invalid Completion Event Handler Identifier.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 631 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• HCA doesn’t support Base Queue Management Extensions.
• Insufficient resources to complete request.

11.5.2 SET ASYNCHRONOUS EVENT HANDLER

Description:

Registers the asynchronous event handler. Only one asynchronous
event handler can be registered per HCA. Additional calls to this Verb
will overwrite the handler routine to be called. Additional calls will not
generate an additional handler routine.

C11-33: The CI shall use the asynchronous event handler specified in
this Verb even in the case where an existing asynchronous event handler
has already been registered.

After the asynchronous event handler is registered, all subsequent
asynchronous events will result in a call to the handler. Until an asyn-
chronous event handler is registered, asynchronous events will be
lost.

The parameters passed to the asynchronous event handler when it is
invoked are:

• HCA handle.
• Event record. This contains information which indicates the

resource type and identifier as well as which event occurred.
See Asynchronous Events for more information.

Input Modifiers:

• HCA handle.
• Handler address.

Output Modifiers:

• Verb Results:
• Operation completed successfully.
• Invalid HCA handle.

11.6 RESULT TYPES

11.6.1 IMMEDIATE RETURN RESULTS

This section contains a list of the possible Verb return results. All results
except “Operation completed successfully” are due to interface errors in
the Immediate Error category. Not all Verbs return all results.

Successful return result:
• Operation completed successfully.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 632 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Resource errors:

• Insufficient resources to complete request.

• CQ capacity requested exceeds HCA capability.

• Maximum number of Work Requests requested exceeds HCA ca-
pability.

• Maximum number of scatter/gather elements requested exceeds
HCA capability.

• Too many Work Requests posted.

• Number of available Raw Datagram QPs exceeded.

• Number of QPs attached to multicast groups exceeded.

• HCA already in use.

HCA attribute errors:

• Invalid HCA name.

• Invalid HCA handle.

• MTUCap of HCA port exceeded.

• Invalid Port.

• Invalid Counter specified.

Address errors:

• Invalid Address handle.

QP errors:

• Invalid QP handle.

• Cannot change QP attribute.

• Invalid QP state.

• Invalid Service Type for this QP.

• QP is already in use.

• Atomic operations not supported.

• Raw Datagrams not supported.

• Reliable Datagrams not supported.

• Invalid operation type.

• Invalid Scatter/Gather list format.

• Invalid Scatter/Gather list length.

• Invalid path migration state.

• Invalid Special QP type.

• Invalid Address Handle

• More outstanding entries on WQ than size specified.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 633 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The QP is still attached to one or more multicast groups.
CQ errors:
• Invalid CQ handle.
• More entries outstanding on CQ than capacity specified.
• One or more Work Queues still associated with the CQ.
• CQ empty.
• Invalid completion notification type.
• CQ has overrun or has become inaccessible.
EE Context errors:
• Invalid EE Context handle.
• Invalid EE Context state.
• Cannot change EE Context attribute.
QP or EE Context errors:
• Invalid path migration state.
• Reliable Datagram Domain is in use.
• Invalid Reliable Datagram Domain.
• Invalid RNR NAK Timer Field value.
Memory operation errors:
• Invalid Protection Domain.
• Protection Domain is in use.
• Invalid Virtual Address.
• Invalid Length.
• Invalid Physical Buffer List entry.
• Invalid Offset.
• Invalid L_Key.
• Invalid R_Key.
• Invalid Memory Region handle.
• Invalid Memory Window handle.
• Invalid Access Control specifier.
• Operation denied; Region still has bound Window(s)
Multicast errors:
• Invalid multicast MLID.
• Invalid Multicast group MGID.
Partition table errors:
• P_Key index out of range.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 634 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• P_Key index specifies invalid entry in the P_Key table.

Verb Extension related errors:

• HCA does not support Block Type Physical Buffers or was not
opened in this mode.

• HCA was not opened in Page mode.

• HCA does not support Base Memory Management Exten-
sions.

• HCA does not support Base Queue Management Extensions.

• HCA does not support Local Invalidate Fencing.

• HCA does not support multiple PB sizes per MR.

• HCA does not support SRQ.

• HCA does not support resizing SRQ.

• HCA does not support ZBVA.

• QP Handle used on a QP that is associated with an SRQ.

• QP still has Type 2A MW bound to it.

• Invalid Completion Event Handler ID.

• Invalid MW Type.

• Invalid SRQ handle.

• SRQ is in the Error State.

• SRQ Limit exceeds maximum number of Work Requests al-
lowed on the SRQ.

• SRQ still has QPs associated with it.

11.6.2 COMPLETION RETURN STATUS

Describes the possible Work Completion status error return results.
These are errors that occur during the processing of a Work Request and
can be reported in the Work Completion status.

• Success - Operation completed successfully.

• Local Length Error - Generated for a Work Request posted to the lo-
cal Send Queue when the sum of the Data Segment lengths exceeds
the message length for the channel adapter port. Generated for a
Work Request posted to the local Receive Queue when the sum of
the Data Segment lengths is too small to receive a valid incoming
message or the length of the incoming message is greater than the
maximum message size supported by the HCA port that received the
message.

• Local QP Operation Error - An internal QP consistency error was de-
tected while processing this Work Request.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 635 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Local EE Context Operation Error - An internal EE Context consisten-
cy error was detected while processing this Work Request.

• Local Protection Error - The locally posted Work Request’s Data Seg-
ment does not reference a Memory Region that is valid for the re-
quested operation.

• On a Reserved L_Key:

• The Verbs Consumer does not have Reserved L_Key access
enabled.

• Work Request Flushed Error - A Work Request was in process or
outstanding when the QP transitioned into the Error State.

• Memory Management Operation Error - The Verbs Consumer had in-
sufficient rights to perform the operation, because:

• On a Fast-Register this includes:

• The Verbs Consumer does not have Fast Register access en-
abled;

• Requested PBL exceeds size of allocated PBL;

• Remote access was requested, but L_Key does not have an
accompanying R_Key; or

• Memory access was attempted on an L_Key or R_Key that is
in the Invalid State.

• On a Memory Window this includes:

• The Verbs Consumer has insufficient access rights;

• A zero length Bind Memory Window or Post Send Bind WR
operation on a Type 2 Memory Window

• Verb Consumer attempted to Bind a MW to a Zero Based Vir-
tual Address Memory Region.

• On an Invalidate Operation this includes:

• Memory access was attempted on an L_Key or R_Key that is
in the Invalid State;

• Memory Region could not be Invalidated, because it is a
Shared Memory Region;

• Memory Region can not be invalidated because it has bound
Memory Window; or

• Memory Region could not be Invalidated, because it was cre-
ated through a Register Memory Region or Reregister Memo-
ry Region.

• Memory Window could not be Invalidated, because it was a
Type 1 Memory Window.

The following errors are reported only for Reliable QPs.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 636 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Bad Response Error - An unexpected transport layer opcode was re-
turned by the responder.

• Local Access Error - A protection error occurred on a local data buffer
during the processing of a RDMA Write with Immediate Data opera-
tion sent from the remote node.

• Remote Invalid Request Error - The responder detected an invalid
message on the channel. Possible causes include the operation is
not supported by this receive queue, insufficient buffering to receive a
new RDMA or Atomic Operation request, or the length specified in an
RDMA request is greater than 231 bytes.

In the case where the buffer size is insufficient to handle the request,
the number of bytes transferred into the buffer is indeterminate. How-
ever, the CI shall not write beyond the buffer bounds.

• Remote Access Error - A protection error occurred on a remote data
buffer to be read by an RDMA Read, written by an RDMA Write or ac-
cessed by an atomic operation. This error is reported only on RDMA
operations or atomic operations.

• Remote Operation Error - The operation could not be completed suc-
cessfully by the responder. Possible causes include a responder QP
related error that prevented the responder from completing the re-
quest or a malformed WQE on the Receive Queue.

• Transport Retry Counter Exceeded - The local transport timeout retry
counter was exceeded while trying to send this message.

• RNR Retry Counter Exceeded - The RNR NAK retry count was ex-
ceeded.

The following errors are reported only for RD QPs or EE Contexts.

• Local RDD Violation Error - The RDD associated with the QP does
not match the RDD associated with the EE Context

• Remote Invalid RD Request - The responder detected an invalid in-
coming RD message. Causes include a Q_Key or RDD violation.

• Aborted Error - The operation was aborted:

• For RD, the requester aborted the operation. One possible cause
is the requester suspended the operation and will retry it later us-
ing a new Receive WQE. The other possible cause is the re-
quester abandoned the operation and placed the requester QP in
the SQEr state.

• For UD QPs associated with an SRQ, the responder aborted the
operation.

• Invalid EE Context Number - An invalid EE Context number was de-
tected.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 637 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Invalid EE Context State - Operation is not legal for the specified EE
Context state.

All the above completion errors are applicable for WRs submitted through
the Post Send Request and Post Receive Request verbs, except for the
Memory Window Bind Error status. WR submitted through the Bind
Memory Window verb must complete with one of the following error
codes: Success, Memory Window Bind Error, Local QP Operation Error
or Work Request Flushed Error.

11.6.3 ASYNCHRONOUS EVENTS

This section describes the asynchronous events. Asynchronous events
are separated into four categories: Affiliated asynchronous events, Affili-
ated asynchronous errors, Unaffiliated asynchronous events and Unaffili-
ated asynchronous errors. Both kinds of asynchronous errors are defined
in 10.10.2.3 Asynchronous Errors on page 531.

Affiliated asynchronous events have been separated into two categories
because the behavior of the QP/EE Context when the events occur are
different.

C11-34: When an affiliated asynchronous error occurs, the CI shall cause
the QP/EE to transition to the Error state.

C11-35: When an affiliated asynchronous event occurs, the CI must
leave the QP/EE in the QP/EE State that it was in when the asynchronous
event occurred.

Unaffiliated asynchronous errors are those which cannot be associated
with a specific QP or EE Context.

The Verbs Consumer must register a handler as described in Set Asyn-
chronous Event Handler to be notified that an asynchronous event has oc-
curred. This mechanism is used to collect information about both events
and the errors.

11.6.3.1 AFFILIATED ASYNCHRONOUS EVENTS

Affiliated asynchronous events are advisories to the Verb Consumer that
the specified event has occurred on the specified QP or EE Context.
Events in this category are not considered to be errors by the Channel In-
terface, so the QP/EE state remains unchanged.

• Path Migrated - Indicates the connection has migrated to the alter-
nate path.

• Communication Established - Indicates the first packet has arrived for
the Receive Work Queue where the QP/EE is still in the RTR state.
The handle of the QP/EE, which was the destination of this packet is

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 638 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

returned in the event record. This event may be used by the Commu-
nication Manager as shown in the state diagram in 12.9.6 Communi-
cation Establishment - Passive on page 688 and described in
12.9.7.2 Passive States . The Communication Manager may receive
this event while it is already in the Established state; this is not an er-
ror.

C11-36: For RC and UC service, the CI shall generate a Communication
Established Affiliated Asynchronous Event if the first packet arrives while
the QP is still in the RTR state, and the first packet is processed with no
errors. The CI is allowed to generate this Affiliated Asynchronous Event
under some error conditions, but shall not generate the event unless in-
bound packet validation is error-free at least past the “actual
PSN=ePSN?” box (see Figure 88, Figure 112).

o11-5.1.1: If the CI supports RD service, the CI shall generate a Commu-
nication Established Affiliated Asynchronous Event if the first packet ar-
rives while the EEC is still in the RTR state, and the first packet is
processed with no errors. The CI is allowed to generate this Affiliated
Asynchronous Event under some error conditions, but shall not generate
the event unless inbound packet validation is error-free at least past the
“actual PSN=ePSN?) box (see Figure 89).

For UD and Raw service types, generation of the Communication Es-
tablished Affiliated Asynchronous Event is allowed, but is strongly dis-
couraged.

• Send Queue Drained - Indicates that the Send Queue of the speci-
fied Queue Pair or EE has completed the outstanding Messages in
progress when the state change was requested and, if applicable,
has received all acknowledgements for those messages; The event
is also generated if the transition to SQD has been aborted by a tran-
sition into SQError, Error or Reset state.

o11-5.2.4: If the HCA supports SRQ, for RC and UD service, the CI shall
generate a SRQ Limit Reached Affiliated Asynchronous Event if SRQ
Limit Event generation mechanism is armed and the SRQ Limit is
reached. The SRQ Limit is reached whenever the number of SRQ WQEs
is less than the SRQ Limit.

The CI shall reset the SRQ Limit to zero when the event has been gener-
ated.

o11-5.2.5: If the HCA supports SRQ, for RC and UD service, the CI shall
generate a Last WQE Reached Affiliated Asynchronous Event on a QP
that is in the Error State and is associated with an SRQ when either:

• a CQE is generated for the last WQE, or

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 639 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• the QP gets in the Error State and there are no more WQEs on the
RQ.

o11-5.2.6: If the HCA supports SRQ, for RC and UD service, the CI shall
not generate a Last WQE Reached Affiliated Asynchronous Event on a
QP after the CI surfaced a Local Work Queue Catastrophic Error on the
same QP.

If the HCA experiences an Local Work Queue Catastrophic Error and the
Last WQE Reached Affiliated Asynchronous Event does not occur, then
the Consumer must destroy all QPs and the SRQ to reclaim all the WQEs
associated with that QP.

11.6.3.2 AFFILIATED ASYNCHRONOUS ERRORS

• CQ Error - Indicates an error occurred when writing an entry to the
Completion Queue.

C11-37: The CI shall generate a CQ Error when an error, other than CQ
overrun, occurs while writing an entry to the CQ.

C11-38: The CI shall generate a CQ Error when a CQ overrun is de-
tected.

This condition will result in an Affiliated Asynchronous Error for any as-
sociated Work Queues when they attempt to use that CQ. Comple-
tions can no longer be added to the CQ. It is not guaranteed that
completions present in the CQ at the time the error occurred can be
retrieved. Possible causes include a CQ overrun or a CQ protection
error.

• Local Work Queue Catastrophic Error - An error occurred while ac-
cessing or processing the Work Queue that prevents reporting of
completions.

C11-39: The CI shall generate a Local Work Queue Catastrophic Error
when a Work Queue associated with a CQ that caused the CQ Error to be
generated attempts to use that CQ.

C11-40: The CI shall generate a Local Work Queue Catastrophic Error
when an error occurred while accessing or processing the Work Queue
that prevents reporting of completions.

• Invalid Request Local Work Queue Error - The transport layer detect-
ed a transport OpCode violation at the Responder. Possible causes
are: Unsupported or Reserved OpCode; or Out of Sequence Op-
Code.

C11-40.1.1: For RC Service, the CI shall generate an Invalid Request
Local Work Queue Error when the transport layer detects a transport Op-

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 640 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Code violation at the Responder. The Responder's affiliated QP shall be
placed in the error state.

• Local Access Violation Work Queue Error - The transport layer de-
tected a Request access violation at the Responder. Possible causes
are: Misaligned Atomic; Too many RDMA Read or Atomic Requests;
R_Key violation; or length errors without immediate data.

C11-40.1.2: For RC Service, the CI shall generate a Local Access Viola-
tion Work Queue Error when the transport layer detects a Request access
violation at the Responder. The Responder's affiliated QP shall be placed
in the error state.

• Local EE Context Catastrophic Error - An Error occurred while ac-
cessing or processing the EE Context that prevents reporting of com-
pletions.

o11-5.a1: If the CI supports RD Service, the CI shall generate a EE Con-
text Catastrophic Error when an error occurred while accessing or pro-
cessing the EE Context that prevents reporting of completions.

• Path Migration Request Error - Indicates the incoming path migration
request to this QP/EE was not accepted. The validation process is
defined in section Migration Request.

o11-6: If the CI supports automatic path migration, the CI shall generate
a Path Migration Request Error when the incoming path migration request
to this QP/EE was not accepted.

• SRQ Catastrophic Error - An error occurred while processing or ac-
cessing the SRQ that prevents dequeuing a WQE from the SRQ and
reporting of receive completions.

o11-6.2.1: If the HCA supports SRQ, the CI shall generate an SRQ Cata-
strophic Error, if an error, other than “Resource Not Ready”, prevents the
HCA from dequeuing a WQE from the SRQ. When this error occurs the
CI shall place the SRQ in the Error state.

o11-6.2.2: If the HCA supports SRQ, for a QP that is associated with an
SRQ the CI shall generate a Local Work Queue Catastrophic Error and
place the QP in the Error state, if either:

• an error, other than “Resource Not Ready”, prevents the HCA from
dequeuing a WQE from the SRQ; or

• a QP tries to dequeue a WQE from the SRQ, but the associated SRQ
is already in the Error State.

11.6.3.3 UNAFFILIATED ASYNCHRONOUS EVENTS

• Port Active - issued when the link becomes active.

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 641 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o11-6.1.1: If the Port Active event is supported, the CI shall generate a
Port Active event when the link is declared active.

Using the definitions for “available” and “unavailable” states in the Port
Error description below, the “Port Active” event is generated when the
link associated with an HCA port transitions from an unavailable to an
available state.

• Client Reregistration Event - issued when SM requests client reregis-
tration (see 14.4.11 Client Reregistration on page 881).

o11-6.2.3: If the CI indicates that the port supports client reregistration,
the CI shall generate a Client Reregistration Event when the SMA re-
ceives this request from the SM.

11.6.3.4 UNAFFILIATED ASYNCHRONOUS ERRORS

• Local Catastrophic Error - An error occurred which cannot be attribut-
able to any resource and CI behavior is indeterminate.

C11-41: The CI shall generate a Local Catastrophic Error when an error
occurred which cannot be attributable to any resource and CI behavior is
indeterminate.

• Port Error - Issued when the link is declared unavailable.
C11-42: The CI shall generate a Port Error when the link is declared un-
available. Port Errors shall have no effect on QP/EE State.

Using the definitions of Link States, the “unavailable” states are con-
sidered to be: Down, Initialize and Armed. The “available” states are
Active and ActDefer. The “Port Error” unaffiliated asynchronous error
is generated when the link associated with an HCA port transitions
from an available to an unavailable state.

11.6.4 VERB EXTENSION SUMMARY

Table 98 List of Extended Verbs and Optional Modifiers lists all the verbs,
modifiers, and verb results which must be supported by an implementa-
tion that supports any of the verb extensions in this specification. If an im-
plementation does not support any of these verb extensions, then that

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 642 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

implementation will not support any of these new verbs, modifiers, and
verb results.

Table 98 List of Extended Verbs and Optional Modifiers

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

Open HCA M BL Added:
I: The type of Physical Buffer that will be used on the HCA.
R: Block type Physical Buffers are not supported.

Query HCA M VE Added:
O: The ability of this HCA to support multiple Physical Buffer
sizes per Memory Region.

BMM Added:
O: Ability of this HCA to support the Base Memory Management
Extensions.
O: Value of Reserved L_Key.
O:Maximum Physical Buffer List size supported by this HCA
when invoking the Allocate L_Key verb.
O: List of Page sizes supported by this HCA.
O: Bound Type 2 Memory Window Association mechanism
O: Ability of this HCA to support multiple physical buffer sizes per
Memory Region.

BL Added:
O: Ability of this HCA to support Block List Physical Buffer Lists.
O: Range of Block sizes supported by this HCA.

ZBVA Added:
O: Ability of this HCA to support Zero Based Virtual Addresses.

LIF Added:
O: Ability of this HCA to support Local Invalidate Fencing.

BQM Added:
O: Ability of this HCA to support the Base Queue Management
Extensions.
O: Maximum number of CQ Event Handlers.

SRQ Added:
O: Ability of this HCA to support the Shared Receive Queues.
O: Maximum number of SRQs.
O: Maximum number of WRs per SRQ.
O: Maximum number of Scatter/Gather entries per SRQ WR.
O: Ability to modify the maximum number of WRs per SRQ.

Rereg Added:
O: Client reregistration supported

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 643 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Modify HCA Attributes M NA

Close HCA M NA

Allocate Protection Domain M NA

Deallocate Protection Domain M NA

Allocate Reliable Datagram Domain R NA

Deallocate Reliable Datagram
Domain

R NA

Create Address Handle M NA

Modify Address Handle M NA

Query Address Handle M NA

Destroy Address Handle M NA

Create Shared Receive Queue N SRQ All

Modify Shared Receive Queue N SRQ All

Query Shared Receive Queue N SRQ All

Destroy Shared Receive Queue N SRQ All

Create QP M SRQ Added:
I: SRQ Handle, if QP is to be associated to an SRQ.
R: Invalid SRQ handle.
Became optional:
I: The maximum number of outstanding Work Requests the Con-
sumer expects to submit to the Receive Queue.
I: The maximum number of scatter/gather elements the Con-
sumer will specify in a Work Request submitted to the Receive
Queue.
O: The actual number of outstanding Work Requests supported
on the Receive Queue.
O: The actual number of scatter/gather elements that can be
specified in Work Requests submitted to the Receive Queue.

BMM Added:
I: Enable or disable Fast Register PMR and Reserved L_Key
operations.

VE Added:
R: HCA doesn’t support Base Memory Management Extensions.
R: HCA does not support SRQ.

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 644 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Modify QP M SRQ Became optional:
I: The maximum number of outstanding Work Requests the Con-
sumer expects to submit to the Receive Queue.
O: The actual number of outstanding Work Requests supported
on the Receive Queue.

BMM Added:
R: QP still has Type 2A MWs bound to it.

Query QP M SRQ Added:
O: SRQ Handle
Became optional:
O: The actual number of outstanding Work Requests supported
on the Receive Queue.
O: The actual number of scatter/gather elements that can be
specified in Work Requests submitted to the Receive Queue.

BMM Added:
O: Fast Register PMR and Reserved L_Key operations enabled
or disabled.

Destroy QP M BMM Added:
R: QP still has Type 2A MWs bound to it.

Get Special QP M NA

Create Completion Queue M BQM Added:
I: Completion Event Handler Identifier.
R: Invalid Completion Event Handler Identifier.

VE Added:
R: HCA doesn’t support Base Queue Management Extensions.

Query Completion Queue M BQM Added:
O: Completion Event Handler Identifier

Resize Completion Queue M NA

Destroy Completion Queue M NA

Create EE Context R NA

Modify EE Context Attributes R NA

Query EE Context R NA

Destroy EE Context R NA

Allocate L_Key N BMM All

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 645 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Register Memory Region M ZBVA Added:
I: Type of VA

VE Added:
R: HCA doesn’t support ZBVA

Register Physical Memory Region M BMM Added:
I: Key ownership requested
I: Key to use on the new L_Key and R_Key.
O: Actual size of the PBL resources allocated.

ZBVA Added:
I: Type of VA
Became optional:
I: VA requested by the Consumer for the first byte of the region

BL Added:
I: Physical Buffer Type
Changed:
I: Page size - used for lists with multiple page sizes
I: Physical buffer size (The input modifier became per physical
buffer) - used for lists containing buffers and same sized pages

VE Added:
R: HCA doesn’t support Base Memory Management Extensions.
R: HCA doesn’t support ZBVA.
R: HCA doesn’t support Block Type Physical Buffers or was not
opened in this mode.
R: HCA doesn’t support multiple PB sizes per MR.

Query Memory Region M BMM Added:
O: L_Key state.
O: Ownership attributes for the key portion of L_Key and R_Key.
O: Sharing attributes of the Memory Region: Shared vs. Not
Shared.
O: Actual number of allocated Physical Buffer List entries.

ZBVA Added:
O: Type of VA

Deregister Memory Region M NA

Reregister Memory Region M ZBVA Added:
I: Type of VA

VE Added:
R: HCA doesn’t support ZBVA

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 646 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Reregister Physical Memory Region M BMM Added:
I: Key to use on the new L_Key and R_Key.
I: Key ownership requested
I: L_Key Key
I: R_Key Key
O: Actual size of the PBL resources allocated

ZBVA Added:
I: Type of VA
Became optional:
I: VA requested by the Consumer for the first byte of the region

BL Added:
I: Physical Buffer Type
Changed:
I: Page size - used for lists with multiple page sizes
I: Physical buffer size (The input modifier became per physical
buffer) - used for lists containing buffers and same sized pages

VE Added:
R: HCA doesn’t support Base Memory Management Extensions.
R: HCA doesn’t support ZBVA.
R: HCA doesn’t support Block Type Physical Buffers or was not
opened in this mode.
R: HCA doesn’t support multiple PB sizes per MR.

Register Shared Memory Region M ZBVA Added:
I: Type of VA

VE Added:
R: HCA doesn’t support ZBVA

Allocate Memory Window M BMM Added:
I: Type of Memory Window.

VE R: HCA doesn’t support Type 2 Memory Windows.

Query Memory Window M BMM Added:
O: Type of Memory Window.
O: R_Key state.

Bind Memory Window M BMM Added:
R: Invalid MW Type

Deallocate Memory Window M NA

Attach QP to Multicast Group U NA

Detach QP from Multicast Group U NA

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 647 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Post Send Request M BQM Added:
I: A list of Work Requests (1.1 required a single WR)
O: Number of WQEs successfully posted to the SQ

BMM Changed:
I: Operation type (Added: Fast Register Physical MR, Local
Invalidate, Type 2 Memory Window Bind)
Added:
I: (Remote) Invalidate indicator.
I: R_Key that is to be included in the Send with Invalidated.
Added for Bind Type 2:
I: New R_Key Key.
I: Memory Window Handle.
I: R_Key
I: Memory Region Handle.
I: L_Key
I: Virtual Address
I: Length of range to be bound in bytes.
I: Access Control
Added for Fast Register:
I: Key to use on the new L_Key and R_Key.
I: L_Key
I: R_Key
I: Memory Region Handle
I: Physical Buffer List.
I: Starting physical address of each physical buffer.
I: Page size - used for lists with multiple page sizes
I: Physical buffer size (The input modifier became per physical
buffer) - used for lists containing buffers and same sized pages.
I: Total number of Physical Buffers in the list.
I: The VA requested by the Consumer for the first byte of the
region.
I: Length of Region to be registered in bytes.
I: Offset of Region’s starting IOVA within the first physical buffer.
I: Access Control
Added for Local Invalidate:
I: L_Key
I: R_Key
I: Memory Region Handle
I: Memory Window Handle
R: Invalid MW Type

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 648 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Post Send Request (cont’d) M ZBVA Added for Bind Type 2:
I: Type of VA.
Added for Fast Register:
I: Type of VA.

LIF Added for Local Invalidate:
I: Local Invalidate Fence Indicator

VE Added:
R: HCA doesn’t support Base Memory Management Extensions.
R: HCA doesn’t support Base Queue Management Extensions.
R: HCA doesn’t support Local Invalidate Fencing.
R: HCA does not support Block Type Physical Buffers or was not
opened in this mode.
R: HCA doesn’t support Zero Based Virtual Address (ZBVA).
R: QP Handle used on a QP that is associated with an SRQ.

Post Receive Request M BQM Added:
I: A list of Work Requests (1.1 required a single WR)
O: Number of WQEs successfully posted to the RQ

SRQ Became Optional:
I: QP handle
Added:
I: SRQ handle

VE Added:
R: HCA doesn’t support Base Queue Management Extensions.
R: HCA doesn’t support SRQ.

Poll for Completion M BQM or
SRQ

Added:
O: QP number

BMM Changed:
O: The operation type (added: Fast Register Physical MR, Local
Invalidate)
Added:
O: R_Key Invalidated Indicator.
O: Invalidated R_Key.

Request Completion Notification M NA

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Software Transport Verbs October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 649 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Set Completion Event Handler M BQM Changed:
I: Completion Event Handler Address (allowed to be zero)
Added:
I: Completion Handler Identifier
R: Invalid Completion Event Handler Identifier.
R: Insufficient resources to complete request.

VE Added:
R: HCA doesn’t support Base Queue Management Extensions.

Set Asynchronous Event Handler M NA

a. 1.1 Spec Requirements - Legend:
 M - Mandatory
 N - Not Required
 R - RD Service
 U - UD Multicast
b. Extended Verbs Group - Legend:
 NA - Not Applicable
 VE - HCA supports any one of the Verb Extensions, but not the one being requested.
 BQM - Base Queue Management
 BMM - Base Memory Management
 SRQ - Shared Receive Queue
 BLBL - Block List Physical Buffer List
 ZBVA - Zero Based Virtual Address
 LIF - Local Invalidate Fencing

Rereg - Client reregistration
c. New Modifiers - Legend:
 I - Input Modifier
 O - Output Modifier
 R - Verb Result

Table 98 List of Extended Verbs and Optional Modifiers (Continued)

Verb 1.1
Speca

Ext.
Verbs
Groupb

New Modifiersc

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 650 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 12: COMMUNICATION MANAGEMENT

12.1 OVERVIEW

Figure 128 Communication Management Entities
Communication Management encompasses the protocols and mecha-
nisms used to establish, maintain, and release channels for the IB Reli-
able Connection, Unreliable Connection, and Reliable Datagram
transport service types. The Service ID Resolution Protocol (see section
12.11) enables users of Unreliable Datagram service to locate Queue
Pairs supporting their desired service.

Connections are managed over Queue Pairs other than those used for the
connection, through the protocol described herein, between the Commu-
nication Managers (CMs) on each system. (See Figure 128) The CMs
communicate using Management Datagrams (MADs), typically over the
General Services Interface (GSI) on each system. This document defines
CM external behaviors, but internal interfaces and implementations are
outside the scope of the InfiniBandTM Architecture specification. Exam-
ples are intended to enable understanding, not to specify implementation.

At creation, QPs and EECs are not ready for communication. The at-
tributes of the QP/EEC must be modified (see sections 11.2.4.2 and
11.2.7.2) to support the desired communication characteristics and
target(s).

A
GSICM

QP A1

QP

QP A3

A2

APP A2 EEC A

Connected Channel
APP A1

B

GSI - Redirected CM

GSI CM

CM’QP B1

Reliable Datagram
Channel

QP B2

QP

QP B4

B3

APP B2EEC B

APP B1

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 651 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Due to their nature, raw packet QPs do not need, and are not supported
by, IB communication management.

The requirements on participating CMs are not equal. The initiating CM is
responsible for collecting or calculating most of the information necessary
to establish the connection. Much of the raw information is available from
Subnet Administration, but some adjustments may be desirable, de-
pending on the application of the channel.

CMs must maintain a certain amount of information for the lifetime of a
connection. Details may be found in section 12.9.9.

CM MADs that fail the GMP check algorithm shown in Figure 169 GMP
Check shall be silently dropped by the CM except where specifically noted
in the sections that follow.

CM follows the standard management model documented in section
13.5.2 GSI Redirection for handling the redirection of CM requests, with
the exception that the responses for CM that contain the ClassPortInfo are
not of the GetResp() method, but are rather of the Send() method. (See
13.4.5 Management Class Methods for a description of the GetResp() and
Send() methods. See 13.4.8.1 ClassPortInfo for a description of the redi-
rection information inside the ClassPortInfo.) The CM messages which
contain ClassPortInfo are REJ (see 12.6.7 REJ - Reject), APR (see
12.8.2 APR - Alternate Path Response) and SIDR_REP (see 12.11.2
SIDR_REP - Service ID Resolution Response). It should be noted that it
is not an error for a requestor that has been redirected to send a subse-
quent request to the GSI. It is inefficient to do so, however, as there is a
high likelihood that the requestor will be redirected yet again.

C12-0.1.1: All messages defined in this version of the CM Protocol shall
have the ClassVersion field in the MAD header for the message set to a
value of 2. All messages defined in version 1.0a of the CM Protocol that
was previously published by the IBTA shall have the ClassVersion field set
to a value of 1.

If a CM implementation using ClassVersion 2 sends a request (e.g. a REQ
message) to a CM implementation that only supports ClassVersion 1, the
CM running ClassVersion 1 will not be able to reply, and the request will
time out. If the CM implementation using ClassVersion 2 wants to have its
request successfully processed by a CM implementation using ClassVer-
sion 1, it must send its request MAD (and other MADs) to that CM using
the ClassVersion 1 format and protocol.

A CM using ClassVersion 2 can definitively make the determination that it
needs to use ClassVersion 1 to correspond with a remote CM by per-
forming a Get(ClassPortInfo) to the remote CM. The ClassVersion used in
the MAD header for the Get(ClassPortInfo) MAD must be set to 1. The

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 652 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ClassVersion field in the returned GetResp(ClassPortInfo) MAD can then
be examined to determine if the remote CM is supporting ClassVersion 1,
or both ClassVersion 1 and ClassVersion 2. See 13.4.8.1 ClassPortInfo
on page 734 for details.

12.2 ESTABLISHMENT

Figure 129 Sample Connection Establishment Sequence

Two models are supported by the Connection Establishment protocol: Ac-
tive/Passive (Client/Server), and Active/Active (Peer to Peer).

As seen in Figure 128, the CMs on each system establish connections on
behalf of their clients. The interactions between CMs and their clients are
outside the scope of this specification.

In the Active/Passive model (shown in Figure 129), B’s CM waits for con-
nection requests on behalf of a server (e.g., a server process or an I/O
controller) that waits (passive) for connections to be established by cli-
ents. The CM (A) for a prospective client (active) places the ServiceID that
designates the desired service in the Request (REQ) message that be-
gins the connection establishment sequence. The ServiceID allows the
passive-side CM (B) to associate the request with the appropriate server
entity. Should the REQ be accepted, B’s CM returns the Queue Pair
Number (QPN) (and End to End Context Number (EECN) for RD service)
in a Response (REP) MAD. Whether QPs and EECs are pre-allocated or
are allocated in response to a request is an implementation consideration
that is outside the scope of the IBA specification.

ServerClient

REQ: Request

A B

tim
e

B may send

REP: Reply: Request Accepted

RTU: Ready To Use
A may send

REQ

RTU

REP

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 653 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the Active/Active model, both entities begin as active (i.e., both send
REQ), but one ultimately takes the passive role for establishing the con-
nection. The selection of the passive entity is described in section 12.10.4.

Establishing a loopback connection between different QPs on the same
CA is supported by the InfiniBandTM architecture. The specific mecha-
nism used to set up a loopback connection is implementation dependent.
(There are a variety of mechanisms that can be used to establish a loop-
back connection, including using the Connection Establishment protocol,
or using the Modify Queue Pair verb to set the necessary state directly.)

12.2.1 QUIET TIME

Once a CM has initialized (which typically happens after a reboot), the CM
should take care not to establish any connections until after the “quiet
time”. The quiet time is the interval required to remove all packets from the
network that pertain to connections the CM established during its previous
incarnation. If the CM does not take care to avoid establishing connec-
tions during the quiet time, it is possible that unreported data corruption
may occur due to a packet from a previous connection instance being suc-
cessfully received by a new connection instance.

In the worst case scenario, packets pertaining to a connection can be ac-
tive in the network for a period of 2 * PortInfo:SubnetTimeout + Target
ACK Delay. (See section 14.2.5.6 PortInfo for details on PortInfo:Subnet-
Timeout, and 12.7.33 Target ACK Delay for details on Target ACK Delay.)
This is the minimum safe quiet time that the CM must wait after initializa-
tion before establishing new connections. The particular mechanism that
the CM uses to wait for the quiet time is outside the scope of this specifi-
cation. Possible mechanisms include:

• Having a tunable parameter that is loaded after the CM is initial-
ized to tell the CM how long to wait.

• Having the CM store information in non-volatile storage about the
maximum PortInfo:SubnetTimeout and maximum Target ACK De-
lay seen while the CM is running, and retrieving that information
from non-volatile storage after the CM is initialized in its next in-
carnation.

12.3 AUTOMATIC PATH MIGRATION

The connection establishment messages specify the information neces-
sary to support an (optional) alternate pair of endpoints to support Auto-
matic Path Migration (APM). APM is described in section 17.2.8.1 and the
support mechanisms are described in section 10.4. Channel Adapters
that do not support APM may ignore the Alternate address information.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 654 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.4 RELEASE

Connections are released through the exchange of Disconnect Request
(DREQ) and Disconnect Reply (DREP) MADs. Communicating entities
will likely wish to effect an orderly shutdown of their protocol before initi-
ating the Disconnect sequence. After a connection is released, the CM
shall cause each involved QP/EEC to be placed into the TimeWait state
as defined in section 12.9.8.4.

CMs shall maintain enough connection state information to detect an at-
tempt to initiate a connection on a remote QP/EEC that has not been re-
leased from a connection with a local QP/EEC, or that is in the TimeWait
state. Such an event could occur if the remote CM had dropped the con-
nection and sent DREQ, but the DREQ was not received by the local CM.
If the local CM receives a REQ that includes a QPN (or EECN if
REQ:RDC Exists is not set), that it believes to be connected to a local
QP/EEC, the local CM shall act as defined in section 12.9.8.3.

12.4.1 STALE CONNECTION

A QP/EEC is said to have a stale connection when only one side has con-
nection information. A stale connection may result if the remote CM had
dropped the connection and sent a DREQ but the DREQ was never re-
ceived by the local CM. Alternatively the remote CM may have lost all
record of past connections because its node crashed and rebooted, while
the local CM did not become aware of the remote node's reboot and there-
fore did not clean up stale connections.

12.5 SERVICE TYPES

12.5.1 SUPPORTED PROTOCOLS

The sections that follow contain message descriptions and state diagrams
specifying how those messages are exchanged. The messages are used
for the following purposes:

• To support connection establishment for RC and UC service
types.

• To support end to end context establishment for RD service.
Figure 128 illustrates the following relationships.

12.5.2 CONNECTED SERVICES

A channel is established for Reliable Connected (RC) and Unreliable Con-
nected (UC) service types by reaching agreement between the end CMs.

12.5.3 UNRELIABLE DATAGRAM SERVICE

Unreliable Datagram (UD) service allows a message to be sent to any
destination, although there is no guarantee that the destination will re-

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 655 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ceive or accept it. The ServiceID resolution facility (Section 12.11) may be
used to determine the appropriate target QP.

12.5.4 RELIABLE DATAGRAM

Reliable Datagram (RD) service allows multiple Queue Pairs to communi-
cate over a single RD channel (defined by a pair of EE contexts). One QP
on each end is specified when an RD channel is established. A pair of ap-
plications using these QPs that wish to use additional QPs over that RDC
do not need to use CM to associate those QPs. Application-specific mes-
sages could be sent over the original QPs to notify the other side of the
QPNs of the new QPs.

Unless otherwise specified, an RD communication request implies the
creation of a new RDC. Setting the RDC Exists field in the REQ mes-
sage allows the sharing of the specified RDC. (See section 12.6.5) When
an RDC is shared, the state of the EE contexts that comprise the channel
shall not be altered, regardless of the outcome of the communication re-
quest. An RDC shall not be shared until it has been established (i.e. the
CM protocol must be run to successful completion on the EE contexts
comprising the RDC before an RD QP can share the RDC).

12.6 COMMUNICATION MANAGEMENT MESSAGES

The following sections describe the set of messages used to support the
communication establishment scenarios supported by the IBA:

a) Active client to passive server

b) Active client to active client

c) Active client to passive server (with third-party redirector)

12.6.1 REQUIRED MESSAGES

All IBA hosts and all IBA targets that support RC, UC, or RD service types
shall support the following messages:

• Request for Communication (REQ) (Section 12.6.5)
• Message Receipt Acknowledgement (MRA) (Section 12.6.6) All

IBA hosts and targets are required to be able to receive and act
upon an MRA, but the ability to send an MRA is optional.

• Reject (REJ) (Section 12.6.7)
• Reply to Request for Communication (REP) (Section 12.6.8)
• Ready to Use (RTU) (Section 12.6.9)
• Request for Communication Release (DREQ) (Section 12.6.10)
• Reply to Request for Communication Release (DREP) (Section

12.6.11)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 656 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C12-1: A CA that supports Reliable Connected, Unreliable Connected, or
Reliable Datagram channels shall support their establishment using the
CM protocol.

C12-2: For the states and messages it supports, a CM shall adhere to the
CM protocol as defined in sections 12.9.7 and 12.9.8.

C12-3: CM message contents shall conform to the field descriptions in
section 12.7.

C12-4: A CM shall support sending the REJ message in accordance with
section 12.6.7, and shall support receiving the REJ message.

C12-5: A CM shall, upon receipt of an MRA message, behave in accor-
dance with section 12.9.8.5.

o12-1: If a CM sends the REQ message, it shall do so in accordance with
section 12.6.5.

o12-2: If a CM sends the MRA message, it shall do so in accordance with
section 12.6.6.

o12-3: If a CM sends the REP message, it shall do so in accordance with
section 12.6.8.

o12-4: If a CM sends the RTU message, it shall do so in accordance with
section 12.6.9.

o12-5: If a CM sends the DREQ message, it shall do so in accordance
with section 12.6.10.

o12-6: If a CM sends the DREP message, it shall do so in accordance
with section 12.6.11.

o12-7: If a CM initiates connection requests (active role), it shall support
sending the REQ, REJ, RTU, DREQ, and DREP messages, and re-
sponding to the REP, REJ, DREQ, and DREP messages.

o12-8: If a CM accepts connection requests (passive role), it shall support
responding to the REQ, REJ, RTU, and DREQ messages, and sending
the REP, REJ, and DREP messages.

o12-9: If a CM sends the DREQ message, it shall be able to handle the
DREP message.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 657 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.2 CONDITIONALLY REQUIRED MESSAGES

Support for these messages is required if non-management services are
provided on the Channel Adapter at other than fixed QPNs. Management
services include those provided through Subnet Management Packets
(see 14.2 Subnet Management Class) or through General Management
Packets (see Chapter 16: General Services).

• Service ID Resolution Request (SIDR_REQ) (Section 12.11.1)
• Service ID Resolution Response (SIDR_REP) (Section 12.11.2)

o12-10: If a CM sends the SIDR_REQ message, it must do so in accor-
dance with section 12.11.1.

o12-11: If a CM sends the SIDR_REP message, it must do so in accor-
dance with section 12.11.2.

o12-12: If a CA provides services (other than Subnet Management and
General Services) using the UD service type at other than fixed QPNs, its
CM must support receiving, processing and replying to the SIDR_REQ
message as specified in section 12.11.

12.6.3 OPTIONAL MESSAGES

Support for these messages is optional:

• Load Alternate Path (LAP) (Section 12.8.1)
• Alternate Path Response (APR) (Section 12.8.2)

o12-13: If a CM accepts REQ messages and agrees to perform Auto-
matic Path Migration, it shall support receiving, processing and replying
to the LAP message as specified in section 12.8.

o12-14: If a CM sends REQ messages with Alternate Port/Path informa-
tion, it shall support sending the LAP message as specified in section
12.8 and shall support receiving and processing APR messages.

12.6.4 MESSAGE USAGE

Connected Transport Service Types require state information to be estab-
lished, maintained, and released at both ends of the connection. Con-
sumers can use the messages described in this section for that purpose.

By definition, unreliable datagram communications do not require any
connection state to be established, maintained, or released. However,
communication services are provided to allow local and remote QPs to be
associated based on a specific Service ID. (See section 12.11)

Reliable datagram communication requires Reliable Datagram Channels
to be created, maintained, and released between CAs.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 658 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Communication Management information contained in each Man-
agement Datagram message is described below. The MAD header format
is defined in 16.7.1 MAD Format on page 1011.

C12-5.1.1: Except where explicitly stated otherwise in the sections that
follow, the “Status” field in the MAD header shall be set to 0 for all CM
MADs.

C12-5.1.2: All messages that are part of the same sequence in the CM
protocol shall have the same value placed into the TransactionID field in
their MAD header. The value chosen shall satisfy the uniqueness proper-
ties documented in 13.4.6.4 TransactionID usage.

There are four message sequences in the CM Protocol:

• Establishing communication: REQ, REP, MRA (sent either in re-
sponse to REQ or REP), REJ, and RTU

• Loading an alternate path: LAP, MRA (sent in response to LAP),
and APR

• Connection release: DREQ and DREP

• Service ID resolution: SIDR_REQ and SIDR_REP

C12-5.1.3: All responses generated by the CM protocol shall follow the
rules for response generation that are enumerated in 13.5.4 Response
Generation and Reversible Paths.

All messages in the CM protocol with the exception of the following are
considered responses:

• REQ

• LAP

• DREQ

• SIDR_REQ

• REJ when it is sent by the active side of the protocol from the
Timeout or REP Wait state as a result of a CM protocol timeout.

All of the messages in the CM protocol can contain private data. Since the
CM protocol utilizes the unreliable datagram service to send its mes-
sages, it should be pointed out that successful reception of the final mes-
sage in a CM protocol message exchange cannot be guaranteed.
Consumers therefore cannot depend upon being able to successfully
convey information in the private data of the final message in a message
exchange. The final messages in the CM protocol are:

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 659 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• REJ

• RTU

• APR

• DREP

• SIDR_REP

The messages defined below are used for both establishing connections
and end to end context establishment. The message definitions are the
union of the fields required for both of these purposes, and therefore there
are some fields in the messages which are useful for connection estab-
lishment but not for end to end context establishment, and vice versa. This
is done to decrease the total number of message types in the protocol. For
each field in a message, whether the field is intended to support connec-
tion establishment or end to end context establishment (or both) is noted.

12.6.5 REQ - REQUEST FOR COMMUNICATION

REQ is sent to initiate the communication establishment sequence. The
initiator (REQ sender) provides the Port Address (GID and/or LID) and the
Queue Pair Number that it will be using for its end of the channel. For Re-
liable Datagram Channel establishment, the EE Context Number is in-
cluded.

The initiator is responsible for proposing the Port Addresses (Primary and
optional Alternate) that the target (REQ recipient) is to use for the channel.
Based on the path defined by those port addresses, the initiator provides
timeout information and the Service Level to be used by the target for any
messages that it initiates. The SL from initiator to target need not be the
same as from target to initiator, but the SL that is contained within the REQ
message is the one that the initiator would prefer the target use. Path in-
formation is available from Subnet Administration (see section 15.2.5.16
PathRecord).

For service resolution and QP association over already existing Reliable
Datagram Channels, REQ:RDC Exists must be set. When REQ:RDC Ex-
ists is set, the existing Reliable Datagram Channel shall not be altered ei-
ther by the sender of the REQ or by the receiver of the REQ, and as a
result many of the fields in the REQ message are not used in this case.
Those fields are noted in the table below. All such unused fields shall be
set to 0 by the sender, and shall be ignored by the receiver. In addition,
when REQ:RDC Exists is set, the use of the Primary Remote/Local Port
GID/LID fields is not to identify where the requestor wishes to establish the

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 660 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

channel--the channel is already established--but rather to identify the pair
of CAs that the existing channel is operating between.

Table 99 REQ Message Contents

Field Description Used for
Purpose

Byte [Bit]
Offset

Length,
bits Values

Local Communication ID See section 12.7.1. C, EE 0 32

(reserved) 4 32

ServiceID See section 12.7.3. C, EE 8 64

Local CA GUID See section 12.7.9 C, EE 16 64

(reserved) 24 32

Local Q_Key See section 12.7.13 EE 28 32

Local QPN See section 12.7.12. C, EE 32 24

Responder Resources See section 12.7.29 C, EE 35 8 0 if RDC exists

Local EECN See section 12.7.14 EE 36 24

Initiator Depth See section 12.7.30 C, EE 39 8 0 if RDC exists

Remote EECN See section 12.7.15 EE 40 24

Remote CM Response Timeout See section 12.7.4 C, EE 43 5

Transport Service Type See section 12.7.6. C, EE 43 [5] 2

End-to-End Flow Control See section 12.7.26 C 43 [7] 1 0 if RDC exists

Starting PSN See section 12.7.31 C, EE 44 24 0 if RDC exists

Local CM Response Timeout See section 12.7.5 C, EE 47 5

Retry Count See section 12.7.38 C, EE 47[5] 3 0 if RDC exists

Partition Key See section 12.7.24 C, EE 48 16 0 if RDC exists

Path Packet Payload MTU See section 12.7.28 C, EE 50 4 0 if RDC exists

RDC Exists Whether RDC already
exists.

EE 50[4] 1 1 if RDC exists,
0 if RDC does not

RNR Retry Count See section 12.7.39 C, EE 50[5] 3 0 if RDC exists

Max CM Retries See section 12.7.27 C, EE 51 4

SRQ 51[4] 1 1 if SRQ exists
0 if SRQ does not

(reserved) 51[5] 3

Primary Local Port LID See section 12.7.11. C, EE 52 16

Primary Remote Port LID See section 12.7.21. C, EE 54 16

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 661 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.6 MRA - MESSAGE RECEIPT ACKNOWLEDGMENT

MRA is sent in response to a REQ message when the recipient of the
message anticipates that it will not be able to respond within the time

Primary Local Port GID See section 12.7.10. C, EE 56 128

Primary Remote Port GID See section 12.7.20. C, EE 72 128

Primary Flow Label See section 12.7.18 C, EE 88 20 0 if RDC exists

(reserved) 90[4] 6

Primary Packet Rate See section 12.7.25 C, EE 91[2] 6 0 if RDC exists

Primary Traffic Class See section 12.7.17 C, EE 92 8 0 if RDC exists

Primary Hop Limit See section 12.7.19 C, EE 93 8 0 if RDC exists

Primary SL See section 12.7.16 C, EE 94 4 0 if RDC exists

Primary Subnet Local See section 12.7.7 C, EE 94 [4] 1 0 if RDC exists

(reserved) 94 [5] 3

Primary Local ACK Timeout See section 12.7.34 C, EE 95 5 0 if RDC exists

(reserved) 95[5] 3

Alternate Local Port LID See section 12.7.11 C, EE 96 16 0 if RDC exists

Alternate Remote Port LID See section 12.7.23. C, EE 98 16 0 if RDC exists

Alternate Local Port GID See section 12.7.10. C, EE 100 128 0 if RDC exists

Alternate Remote Port GID See section 12.7.22. C, EE 116 128 0 if RDC exists

Alternate Flow Label See section 12.7.18 C, EE 132 20 0 if RDC exists

(reserved) 134[4] 6

Alternate Packet Rate See section 12.7.25 C, EE 135[2] 6 0 if RDC exists

Alternate Traffic Class See section 12.7.17 C, EE 136 8 0 if RDC exists

Alternate Hop Limit See section 12.7.19 C, EE 137 8 0 if RDC exists

Alternate SL See section 12.7.16 C, EE 138 4 0 if RDC exists

Alternate Subnet Local See section 12.7.7 C, EE 138[4] 1 0 if RDC exists

(reserved) 138[5] 3

Alternate Local ACK Timeout See section 12.7.34 C, EE 139 5 0 if RDC exists

(reserved) 139[5] 3

PrivateData See section 12.7.35 C, EE 140 736

Table 99 REQ Message Contents (Continued)

Field Description Used for
Purpose

Byte [Bit]
Offset

Length,
bits Values

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 662 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

specified by REQ:Remote CM Response Timeout , or in response to a
LAP message when the recipient of the message anticipates that it will not
be able to respond within the time specified by LAP:Remote CM Re-
sponse Timeout . It is also sent in response to a REP message when the
recipient of the message anticipates that it will not be able to respond
within the time specified by REQ:Local CM Response Timeout . MRA is
sent to prevent the other party in the communication establishment pro-
tocol from either unnecessarily timing out the communication establish-
ment attempt or flooding the link with unnecessary retries.

12.6.7 REJ - REJECT

REJ indicates that the sender will not continue through the communica-
tion establishment sequence, and the reason why it will not.

Table 100 MRA Message Contents

Field Description Used for
Purpose

Byte{Bit]
Offset

Length,
bits Values

Local Communication ID See section 12.7.1. C, EE 0 32

Remote CommunicationID See section 12.7.2. C, EE 4 32

Message MRAed The message being MRAed. C, EE 8 2 0x0 - REQ,
0x1 - REP
0x2 - LAP

(reserved) 8[2] 6

ServiceTimeout See section 12.7.32 C, EE 9 5

(reserved) 9[5] 3

PrivateData See section 12.7.35. C, EE 10 1776

Table 101 REJ Message Contents

Field Description Used for
Purpose

Byte[Bit]
Offset

Length,
bits Values

Local Communication ID See section 12.7.1. If this
REJ is being sent with Rea-
son code 6 (Invalid Com-
munication ID), this field
should be set to be the
same as the “Remote Com-
munication ID” field in the
received message that is
being rejected.

C, EE 0 32 0 if REJecting a REQ
and no MRA was sent

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 663 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Remote CommunicationID See section 12.7.2. If this
REJ is being sent with Rea-
son code 6 (Invalid Com-
munication ID), this field
should be set to be the
same as the “Local Com-
munication ID” field in the
received message that is
being rejected.

C, EE 4 32 0 if REJecting due to
REP timeout and no
MRA was received

Message REJected The message whose con-
tents caused the sender to
reject the communication
establishment attempt. A
REJ message is only sent
in response to receiving a
REQ, to receiving a REP, or
because of a timeout occur-
ring in the communication
establishment sequence. In
particular, REJ is never
sent in response to receiv-
ing an MRA or RTU.

C,EE 8 2 0x0 - REQ. (The pas-
sive side uses this code
when it receives a REQ
and rejects the commu-
nication establishment
attempt based on the
contents of that REQ.)

0x1 - REP. (The active
side uses this code
when it receives a REP
and rejects the commu-
nication establishment
attempt based on the
contents of that REP.)

0x2 - No message.
(Both the active side
and the passive side
use this code when
sending a REJ as a
result of a CM protocol
timeout.)

(reserved) 8[2] 6

Reject Info Length If non-zero, the length in
bytes of valid Additional
Reject Information. The
sender is not required to
provide Additional Reject
Information even if the Rea-
son code it places in the
REJ message allows for it.
If the sender decides not to
provide Additional Reject
Information, it shall set this
field to a value of zero.

C, EE 9 7

(reserved) 9[7] 1

Table 101 REJ Message Contents (Continued)

Field Description Used for
Purpose

Byte[Bit]
Offset

Length,
bits Values

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 664 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.7.1 EXAMPLE REJ MESSAGE

The content of the fields of a REJ that rejects a REQ because of an unac-
ceptable primary port LID and suggests that a primary port LID of 200 be
used are shown in the table below.

Reason Error code indicating the
reason for the sender’s ter-
mination of the communica-
tion establishment process.

C, EE 10 16

Additional Reject Informa-
tion (ARI)

The information associated
with the Reason code, as
specified in section
12.6.7.2. If the number of
bits of information does not
completely fill the number
of bytes given in Reject Info
Length (e.g. if the ARI field
contains a 20-bit Flow
Label), the bits are packed
into bytes as defined in sec-
tion 1.5.1, and the remain-
ing least significant bits of
the last byte are all set to
zero.

C, EE 12 576

PrivateData See section 12.7.35. C, EE 84 1184

Table 101 REJ Message Contents (Continued)

Field Description Used for
Purpose

Byte[Bit]
Offset

Length,
bits Values

Table 102 Example REJ Message

Field Contents

Local Communication ID 0

Remote Communication ID 0

Message REJected 0

Reason 13

Reject Info Length 2

Additional Reject Informa-
tion (ARI)

200

PrivateData empty

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 665 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.7.2 REJECTION REASON

Code Reason Description
Meaning of Additional

Reject Information Field
(when present)

1 No QP available The REQ message required the recipient to allo-
cate a QP, and none were available

2 No EEC available The REQ message required the recipient to allo-
cate an EE context, and none were available

3 No resources
available

The REQ message required the recipient to allo-
cate resources other than QPs or EE contexts,
and none were available

4 Timeout The CM protocol timed out waiting for a message Local CA GUID. The recipient
of a REJ message with this
reason code must use this CA
GUID to identify the sender,
as it is possible that the
Remote Communication ID in
the REJ message may not be
valid.

5 Unsupported
request

Receiving CM does not support this request.

6 Invalid Communi-
cation ID

The recipient received a CM message in which
the Local Communication ID, Remote Communi-
cation ID, or both, were invalid.

7 Invalid Communi-
cation Instance

The Local Communication ID, Remote Communi-
cation ID, QPN/EECN tuple does not refer to any
valid communication instance.

8 Invalid Service ID The recipient of the REQ message does not rec-
ognize or does not support the service associated
with the specified ServiceID

9 Invalid Transport
Service Type

The recipient of the REQ message does not rec-
ognize or does not support the requested Trans-
port Service Type

10 Stale connection The recipient of the REQ/REP determined that it
already had a connection with the “Local QPN” or
“Local EECN” specified in the REQ/REP. Upon
receiving a REJ with this reason, the REJ recipi-
ent shall cause the QP or EE context to be placed
into the TimeWait state as described in section
12.9.8.4.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 666 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

11 RDC does not
exist

The Reliable Datagram Channel described in the
REQ (Local EECN/Remote EECN) does not exist
at the CA identified by the Primary Remote Port
LID (or Primary Remote Port GID when this is
valid) specified in the REQ.

12 Primary Remote
Port GID rejected

The recipient of the REQ message could not (or
would not) accept the Primary Remote Port GID

GID of acceptable port.

13 Primary Remote
Port LID rejected

The recipient of the REQ message could not (or
would not) accept the Primary Remote Port LID

LID of acceptable port.

14 Invalid Primary
SL

The recipient of the REQ message does not sup-
port the requested Primary SL

Acceptable SL.

15 Invalid Primary
Traffic Class

The recipient of the REQ message does not sup-
port the requested Primary Traffic Class

Acceptable Traffic Class

16 Invalid Primary
Hop Limit

The recipient of the REQ message could not (or
would not) accept the Primary Hop Limit

Acceptable Hop Limit

17 Invalid Primary
Packet Rate

The recipient of the REQ message could not
adjust its transmitter to send as slowly as would
be required to comply with the requested Primary
Packet Rate

Minimum acceptable Packet
Rate

18 Alternate Remote
Port GID rejected

The recipient of the REQ message could not (or
would not) accept the Alternate Remote Port GID

GID of acceptable port.

19 Alternate Remote
Port LID rejected

The recipient of the REQ message could not (or
would not) accept the Alternate Remote Port LID

LID of acceptable port.

20 Invalid Alternate
SL

The recipient of the REQ message does not sup-
port the requested Alternate SL

Acceptable SL.

21 Invalid Alternate
Traffic Class

The recipient of the REQ message does not sup-
port the requested Alternate Traffic Class

Acceptable Traffic Class

22 Invalid Alternate
Hop Limit

The recipient of the REQ message could not (or
would not) accept the Alternate Hop Limit

Acceptable Hop Limit

23 Invalid Alternate
Packet Rate

The recipient of the REQ message could not
adjust its transmitter to send as slowly as would
be required to comply with the requested Alter-
nate Packet Rate

Minimum acceptable Packet
Rate

Code Reason Description
Meaning of Additional

Reject Information Field
(when present)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 667 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

24 Port and CM
Redirection

The recipient of the REQ message supports the
requested Service ID, but at the endpoint speci-
fied by the ARI. Further CM messages should be
sent to that endpoint as well.

A ClassPortInfo data struc-
ture as documented in Sec-
tion 13.4.8.1 describing
where to send subsequent
CM messages, and also
describing the GID of the port
to propose in the new REQ.

25 Port Redirection The recipient of the REQ message supports the
requested Service ID, but at the port specified by
the ARI. Further CM messages shall be sent to
the port to which the original REQ was sent.

GID of port to propose in new
REQ.

26 Invalid Path MTU The recipient of the REQ message cannot support
the maximum packet payload size specified

Maximum acceptable packet
payload size

27 Insufficient
Responder
Resources

The value of Responder Resources (for RDMA
Read/Atomics) in the REP message was insuffi-
cient.

28 Consumer Reject The consumer decided to reject the communica-
tion or EE context setup establishment attempt for
reasons other than those listed in the other REJ
codes. Typically this happens based upon infor-
mation being conveyed in the PrivateData field of
a message. It can also happen because the Con-
sumer decided for reasons unrelated to any CM
message it received to terminate the communica-
tion or EE context setup establishment attempt.
This would therefore be the appropriate Reason
code to use if the Consumer decided to destroy
the QP or EEC in the midst of the communication
or EE context setup establishment attempt.

Defined by the consumer

29 RNR Retry Count
Reject

The recipient of the message rejects the RNR
NAK Retry count value.

30 Duplicate Local
Communication
ID

The recipient of the REQ message determined
that it already had a connection with the sender
that was using the same Local Communication ID
as was specified in the REQ.

31 Unsupported
Class Version

The recipient of the REQ message does not sup-
port the Class Version specified in the header for
the MAD containing the REQ. When returning this
code, the “Code for Invalid Field” portion of the
Status field in the MAD header associated with
this REJ message should contain a value of 1.
(The class version specified is not supported.)
See Table 115 MAD Common Status
Field Bit Values for details.

Highest CM Class Version
that is supported

Code Reason Description
Meaning of Additional

Reject Information Field
(when present)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 668 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.8 REP - REPLY TO REQUEST FOR COMMUNICATION

REP is returned in response to REQ, indicating that the respondent ac-
cepts the ServiceID, proposed primary port, and any parameters specified
in the PrivateData area of the REQ.

When REQ:RDC Exists is set in the REQ to which the REP is responding,
the existing Reliable Datagram Channel shall not be altered either by the
sender of the REP or by the receiver of the REP, and as a result many of
the fields in the REP message are not used in this case. Those fields are
noted in the table below. All such unused fields shall be set to 0 by the
sender, and shall be ignored by the receiver.

32 Invalid Primary
Flow Label

The recipient of the REQ message does not sup-
port the requested Primary Flow Label

Acceptable Flow Label

33 Invalid Alternate
Flow Label

The recipient of the REQ message does not sup-
port the requested Alternate Flow Label

Acceptable Flow Label

Code Reason Description
Meaning of Additional

Reject Information Field
(when present)

Table 103 REP Message Contents

Field Description Used for
Purpose

Byte[Bit]
Offset

Length,
bits Values

Local Communication ID See section 12.7.1. C, EE 0 32

Remote Communication ID See section 12.7.2. C, EE 4 32 Value present in REQ

Local Q_Key See section 12.7.13 EE 8 32

Local QPN See section 12.7.12. C, EE 12 24

(reserved) 15 8

Local EE Context Number See section 12.7.14 EE 16 24

(reserved) 19 8

Starting PSN See section 12.7.31 C, EE 20 24 0 if RDC exists

(reserved) 23 8

Responder Resources See section 12.7.29 C, EE 24 8 0 if RDC exists

Initiator Depth See section 12.7.30 C,EE 25 8 0 if RDC exists

Target ACK Delay See section 12.7.33 C, EE 26 5 0 if RDC exists

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 669 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.6.9 RTU - READY TO USE

RTU indicates that the connection is established, and that the recipient
may begin transmitting.

12.6.10 DREQ - REQUEST FOR COMMUNICATION RELEASE (DISCONNECTION REQUEST)

DREQ is sent to initiate the connection release sequence. DREQ is only
sent to release connections between RC QPs, UC QPs, or EE contexts.

Failover Accepted See section 12.7.36. C, EE 26[5] 2 0: Failover accepted, or
RDC exists
1: Failover port rejected
because failover is not sup-
ported. Alternate Path
parameters were not
checked.
2: Failover is supported
and all Alternate Path
parameters are valid, but
the failover port was
rejected for some other rea-
son.

End-To-End Flow Control See section 12.7.26 C 26[7] 1 0 if RDC exists

RNR Retry Count See section 12.7.39 C,EE 27 3 0 if RDC exists

SRQ 27[3] 1 1 if SRQ exists
0 if SRQ does not

(reserved) 27[2] 4

Local CA GUID See section 12.7.9 C, EE 28 64

PrivateData See section 12.7.35 C, EE 36 1568

Table 103 REP Message Contents (Continued)

Field Description Used for
Purpose

Byte[Bit]
Offset

Length,
bits Values

Table 104 RTU Message Contents

Field Description Used for
Purpose Byte[Bit] Offset Length,

Bits

Local Communication ID See section 12.7.1. C, EE 0 32

Remote CommunicationID See section 12.7.2. C, EE 4 32

PrivateData See section 12.7.35 C, EE 8 1792

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 670 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The values for Local and Remote Communication ID are those that were
used to create the channel.

12.6.11 DREP - REPLY TO REQUEST FOR COMMUNICATION RELEASE

DREP is sent in response to DREQ, and signifies that the sender has re-
ceived the DREQ.

12.7 MESSAGE FIELD DETAILS

The following table summarizes each of the message fields, and indicates
where the consumer can find the contents necessary to populate the field.

Table 105 DREQ Message Contents

Field Description Used for
Purpose

Byte[Bit]
Offset Length, bits

Local Communication ID See section 12.7.1. C, EE 0 32

Remote CommunicationID See section 12.7.2. C, EE 4 32

Remote QPN/EECN See section 12.7.37 C, EE 8 24

(reserved) 11 8

PrivateData See section 12.7.35 C, EE 12 1760

Table 106 DREP Message Contents

Field Description Used for
Purpose

Byte[Bit]
Offset Length, bits

Local Communication ID See section 12.7.1. C, EE 0 32

Remote CommunicationID See section 12.7.2. C, EE 4 32

PrivateData See section 12.7.35 C, EE 8 1792

Table 107 Message Field Origins

Field Populated From

Local Communication ID The consumer sending the message chooses this value. See section 12.7.1

Remote CommunicationID The consumer replying to the message chooses this value. See section 12.7.2

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 671 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Service ID Assuming that the consumer uses the InfiniBandTM service naming facility, this comes
from the ServiceRecord, as defined in section 15.2.5.14 ServiceRecord.

Remote CM Response Timeout The consumer should set this field to be large enough to allow enough time under nor-
mal circumstances for the recipient to be able to process the incoming message and
have the response message traverse the path between source and destination. The ser-
vice time at the recipient depends upon the service being requested, but the maximum
time it could take to successfully traverse the path can be found in the PathRecord as
defined in section 15.2.5.16 PathRecord. (How the particular path to be used is selected
is a policy decision that is left up to the consumer.) The recommended upper bound on
how long it should take any manager (including the CM) in the InfiniBandTM architecture
to generate a response is documented in section 13.4.6.2 Timers and Timeouts.

Local CM Response Timeout This timeout period needs to allow for the path between the source and destination to be
traversed twice, and also to allow for the REP message to be processed. The amount of
time it takes to service the REP message may depend upon the service that was
requested, but the maximum time it could take to successfully traverse the path can be
found in the PathRecord as defined in section 15.2.5.16 PathRecord. The recom-
mended upper bound on how long it should take any manager (including the CM) in the
InfiniBandTM architecture to generate a response is documented in section 13.4.6.2
Timers and Timeouts.

Transport Service Type The consumer sets this based upon the type of service it is requesting: Reliable Con-
nected, Unreliable Connected, or Reliable Datagram.

Subnet Local This can be determined by comparing the PortInfo:GidPrefix fields associated with the
Local Port GID and the Remote Port GID. The PortInfo record is defined in section
15.2.5.3 PortInfoRecord.

Local CA GUID This information can be found in the NodeInfo:NodeGUID field, as defined in section
14.2.5.3 NodeInfo. (Which CA to use is a policy decision that is left up to the consumer.)

Local Port GID This information can be found in the GidInfo record, as defined in section 15.2.5.18
GuidInfoRecord. (Which port on the CA to use and which of the available GIDs on the
chosen port to use is a policy decision that is left up to the consumer.)

Local Port LID This information can be found in the PortInfo:LID field, as defined in section 14.2.5.6
PortInfo. (Which port on the CA to use and which of the available LIDs on the chosen
port to use is a policy decision that is left up to the consumer.)

Local QPN The consumer can determine this for an HCA by querying the Queue Pair that it is offer-
ing up for connection establishment. The Query Queue Pair verb is defined in section
11.2.4.3 Query Queue Pair. (How this information is determined for a TCA is implemen-
tation-specific.)

Local Q_Key The consumer can determine this for an HCA by querying the Queue Pair that it is offer-
ing up for connection establishment. The Query Queue Pair verb is defined in section
11.2.4.3 Query Queue Pair. (How this information is determined for a TCA is implemen-
tation-specific.)

Local EECN The consumer can determine this for an HCA by querying the EE Context that it is offer-
ing up for communications establishment. The Query EE Context verb is defined in sec-
tion 11.2.7.3 Query EE Context. (How this information is determined for a TCA is
implementation-specific.)

Table 107 Message Field Origins (Continued)

Field Populated From

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 672 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Remote EECN The data originates on the remote end of an existing connection, and is returned to the
local end in a REP message. It is determined by the remote end in the same manner as
the Local EECN.

Service Level This information can be found in the PathRecord:SL field, as defined in section
15.2.5.16 PathRecord.

Traffic Class This information can be found in the PathRecord:TClass field, as defined in section
15.2.5.16 PathRecord.

Flow Label The purpose of this field is to identify a group of packets that must be delivered in order.
See section 8.3 Global Route Header for a description of how this value is chosen.

Hop Limit This information can be found in the PathRecord:HopLimit field, as defined in section
15.2.5.16 PathRecord.

Primary Remote Port GID This information can be found in the GidInfo record associated with the remote port, as
defined in section 15.2.5.18 GuidInfoRecord. The port that should be targeted based on
the service being requested can be found in the ServiceRecord, as defined in section
15.2.5.14 ServiceRecord.

Primary Remote Port LID This information can be found in the PortInfo:LID field associated with the remote port,
as defined in section 14.2.5.6 PortInfo. The port that should be targeted based on the
service being requested can be found in the ServiceRecord, as defined in section
15.2.5.14 ServiceRecord.

Alternate Remote Port GID This information can be found in the GidInfo record associated with the remote port, as
defined in section 15.2.5.18 GuidInfoRecord. The port that should be targeted based on
the service being requested can be found in the ServiceRecord, as defined in section
15.2.5.14 ServiceRecord.

Alternate Remote Port LID This information can be found in the PortInfo:LID field associated with the remote port,
as defined in section 14.2.5.6 PortInfo. The port that should be targeted based on the
service being requested can be found in the ServiceRecord, as defined in section
15.2.5.14 ServiceRecord.

Partition Key This information can be found in the PathRecord:P_Key field, as defined in section
15.2.5.16 PathRecord.

Packet Rate This information can be found in the PathRecord:Rate field, as defined in section
15.2.5.16 PathRecord.

End-to-End Flow Control This field is used for RC Service Connections. For HCAs, if the RC QP is not associated
with an SRQ, the End-to-End Flow Control bit must be set to one. For HCAs, if the RC
QP is associated with an SRQ, the End-to-End Flow Control bit must be set to zero.
Whether or not End-to-End Flow Control is supported by a TCA is an implementation
option, and it is therefore outside the scope of the InfiniBandTM architecture to specify
the origin of this field in a TCA. Note: 1 means e2e flow control supported, 0 means not
supported.

SRQ This field is used for RC Service Connections. If QP is associated with an SRQ, this bit
must be set to one. If the QP, is not associated with an SRQ, this bit must be set to zero.

Max CM Retries The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.27.

Table 107 Message Field Origins (Continued)

Field Populated From

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 673 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.7.1 LOCAL COMMUNICATION ID
An identifier that uniquely identifies this connection from the sender’s
point of view. The sender must use the same identifier for all phases of
communication establishment and release. It must not reuse a Local
Communication ID for the life of the connection, or while any messages
related to the connection could still be in the fabric. (How long a message
related to the connection could still be in the fabric is touched upon in sec-
tion 12.9.8.4.) The Communication ID allows the recipient to determine
whether the message is a duplicate of an old message, or represents a
new connection request.

Path Packet Payload MTU This information can be found in the PathRecord:Mtu field, as defined in section
15.2.5.16 PathRecord.

Responder Resources The consumer can determine the maximum supported value for a QP/EEC by querying
the HCA that will be used for communication. The Query HCA verb is defined in section
11.2.1.2 Query HCA

Initiator Depth The consumer can determine the maximum supported value for a QP/EEC by querying
the HCA that will be used for communication. The Query HCA verb is defined in section
11.2.1.2 Query HCA

Starting PSN The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.31.

Service Timeout The consumer should set this field to be large enough to allow enough time for it to com-
plete the processing of the incoming message and have the response message that it
sends out traverse the path between source and destination. The incoming message
processing time depends upon the service being requested and potentially other state,
but the maximum time it could take to successfully traverse the path can be found in the
PathRecord as defined in section 15.2.5.16 PathRecord.

Target ACK Delay The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.33 Target ACK Delay.

Local ACK Timeout The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.34 Local ACK Timeout.

PrivateData The contents of this field are outside the scope of what the InfiniBandTM specification
defines; the usage (if any) of this field is specified by higher-level communications
establishment protocols.

Failover Accepted Set as per the description in section 12.7.36 Failover Accepted.

Remote QPN/EECN This should be the same as the Local QPN/Local EECN returned in the REP message.

Retry Count The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.38 Retry Count.

RNR Retry Count The value of this field is a policy decision that is outside the scope of Communication
Management to define. The field is discussed in section 12.7.39 RNR Retry Count.

Table 107 Message Field Origins (Continued)

Field Populated From

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 674 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.7.2 REMOTE COMMUNICATION ID
An identifier that uniquely identifies this connection from the recipient's
point of view. (As an example, for a REP message this would be the same
as the Local Communication ID that was received in the REQ message.)
The values in the Local and Remote Communication ID fields in the Com-
munication Management MADs are exchanged between requests and re-
plies.

The pair of (Local Communication ID, Remote Communication ID) is used
to reference connections during establishment, failover management, and
release. CM messages with invalid Communication IDs shall not be pro-
cessed, and shall be rejected as specified in section 12.6.7.

12.7.3 SERVICEID
An identifier that specifies the service being requested. The ServiceID
field specifies the service number desired by the requestor. These in-
clude, but are not limited to, the service numbers defined for typical TCP
services. The mappings between services and ServiceIDs are outside the
scope of Communication Management.

12.7.4 REMOTE CM RESPONSE TIMEOUT

The time, expressed as (4.096 µS*2Remote CM Response Timeout), within
which the CM message recipient shall transmit a response to the sender.
This value is unsigned. The recipient uses this information to determine
whether it should send an MRA. (See section 12.9.8.5)

12.7.5 LOCAL CM RESPONSE TIMEOUT

The time, expressed as (4.096 µS*2Local CM Response Timeout), that the re-
mote CM shall wait for a response from the local CM to a CM message
sent by the remote CM. This value is unsigned. Note that whereas Re-
mote CM Response Timeout is the time between receipt of a message
and transmission of a response, Local CM Response Timeout includes
that “turn-around” time, as well as round trip packet flight time. (See sec-
tion 12.9.8.5) The initiating CM is responsible for determining this value,
through Subnet Management or other means.

12.7.6 TRANSPORT SERVICE TYPE

Specifies desired service type: Reliable Connected, Unreliable Con-
nected, or Reliable Datagram. The field is encoded as follows:

0: RC

1: UC

2: RD

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 675 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3: Reserved

12.7.7 SUBNET LOCAL

0: Local and remote CA ports are on different subnets
1: Local and remote CA ports are on the same subnet

12.7.8 THIS SECTION HAS BEEN DELETED

This section has been deleted.

12.7.9 LOCAL CA GUID
The EUI-64 GUID of the sending Channel Adapter.

12.7.10 LOCAL PORT GID
The GID of the local CA port on which the channel is to be established.
This field shall be valid regardless of whether the local and remote ports
are on the same subnet or different subnets. If an alternate path is not to
be specified, the Alternate Local Port GID field shall be set to zero. If this
field is non-zero, it shall contain a valid GID.

12.7.11 LOCAL PORT LID
The LID of the local CA port on which the channel is to be established.
When local and remote ports are on different subnets, this field must be
the LID of the router that the passive side will target for the return path. If
an alternate path is not to be specified, the Alternate Local Port LID field
shall be set to zero.

12.7.12 LOCAL QPN
The QPN of the message sender’s QP on which the channel is to be es-
tablished. One Reliable Datagram QP may be associated with multiple EE
contexts. A QPN must be specified when establishing an RD channel, but
use of this QPN is not limited to this RDC. Once a consumer establishes
a Reliable Datagram Channel, the consumer may use additional QPs over
the RDC without an additional connection establishment exchange.

CM shall not be used to connect the Send Work Queue of a QP to the Re-
ceive Work Queue of the same QP. (If so desired, the consumer can do
this using the Modify QP verb.) Attempting to do this may result in unpre-
dictable behavior when doing connection establishment between peers.

12.7.13 LOCAL Q_KEY

(RD Only) The Q_Key for the QP specified by Local QPN.

12.7.14 LOCAL EECN
The EE Context Number for the message sender’s end of the RD channel.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 676 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.7.15 REMOTE EECN
The EE Context Number for the remote end of the existing Reliable Dat-
agram channel. 0 if REQ:RDC Exists is not set.

12.7.16 SERVICE LEVEL

The value to be placed in the Service Level field for packets sent by the
recipient. This Service Level is the one that the initiator would prefer the
target use. For more information on Service Levels, see section 7.6.5 Ser-
vice Level on page 185.

12.7.17 TRAFFIC CLASS

Defines Traffic Class for globally-routed packets.

12.7.18 FLOW LABEL

Defines Flow Label for globally-routed packets.

12.7.19 HOP LIMIT

The maximum number of hops a packet can make between subnets be-
fore being discarded.

12.7.20 PRIMARY REMOTE PORT GID
The GID of the remote node’s CA port on which the local node wishes to
establish the channel. This field shall be valid regardless of whether the
local and remote ports are on the same or different subnets. The remote
node may send REJ to reject this port, and may optionally suggest an ac-
ceptable port.

12.7.21 PRIMARY REMOTE PORT LID
The LID of the remote node’s CA port on which the local node wishes to
establish the channel. The remote node may send REJ to reject this port,
and may optionally suggest an acceptable port. The sender is responsible
for ensuring that the LID and GID refer to the same port.

12.7.22 ALTERNATE REMOTE PORT GID
As in section 12.7.20. A CA that does not support automatic failover shall
set the REP’Failover Accepted’ field to one. If this field is non-zero, it shall
contain a valid GID.

12.7.23 ALTERNATE REMOTE PORT LID
As in section 12.7.21. A CA that does not support automatic failover shall
set the REP ’Failover Accepted’ field to one.

12.7.24 PARTITION KEY

The Partition Key to be used for the channel being established.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 677 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.7.25 PACKET RATE

The maximum rate for the proposed path as obtained from the Path-
Record:Rate field as defined in section 15.2.5.16 PathRecord.

12.7.26 END-TO-END FLOW CONTROL

Signifies whether the local CA actually implements End-to-End Flow Con-
trol (1), or instead always advertises ’invalid credits’(0). See section
9.7.7.2 End-to-End (Message Level) Flow Control for more detail.

12.7.27 MAX CM RETRIES

Maximum number of times that either party can re-send a REQ, REP, or
DREQ message. After re-sending for the maximum number of times
without a response, the sending party should then terminate the protocol
by sending a REJ message indicating that it timed out.

12.7.28 PATH PACKET PAYLOAD MTU
Specifies the maximum packet payload size, in bytes, for the channel
being established. One of 256, 512, 1024, 2048, 4096. This value applies
to both the primary and alternate paths.

12.7.29 RESPONDER RESOURCES

The maximum number of outstanding RDMA Read/Atomic operations the
sender will support from the remote QP/EEC. This value may be zero. The
maximum number that the HCA can support for a QP/EEC can be deter-
mined using the Query HCA verb. See section 11.2.1.2 Query HCA.

The recipient of the REQ message shall choose a local Initiator Depth that
does not exceed the Responder Resources offered in the REQ. If the re-
cipient of the REQ message is unwilling or unable to do so, it shall send a
REJ message to discontinue the connection establishment.

The recipient of the REP message shall decide whether the Responder
Resources offered in the REP are sufficient for the Initiator Depth the re-
cipient of the REP wishes to use. If not, it shall send a REJ message to
discontinue the connection establishment.

12.7.30 INITIATOR DEPTH

The maximum number of outstanding RDMA Read/Atomic operations the
sender will have to the remote QP/EEC. This value may be zero. The
maximum number that the HCA can support for a QP/EEC can be deter-
mined using the Query HCA verb. See section 11.2.1.2 Query HCA.

The recipient of the REQ message should try to choose a number of local
Responder Resources that is greater than or equal to the Initiator Depth
in the REQ message. If it is unwilling or unable to do so, it may send a

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 678 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

REP message containing fewer Responder Resources than the Initiator
Depth in the REQ message.

12.7.31 STARTING PSN
The transport Packet Sequence Number at which the remote node (rela-
tive to the sender of the REQ or REP message) shall begin transmitting
over the newly established channel. This value should be chosen to min-
imize the chance that a packet from a previous connection could fall within
the valid PSN window.

12.7.32 SERVICE TIMEOUT

Present in the MRA. The maximum time required for the sender to send
a REP, RTU, APR, or REJ (as appropriate). This value is expressed as
(4.096 µS*2Service Timeout) from the time the MRA is posted to the Send
queue. The recipient of the MRA shall wait the specified time, plus a
packet lifetime, after receiving this message before timing out. (See sec-
tion 12.9.8.5) This value is unsigned.

12.7.33 TARGET ACK DELAY

 (4.096 µS*2Target ACK Delay) represents the maximum expected time in-
terval between the target CA’s reception of a message and the transmis-
sion of the associated ACK or NAK. This is information furnished by the
target to the recipient. It provides the recipient with information about the
maximum message processing latency of the target, which is one compo-
nent of the overall time it takes to get an ACK or NAK after having sent a
request packet. (The other component is the network propagation delay,
which depends upon the configuration of the switches and routers be-
tween the two endpoints as well as the congestion in the network.) The
recipient of the message containing the Target ACK Delay should use this
value along with the recipient’s best estimate of the network propagation
delay to determine how long to wait before timing out a packet transmis-
sion to the target. This value is unsigned.

12.7.34 LOCAL ACK TIMEOUT

Value representing the transport (ACK) timeout for use by the remote, ex-
pressed as (4.096 µS*2Local ACK Timeout). Calculated by REQ sender,
based on (2 * PacketLifeTime + Local CA’s ACK delay). Although the re-
mote CA is not required to use this value for its ACK timeout, it is strongly
encouraged to do so. PacketLifeTime represents the maximum expected
time interval consumed by a packet traversing the path between source
and destination CA. PacketLifeTime is contained in the PathRecord, as
defined in section 15.2.5.16 PathRecord. Local ACK Timeout is unsigned.

If too small a value is chosen for the Local ACK Timeout, the number of
packet transmission timeouts reported by the remote CA may increase,

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 679 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

which may increase the amount of work that is required in the CA to suc-
cessfully send a packet. If too large a value is chosen, the amount of time
that it takes to notice that a packet has not been successfully transmitted
(e.g. due to a CRC error on the wire) will be increased, which may in-
crease the amount of time it takes to recover from or report such errors.

12.7.35 PRIVATEDATA
Data that is opaque to the communication management protocol, passed
from the sender to the recipient. The recipient may choose to accept or
reject the request based on the private data. The format and meaning of
the PrivateData field is specific to the ServiceID and message type, and
is not specified within Communication Management.

12.7.36 FAILOVER ACCEPTED

Indicates whether the target of the REQ accepted or rejected the Alternate
port address contained in the REQ. By sending the REP, the target ac-
cepts the connection request, but it may still reject the proposed failover
port.

If failover is accepted, each CM shall cause the associated QP (for
RC/UC) or EEC (for RD) specified by Local QPN to be placed in the
REARM Migration State (see section 17.2.8.1 Automatic Path Migration
Protocol).

If failover is rejected, each CM shall cause the associated QP or EEC to
be placed in the Migstate:MIGRATED state upon transition to the RTR
state.

12.7.37 REMOTE QPN/EECN
The remote (relative to the sender) QPN or EECN, as appropriate, that is
the subject of the message. Provides an additional check that the (Local
Communication ID, Remote Communication ID) pair references the cor-
rect resource.

12.7.38 RETRY COUNT

The total number of times that the sender wishes the receiver to retry tim-
eout, packet sequence, etc. errors before posting a completion error. See
sections 9.9.2.1.1 Requester Error Retry Counters and 9.9.2.4.1 Re-
quester Class A Fault Behavior for details of how the retry counter works.

12.7.39 RNR RETRY COUNT

The total number of times that the REQ or REP sender wishes the re-
ceiver to retry RNR NAK errors before posting a completion error. See
sections 9.9.2.1.1 Requester Error Retry Counters and 9.9.2.4.1 Re-
quester Class A Fault Behavior for details of how the RNR retry counter
works.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 680 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.8 ALTERNATE PATH MANAGEMENT

IBA supports Automatic Path Migration (see section 17.2.8 Automatic
Path Migration), in which a channel’s traffic (RC, UC, RD) may be moved
to a pre-determined alternate path. The initial alternate path is established
at connection setup, but if a migration occurs, a new path needs to be
specified before re-enabling migration.

Two messages are specific to alternate path management. LAP - Load
Alternate Path carries the new path information. APR - Alternate Path
Response informs the requester of the status of the LAP request. The re-
questor (i.e. the sender of the LAP message) must be the same side of
the channel that was in the active/client role when the CM state for the
channel changed to Established; the passive side of the channel shall not
send a LAP message.

The MRA message may be sent by the LAP recipient if it is unable to send
the APR message within the Remote CM Response Timeout . As the LAP
is idempotent, the message may re-sent if there is no response, or if the
Service Timeout is not met. The recipient shall return a failure status in
the APR if the LAP request specifies an alternate path that is the same,
in every respect, as the primary path. There is no limit on the number of
LAP messages that a sender may have outstanding, but a sender shall
have no more than one LAP outstanding per remote QP/EEC at any time.

The QP/EEC state changes requested by the LAP and APR messages
may be effected through the ModifyQP or ModifyEE verbs (sections
11.2.4.2 and 11.2.7.2). Only RC QP, UC QP, or EE context state shall be
modified; the LAP and APR messages do not modify the state associated
with RD QPs.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 681 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 130 Loading alternate path
12.8.1 LAP - LOAD ALTERNATE PATH

LAP is an optional message used to change the alternate path informa-
tion for a specific connection. It may be sent to update the alternate path
information if fabric changes cause it to become invalid, or to load the
“new” alternate path information after a path migration occurs. Loading al-
ternate path information does not initiate the migration process for auto-
matic failover; it just specifies which path is to be used when the path
migration occurs.

LAP

APR

A B

MRA

Table 108 LAP Message Contents

Field Description Byte [Bit]
Offset Length, bits

Local Communication ID See section 12.7.1. 0 32

Remote Communication ID See section 12.7.2. 4 32

(reserved) 8 32

Remote QPN/EECN See section 12.7.37 12 24

Remote CM Response Timeout See section 12.7.4 15 5

(reserved) 15[5] 3

(reserved) 16 32

Alternate Local Port LID See section 12.7.11 20 16

Alternate Remote Port LID See section 12.7.23. 22 16

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 682 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.8.2 APR - ALTERNATE PATH RESPONSE

APR is sent in response to a LAP request. MRA may be sent to allow
processing of the LAP.

Alternate Local Port GID See section 12.7.10. 24 128

Alternate Remote Port GID See section 12.7.22. 40 128

Alternate Flow Label See section 12.7.18 56 20

(reserved) 58[4] 4

Alternate Traffic Class See section 12.7.17 59 8

Alternate Hop Limit See section 12.7.19 60 8

(reserved) 61 2

Alternate Packet Rate See section 12.7.25 61[2] 6

Alternate SL See section 12.7.16 62 4

Alternate Subnet Local See section 12.7.7 62[4] 1

(reserved) 62[5] 3

Alternate Local ACK Timeout See section 12.7.34 63 5

(reserved) 63[5] 3

Private Data See section 12.7.35 64 1344

Table 108 LAP Message Contents (Continued)

Field Description Byte [Bit]
Offset Length, bits

Table 109 APR Message Contents

Field Description Byte[Bit] Offset Length, bits

Local Communication ID See section 12.7.1. 0 32

Remote Communication ID See section 12.7.2. 4 32

Additional Information Length If non-zero, the length in bytes
of valid Additional Information.
The sender is not required to
provide Additional Information
even if the AP status code it
places in the APR message
allows for it. If the sender
decides not to provide Addi-
tional Information, it shall set
this field to a value of zero.

8 8

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 683 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.8.2.1 AP STATUS

AP status See section 12.8.2.1 9 8

(reserved) 10 16

Additional Information The information associated
with the AP status code, as
specified in section 12.8.2.1. If
the number of bits of informa-
tion does not completely fill the
number of bytes given in Addi-
tional Information Length (e.g.
if the Additional Information
field contains a 20-bit Flow
Label), the bits are packed into
bytes as defined in section
1.5.1, and the remaining least
significant bits of the last byte
are all set to zero.

12 576

Private Data See section 12.7.35 84 1184

Table 109 APR Message Contents (Continued)

Field Description Byte[Bit] Offset Length, bits

Value Description Meaning of Additional Information Field (when
present)

0 Alternate path information loaded

1 Invalid Remote/Local Communication ID

2 Alternate paths not supported. Alternate path parame-
ters were not checked.

3 Alternate paths are supported and all Alternate Path
parameters are valid, but the failover port was rejected
for some other reason.

4 Alternate path information rejected - redirect A ClassPortInfo data structure as described in sec-
tion 13.4.8.1 ClassPortInfo on page 734. The LAP
sender may use the information in the ClassPort-
Info to resend the LAP to an entity that can process
that message.

5 Proposed alternate path matches current primary path

6 Remote QPN/EECN does not match with connection
identified by Local/Remote Communication ID

7 Proposed Alternate Remote Port LID rejected LID of acceptable port

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 684 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9 STATE TRANSITION DIAGRAMS FOR COMMUNICATION ESTABLISHMENT AND RELEASE

The diagrams in this section detail all valid states and state transitions in
the IBA communication establishment and release protocols. Section
12.10 contains ladder diagrams which illustrate various paths through this
state diagram.

The InfiniBandTM communication establishment and communication re-
lease protocols are structured so that they will always run to completion in
a bounded amount of time. “Completion” for the communication establish-
ment protocol means that the communication will either be established, or
else the state of all parties involved in the communication will revert to idle
as if no communication had ever been established. “Completion” for the
communication release protocol means that the communication is re-
leased; this protocol never fails to run to completion.

The diagrams in this section assume that the Consumer runs the IBA
communication establishment and release protocols to completion (suc-
cessful or otherwise). It is legal, however, for the Consumer to destroy the
QP or EEC involved in the communication establishment/release attempt
before that attempt has run to completion. If this occurs, the Consumer
whose QP or EEC has been destroyed has one of two options: they can
ignore all incoming messages that pertain to the communication estab-
lishment/release attempt involving the QP or EEC (and let the communi-
cations establishment attempt timeout), or they can send a REJ message
with a “Consumer Reject” Reason code if they are in a CM state (i.e. REP
Rcvd, MRA(REP) Sent, REQ Rcvd, MRA Sent) that allows a REJ to be
sent.

12.9.1 DIAGRAM DESCRIPTION

There is only one communication establishment protocol for InfiniBandTM,
with different messages used for different scenarios. The state diagrams

8 Proposed Alternate Remote Port GID rejected GID of acceptable port

9 Proposed Alternate Flow Label rejected Acceptable Flow Label

10 Proposed Alternate Traffic Class rejected Acceptable Traffic Class

11 Proposed Alternate Hop Limit rejected Acceptable Hop Limit

12 Proposed Alternate Packet Rate rejected Minimum acceptable Packet Rate

13 Proposed Alternate SL rejected Acceptable SL

Value Description Meaning of Additional Information Field (when
present)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 685 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

are broken into an “active side” and a “passive side”. The active side of
the protocol is the side that is trying to initiate a transition out of one of the
terminal states (Idle and Established). The passive side of the protocol is
the side that is responding to the active side.

12.9.2 INVALID STATE INPUT HANDLING

Several of the states in the CM protocols are ephemeral; the transition out
of these states depends only upon a decision being made locally, not on
any new input being received from the other party in the communication
establishment or release attempt. The ephemeral states are:

• Peer Compare
• Timeout
• REJ Retry
• REP Rcvd
• DREQ Rcvd
• DREP Timeout
• REQ Rcvd
• REJ Sent
• RTU Timeout
The general rule for handling any input message that is received while in
an ephemeral state is to hold that message pending until the CM protocol
enters a non-ephemeral state.

In many of the non-ephemeral states of the InfiniBandTM communication
establishment and release protocols, there is a defined set of input mes-
sages that can legally be received while in that state. Once the CM pro-
tocol has entered a non-ephemeral state, the general rule for handling an
input message that cannot be legally received and acted upon while in
that state is to ignore it. A CM shall not retry the REQ, REP, or DREQ mes-
sages more than the number of times specified by REQ:Max CM Retries.

12.9.3 TIMEOUTS

A lost or dropped message will ultimately result in a timeout. Since all par-
ties will ultimately return to the idle state, there is no correctness require-
ment to do retries of a message send as a result of a timeout, although it
is recommended. Senders of retried messages may not modify the con-
tents of the messages between retries.

In the following state diagrams, "Timeout" represents a Response Tim-
eout. Service Timeouts are specifically noted.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 686 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.4 STATE DIAGRAM NOTES

All REJs, sent or received, cause a return to IDLE(active) or LISTEN(pas-
sive), possibly through the TimeWait state (see section 12.9.8.4).

In the Active Communication Establishment diagram, the transition from
the Peer Compare state to the Passive REQ_Rcvd state only happens if
the ServiceID in the REQ received is the same as the ServiceID in the
REQ that was sent. (See section 12.10.4 for details). Otherwise, a new
connection establishment instance shall be started.

The ServiceID implicitly defines whether the service is client/server or
peer to peer, but the server application must inform its CM so that the CM
will handle the inbound REQ correctly.

When the Consumer wishes to destroy a QP or EEC that is in the Estab-
lished CM state, it is good practice for the Consumer to first release the
connection before destroying the QP or EEC. Doing so allows any state
maintained by CM related to the QP or EEC in question to be cleaned up.
A connection is released by moving from the Established state to the
TimeWait state using one of the state transition sequences described in
the sections that follow.

When the CM state is IDLE, LISTEN, or TimeWait, the QP or EE Context
is allowed to be in any of the Error, Reset, or Initialized states. In these CM
states, which particular state the QP or EE Context is in is outside the
scope of this specification. The CM should avoid transitioning a QP from
the Error state to the Reset state before it has notified the Consumer that
the QP has entered the Error state, and given the Consumer an opportu-
nity to dequeue any Work Completions that may be associated with that
QP. If the CM doesn’t follow this suggestion the Consumer may be unable
to dequeue the Work Completions associated with a QP after the QP is
transitioned to the Reset state.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 687 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.5 COMMUNICATION ESTABLISHMENT AND RELEASE - ACTIVE

Figure 131 Communication Establishment(Active Side)

Send RTU

(No Retry)

Send RTU

Normal Case

Other correct

REJ

Error and
Error Handling

(Passive)
To REQ_Rcvd

Rcv REQ (Active)Send REQ

Legend

Send REJ

IDLE Peer Compare

MRA(REP)

Timeout
REQ Sent

Sent

REP wait

Established

REP Rcvd

Send DREQ

Rcv DREP

To Idle
No Retry

Rcv DREQ

Send DREP

DREQ Sent

DREQ Rcvd

TimeoutDREP Timeout

Send DREQ

TimeWait

Rcv DREQ

Rcv DREQ /
Send DREP

Rcv REP /
Send RTU

Rcv REJ

Rcv REP /
Send MRA

REJ Retry

Response Timeout

(Retry)
(No Retry)
Send REJ Send REQ

Rcv MRA(REQ)

Rcv REP

Rcv REP

Rcv REJ

(Retry)
Send REQ

Rcv REJ

Service Timeout

Send REJ
Send MRA(REP)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 688 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.6 COMMUNICATION ESTABLISHMENT - PASSIVE

Figure 132 Communication Establishment(Passive Side)

Send REJ

Rcv REQ

Send REP

Rcv MRA(REP)

MRA Sent

Send DREQ

Rcv DREPTo LISTEN

No retry

Send MRA(REQ)

DREQ Sent

TimeoutDREP Timeout

Send DREQ

TimeWait

(From Active)
LISTEN

REQ Rcvd

Send REP

Rcv REJ

MRA(REP)
Rcvd

Timeout

RTU Timeout

Send REP

Rcv message
on QP/EEC

No retry
Send REJ

Rcv DREQ

Send DREP

DREQ Rcvd

Rcv RTU

Rcv REJ

REP Sent

Established

Rcv DREQ /
Send DREP

Rcv DREQ

Rcv REQ /
Send REP

Rcv REQ /
Send MRA

Rcv REJ

Service Timeout

Rcv RTU

Rcv message
on QP/EEC

REJ Sent

Rcv REQ

Send REJ

(retry)

(no retry)

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 689 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.7 STATE AND TRANSITION DEFINITIONS

The following tables define each state and the possible transitions from
the state.

These tables define the protocol, and take precedence in the case of a
conflict with the state diagrams.

In this table, “CEP” (Channel EndPoint) means QP when the protocol is
being used to establish or release connections between RC or UC QPs.
It means EE context when the protocol is being used to establish an RDC
between two EE contexts. If the protocol is being used to advertise an RD
QP for use over an existing RDC (i.e. if REQ:RDC Exists is set), there is
no CEP, and hence the state transitions to the CEP called out in this table
do not apply in this case. (The CM protocol state transitions continue to
apply, however.)

12.9.7.1 ACTIVE STATES

CM State Event Action/Transition Sequence

IDLE

Send REQ Send REQ / CM to REQ Sent / CEP to Initialized

(default) None

REQ Sent

Receive REP CM to REP Rcvd / CEP to Ready to Receive

Receive REQ IF (ServiceIDs match)
 to Peer Compare

Receive MRA(REQ) CM to REP wait

Response Timeout CM to Timeout

Receive REJ CM To REJ Retry

(default) None

Peer Compare

Entry IF ((local CA GUID greater than remote CA GUID) OR
 ((CEP is a QP) AND (local QPN greater than remote QPN)) OR
 ((CEP is an EEC) AND (local EECN greater than remote EECN)))
 CM to REQ Sent
ELSE
 CM to Passive:REQ Rcvd

REP wait

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 690 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Receive REP CM to REP Rcvd / CEP to Ready to Receive

Service Timeout CM to Timeout

Receive REJ CM to REJ Retry

(default) None

REJ Retry

Entry (Retry) Send REQ / CM to REQ Sent

Entry (No Retry) CM to IDLE / CEP to Error

REP Rcvd

Send RTU Send RTU / CM to Established / CEP to Ready to Send

Send MRA(REP) CM to MRA(REP) Sent

Send REJ CM to IDLE / CEP to Error

(default) None

MRA(Rep) sent

Send RTU Send RTU / CM to Established / CEP to Ready to Send

Send REJ CM to IDLE / CEP to Error

Receive REJ CM to IDLE / CEP to Error

Receive REP Send MRA

(default) None

Established

Receive DREQ CM to DREQ Rcvd / CEP to Error

Send DREQ CM to DREQ Sent / CEP to Error

Receive REQ See section 12.9.8.3.1

Receive REP Send RTU

Receive REJ CM to TimeWait / CEP to Error

(default) None

DREQ Sent

Timeout CM to DREP Timeout

Receive DREQ CM to DREQ Rcvd

CM State Event Action/Transition Sequence

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 691 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.7.2 PASSIVE STATES

Receive DREP CM to TimeWait

(default) None

DREQ Rcvd

Send DREP CM to TimeWait

(default) None

TimeWait

Entry CM: Start Timer

Receive DREQ CM: Send DREP (if Max CM Retries not exceeded)

Timer Expiration CM to IDLE

(default) None

Timeout

Entry (Retry)
(Max Retries not exceeded)

Send REQ / CM to REQ Sent

Entry (No Retry) Send REJ / CM to IDLE / CEP to Error

DREP Timeout

Entry (Retry)
(Max Retries not exceeded)

Send DREQ / CM to DREQ Sent

Entry (No Retry) CM to TimeWait

(default) None

CM State Event Action/Transition Sequence

State Event Action/Transition Sequence

LISTEN

Receive REQ CEP to Initialized / CM to REQ Rcvd

(default) None

REQ Rcvd

Send REP CEP to Ready to Receive / Send REP / CM to REP Sent

Send MRA(REQ) CM to MRA Sent

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 692 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Send REJ CM to REJ Sent

(default) None

MRA sent

Send REP CEP to Ready to Receive / Send REP / CM to REP Sent

Send REJ CM to REJ Sent

Receive REJ CM to LISTEN / CEP to Error

Receive REQ Send MRA

(default) None

REJ Sent

(retry) Receive REQ CM to REQ Rcvd

(no retry) CM to LISTEN / CEP to Error

REP Sent

Receive RTU CM to Established / CEP to Ready to Send

Receive MRA(REP) CM to MRA(REP) Rcvd

Receive message on service CEP CM To Established / CEP to Ready to Send

Receive REJ CM to Listen / CEP to Error

Timeout CM to RTU Timeout

Receive REQ Send REP

(default) None

MRA(Rep) rcvd

Receive RTU CM to Established / CEP to Ready to Send

Service Timeout CM to RTU Timeout

Receive message on service CEP CM To Established / CEP to Ready to Send

Receive REJ CM to LISTEN / CEP to Error

(default) None

Established

Send DREQ CM to DREQ Sent / CEP to Error

Receive DREQ CM to DREQ Rcvd / CEP to Error

State Event Action/Transition Sequence

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 693 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.8 STATE DETAILS

12.9.8.1 TIMEOUT

A message may be re-sent no more than REQ:Max CM Retries , but there
is no requirement that it be re-sent that many times.

Receive REQ See section 12.9.8.3.1

(default) None

DREQ Rcvd

Send DREP CM to TimeWait

(default) None

DREQ Sent

Timeout CM to DREP Timeout

Receive DREQ CM to DREQ Rcvd

Receive DREP CM to TimeWait

(default) None

RTU Timeout

Retry REP CM to REP Sent

No Retry Send REJ / CM to TimeWait / CEP to Error

(default) None

TimeWait

Entry CM: Start Timer

Receive DREQ CM: Send DREP (if Max CM Retries not exceeded)

Timer Expiration CM to IDLE

(default) None

DREP Timeout

Entry (Retry)
(Max Retries not exceeded)

Send DREQ / to DREQ Sent

Entry (No Retry) CM to TimeWait

(default) None

State Event Action/Transition Sequence

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 694 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.9.8.2 RTU TIMEOUT

If the Passive agent sends REP but does not receive either an RTU or a
message on the CEP (QP or EEC, as appropriate), it transitions to RTU
Timeout. If it has not exceeded REQ:Max CM Retries , the Passive agent
may resend REP.

12.9.8.3 ESTABLISHED

12.9.8.3.1 REQ RECEIVED / REP RECEIVED

(RC, UC) A CM may receive a REQ/REP specifying a remote QPN in
“REQ:local QPN”/”REP:local QPN” that the CM already considers con-
nected to a local QP. A local CM may receive such a REQ/REP if its local
QP has a stale connection, as described in section 12.4.1. When a CM
receives such a REQ/REP it shall abort the connection establishment by
issuing REJ to the REQ/REP. It shall then issue DREQ, with “DREQ:re-
mote QPN” set to the remote QPN from the REQ/REP, until DREP is re-
ceived or Max Retries is exceeded, and place the local QP in the
TimeWait state.

(RD) A CM may receive a REQ/REP specifying a remote EECN in
“REQ:local EECN”/”REP:local EECN” that the CM already considers con-
nected to a local EEC. A local CM may receive such a REQ/REP if its local
EEC has a stale connection, as described in section 12.4.1. When a CM
receives such a REQ/REP it shall abort the connection establishment by
issuing REJ to the REQ/REP. It shall then issue DREQ, with “DREQ:re-
mote EECN” set to the remote EECN from the REQ/REP, until DREP is
received or Max Retries is exceeded, and place the local EEC in the Time-
Wait state.

If a CM receives a REQ/REP as described above, if the REQ/REP has the
same Local Communication ID and Remote Communication ID as are
present in the existing connection and if the REQ/REP arrives within the
window of time during which the active/passive side could be legally re-
transmitting REQ/REP, the CM should treat the REQ/REP as a retry and
not initiate stale connection processing as described above.

12.9.8.4 TIMEWAIT

The PathRecord:PacketLifeTime (section 15.2.5.16 PathRecord) field
defines the maximum time that a packet can exist in the fabric.

The TimeWait timer shall be set to twice the PathRecord:PacketLife-
Time value plus the remote’s Ack Delay.

The CM is responsible for placing QPs/EECs in the TimeWait state, for
maintaining them in that state for a period not less than the TimeWait pe-
riod, and for removing them afterward.

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 695 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Receipt of a DREQ while in the TimeWait state shall not affect the Time-
Wait timer.

12.9.8.5 MESSAGE RECEIPT ACKNOWLEDGMENT (MRA)

Figure 133 MRA Example

Figure 133 illustrates the use of the MRA message in a CM message ex-
change. ’Local’ and ’Remote’ are with respect to ’A’. Because B cannot
return a REP or REJ to A within the Remote CM Response Timeout, B
sends an MRA(REQ), notifying A that B has received the REQ message
and is processing it. The MRA(REQ) contains B’s CM Service Timeout
value. B completes its processing and sends the REP message to A be-
fore the expiration of the Remote CM Service Timeout.

Because packet flight times may differ due to fabric congestion, (e.g., the
MRA may travel in the minimum possible time, and the REP in the max-
imum time, as shown by Tmin and Tmax), A shall allow an additional Pack-
etLifeTime for the REP to arrive.

When A receives the REP, it realizes that the required processing will not
allow it to transmit a REJ or RTU soon enough to arrive at B before the
Local CM Response Timeout expires, so it sends an MRA(REP) con-
taining its CM Service Timeout value. When it completes the REP pro-

A B

REP

Remote CM
Response
Timeout

Remote CM

Timeout

Local CM
Response
Timeout

MRA(REQ)

MRA(REP)

RTU

Local CM
Service
Timeout

REQ

Service

Tmin

Tmax

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 696 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cessing, A sends the RTU, which arrives before the Local CM Service
Timeout expires.

Once an MRA is received, the CM shall not re-send the message ac-
knowledged by the MRA sooner than the period of time represented by
the applicable CM Service Timeout period plus PacketLifeTime.

12.9.8.6 TIMEOUTS AND RETRIES

In the communication establishment protocol, the sending of the REQ,
REP and DREQ messages may be retried by the sender. The retry hap-
pens after the sender fails to receive a response message from the recip-
ient within the appropriate response timeout period.

For the REQ message, the Remote CM Response Timeout period is the
recipient’s “turn-around” time. The REQ sender may consider the REQ (or
response) lost after (2*PacketLifeTime + Remote CM Response Tim-
eout). Upon receiving a REQ, the recipient must send a REP, REJ, or
MRA by the Remote CM Response Timeout. The Service Timeout period
begins when the MRA is sent, and a REJ or REP must be sent before it
expires.

The Local CM Response Timeout tells the REP sender how long to wait
for an MRA, REJ, or RTU. The Local CM Response Timeout value in-
cludes the round trip flight time. If the REP sender receives an MRA, it can
expect the REJ or RTU within (Local CM Service Timeout + PacketLife-
Time) after the MRA’s arrival.

The response timeout period for the DREQ message is the Local CM Re-
sponse Timeout present in the original REQ message.

When the sender retries a message send, the recipient can potentially re-
ceive multiple copies of the same message. The recipient of a REQ (or
REP) message should determine the amount of time it has to send a re-
sponse based upon when it received the latest REQ (or REP) message;
the remaining time it has to reply is thus reset back to the full response
timeout period each time it receives a new REQ (or REP) for the same
connection establishment attempt.

If the sender of a REP message receives another REQ message for the
same connection establishment attempt, after it resends the REP mes-
sage it should reset its response timeout period back to the full Local Re-
sponse Timeout period that it received in the REQ message.

12.9.8.7 REJ RETRY

If the Active agent receives a REJ while it is in the REQ Sent or REP Wait
state, the Active agent has the option to perform a retry. If the Active agent
chooses not to retry, the CEP is put into the Error state and the Active

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 697 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

agent proceeds to the Idle state. If a retry is performed, the Active agent
must re-send the REQ message using a different Local Communication
ID than was used for the original REQ message that received the REJ in
reply.

12.9.8.8 REJ SENT

When the Passive agent sends a REJ, it enters the REJ Sent state. If the
Passive agent chooses not to retry its connection establishment attempt,
it places the CEP into the Error state, which if the CEP is a Queue Pair will
cause any Work Requests posted to the Receive Queue of the Queue
Pair to be flushed. If the Passive agent wishes to avoid having its Work
Requests flushed, it may instead stay in the REJ Sent state until is re-
ceives a REQ, at which time it proceeds to the REQ Rcvd state and con-
nection establishment proceeds normally.

12.9.8.9 REP SENT / MRA(REP) RECEIVED

If the Passive agent receives a LAP for a connection while it is in the REP
Sent or MRA(REP) Rcvd state, when/if the Passive agent times out and
enters the RTU Timeout state it should take the “Retry REP” transition out
of that state (assuming it has not exceeded the retry count specified in the
REQ message). Receiving a LAP is a strong indication that the Active
agent believes the connection has been established. By retrying the REP,
the Passive agent informs the Active agent that the connection has in fact
not been fully established, which will prompt the Active agent to retry the
RTU so that it can be fully established. If the Passive agent does not retry
the REP, it is possible that the Active agent will get stuck in a loop retrying
its LAP message until the Passive agent ultimately times out the connec-
tion establishment attempt and sends a REJ.

12.9.9 CONNECTION STATE

Communication Managers shall maintain the following information for the
life of a connection:

• Local Communication ID

• Remote Communication ID

• Local CM Response Timeout

• Remote CM Response Timeout

• Local QPN / Local EECN

• Remote CA QPN / Remote CA EECN

• Remote CA GUID

• Remote CM LID / Remote CM GID

• Max CM Retries

• ClassVersion, if multiple ClassVersions are supported

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 698 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10 COMMUNICATION ESTABLISHMENT LADDER DIAGRAMS

The following ladder diagrams show the message exchanges for various
communication establishment scenarios. These are not applicable to Un-
reliable Datagrams (see section 12.11 for Service ID Resolution).

12.10.1 ACTIVE CLIENT TO PASSIVE SERVER - BOTH CLIENT AND SERVER ACCEPT COMMUNICATION

Figure 134 Active/Passive, Both Accept

For RC and UC service, the above exchange establishes the connection.

For RD service, the above exchange must be performed

• To establish a Reliable Datagram Channel between two EECs
• To resolve a Service ID and associate QPs for possible use over

an existing RDC
How cooperating applications exchange information on additional avail-
able QPs is specific to the applications.

REQ

REP

RTU

ACTIVE PASSIVE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 699 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.2 ACTIVE CLIENT TO PASSIVE SERVER - SERVER REJECTS COMMUNICATION

Figure 135 Active/Passive, Server Reject

The above exchange occurs when the passive server cannot or will not
perform the requested action. The REJ message contains the reason
why the action was not performed.

REQ

REJ

ACTIVE PASSIVE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 700 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.3 ACTIVE CLIENT TO PASSIVE SERVER - CLIENT REJECTS COMMUNICATION

Figure 136 Active/Passive, Client Reject

The above exchange occurs when the requesting client decides not to
continue with the requested action. (An example is a client that requires
Automatic Path Migration support not provided by the server.) The REJ
message contains the reason why the action was not continued.

REQ

REP

REJ

ACTIVE PASSIVE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 701 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.4 PEER TO PEER - BOTH ACCEPT COMMUNICATION

Figure 137 Active/Active, Both Accept

The above exchange occurs when two peer entities attempt communica-
tion. In this case, the ServiceID in both REQ messages is the same. The
ServiceID implicitly defines whether the service is client/server or peer to
peer, but the application must inform the CM so that the CM will handle
the inbound REQ correctly. (The CM protocol state transitions are different
for a peer to peer communication establishment attempt than for a
client/server communication establishment attempt. In particular, the Peer
Compare state is only entered for a peer to peer communication establish-
ment attempt. See section 12.9.7.1 for a description of the Peer Compare
state.)

Peer A and Peer B compare their CA (Channel Adapter) GUIDs, treating
each as a big-endian value, to decide which party will take the active side
of the CM protocol. The peer with the numerically smaller GUID assumes
the passive role in the remainder of the communication establishment pro-
tocol.

If the CA GUIDs match (e.g., two processes using the same CA), the
peers compare their QPNs (using the REQ:Local QPN field) in the case
of connection establishment between Connected Queue Pairs, or their
EECNs (using the REQ:Local EECN field) in the case of Reliable Data-

REQ

REP

RTU

PEER A PEER B

REQ

B LOSES COMPARISON
AND TAKES PASSIVE
ROLE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 702 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

gram Channel establishment. The comparison is done treating each as a
big-endian value, with the smaller QPN/EECN taking the passive role.

CM shall not be used to establish “loopback” channels on a single QP.

12.10.5 ACTIVE PEER TO ACTIVE PEER - PASSIVE REJECTS COMMUNICATION

Figure 138 Active/Active, Passive Reject

The above exchange occurs when the ’losing’ peer decides not to con-
tinue the requested action. The REJ message contains the reason the ac-
tion was not continued.

REQ

REJ

PEER A PEER B

REQ

B LOSES COMPARISON
AND TAKES PASSIVE
ROLE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 703 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.6 ACTIVE PEER TO ACTIVE PEER - ACTIVE REJECTS COMMUNICATION

Figure 139 Active/Active, Active Reject

The above exchange occurs when the when the ’winning’ peer decides
not to continue with the requested action. The REJ message contains the
reason why the action was not continued. The peer receiving the REJ
message returns to the IDLE state.

REQ

REP

REJ

PEER A PEER B

REQ

B LOSES COMPARISON
AND TAKES PASSIVE
ROLE

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 704 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.7 ACTIVE CLIENT TO PASSIVE SERVER WITH REDIRECTOR - ALL ACCEPT COMMUNICATION

Figure 140 Redirection, Accepted

A redirector is a CM that provides CM services on behalf of an entity sup-
ported on a port other than the redirector CM’s port. The port information
for both endpoints is explicit in the REQ and REP messages, allowing the
redirector to manage connections as a proxy for another entity.

The above exchange occurs when the redirector sends REJ with the
Status “Port Redirection”, indicating that the requested ServiceID is avail-
able at a different port. The requesting client (using a new Local Commu-
nication ID) sends a new REQ proposing the port specified in the REJ. All
CM messages are exchanged between the client CM and the redirector,
but traffic over the established connection goes between the client and the
server.

CLIENT SERVERREDIRECTOR

REQ

REP

REJ

REQ

RTU

(NOT VISIBLE TO CLIENT)

DATA

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 705 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.10.8 COMMUNICATION RELEASE

The following ladder diagram shows the message exchange for commu-
nication release.

Communication release as illustrated in this section is ungraceful. Upon
receipt of a Disconnect Request, each CM shall cause the affected QP to
be placed into the error state, causing pending work requests to complete
with the Flush error status.

Consumers are free to define and execute a more graceful communica-
tion release protocol that allows for an orderly shutdown of communica-
tions. Any such protocol shall utilize the communication release protocol
illustrated below after the termination of normal message processing.

12.10.8.1 DISCONNECT REQUEST

Figure 141 Disconnect Request

Because the DREQ and DREP travel out of band relative to normal com-
munications traffic, how operations currently in progress will be completed
cannot be predicted.

12.11 SERVICE ID RESOLUTION PROTOCOL

Service ID Resolution (SIDR) provides a way for users of Unreliable Dat-
agram (UD) service to determine a Queue Pair on the target port that sup-
ports a given Service ID.

GSAs shall support this protocol if non-management services are pro-
vided on the Channel Adapter at other than fixed QPNs. If this protocol is

DREQ

DREP

A B

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 706 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

not supported by a CM, the IsSIDRCapable bit shall be reset in the Capa-
bilityMask component of the ClassPortInfo attribute for the CM. See
16.7.3 Attributes for details.

The protocol consists of a single request and a single reply, using unreli-
able Management Datagrams (MADs) targeted to the GSI. SIDR mes-
sages are of the Communication Management class.

If the SIDR response returns a valid QPN, the returned QPN shall be in
the partition identified by the P_Key in the header of the SIDR Request.

12.11.1 SIDR_REQ - SERVICE ID RESOLUTION REQUEST

SIDR_REQ requests that the recipient return the information necessary to
communicate via UD messages with the entity specified by
SIDR_REQ:ServiceID.

12.11.1.1 REQUESTID
A 32-bit value identifying the request. The target of the request shall return
this value unchanged in the SIDR_REP message. If a SIDR_REQ mes-
sage is re-sent, the sender shall send the same RequestID. The
SIDR_REQ recipient shall use the Source GID (or Source LID, if GRH not
present) to distinguish between requests from different requestors that
might have the same RequestID.

12.11.1.2 PARTITION KEY

The Partition Key that the sender wishes to use to access the service
identified by Service ID.

12.11.1.3 SERVICE ID
The Service ID for which the sender wishes the responder to provide UD
addressing information. See section 12.7.3 for more information.

12.11.1.4 PRIVATE DATA

Data that is opaque to the SIDR protocol for use by the requester and re-
sponder. For example, some systems may require that the PrivateData

Table 110 SIDR_REQ Message Contents

Field Description Byte[Bit] Offset Size, bits (Values)

RequestID See section 12.11.1.1 0 32

Partition Key See section 12.11.1.2 4 16

(reserved) 6 16

ServiceID See section 12.11.1.3 8 64

Private Data See section 12.11.1.4 16 1728

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 707 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

area contain an authorization key before reporting the QP supporting cer-
tain ServiceIDs.

12.11.2 SIDR_REP - SERVICE ID RESOLUTION RESPONSE

SIDR_REP returns the information necessary to communicate via UD
messages with the entity specified by SIDR_REQ:ServiceID.

12.11.2.1 STATUS

The Status field tells whether the QPN and Q_Key fields are valid, and if
not valid, the reason a valid QPN and Q_Key were not provided. De-
pending upon the value of the Additional Information Length field, the Ad-
ditional Information field may or may not have valid contents.

Table 111 SIDR_REP Message Contents

Field Description Byte [Bit] Offset Length, bits

RequestID See section 12.11.1.1 0 32

Status See section 12.11.2.1 4 8

Additional Information Length If non-zero, the length in bytes
of valid Additional Information.
The sender is not required to
provide Additional Information
even if the Status code it
places in the SIDR_REP mes-
sage allows for it. If the sender
decides not to provide Addi-
tional Information, it shall set
this field to a value of zero.

5 8

(reserved) 6 16

QPN See section 12.11.2.2 8 24

(reserved) 11 8

ServiceID See section 12.11.1.3. 12 64

Q_Key See section 12.11.2.3 20 32

Additional Information See section 12.11.2.1 24 576

Private Data See section 12.11.1.4 96 1088

Value Description Meaning of Additional Information Field
(when present)

0 QPN and Q_Key are valid

1 Service ID not supported

2 Rejected by Service Provider

InfiniBandTM Architecture Release 1.2 Communication Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 708 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12.11.2.2 QPN
The QPN of the local QP on which the requested Service ID is supported.
(Only valid if so indicated by Status field).

12.11.2.3 Q_KEY

The Q_Key for the QP returned in QPN.

12.11.3 PATH INFORMATION

The information returned in the SIDR_REP message is insufficient, by it-
self, to create a usable address handle. Specifically, the values for Path-
Record:Mtu and PathRecord:Rate are required except when sending
packet payloads no larger than the minimum PMTU, or when transmitting
on a minimum-width link, respectively. These values are available through
Subnet Administration (see section 15.2.5.16).

3 No QP available

4 Request should be redirected to the endpoint
specified by ClassPortInfo. QPN and Q_Key
are not valid.

This is a ClassPortInfo data structure as doc-
umented in section 13.4.8.1, describing
where to redirect the SIDR_REQ.

5 Class Version specified in the header for the
SIDR_REQ MAD is not supported. When
returning this code, the “Code for Invalid
Field” portion of the Status field in the MAD
header associated with this SIDR_REP mes-
sage should contain a value of 1. (The class
version specified is not supported.) See
Table 115 MAD Common Status Field Bit Val-
ues for details.

Highest CM Class Version that is supported.

6-255 Reserved

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 709 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 13: MANAGEMENT MODEL

13.1 INTRODUCTION

IBA management is built on top of four fundamental concepts. These in-
clude:

• management entities,

• agents,

• a messaging scheme,

• a collection of specific messages including message content, and re-
lated behaviors.

An agent is a conceptualization of a body of low level functionality em-
bedded in all channel adapters, switches, and routers, which provides the
means to set and query various parameters internal to the channel
adapter, switch, or router.

Managers and interested parties are conceptualizations of high level
bodies of functionality which provide for controlling or examining various
aspects of subnet or fabric configuration and operation.

The messaging scheme provides for intercommunication between man-
agers or interested parties and agents, and, in some cases, between
agents. The messaging scheme specifies the basic message types and
interfaces through which agents and managers exchange information.

Finally, specific messages and message sequences are defined in terms
of message content and associated required behaviors. Messages are
grouped into classes according to the type of management activity the
messages support.

The specification of management operations is done from the viewpoint
of specifying messages that may appear on the wire and specifying be-
haviors associated with those messages. The appearance of a message
at a port implies a required action and, possibly, response. Additionally,
the appearance of a message on the wire implies behavior of the entity
that caused the message to be emitted. In particular, the behavior require-
ments in certain areas (e.g. subnet management, see 14.4 Subnet Man-
ager on page 859) imply the existence of certain entities (e.g. a subnet
manager) which embody required behaviors with respect to the origina-
tion and consumption of various messages.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 710 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Various conceptualizations are used in specifying behaviors. However,
the use of such conceptualizations in this and other management related
chapters is purely a descriptive artifice. The conceptualizations them-
selves, do not convey normative requirements. Normative requirement
specification is done by, and only by, specification of message formats
and associated required behaviors. Finally, while some conceptualiza-
tions may suggest certain implementations, implementations are outside
of the scope of the specification and no specific implementation is implied.

13.2 ASSUMPTIONS, AND SCOPE

13.2.1 ASSUMPTIONS

There are certain assumptions that underlie the management mecha-
nisms specified herein. Proper operation of the management mecha-
nisms and fulfillment of the objectives underlying these specifications is
predicated upon the validity of these assumptions. While the assumptions
themselves are not part of the specification, they are an essential element
of the framework in which these specifications apply.

• The management operations specified herein provide for a level of in-
teroperability such that an SM from any vendor can manage a heter-
ogeneous collection of IBA-compliant channel adapters, switches,
and routers from any set of vendors. However, compatibility and in-
teroperability among SMs from different vendors is not supported. Mi-
gration from one vendor's SM to another's by way of system
reinitialization, i.e., through a planned outage, is supported. Such mi-
gration assumes appropriate steps of transferring data between ven-
dors' SMs have been accomplished prior to the re initialization.

• The management operations specified herein provide the means to
conduct a variety of activities. Some of the mechanisms specified are
optional. And, except as specifically stated, the specification of a
means does not imply or require that the means be used. It is as-
sumed that each fabric will be constructed, configured, and operated
according to the needs of its user(s) and that constructors exercise
diligence in selection of components to ensure the fabric possesses
the characteristics required. For example, if a user requires multicast
support but mixes components that do and do not support multicast,
they may fail to achieve their requirements.

13.2.2 SCOPE

As noted above, a number of management classes are distinguished in
the IBA management model. The classes include:

• Subnet management. Subnet management is the body of activity
associated with discovering, initializing, and maintaining an IBA
subnet. In addition, the subnet management sections specify
methods for interfacing to a diagnostic framework for handling
subnet and protocol errors. (See 14.2.5.14 VendorDiag on page

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 711 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

840). In the following sections a subnet manager will be denoted
by SM while a subnet management agent will be denoted by
SMA.

• Subnet administration (SA): Subnet administration provides a
means for management entities and applications to obtain infor-
mation about fabric configuration and operation. (See Chapter
15: Subnet Administration on page 882). In the following sections
subnet administration will be denoted by SA.

• Communication management: Communication management pro-
vides the means to set up and manage communications between
a pair of queue pairs or, in certain cases, to identify which queue
pair to use for a certain service. (See Chapter 12: Communication
Management on page 650 and 16.7 Communication Manage-
ment on page 1011). In the following sections a communications
manager will be denoted by CM.

• Performance management: Performance management specifies
a set of facilities for examining various performance characteris-
tics of a fabric. (See 16.1 Performance Management on page
930).

• Device management: Device management specifies the means
for determining the kind and location of various kinds of devices
on a fabric. (See 16.3 Device Management on page 985).

• Baseboard management: Baseboard management specifies the
means to effect, in-band (i.e. over the IBA fabric) low level system
management operations. (See 16.2 Baseboard Management on
page 973 and InfiniBand Architecture Specification Volume 2,
Chapter 13, Hardware Management).

• SNMP tunneling: SNMP tunneling specifies mechanisms to sup-
port transport of SNMP operations through an IBA fabric. (See
16.4 SNMP Tunneling on page 998).

• Vendor specific: The vendor specific classes specify a basic
framework within which a vendor can define vendor specific man-
agement communications and operations that are beyond the
scope of the IBA. See 16.5 Vendor-specific on page 1005 for ar-
chitectural details relating to use of specific values.

• Application specific: The application specific classes specify a ba-
sic framework within which services can be defined which imple-
ment operations that are beyond the scope of the IBA. See 16.6
Application-specific on page 1008 for architectural details relating
to use of specific values.

As a notational convenience, the set of classes as listed above but ex-
cluding subnet management are referred to as General Services. When
referring to General Services Managers, the notation GSM may be used.
When referring to General Services Agents, the notation GSA may be

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 712 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

used. According to the context in which it appears, GSM(s) or GSA(s) may
refer to the group of all supported general services managers or agents
on a channel adapter, switch, or router, or to any of the managers or
agents in that group.

The IBA management services provided by the above classes support
management of only the devices that comprise the IBA subnet. They do
not support management of devices beyond the subnet. Specifically, they
do not support management of tape drives, hard disk drives, network in-
terfaces, etc. Mechanisms required to discover and power-manage de-
vices that are accessed through an IBA channel adapter are provided
within the above classes but provision of services specific to such devices
is beyond the scope of the IBA.

IBA management provides a means of configuring and gathering informa-
tion from IBA channel adapters, switches, and routers.The IBA Subnet
Administration Service provides a means for other entities to determine
the topology and configuration of the subnet. For example, operating sys-
tems or other higher level management entities may use IBA Subnet Ad-
ministration services mechanisms to enforce operating system policies, or
cluster policies, and so on, but such higher level entities and the policies
they effect are outside the scope of IBA management services.

A variety of standards for communication of management information be-
tween managed elements and management applications exist today.
These include Simple Network Management Protocol (SNMP), Desktop
Management Interface (DMI), and Common Information Model (CIM), as
well as other standard and proprietary interfaces. Such standards may be
layered on top of the IBA management model interfacing to it through ser-
vices defined in the model. Alternatively, they may interface to IBA man-
agement elements through private interfaces. In either case, while the IBA
management model provides means for such applications to obtain
subnet topology and configuration information, such applications are out-
side the scope of IBA management.

Finally, the current IBA specification defines only the mechanisms re-
quired for proper operation of IBA fabrics and interoperation of IBA com-
ponents. Specific applications, such as for enclosure management, can
also be used in conjunction with non-IBA subsystems that are connected
to the IBA subnet. Such applications may utilize the IBA subnet as a
means of transport for the specific subsystem management data but such
subsystem management services themselves are outside of the scope of
the management services specified for IBA.

Figure 142 Management Model on page 713, below, depicts an example
subnet indicating graphically the relationships among the IBA managed

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 713 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

subnet and related services and higher level and lower level entities that
may be found on an IBA fabric.

This chapter provides an overview of the IBA management model, the
management entities, and the corresponding interfaces. In addition this
chapter defines requirements and specifies mechanisms common to all
management activities. Subsequent chapters specify additional details
associated with specific management classes. For each management
class, the complete set of applicable requirements that must be satisfied
and mechanisms that must be provided is the combination of those from
this chapter with those in the corresponding class specific sections of the
other chapters.

13.3 MANAGERS, AGENTS, AND INTERFACES

13.3.1 INTRODUCTION

IBA Management is organized around abstract functional entities referred
to as managers, agents, and interfaces. Communication between man-
agers and agents is performed through management messages referred

Switch

Switch

Switch

IBA Subnet Manager (SM)

End
Node

End
Node

End
Node

Router
to peer
subnet

LED VPDSENSOR

Controller

End Node

IB-ML M
an

ag
em

en
t

Ag
en

ts

Controller

IBA Managed Subnet

IBA Subnet Administration (SA)

Figure 142 Management Model

Management Consoles
and/or

higher level management applications Managed Subnet

Host Based Endnode

I/O Endnode

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 714 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

to as Management Datagrams (MADs). MADs are exchanged using the
unreliable datagram transport service as defined in 9.8.3 Unreliable Dat-
agrams on page 389.

Managers are conceptual functional entities that effect control over fabric
elements or provide for gathering information from fabric elements. In
general, managers may reside anywhere in a subnet although class spe-
cific constraints on the manner in which they logically interface to the
fabric medium (e.g. SMs use QP0, see 13.5.1 MAD Interfaces on page
749) may impose specific restrictions.

Agents are conceptual functional entities present in IBA channel adapters,
switches, and routers that process management messages arriving at the
ports of the IBA channel adapters, routers, and switches where they
exist.The functionality represented by an agent effects required behaviors
associated with MADs which arrive at the port or ports with which it is as-
sociated.

Abstractly, interfaces represent a target to which messages may be sent
and through which messages will be processed or will be dispatched to an
appropriate processing entity. For management interfaces, the associated
processing entity is an agent or, in some cases, a manager. As such, an
interface is a means to gain access to the functionality of agents and/or
managers.

Management operations are divided into a set of classes. For a given
class of activity, there is usually only a small number of managers on a
subnet. Conceptually, for each supported class, there is one agent on
each switch, channel adapter, and router on the IBA subnet.

Although the notions of agent, manager, and interface as described
above, may suggest specific implementations, this specification only man-
dates behavior with respect to sourcing and sinking management mes-
sages, not how that behavior is achieved. The notion of an agent,
manager, or interface, is a convenient descriptive artifice which encapsu-
lates functional operations and behaviors associated with a particular
class of activities. This specification does not require the existence of
agents, managers, or interfaces per se. It does require that implementa-
tions exhibit the behaviors associated with the abstract agents, managers,
and interfaces. How that is actually accomplished is implementation de-
pendent.

The messages and behaviors relating to the subnet management class
are further defined in 14.2 Subnet Management Class on page 794. This
class uses specialized MADs referred to as Subnet Management Packets
(SMPs).

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 715 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 143 Typical Subnet Manager/Agent Relationships on page 715 de-
picts a single subnet showing representative relationships among channel
adapters, switches, subnet managers and agents.

The messages and behaviors relating to the subnet administration class
are further defined in 15.2 SA MADs on page 883 while the messages and
behaviors relating to the other general services classes are further de-
fined in the subsections of Chapter 16: General Services on page 930.
These service classes use MADs referred to as General Services Man-
agement Packets (GMPs).

Port

SMA

Port
Port

SMA

Port

Port

SMA

Port

Port

SMA

Port Port

SMA

Port

Any switch, channel
adapter, or router may host
a Subnet Manager. There
may be multiple Subnet
Managers in a subnet, one
master and several standby.

SMA
SMA

SMA

Port

SMA

Port

SMA

Denotes an endnode.

Denotes a switch.

Denotes a subnet manager.
SM

SMSM

Figure 143 Typical Subnet Manager/Agent Relationships

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 716 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 144 Typical General Services Management/Agent Relationship on
page 716 depicts a single subnet showing representative relationships be-
tween general service class managers and corresponding agents.

13.3.2 REQUIRED MANAGERS AND AGENTS

C13-1: Each subnet shall have at least one logical SM.

Logical SMs may be single physical entities or may consist of multiple,
possibly distributed, cooperating physical entities which collectively effect
the appearance of a single SM to CAs, switches and routers on the subnet
it manages.

If there is more than one entity capable of acting as a master SM, only one
should function as a master SM during initialization.

See Chapter 14: Subnet Management on page 794 for additional specific
requirements applicable to SMs during and after initialization.

Port

GS*
Agent

Port

GS*
Agent

Port

GS*
Agent

Port

Port

GS*
Agent

Port

GS*
Mgr

GS*
Agent

GS*
Agent

Figure 144 Typical General Services Management/Agent Relationship

GS* is an abstraction.
The Mgr/Agent in-
cludes:

• Subnet Adminis-
tration

• Performance
mgmt

• Comm mgmt
• SNMP tunneling
• Device mgmt, De-

 GS*
MGR

Denotes a general services manager.

GS*

Port

GS*

Port

Denotes an endnode.

Denotes a switch.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 717 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

There is a close relationship between SMs and SAs. This is described in
15.1.2 Relationship Between SA and the SM on page 883.

IBA does not otherwise mandate the existence of, the location of, or, op-
erational characteristics of GSMs. The class specific sections of Chapter
16: General Services on page 930 define messages and agent behaviors
available that GSMs depend on but there are no manager specific mes-
sages or related behaviors that GSMs must support.

C13-1.1.1: Every IBA compliant channel adapter, switch, or router shall
support the functionality characterized as a Subnet Management Agent
(SMA).

Supporting the functionality characterized as an SMA means that the
channel adapter, switch, or router conforms to the compliance statements
for the SMA specified in Chapter 14: Subnet Management on page 794.
The specific requirements for supporting this functionality at the various
ports of the device are specified in the chapter covering the specific type
of device. See Chapter 17: Channel Adapters on page 1016, Chapter 18:
Switches on page 1040 and Chapter 19: Routers on page 1059.

Every IBA compliant channel adapter, switch, or router supports the func-
tionality characterized as the various GSAs for those general services
specified to be mandatory in the class specific section of Chapter 16: Gen-
eral Services on page 930. Supporting the functionality characterized as
a GSA means that the channel adapter, switch, or router conforms to the
compliance statements for the GSA specified in the corresponding class-
specific sections of Chapter 16: General Services on page 930. The spe-
cific requirements for supporting this functionality at the various ports of
the device are specified in the chapter covering the specific type of device.
See Chapter 17: Channel Adapters on page 1016, Chapter 18: Switches
on page 1040 and Chapter 19: Routers on page 1059.

13.4 MANAGEMENT DATAGRAMS

Management Datagrams (MADs) are the basic elements of the mes-
saging scheme defined for management communications. MADs are
classified into predefined management classes and for each MAD there
is a specified format, use, and behavior. This section specifies character-
istics, i.e. formats and associated behaviors, common to all MADs or
common across multiple classes. MADs specific to a class are specified
in class specific sections of Chapter 14: Subnet Management on page
794, Chapter 15: Subnet Administration on page 882, and Chapter 16:
General Services on page 930.

13.4.1 CONVENTIONS

C13-2: For all MADs, for both the fields in the MAD header as well as the
fields in MAD attributes, bit placement follows the conventions specified

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 718 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

in 1.5 Document Conventions on page 66. In addition, the following con-
ventions shall be observed.

• Fields within a MAD may be either fixed length or variable length
within a fixed length location. A variable length field placed in a
fixed length location is placed in the high order bits of the fixed
length location and the remainder of that location is filled with ze-
ro.

• Reserved fields shall be filled with 0 by the requester and ignored
by the receiver.

• When constructing a response MAD that contains all or part of
the corresponding request MAD, it is acceptable to include the
contents of reserved fields in the request MAD in the response
MAD without regard to their content. That is, such fields need not
be set to zero in the response MAD.

• In attribute descriptions in subsequent sections, fields specified
as read only (RO) are not alterable by means of MADs. The
mechanisms for setting such fields are implementation depen-
dent and outside of the scope of the IBA. With respect to MADs
that set values, recipients shall ignore any bits in the attribute in a
request that correspond to RO components of the attribute being
set.

• In attribute descriptions in subsequent sections, fields specified
as read write (RW) are settable by means of MADs.

When the term “GID” is used in all attribute descriptions and other text
throughout chapters Chapter 13: Management Model on page 709,
Chapter 14: Subnet Management on page 794, Chapter 15: Subnet Ad-
ministration on page 882, and Chapter 16: General Services on page 930,
it refers only to a unicast GID unless otherwise specified.

13.4.2 MANAGEMENT DATAGRAM FORMAT

C13-3: The data payload (as used in Chapter 9: Transport Layer on page
230) for all MADs shall be exactly 256 bytes.

C13-4: The data payload shall include, and only include, the items de-
fined in the MAD base format in Figure 145 MAD Base Format on page
719, with semantics as described in Table 112 Common MAD Fields on
page 719.

This includes the offset and alignment within that data area of any of the
common attributes specified in 13.4.8 Management Class Attributes on
page 732, which may vary by management class.

All MADs consist of a MAD header and MAD data. Except as noted, the
MAD header definition is the same for all MADs. The contents of MAD

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 719 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

data areas vary by management class and the specific attribute within the
class

13.4.3 MANAGEMENT DATAGRAM FIELDS

Table 112 Common MAD Fields on page 719 lists fields that are common
to all MADs. Each class may specify additional class specific usage for
certain of these fields.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 BaseVersion MgmtClass ClassVersion R Method

4 Status ClassSpecific

8 TransactionID

12

16 AttributeID Reserved

20 AttributeModifier

24 Data

...

252

Figure 145 MAD Base Format

Table 112 Common MAD Fields

Field Name
Length
(bits)

Offset
(bits)

Description

BaseVersion 8 0 Version of MAD base format. This shall be 1.

MgmtClass 8 8 Class of operation. See Table 113 Management Class Values on page 720 for
definition and use.

ClassVersion 8 16 Version of MAD class-specific format. This shall be 1 unless otherwise speci-
fied in the relevant IBTA management class-specific sections of the specifica-
tion.

R 1 24 Response bit. See 13.4.5 Management Class Methods on page 721 for defini-
tion and usage.

Method 7 25 Method to perform based on the management class. See 13.4.5 Management
Class Methods on page 721 for definition and usage.

Status 16 32 Code indicating status of operation. See 13.4.7 Status Field on page 731 for
definition and usage.

ClassSpecific 16 48 This field is reserved except for the Subnet Management class. See 14.2.1.2
SMP Data Format - Directed Route on page 796 for definition and usage for
Subnet Management.

TransactionID 64 64 Transaction identifier. See 13.4.6.4 TransactionID usage on page 731. This
field, if unused by the management class, shall be set to 0.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 720 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.4.4 MANAGEMENT CLASSES

C13-5: MADHeader:MgmtClass shall be one of the values defined in
Table 113 Management Class Values on page 720 not defined as re-
served.

The functionality provided by specific classes is specified in Chapter 13:
Management Model on page 709, Chapter 13: Management Model on
page 709, and Chapter 13: Management Model on page 709.

AttributeID 16 128 Defines objects being operated on by a management class. This field, if unused,
shall be set to 0. See 13.4.8 Management Class Attributes on page 732 as well
as class specific sections of Chapter 14: on page 794, Chapter 15: on page 882,
and Chapter 16: on page 930 for definition and usage.

Reserved 16 144 Reserved

AttributeModi-
fier

32 160 Provides further scope to the attributes. Usage is determined by the manage-
ment class and attribute. This field, when not used for the combination of man-
agement class and attribute specified in the header, shall be set to 0.

Data 1856 192 The data area, usage is defined within the scope of the management class.

Table 112 Common MAD Fields (Continued)

Field Name
Length
(bits)

Offset
(bits)

Description

Table 113 Management Class Values

Management
Class Value Description Required Support for

Class
Reference

Section

Subn 0x01 Subnet Management class
(LID routed)

All channel adapters,
switches, and routers.

14.2 Subnet Man-
agement Class on
page 794

Subn 0x81 Subnet Management class
(Directed route)

All channel adapters,
switches, and routers.

14.2 Subnet Man-
agement Class on
page 794

SubnAdm 0x03 Subnet Administration class All channel adapters,
switches, or routers,
hosting a subnet man-
ager

15.2 SA MADs on
page 883

Perf 0x04 Performance Management
class

All channel adapters,
switches, and routers.

16.1 Performance
Management on
page 930

BM 0x05 Baseboard Management
class (tunneling of IB-ML
commands through the IBA
subnet)

All channel adapters,
switches, and routers.

16.2 Baseboard
Management on
page 973.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 721 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

With respect to the column labeled Required Support for Class, an indica-
tion that support is required indicates that at least some aspects of the
class must be supported. Complete details of which aspects are manda-
tory and which aspects are optional are specified in the corresponding ref-
erence section.

13.4.5 MANAGEMENT CLASS METHODS

Methods define the operations that a management class supports. In ad-
dition to supporting methods common to multiple classes, each manage-
ment class may define additional class specific methods.

The upper bit of the Method field is designated as the response bit (R). It
is used to distinguish three types of messages based upon the type of
method included in the header as follows:

• Message methods are methods for which no response is ever gener-
ated. The R bit is not set (i.e. it is 0) and the corresponding method
with the R bit set is reserved and not used.

DevMgt 0x06 Device Management class Optional. 16.3 Device Man-
agement on page
985

ComMgt 0x07 Communication Manage-
ment class

All channel adapters
that support RC,UC or
RD.

16.7 Communica-
tion Management
on page 1011

SNMP 0x08 SNMP Tunneling class (tun-
neling of the SNMP protocol
through the IBA fabric)

Optional 16.4 SNMP Tun-
neling on page
998

Vendor 0x09-0x0F
0x30-0x4F

Vendor Specific classes Optional 16.5 Vendor-spe-
cific on page 1005

Application 0x10-0x2F Application Specific classes.
Refer to Annex “Application
Specific Identifiers” for a list-
ing of Application Specific
Management class values
currently assigned.

Optional 16.6 Application-
specific on page
1008

0x00
0x02
0x50-0x80
0x82-0xFF

Reserved

Table 113 Management Class Values (Continued)

Management
Class Value Description Required Support for

Class
Reference

Section

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 722 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Request methods are methods for which a response may be generat-
ed. The R bit is not set (i.e. it is 0) and the corresponding method with
the R bit set is defined and potentially used to convey a response.

• Response methods are methods generated in response to receipt of
a request method. The R bit is set (i.e. it is 1) and the corresponding
method with the R bit not set is defined and used to trigger (request)
the response.

See section 13.4.6 Management Messaging on page 723 for required re-
quest/response behavior.

C13-6: The method names and method values shown in Table 114
Common Management Methods on page 722 shall be used in a manner
consistent with the descriptions contained in 13.4.6 Management Mes-
saging on page 723.

C13-7: The values assigned to the common methods shall not be used
for any class-dependent method even if the common method is not sup-
ported.

C13-8: Class specific methods defined to be requests and responses
shall conform to the request response definitions in this section, the re-
quest response requirements specified in Section 13.4.6.4 TransactionID
usage on page 731, and shall use the R bit according to the semantics of
types of methods defined above.

Table 114 Common Management Methods

Name Type
Value

(including R bit)
Description

Get() Request 0x01 Request (read) an attribute from a channel adapter, switch, or
router. See 13.4.6.1.1 Get()/GetResp() on page 724.

Set() Request 0x02 Request a set (write) of an attribute in a channel adapter,
switch, or router. See 13.4.6.1.2 Set()/GetResp() on page 724.

GetResp() Response 0x81 The response from an attribute Get() or Set() request. See
13.4.6.1.1 Get()/GetResp() on page 724 and 13.4.6.1.2
Set()/GetResp() on page 724.

Send() Message 0x03 Send a datagram. Does not require a response. See
13.4.6.1.3 Send() on page 726.

Trap() Message 0x05 An unsolicited datagram sent from a channel adapter, switch,
or router indicating an event occurred that may be of interest.
See 13.4.6.1.4 Trap() on page 726 and 13.4.9 Traps on page
741.

Report() Request 0x06 Used to forward an event/trap/notice to interested party. See
13.4.6.1.6 Report()/ReportResp() on page 726 and 13.4.11
Event Forwarding on page 745.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 723 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For Get(), Set(), GetResp(), and Send() methods, the combinations of
method and attribute that are valid are class specific and are specified in
the respective class sections in Chapter 14: on page 794, Chapter 14: on
page 794, and Chapter 16: on page 930.

For Trap() and TrapRepress(), Report(), and ReportResp() methods, at-
tribute usage is specified in Sections 13.4.9 Traps on page 741, and
13.4.11 Event Forwarding on page 745.

13.4.6 MANAGEMENT MESSAGING

13.4.6.1 METHODS AND MESSAGE SEQUENCING

Interactions using MADs are in a number of cases organized into request-
response pairs such as Get()/GetResp(), Set()/GetResp(), and Re-
port()/ReportResp(). In such cases, the requester may retry requests.

C13-8.1.1: The minimum interval between retries of request messages
(all of which use the same TID) shall be greater than or equal to the re-
sponse time specified in C13-15.1.1: on page 730. The requester shall
cease to retry a given request when it receives a matching response MAD
(see C13-19.1.1: on page 731).

Whether a requester retries requests until it receives a matching response
is vendor-specific. However, since requests (and all MADs) are unreliable
datagrams, there can be no guarantee that the request has been received
unless a response is received by the requester; so in the absence of a re-
sponse, retries may be appropriate. The maximum number of retries per-
formed before concluding that a response will never be received is also
vendor-specific.

ReportResp() Response 0x86 Response to a Report(). See 13.4.6.1.6 Report()/Report-
Resp() on page 726 and 13.4.11 Event Forwarding on page
745.

TrapRepress() Message 0x07 Instruct a Trap() sender to cease sending a repeated Trap().
See 13.4.6.1.5 TrapRepress() on page 726 and 13.4.9 Traps
on page 741 for usage.

0x00, 0x04, 0x08-
0x0F, 0x80, 0x82-
0x85, 0x87-0x8F

Reserved.

0x10-0x7F, 0x90-
0xFF

Class-specific methods. Use is defined by the class.

Table 114 Common Management Methods (Continued)

Name Type
Value

(including R bit)
Description

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 724 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Responders generate responses as appropriate and required for each re-
quest MAD received as specified in sections 13.4.6.1.1 Get()/GetResp()
on page 724, 13.4.6.1.2 Set()/GetResp() on page 724, and 13.4.6.1.6 Re-
port()/ReportResp() on page 726

C13-9: Responders shall not coalesce responses.

The subsequent ladder diagrams illustrate management request / re-
sponse behavior for valid MADs. The operations defined below assume
the receipt of a valid MAD. A MAD is valid if it satisfies all applicable vali-
dation checks as specified in Section 13.5.3 MAD Validation on page 755.

13.4.6.1.1 GET()/GETRESP()

Get() requests the read of an attribute from a channel adapter, switch, or
router, as illustrated in Figure 146 on page 724.

C13-10: This compliance statement is obsolete and has been replaced by
C13-10.1.1:

C13-10.1.1: In response to a valid Get(), the responder shall respond with
a GetResp() MAD.

The attribute contained in the GetResp() is determined according to the
specific MADHeader:MgmtClass and MADHeader:AttributeID in the re-
quest

13.4.6.1.2 SET()/GETRESP()

Set() informs the recipient to set values maintained by the recipient ac-
cording to the values contained in the attribute conveyed in MAD-
Header:Data, as illustrated in Figure 147 on page 725.

C13-11: This compliance statement is obsolete and has been replaced by
C13-11.1.1:.

Manager Node

Get()

GetResp()

Figure 146 Get()

Responder responds
to initiator with current
attribute contents.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 725 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-11.1.1: In response to a valid Set(), the responder shall respond with
a GetResp() MAD.20

C13-12: This compliance statement is obsolete and has been replaced by
C13-12.1.1:.

C13-12.1.1: The attribute contained in a GetResp() response to a Set()
shall be the same as that maintained by the responder when the Get-
Resp() is returned, except as specified in C13-43: on page 754 (redirec-
tion) or where otherwise required by the class. Any externally visible
effects that result from the Set(), such as attribute component values,
shall have been made externally visible prior to returning the GetResp()
except where otherwise required by the class.

If one or more components of the attribute contained in a Set() have in-
valid values, the resultant attribute maintained by the recipient is typically
implementation-specific, unless otherwise specified by the class. For ex-
ample, some attribute components may be changed as specified by the
Set() and some may not. Nevertheless, the attribute returned in the Get-
Resp() will have the attribute contents maintained by the recipient.

Implementors must be aware that it is possible for retries of a Set() re-
quest to result in different GetResp() responses. For example, assume a
Set() reached the responder and was successfully processed by the re-
sponder, but the corresponding GetResp() was dropped in the fabric. The
sender then has no indication that the Set() was processed, and as a re-
sult may retry the Set(). Such a retry may result in a GetResp() with the
Status field set to an error code because the Set() request was received
twice by the responder. This may be the case for a Set () that causes
some entity to be deleted from a table; the retried Set() will attempt to de-
lete an entity that no longer exists and as a result returns an error.

20. Exception: A Set() of PortInfo:PortPhysicalState to Disabled does not
require that a GetResp() be sent from the port which has been Disabled.

Set()

GetResp()

Responder sets an
attribute, then responds
to initiator with current
attribute contents.

Figure 147 Set()

Manager Node

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 726 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.4.6.1.3 SEND()

Send() sends data from one entity to another on a class specific basis. If
the class specific operations require reliability on top of the unreliable da-
tagram service, higher level protocols may be defined based upon ex-
changes of send type MADs. Such higher level protocols are class
specific and are defined either in the class specific sections or other sec-
tions referred to therein.

13.4.6.1.4 TRAP()

Trap() indicates an event occurred at a channel adapter, switch, or router,
as illustrated in Figure 148 on page 726. See Section 13.4.9 Traps on
page 741 for the specification of Trap() usage and behavior.

13.4.6.1.5 TRAPREPRESS()

TrapRepress() instructs a Trap() sender to cease sending a Trap() it is cur-
rently sending. See Section 13.4.9 Traps on page 741 for a complete
specification of traps and TrapRepress().

The intended usage of TrapRepress() is shown in Figure 149 on page 726
below.

13.4.6.1.6 REPORT()/REPORTRESP()

Report() and ReportResp() MADs are used to forward traps directed to a
GSM to parties who have subscribed for Trap() forwarding. See 13.4.11
Event Forwarding on page 745 for the complete specification of the event
forwarding mechanism.

Trap()

Figure 148 Trap()

Manager Node

Manager Node

TrapRepress()

Figure 149 TrapRepress()

One or more in-
stances of a given
Trap() sent by a
channel adapter,
switch, or router.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 727 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-12.1.2: The recipient of a Report(Notice) MAD shall respond with a
ReportResp() MAD with the transaction ID matching that used in the Re-
port() and an empty notice attribute (see 13.4.8.2 Notice on page 737) un-
less otherwise specified by a compliance statement for that class.

There are issues of ordering concerning when events occur and when Re-
port()s of those events are received. For example: Assume event A is de-
tected by a manager prior to event B. The manager could wait until a
subscriber to both A and B has responded (via ReportResp()) to event A
before Report()ing event B to that subscriber; or the manager could wait
until all subscribers to event A have responded prior to Report()ing event
B to any subscriber. Whether any such ordering is maintained is vendor-
specific.

13.4.6.2 TIMERS AND TIMEOUTS

A management entity may use the IBA-defined management timeout and
response time values to bound the amount of time a requester waits for a
response.

Margins for measurement of management time periods are as follows:

• if the period is an upper bound, the margins are -0% and +15%
• if the period is a lower bound, the margins are -15% and +0%
• otherwise the margins are +/- 15%

13.4.6.2.1 PORTINFO:SUBNETTIMEOUT

PortInfo:SubnetTimeout specifies the maximum expected propagation
delay, which depends upon the configuration of the switches, to reach any
other port in the subnet from the port with which this instance of PortInfo
is associated. The duration of time is calculated as

Class Manager EndnodeInterested Host

Report(Notice)

ReportResp(Notice)

Trap()(Notice)

Figure 150 Forwarding Trap()s/Notices from the class manager

4.096 µsec 2PortInfo:SubnetTimeout×

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 728 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

requesters may use this value along with the appropriate RespTimeValue
(see below), to determine how long to wait for a response to a request be-
fore taking other action.

Traps are subject to maximum Trap() rate injection constraints based
upon PortInfo:SubnetTimeout. See 13.4.9 Traps on page 741 for the
usage of PortInfo:SubnetTimout with respect to traps.

13.4.6.2.2 RESPTIMEVALUE

The IBA defined RespTimeValue specifies the expected maximum time
interval between reception of an MAD and transmission of the associated
response or between the associated port’s transmission of successive
MADs that are part of a multiple MAD sequence. Requesters may use this
value along with the appropriate SubnetTimeout (above), to determine
how long to wait for a response to a request, or, how long to wait for a suc-
ceeding MAD in a multi MAD sequence, as described in 13.4.6.3 Tim-
eout/Timer Usage on page 730. The duration of time is calculated as

where the applicable RespTimeValue is selected according to C13-14: on
page 728 below.

C13-13: This compliance statement is obsolete and has been replaced by
C13-13.1.1:.

C13-13.1.1: The time period between beginning the reception of a request
packet for a Get() of ClassPortInfo or PortInfo on a port and an agent's be-
ginning the transmission of the corresponding response packet shall be
less than or equal to 4.3 seconds.

Note that 4.3 seconds corresponds to a timer value of 20, since

. The purpose of compliance statement C13-
13.1.1 is to provide a value that a requester can use in computing an ap-
propriate timeout when initially acquiring the correct RespTimeValue.

C13-14: The RespTimeValue applicable to a given situation depends
upon the operation being performed and the MAD sequences involved.
The appropriate RespTimeValue shall be determined as follows:

• If MADHeader:MgmtClass is Subn or Directed Route Subn the appli-
cable RespTimeValue is conveyed by PortInfo:RespTimeValue (see
14.2.5.6 PortInfo on page 821 for the definition of PortInfo) of the rel-
evant port as identified below.

4.096 µsec 2RespTimeValue×

4.096 µsec 220× 4.3 sec=

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 729 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If MADHeader:MgmtClass is any other than Subn or Directed Route
Subn, and the MADHeader:Method is not Report(), the applicable
RespTimeValue is conveyed by ClassPortInfo:RespTimeValue (see
13.4.8.1 ClassPortInfo on page 734 for the definition of ClassPortIn-
fo) of the relevant port as identified below.

• If the MADHeader:Method is Report(), the applicable RespTimeValue
is conveyed by InformInfo:RespTimeValue (see 13.4.8.3 InformInfo
on page 739 for the definition of InformInfo) specified by an event
subscriber at the time of subscription.

C13-15: In the case of MAD sequences other than Report(), Report-
Resp(), the port used to determine the applicable RespTimeValue shall
be determined as follows:

• For MAD request-response exchanges consisting of a single packet
request followed by a single packet response, the applicable RespTi-
meValue associated with the responding port shall indicate the ex-
pected maximum interval between receipt of the request at that port
and initiation of transmission of the corresponding response.

• For MAD request-response exchanges including a multipacket re-
quest sequence followed by a response, the applicable RespTime-
Value associated with the sending port shall indicate the expected
maximum interval between initiation of transmission of successive
packets in the multipacket request sequence. The applicable RespTi-
meValue associated with the receiving port indicates the expected
maximum interval between receipt of the last packet of the multipack-
et request sequence at that port and initiation of transmission of the
corresponding response.

• For MAD request-response exhanges including a multipacket re-
sponse, the applicable RespTimeValue associated with the respond-
ing port shall indicate the expected maximum interval between
receipt of the last packet of the request at that port and initiation of
transmission of the response. The applicable RespTimeValue associ-
ated with the responding port also indicates the expected maximum
interval between the initiation of transmission of successive packets
in the multipacket response sequence.

• For MAD request-response exchanges using the windowing protocol
defined in 13.6 Reliable Multi-Packet Transaction Protocol on page
770, the applicable RespTimeValue associated with the port originat-
ing the request shall indicate the expected maximum time within
which the requester will request more packets following the last pack-
et in a burst of response packets.

• For operations requiring transmission of a sequence of multiple
MADs not classified as requests (e.g. a succession of Send()s con-
veying fragments of an SNMP frame), the applicable RespTimeValue

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 730 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

associated with the port sending the sequence shall indicate the ex-
pected maximum interval between initiation of transmission of suc-
cessive packets in the sequence.

C13-15.1.1: In the case of the MAD sequence Report(), ReportResp(), In-
formInfo:RespTimeValue specified by an event subscriber at the time of
subscription shall indicate the expected interval between receipt of the
Report() at that port and initiation of transmission of the corresponding
ReportResp().

Send(), Trap(), or TrapRepress() do not have an associated response
MAD (Send() MADs exchanged as part of a higher level protocol are not
request/response sequences in this context). As such, the IBA-defined
management timeout and response times are not applicable. Note that
while TrapRepress() may be sent as a result of the sending of a Trap().
Trap() and TrapRepress() are classified as messages not as requests or
responses and do not constitute a request/response sequence.

13.4.6.3 TIMEOUT/TIMER USAGE

In general, the expected maximum time interval between transmission of
a request and receipt of the associated response is

where RespTimeValue is determined according to 13.4.6.2.2 RespTime-
Value on page 728, and CommTimeValueOut and CommTimeValueIn are
either:

• both equal to PortInfo:SubnetTimeout, if the path is entirely within a
single subnet; or

• PathRecord:PacketLifeTime values, with CommTimeValueOut using
the path from requester to responder, and CommTimeValueIn using
the path from responder to requester (see 15.2.5.16 PathRecord on
page 899).

The use of PathRecord:PacketLifeTime is preferable when a path is
known, since it will often be smaller than PortInfo:SubnetTimeout because
it refers to a single path, not an upper bound on all paths. PacketLifeTime
is, however, not always available; for example, it is not available before
first contact has been made with Subnet Administration (see 15.4.1.2 Ac-
cess Restrictions For Other Attributes on page 922).

C13-16: For request/response sequences, timers shall be started for
each request transmitted and reset upon arrival of the corresponding re-
sponse MAD.

C13-17: This compliance statement is obsolete and has been deleted.

4.096 µsec 2CommTimeValueOut 2CommTimeValueIn 2RespTimeValue+ +()×

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 731 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.4.6.4 TRANSACTIONID USAGE

The contents of the TransactionID (TID) field are implementation-depen-
dent.

C13-18: This compliance statement is obsolete and has been replaced by
C13-18.1.1:.

C13-18.1.1: When initiating a new operation, MADHeader:TransactionID
shall be set to such a value that within that MAD the combination of TID,
SGID, and MgmtClass is different from that of any other currently exe-
cuting operation. If the MAD does not have a GRH, its SLID is used in the
combination in place of an SGID. Repeated Trap() messages for the same
event may be regarded as continuing a 'currently executing' operation as
long as the Trap() can be repeated and no corresponding TrapRepress()
has been received, or they may be regarded as initiating new operations.

C13-19: This compliance statement is obsolete and has been replaced by
C13-19.1.1:.

C13-19.1.1: Note that the above implies that recipients of messages shall
use the combination of TID, SGID (or SLID), and MgmtClass to uniquely
associate messages or message sequences, not just the TID.

C13-20: When constructing a request that consists of sequence of MADs,
requesters shall set MADHeader:TransactionID in each MAD that is part
of the sequence to an identical value.

C13-21: When constructing a response, responders shall set MAD-
Header:TransactionID in the response equal to MADHeader:Transac-
tionID in the corresponding request.

C13-22: Where a response is made up of multiple MADs, MAD-
Header:TransactionID in each MAD in the response shall be set equal to
MADHeader:TransactionID in the corresponding request.

C13-23: Where an operation defined for an IBA management class re-
quires a sender to send a succession of MADs of type message to effect
the operation (e.g. an SNMP PDU being tunneled through IBA), the
sender shall set MADHeader:TransactionID in each MAD that is part of
the sequence to an identical value.

13.4.7 STATUS FIELD

All MADs contain a status field. The status field is used in MADs of type
response to convey information about the disposition of the request or
conditions associated with disposition of the request.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 732 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The status field consists of 16 bits. The eight low order bits of the field are
used for indications common to all classes. The eight high order bits of the
field are used for class specific indications. Class specific status indica-
tions are defined in the class specific sections of Chapter 14: Subnet Man-
agement on page 794, Chapter 15: Subnet Administration on page 882,
and Chapter 16: General Services on page 930.

C13-24: For messages of type Response (see 13.4.5 Management Class
Methods on page 721), the usage of the low order 8 bits shall be set as
specified in Table 115 MAD Common Status Field Bit Values on page 732.

C13-25: This compliance statement is obsolete and has been deleted.

Except as stated in C13-24: on page 732, the use of the status field is
class-specific.

13.4.8 MANAGEMENT CLASS ATTRIBUTES

Attributes define the data which a management class manipulates. Each
management class defines its own set of attributes.

Attributes are composite structures consisting of components typically
representing hardware registers in channel adapters, switches, or routers.
Each attribute is assigned a unique Attribute ID.

Depending upon the attribute, components may be read only, read/write,
or reserved.

Table 115 MAD Common Status Field Bit Values

Bit Name Meaning

0 Busy Temporarily busy. MAD discarded. This is not an error.

1 RedirectionRequired Redirection. This is not an error.

2-4 Code for invalid field 0 - no invalid fields
1 - Bad version. Either the base version, or the class version, or the
combination of the two is not supported.
2 - The method specified is not supported
3 - The method/attribute combination is not supported
4-6: Reserved
7 - One or more fields in the attribute or attribute modifier contain an
invalid value. Invalid values include reserved values and values that
exceed architecturally defined limits.

5-7 Reserved

 8-15 Class Specific The use of these bits is class specific.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 733 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Some attributes have associated AttributeModifiers (AMs) which further
qualify or modify the application of the attribute. The use of the AM is at-
tribute-specific and usage is defined where the attribute is defined.

C13-26: When the AM is not used it shall be set to all zeroes.

It is not possible to selectively set a single component within an attribute.
A Get() must be performed to obtain the whole attribute, the single com-
ponent must be modified in the result and a Set() must be performed to
write the whole attribute. No atomicity is implied or provided in this se-
quence of operations.

C13-27: A given attribute shall have the same format for the Get(), Set()
and GetResp() methods if used with those methods.

There are three attributes which are common across multiple classes.
Table 116 Attributes Common to Multiple Classes on page 734 lists each
such attribute, its ID, and the classes where it is used. Attribute IDs less
than 0x10 identify common attributes or are reserved. Attribute IDs equal
to or greater than 0x10 identify attributes whose definitions are class spe-
cific. The structure and content of the common attributes is defined in the
following subsections.

The overall offset and alignment of the common attributes are defined by
the classes which use them. In particular, if a class specifies additional
header data following the common MAD header, then when the class
uses the common attributes their position and alignment in the MADs of
that class may follow that additional header data.

C13-27.1.1: All managers shall use the Attribute IDs shown in Table 116
Attributes Common to Multiple Classes on page 734 for the purposes in-
dicated in that table. The content of the ClassPortInfo, Notice, and Inform-
Info attributes shall be as indicated in 13.4.8.1 ClassPortInfo on page
734, 13.4.8.2 Notice on page 737, and 13.4.8.3 InformInfo on page 739
respectively.

The structure and content of class-specific attributes are defined in the re-
spective class specific sections of Chapter 14: Subnet Management on
page 794, Chapter 15: Subnet Administration on page 882, and Chapter
16: General Services on page 930.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 734 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following common attributes are defined:

13.4.8.1 CLASSPORTINFO

C13-28: Channel adapters, switches, and routers implementing a GS
class agent shall implement ClassPortInfo according to the definition
specified in Table 117 ClassPortInfo on page 735.

C13-29: The ClassPortInfo attribute shall be implemented for every GS
class agent supported by a node; it shall be implemented on every port
through which the GS class agent may be accessed.

C13-30: The ClassPortInfo attribute shall be implemented for the SA
class by any node on which an SA is located; it shall be implemented on
every port through which the SA class may be accessed.

The presence of ClassPortInfo for a management class confirms the
availability of that management class on a particular channel adapter,
switch, or router and provides information about the version of MADs sup-
ported by the class on that channel adapter, switch, or router. (Note: sup-
port for a given class can be determined directly from capability bits in
PortInfo for the port in question. See 14.2.5.6 PortInfo on page 821).

Table 116 Attributes Common to Multiple Classes

Attribute Name Attribute ID Attribute-
Modifier Description Where Used

0x0000 Reserved

ClassPortInfo 0x0001 0x00000000 General and port-specific
information for a GS manage-
ment class

The SA class and all supported
GS classes on channel adapters,
switches, and routers. See
13.4.8.1 ClassPortInfo on page
734.

Notice 0x0002 0x00000000-
0xFFFFFFFF

Information regarding the
associated Notice (or Trap() in
which case the AttributeModi-
fier shall be 0)

All classes supporting
traps/notices. See 13.4.8.2 Notice
on page 737.

InformInfo 0x0003 0x00000000 Event Subscription All classes having a class man-
ager supporting event subscrip-
tion. See 13.4.8.3 InformInfo on
page 739.

0x0004-0x000F Reserved

0x0010-0xFFFF Class-dependent values. Usage of values in this range is
class specific and is specified in
the class specific sections of
Chapter 14: on page 794, Chapter
15: on page 882, and Chapter 16:
on page 930.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 735 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The ClassPortInfo attribute also provides port-specific information for
class services on a channel adapter, switch, or router. In addition to being
available as the object of a Get() method specifying it as the target, Class-
PortInfo is also returned as the result of any Get() or Set() if the requester
is being redirected as described in 13.5.2 GSI Redirection on page 753.

ClassPortInfo contains information related to general services traps. If
sending Trap() messages is supported on a channel adapter, switch, or
router, and if Trap() sending is enabled for this port (nonzero TrapLID),
ClassPortInfo defines the destination to which traps for the subject GS
class applying to this port are to be sent. See 13.4.9 Traps on page 741.
Note that this applies only to general services traps. Subnet management
traps do not use this mechanism.

For both redirection and traps, ClassPortInfo provides support for cross-
subnet communications by including the information necessary to build a
properly formed GRH, see 13.4.9 Traps on page 741 and 13.5.2 GSI Re-
direction on page 753.

Table 117 ClassPortInfo

Component Access
Length
(bits)

Offset
(bits)

Description

BaseVersion RO 8 0 Current supported MAD Base Version. Indicates that this channel adapter,
switch, or router supports up to and including this version.

ClassVersion RO 8 8 Current supported management class version. Requirements for this channel
adapter, switch, or router to support previous class versions is class-specific.

CapabilityMask RO 16 16 Supported capabilities of this management class, bit set to 1 for affirmation of
management support.
Bit 0 - If 1, the management class agent generates Trap() MADs
Bit 1 - If 1, the management class agent implements Get(Notice) and
Set(Notice)
Bit 2-7: reserved
Bit 8-15: class-specific capabilities.

Reserved RO 27 32 Reserved

RespTimeValue RO 5 59 See 13.4.6.2 Timers and Timeouts on page 727.

RedirectGID RO 128 64 The GID a requester shall use as the destination GID in the GRH of mes-
sages used to access redirected class services. If redirection is not being
performed, this shall be set to zero.

RedirectTC RO 8 192 The Traffic Class a requester shall use in the GRH of messages used to
access redirected class services. For more on the definition and significance
of traffic class see 8.2.2.3 Service Levels on page 223 and 8.3.2 Traffic Class
(TClass) - 8 bits on page 225

RedirectSL RO 4 200 The SL a requester shall use to access the class services.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 736 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RedirectFL RO 20 204 The Flow Label a requester shall use in the GRH of messages used to
access redirected class services.

RedirectLID RO 16 224 If this value is non-zero, it is the DLID a requester shall use to access the
class services.
If this value is zero, the redirect requires the requester to use the supplied
RedirectGID to request further path resolution from subnet administration.
The RedirectGID, the RedirectQP and RedirectP_Key from this redirect
response are all valid, but the RedirectSL, RedirectFL, RedirectTC, and
RedirectLID will in general not be valid; they must be replaced using a Path-
Record obtained from the SA.
See the comment about redirection following this table.

RedirectP_Key RO 16 240 The P_Key a requester shall use to access the class services.

Reserved RO 8 256 Reserved

RedirectQP RO 24 264 The QP that a requester shall use to access the class services.

RedirectQ_Key RO 32 288 The Q_Key associated with the RedirectQP. This Q_Key shall be set to the
well known Q_Key.

TrapGID RW 128 320 The GID to be used as the destination GID in the GRH of Trap() messages
originated by this service. If all zeroes, no GRH is inserted in Trap() mes-
sages.

TrapTC RW 8 448 The Traffic Class to be placed in the GRH of Trap() messages originated by
this service. For more on the definition and significance of traffic class see
8.2.2.3 Service Levels on page 223 and 8.3.2 Traffic Class (TClass) - 8 bits
on page 225.

TrapSL RW 4 456 The SL that shall be used when sending Trap() messages originated by this
service.

TrapFL RW 20 460 The Flow Label to be placed in the GRH of Trap() messages originated by
this service.

TrapLID RW 16 480 The DLID to where Trap() messages shall be sent by this service. If all
zeroes, traps shall not be sent from this port.

TrapP_Key RW 16 496 The P_Key to be placed in the header for traps originated by this service.

TrapHL RW 8 512 The Hop Limit to be placed in the GRH of Trap() messages originated by this
service. This specifies the maximum number of routers through which the
message containing the GRH specified here may pass. The default value is
255.

TrapQP RW 24 520 The QP to which Trap() messages originated by this service shall be sent.

TrapQ_Key RW 32 544 The Q_Key associated with the TrapQP. This Q_Key shall have the high
order bit set. See 10.2.5 Q_Keys on page 439 for a description of the signifi-
cance of setting the high order bit.

Table 117 ClassPortInfo (Continued)

Component Access
Length
(bits)

Offset
(bits)

Description

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 737 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Comment About Redirection: Redirection may be fairly complex on cer-
tain fabric topologies. Simple InfiniBand CAs may not be able to fully re-
solve a path to another port it may supply, while complex InfiniBand
management applications may do this as a matter of course. In the former
case the simple CA can send a redirect to a requester that sets the Redi-
rectLID component in the ClassPortInfo Attribute to zero. A zero value Re-
directLID indicates that the requester must request a PathRecord from the
SA using the supplied RedirectGID and requester's own source informa-
tion. Refer to 15.2.5.16 PathRecord on page 899.

13.4.8.2 NOTICE

The Notice attribute describes an exception or other channel adapter,
switch, or router event. It is used by both the Trap() mechanism described
in 13.4.9 Traps on page 741 and the Notice mechanism described in
13.4.10 Notice Queue on page 743.

C13-30.1.1: If a management class defines any Notice attributes, then the
class manager shall support both the reception of Trap()s and the Notice
Queue operations of polling and deleting entries, unless otherwise speci-
fied by a compliance statement for that class.

C13-30.1.2: An agent shall either send a Trap() or store a notice in its No-
tice Queue or both when the condition or event corresponding to the no-
tice occurs, unless otherwise specified by a compliance statement for that
class.

o13-1: This compliance statement is obsolete and has been replaced by
o13-1.1.1:.

o13-1.1.1: Channel adapters, switches, and routers implementing Notice
attributes shall conform to the definition specified in Table 118 Notice on
page 737.

Table 118 Notice

Component Access
Length
(bits)

Offset
(bits)

Description

IsGeneric RO 1 0 If set to 1, notice is generic, else is vendor specific

Type RO 7 1 Enumeration indicating type of Trap()/notice:
0 - Fatal
1 - Urgent
2 - Security
3 - Subnet Management
4 - Informational
5-0x7E - Reserved
0x7F - Empty notice. All other fields are meaningless.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 738 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ProducerType
/ VendorID

RO 24 8 If generic, indicates the type of the event’s producer:
1 - Channel Adapter
2 - Switch
3 - Router
4 - Class Manager
0, 5-0xFFFFFF - Reserved
If not generic, indicates the 24 bit IEEE OUIa assigned to the vendor.

TrapNumber /
DeviceID

RO 16 32 If generic, indicates a class-defined trap number. Number 0xFFFF is reserved.
If not generic, this is Device ID information as assigned by device manufac-
turer.

IssuerLID RO 16 48 In a GetResp(Notice) message: the base LID of the port from which this
Notice is retrieved.
In a Trap() message: the base LID of the port that emitted the Trap().
In a Report() message:
• If the Report() message resulted from a Trap() message or from polling a

Notice Queue, the IssuerLID used in that case.
• If the Report() message was fabricated by the class manager on behalf of a

particular node, this may be the a LID of the subject node, as specified by the
management class.

• Otherwise, the base LID of the port emitting the Report() message (e.g., SM
traps 64 and 65; see 14.2.5.1 “Notices and Traps” on page 812.

NoticeToggle RW 1 64 For Notices retrieved from Notice Queues, alternates between zero and one
after each Notice is cleared. See 13.4.10 Notice Queue on page 743.
For Trap()s, this shall be set to 0.
In a Report() message, this value is undefined.

NoticeCount RW 15 65 For Notices retrieved from Notice Queues, indicates the number of notices
queued on this channel adapter, switch, or router. See 13.4.10 Notice Queue
on page 743.
For Traps, this shall be set to 0.
In a Report() message, this value is undefined.

DataDetails RO 432 80 If generic, data details is disambiguated by management class and TrapNum-
ber. Otherwise disambiguation is vendor defined.

Table 118 Notice (Continued)

Component Access
Length
(bits)

Offset
(bits)

Description

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 739 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Certain operations involving the Notice attribute require the use of an
empty notice. See 13.4.10 Notice Queue on page 743 and 13.4.11 Event
Forwarding on page 745. An empty notice is a Notice attribute in which the
type field is set to 0x7F. The only valid field in an empty notice is the type
field, the contents of all others should be considered meaningless.

13.4.8.3 INFORMINFO

The InformInfo attribute provides information for subscribing to a class
manager for event forwarding. See 13.4.11 Event Forwarding on page
745.

o13-2: This compliance statement is obsolete and has been replaced by
o13-2.1.1:.

o13-2.1.1: Channel adapters, switches, and routers implementing the In-
formInfo attribute shall conform to the definition specified in Table 119 In-
formInfo on page 739.

IssuerGID RO 128 512 This field shall only be present in Notice attributes sent in GMPs using the
Report() method. It shall not be present in any other uses of the Notice
attribute, such as those sent using the Trap() method and those sent using
Set(Notice), Get(Notice), or GetResp(Notice) operations targeting a Notice
Queue (see 13.4.10 Notice Queue on page 743)b.
If IssuerGID is present, its value identifies the port that was the source of the
event, i.e.:
• If the Report() is sent as a result of a Trap() or GetResp(Notice) that con-

tained a GRH, then IssuerGID shall be a GID of the port identified by the
SGID field in that GRH.

• Otherwise, IssuerGID shall be set to a GID of the port identified by Issuer-
LID.

a. An OUI is a 24 bit globally unique assigned number referenced by various standards. OUI is used in the family of 802 LAN
standards, e.g., Ethernet, Token Ring, etc. See http://standards.ieee.org.
b. Trap()s, as well as Set()s and Get()s on Notice Queues, may be sent using SMPs. However, there is insufficient room for
IssuerGID in Notice attributes carried by SMPs because of SMPs' provision for directed route information. There is sufficient room
when Notice attributes are carried by GMPs.

Table 118 Notice (Continued)

Component Access
Length
(bits)

Offset
(bits)

Description

Table 119 InformInfo

Component Type
Length
(bits)

Offset
(bits)

Description

GID RW 128 0 Specifies specific GID to subscribe for. Set to all zeroes if not desired.
See 13.4.11 Event Forwarding on page 745.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 740 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIDRangeBegin RW 16 128 Ignored if GID is nonzero.
Specifies the lowest LID in a range of LID addresses to subscribe for.
Address 0xFFFF denotes all endports managed by the manager to
which this InformInfo is directed.

LIDRangeEnd RW 16 144 Ignored if GID is nonzero.
Specifies the highest LID in a range of LID addresses to subscribe for.
Set to 0 if no range desired. Ignored if LIDRangeBegin is 0xFFFF.

Reserved RO 16 160 Reserved

IsGeneric RW 8 176 If set to 1, forward generic traps or notices.
If set to 0, forward all vendor specific traps or notices.
Values above 1 are undefined.

Subscribe RW 8 184 If set to 1, subscribe
If set to 0, unsubscribe.
Values above 1 are undefined.

Type RW 16 192 Enumeration indicating the type of the Trap() or notice. Valid values are:
0 - Fatal
1 - Urgent
2 - Security
3 - Subnet Management
4 - Informational
0xFFFF - forward all

TrapNumber /DeviceID RW 16 208 If not generic, this is device ID information as assigned by device manu-
facturer. If generic, indicates trap number. Number 0xFFFF means for-
ward any TrapNumber/DeviceID.

QPN RW 24 224 Ignored except when subscribe=0 (an unsubscribe request). Queue
pair to which Report()s were sent as a result of a corresponding sub-
scription. If no subscription for this Report() with this QPN exists, the
request to unsubscribe performs no action and produces GetResp()
with status indicating an invalid field value (see Table 115 MAD Com-
mon Status Field Bit Values on page 732).

Reserved RO 3 248 Reserved

RespTimeValue RO 5 251 See 13.4.6.2.2 RespTimeValue on page 728.

Reserved RO 8 256 Reserved

Table 119 InformInfo (Continued)

Component Type
Length
(bits)

Offset
(bits)

Description

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 741 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Nodes can unsubscribe from any subscriptions they have made by setting
InformInfo:Subscribe to 0 and providing the relevant components of the
InformInfo attribute. It is the node's responsibility to clean up any stale
subscription on application failure. For example, if an application exits, the
supervisor could send unsubscribe messages to all the managers that
support event forwarding in its partitions. These messages would unsub-
scribe all the UD QPs that have the (privileged) reserved management
Q_Key and were used by the application.

13.4.9 TRAPS

Traps are asynchronous notifications for the purpose of alerting an entity
within another channel adapter, switch, or router about exception condi-
tions or other events of interest at a given channel adapter, switch, or
router within the subnet.

C13-31: This compliance statement is obsolete and has been replaced by
C13-30.1.2: on page 737.

The conditions and events corresponding to notices are defined by man-
agement classes, which also define whether these are optional or re-
quired for that class.

See 13.4.10 Notice Queue on page 743 for a description of Notice sup-
port.

For the subnet management class, traps originate at a CA, switch, or
router and are always sent to the master subnet manager managing the
originator. The managing SM is always on the same subnet since cross
subnet communications is not allowed for subnet management class
MADs. Subnet management traps are always allowed and there is no di-
rect mechanism for preventing a CA, switch, or router from sending traps

ProducerType/VendorID RW 24 264 If generic, indicates the type of the event’s producer:
1 - Channel Adapter
2 - Switch
3 - Routero
4 - Class Manager
0,5-0xFFFFFE - Reserved
0xFFFFFF - Indicates that all events produced or received by this man-
ager should be forwarded. Implementing this behavior is optional; if not
implemented, the usual response to invalid field values is returned (see
Table 115, “MAD Common Status Field Bit Values,” on page 732)."
If not generic, indicates the 24 bit IEEE OUI assigned to the vendor.

Table 119 InformInfo (Continued)

Component Type
Length
(bits)

Offset
(bits)

Description

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 742 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

(note, there may be actions which as a side effect cause cessation of
traps, i.e. downing a port, but these are not considered direct mecha-
nisms).

For each GS management class, whether traps are allowed to be sent for
that class is specified in ClassPortInfo for that class.

C13-32: If ClassPortInfo:TrapLID for a particular port and class is zero,
traps shall not be generated from that port for that class.

o13-2.a1: If Trap() generation is supported, the destination address and
certain other necessary message parameters shall be obtained from
ClassPortInfo as indicated in Table 117 ClassPortInfo on page 735 and
the source LID shall be set to the PortInfo:LID of the originating port.

The destination for traps may be in the same subnet or in another subnet.
If traps are to be delivered to a destination not in the same subnet, the
ClassPortInfo:TrapGID is non zero and a GRH is required in the Trap()
message. If ClassPortInfo:TrapGID is zero, the Trap() destination is within
the same subnet and no GRH is included in the message.

If a GRH is required, the source GID in the GRH is the GIDIndex0 of the
originating port and other fields in the GRH are either fixed or are given
values drawn from counterpart fields in ClassPortInfo. 8.3 Global Route
Header on page 225 specifies the requirements applicable to GRHs.

Traps are always sent to the destination identified in ClassPortInfo and
only to that destination. It is the responsibility of any entity that sets Class-
PortInfo fields to assure that the values programmed are consistent. That
is, the combination of GID/DLID, P_Key, port, etc. must be consistent with
addressing of and access rules applicable to the specified port.

Traps may be issued by any channel adapter, switch, or router on the
subnet. Channel adapters, switches, and routers may repeat sending of a
Trap()

o13-3: Channel Adapters, switches and routers shall not send traps for
any given management class at a rate greater than the Trap() rate limit
specified. For a given port, the Trap() rate limit shall be defined as the re-
ciprocal of the time duration determined from PortInfo:SubnetTimeout for
that port. See 13.4.6.2.1 PortInfo:SubnetTimeout on page 727.

o13-4: Traps shall contain the Notice attribute to identify the Trap(). The
Notice attribute is described in 13.4.8.2 Notice on page 737.

o13-5: Trap() originators shall use the same MADHeader:TransactionID
value for all instances of repeated traps.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 743 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Recipients of traps may send TrapRepress() MADs to Trap() originators.

o13-5.1.1: A TrapRepress() MAD shall be constructed in accordance with
13.5.4 Response Generation and Reversible Paths on page 768 as if it
were a response to the Trap() being repressed, except that the Q_Key
shall be set to the Q_Key of the corresponding Trap().

o13-6: Upon receipt of a valid TrapRepress() MAD, the Trap() originator
shall cease sending the Trap() which matches the Trap() identified by the
TrapRepress() MAD. A Trap() being repeatedly sent matches a Trap()
identified in a TrapRepress() MAD when both MADHeader:TransactionID
in the Trap() MAD matches MADHeader:TransactionID in the TrapRe-
press() MAD and the Notice attribute in the Trap() MAD matches the No-
tice attribute in the TrapRepress().

o13-7: If a TrapRepress() is received and no matching Trap() is being
sent, the TrapRepress() shall be silently dropped and no other action
taken.

Sending traps is optional, unless specified otherwise by a compliance
statement.

Management classes supplement Trap() handling through the use of the
event forwarding mechanism described in 13.4.11 Event Forwarding on
page 745.

Although Traps and the Notice Queue (NQ) mechanism (see 13.4.10 No-
tice Queue on page 743) use the same Notice attribute to describe events
or conditions, the Trap() mechanism and the notice queues mechanism
are completely independent. There is no requirement that a Notice queue
entry be generated when a Trap() is sent or vice versa.

13.4.10 NOTICE QUEUE

The NQ is a repository for storing Notice attributes (see 13.4.8.2 Notice
on page 737) associated with the occurrence of an event or the detection
of a condition at a channel adapter, switch, or router. Notices in the NQ
are queried or deleted using Get(Notice) and Set(Notice) methods re-
spectively.

o13-8: The Notice Queue shall operate as a first in first out queue. For
Get(Notice), the AM shall be 0. This selects the oldest notice attribute
saved, that is, the Notice attribute on the top (or front) of the queue.

o13-9: Notice:NoticeCount in a returned Notice attribute shall always in-
dicate the number of notices currently on the queue. Performing a
Get(Notice) does not remove a Notice from the NQ. Notice:NoticeCount
includes the notice returned in response to the Get().

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 744 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o13-10: This compliance statement is obsolete and has been replaced by
o13-10.1.1:

o13-10.1.1: If the queue is empty, the Notice attribute returned shall be
an empty Notice and Notice:NoticeCount shall contain 0. Otherwise the
recipient of a Get(Notice) shall return a copy of the oldest notice in the No-
tice attribute in the response.

To clear notices from the head of the Notice Queue, the requester sends
a Set(Notice) MAD containing a Notice attribute with:

• Notice:NoticeToggle set to match Notice:NoticeToggle in the
channel adapter’s, switch’s, or router’s Notice attribute.

• Notice:NoticeCount set to the number of notices to delete.

• MADHeader:AM = 0

o13-11: Upon receipt of a Set(Notice) MAD, if the recipient implements an
NQ, the recipient shall perform the following actions:

• If the NoticeToggle value in the Set(Notice) does not match the
NoticeToggle value in the Notice attribute on the channel adapter,
switch, or router, the Set(Notice) is silently discarded and no oth-
er action is taken.

• The oldest notice and successively newer notices up to a total
number of notices indicated by Notice:NoticeCount in the Notice
attribute contained in the Set(Notice) shall be deleted. If No-
tice:NoticeCount in the request Notice is greater than the number
of notices on the queue, the queue is emptied.

• The response to the next Get(Notice) request shall return a No-
tice attribute that corresponds to the new top of the queue and
Notice:NoticeCount in the response shall reflect the updated
count of notices on the queue.

• Since the Notice Queue acts as a FIFO, the only valid value for
MADHeader:AM is 0.

The attribute content is undefined in the GetResp() issued in response to
a Set(Notice).

The types and number of notices captured by a channel adapter, switch,
or router is implementation-dependent. The actual size of the Notice
Queue is implementation specific and is not specified by the architecture.
Behavior of a full Notice Queue when the channel adapter, switch, or
router has another notice to queue is undefined.

Channel adapters, switches, and routers are not required to support the
NQ mechanism.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 745 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.4.11 EVENT FORWARDING

Entities can request that events be forwarded to them by subscribing for
them. These events are instantiated by traps or notice queue entries.
Traps are sent to the class manager, while notice queues are polled by the
class manager.

Entities request notification via the event-forwarding subscription mecha-
nism. To subscribe, an interested entity sends a Set(InformInfo) request
to the class manager identifying the set of devices for which events are to
be forwarded. The set of devices can be identified by the GID or LID of a
specific port or a range of LIDs which encompasses many ports. The class
manager responds with a GetResp(InformInfo) message to confirm or
deny such forwarding.

It is optional for a class manager to implement event forwarding. However,
see C13-32.1.1:.

C13-32.1.1: A manager for a class that defines either notices or traps
shall support event forwarding (see compliance statements o13-12.1.1:
on page 745 through o13-17.1.1: on page 747). The SA shall perform this
function for the SM.

o13-12: This compliance statement is obsolete and has been replaced by
o13-12.1.1:.

o13-12.1.1: A manager that supports event forwarding shall confirm a
valid request for event subscription (see o13-14.1.1: on page 746) by re-
sponding with an InformInfo attribute that is a copy of the data in the
Set(InformInfo) request.

C13-32.2.1: If a manager receives a duplicate Set(InformInfo) with Inform-
Info:Subscribe set to 1, one which has all the data in the attribute and the
source QPn identical to a prior successful Set(InformInfo), the duplicate
Set(InformInfo) shall be ignored except for returning the normal non-error
response to a successful Set(InformInfo).

o13-13: This compliance statement is obsolete and has been replaced by
o13-13.1.1:.

o13-13.1.1: This compliance statement is obsolete and has been deleted.

Requesters wishing to subscribe to event forwarding may determine
which managers exist and their locations on the fabric by querying the SA.
See 15.4 Operations on page 921 for a discussion of subnet administra-
tion including restrictions on access to and use of the SA.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 746 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The exchange of MADs to effect subscription to event forwarding is de-
picted in Figure 151 Subscribing and unsubscribing for forwarding on
page 746 below.

o13-14: This compliance statement is obsolete and has been replaced by
o13-14.1.1:.

o13-14.1.1: Except for Set(InformInfo) requests with Inform-
Info:LIDRangeBegin=0xFFFF, managers that support event forwarding
shall, upon receiving a Set(InformInfo), verify that the requester origi-
nating the Set(InformInfo) and a Trap() source identified by Inform-
Info:GID or InformInfo:LIDRangeBegin and InformInfo:LIDRangeEnd are
permitted to access each other according to the current partitioning. The
manager shall perform verification by verifying that a valid path exists be-
tween the requester and the Trap() source.

This verification can be accomplished by requesting a path between the
requestor and a trap source using a SA query operation. If such a path ex-
ists, the Set(InformInfo) succeeds. If such a path does not exist, the GID
or LID is invalid as a Trap() source. A GID or LID specifies an invalid
Trap() source if the associated port is not accessible to the requester
under current partitioning.

C13-32.2.2: Managers that support event forwarding shall, upon re-
ceiving a Set(InformInfo), verify that the requester is allowed to receive all
the traps that it subscribes for. If a single Set(InformInfo) is used to sub-
scribe to multiple traps, and the subscriber is not allowed to receive one
or more of those traps, the entire Set(InformInfo) shall fail and no sub-
scriptions shall be recorded.

o13-15: This compliance statement is obsolete and has been replaced by
13-15.2.1.

o13-15.2.1: If partition or other verification fails on Set(InformInfo), the
manager receiving the request shall indicate in the response that the op-
eration failed with an invalid attribute status value as defined in 13.4.7

Class Manager EndnodeInterested Host

Set(InformInfo)

Figure 151 Subscribing and
unsubscribing for forwarding

GetResp(InformInfo)

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 747 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Status Field on page 731 and Table 115 MAD Common Status Field Bit
Values on page 732).

o13-16: This optional compliance statement is obsolete and has been de-
leted.

o13-17: This optional compliance statement is obsolete and has been re-
placed by o13-17.1.1:.

o13-17.1.1: Managers that support event forwarding and have confirmed
a request for event subscription shall forward corresponding events to the
subscriber using a Report(Notice) MAD, as long as the subscriber and
Trap() source are permitted to access each other according to current par-
titioning.

o13-17.2.1: Managers that support event forwarding and have confirmed
a request for event subscription, yet on sending a Report(Notice) to the
subscriber receive no ReportResp(Notice) after a vendor-chosen number
of retries, or receive an invalid ReportResp(Notice), shall permanently
discontinue all event forwarding caused by the Set(InformInfo) which cre-
ated a subscription to that trap source.

o13-17.1.2: If a Set(InformInfo) specified a valid trap source at the time of
subscription (see o13-14.1.1: on page 746), yet Trap() forwarding fails be-
cause the subscriber and trap source are no longer permitted to access
each other according to current partitioning (see o13-17.1.1: on page
747), then the manager shall permanently discontinue all event for-
warding caused by the Set(InformInfo) which created a subscription to
that trap source, except if InformInfo:LIDRangeBegin was 0xFFFF; in the
latter case, event forwarding is discontinued only for the now-invalid trap
source.

Note that for the case where InformInfo:LIDRangeBegin is 0xFFFF, event
forwarding from an invalid trap source may be subsequently resumed if
partitioning changes such that it becomes possible for the subscriber and
trap source to access each other.

Note also that “permanently discontinue all event forwarding” is meant to
indicate that the subscription for forwarding is dropped by the manager; if
the source later becomes reachable again by the subscriber, a new
Set(InformInfo) is required to re-establish event forwarding, if that is what
is desired. (This may not be desired; when the source becomes reachable
again, it may have acquired new characteristics, such as new, different
software functions, that make such forwarding inappropriate.)

C13-32.1.2: When forwarding Notices to an event subscriber, a manager
shall construct the Report(Notice) MAD using addressing information

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 748 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

from the original Set(InformInfo) subscription operation as specified in
Table 120 Setting Report(Notice) MAD Fields on page 748.

Figure 152 Forwarding Trap()s/Notices from the Class Manager on page
748, depicts the MAD exchange associated with forwarding traps to a sub-
scriber. The ReportResp() provides means for the class manager to as-
sure that subscribers receive reports assuming communications with the
subscriber is not failed.

This forwarding service is available for all management classes. For the
Subnet Management Class, event forwarding is not handled by the SM; it
is handled indirectly through the SA, as detailed in 15.4.3 Event For-
warding Subsystem on page 923.

Table 120 Setting Report(Notice) MAD Fields

Components of a Report(Notice)
used to forward an event

What that Report(Notice) component is set to:
component values from the Set(InformInfo) that

created the subscription to that event

LRH:DLID LRH:SLID

LRH:SL LRH:SL

BTH:P_Key BTH:P_Key

BTH:DestinationQP DETH:SourceQP

DETH:Q_Key DETH:Q_Key

GRH:DGIDa GRH:SGID

GRH:FlowLabela GRH:FlowLabel

GRH:TClassa GRH:TClass

GRH:HopLmta GRH:HopLmt

a. Present only if a GRH was present in Set(InformInfo).

Class ManagerInterested Host

Report(Notice)

ReportResp(Notice)

Trap(Notice)

Figure 152 Forwarding Trap()s/Notices from the Class Manager

EndnodeEndnode

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 749 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.5 MAD PROCESSING

Non-redirected MADs are distinguished from other packets by the desti-
nation queue pair specified in the packet. Two specific queue pair num-
bers are dedicated to supporting non redirected management operations.
Each of the dedicated queue pairs represents a unique interface to one or
more management services. These interfaces and the behaviors related
to associated services are specified in subsequent sections.

If redirection is in effect, redirected MADs may be directed to a queue pair
different from either of the dedicated queue pairs. How a management
service is associated with such a queue pair is implementation specific.
Such MADs are standard packets and MADs arriving at a port are directed
according to the standard procedures for directing packets to queue pairs.

13.5.1 MAD INTERFACES

Figure 153 MAD Interface on page 750, below, depicts the general rela-
tionships among management entities and their interfaces to the wire.
Note, the figure itself is meant to be representative of a basic channel
adapter, switch, or router and is not meant to imply a specific implemen-
tation or to imply specific requirements or limitations.

As can be seen in Figure 153 on page 750, QP0 is used for communica-
tion with the Subnet Manager (SM) and Subnet Management Agent
(SMA); and QP1 is used for communication with General Services
Agents.

Note that it is not required by IBA that GS managers use QP1 as the
source QP used to send management packets to GS agents. GS man-
agers may send packets from any QP other than QP0. QP1's primary pur-
pose is to be a known QP target to which GS managers can send packets
to initially contact a GS agent on a node. Redirection to another non-spe-
cial QP can be used following that initial communication on QP1, if the
agent does this. Such redirection may well be desirable on both functional
and performance grounds; for example, the special P_Key matching on
QP1 (see 9.6.1 Validating Header Fields on page 272) may in many im-
plementations impact the performance of packet reception on QP1.

Packets arriving at QP0 may be intended for either the SM, if one is
present; or for the SMA. Similarly, packets arriving at QP1 may be in-
tended for any of a number of management agents. Any implementation
must therefore provide a dispatching function that routes packets on QP0
and QP1 to their appropriate destinations. Similarly, any implementation
must also provide other low-level functions on packets received on or des-
tined for those QPs (e.g., directed route processing for QP0). For conve-
nience of description, all such functions are referred to in the specification
as being carried out by the Subnet Management Interface (SMI) for QP0
and the General Services Interface (GSI) for QP1. Neither the SMI nor the

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 750 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

GSI are architected elements required by any IBA implementation. Any
operations stated in compliance statements as being performed “by” the
SMI or GSI may be performed in any way that is consistent with the ex-
ternal effects of those compliance statements, specifically those effects
which are detectable on communication links or on verb interfaces.

C13-33: For each endport, Subnet Management MADs to be processed
at that port shall be destined to Queue Pair 0.

C13-34: For each endport, unless redirected (see 13.5.2 GSI Redirection
on page 753), SA or GS MADs to be processed by agents at that port
shall be destined to Queue Pair 1.

Queue pairs 0 and 1 have unique semantics with respect to processing of
messages specifying one of them as the destination queue pair. Imple-
mentations of QP0 and 1 are not required to follow the semantics associ-
ated with other queue pairs with respect to requirements such as posting

SNMP Tunnelling Agent

Application-Specific Agent

Vendor-Specific Agent

Device Management Agent

Performance Management Agent

Communication Mgmt (Mgr/Agent)

Subnet Administration (an Agent)

Figure 153 MAD Interface

Note: A channel adapter, switch, or router may or may not contain a subnet manager.
If a CA, switch or router does contain a subnet manager, the specific relationships
between the SM, the SMA, and the SMI are implementation specific.

Subnet Management Agent

Subnet Management Interface

Subnet Manager

Special Relationship

QP1 (virtualized per port)
Uses any VL except VL15
MADs called GMPs - LID-Routed

Note: SMI/GSI are abstracted
and not Architected layers.

General Service Interface

QP0 (virtualized per port)
Always uses VL15
MADs called SMPs - LID- or Direct-Routed

Baseboard Management Agent

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 751 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

and consumption of WQEs, manipulation of an associated completion
queue, and so on. Messages arriving at QP0 or QP1 are processed in ac-
cordance with the requirements set forth in this section and following Sec-
tions: 13.5.3.1 MAD Validation for Subnet Management MADs on page
755, 13.5.3.2.1 MAD Validation at the GSI on page 757, and 13.5.3.2.2
MAD Validation at the SA and GSAs on page 758.

One way for the GSI of CAs supporting QPs other than QP0 and QP1 to
perform this disambiguation is to require that all managers send and re-
ceive GMPs on QPs other than QP1. This disambiguates manager vs.
agent GMPs by reserving QP1 for GMPs sent to agents. Whether this is
done is vendor-dependent; it is not required by the InfiniBand architecture.
It is, however, allowed. As a result, portability of manager implementations
will be enhanced if their implementations do not require use of QP1 for
sending GMPs.

13.5.1.1 PROCESSING SUBNET MANAGEMENT PACKETS (SMPS)
The Subnet Management Interface (SMI) is associated with QP0. QP0 is
used exclusively for sending and receiving subnet management MADs.
Communications with the SMA in a channel adapter, switch, or router is
always through the SMI. If a channel adapter, switch, or router hosts a SM,
then communications between that SM and the SMA of each channel
adapter, switch, or router in the subnet is also through the SMI. Only
SMAs and SM communicate through this interface. No other entities may
do so.

The MADs of subnet management class are called SMPs.

C13-35: SMPs shall not travel beyond the boundaries of a subnet (i.e.
through a router).

MADs with a destination queue pair of 0 are validated according to the
rules specified in 13.5.3.1 MAD Validation for Subnet Management MADs
on page 755.

Validated MADs arriving for QP0 are handled by the SMI. It is not specified
how the SMI dispatches the SMPs between the SMA and a possible SM.

C13-36: On an HCA, SMPs not dispatched to the SMA shall be posted to
the QP0 queue pair exposed above the verb layer.

C13-37: For SMPs dispatched to the SMA, a vendor shall

• either never post such SMPs,
• or, always post such SMPs,
• or, offer a vendor specific option to select whether such SMPs are

never posted or are always posted,

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 752 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

where posting is with respect to the QP0 queue pair exposed above the
verb layer.

13.5.1.2 PROCESSING GENERAL SERVICES MANAGEMENT PACKETS (GMPS)

The General Services Interface (GSI) is associated with QP1. QP1 is re-
served exclusively for subnet administration and general services MADs.
Unless redirected, GSAs send and receive MADs by means of the GSI.
For a description of redirection see 13.5.2 on page 753. Depending upon
implementation, the GSI may also provide the interface through which a
class manager communicates with corresponding (class specific) GSAs
throughout the fabric.

The MADs defined for subnet administration and general services are re-
ferred to as GMPs. The GSI acts as a demultiplexor for GMPs, distributing
messages destined for QP1 to the appropriate service agent or class
manager, based upon MADHeader:MgmtClass in the MAD header. MADs
with a destination queue pair of 1 are validated according to the rules
specified in 13.5.3.2.1 MAD Validation at the GSI on page 757.

In those cases where the GSI provides an interface for both a class ser-
vice agent and the corresponding class manager, the determination of the
appropriate destination above the GSI demultiplexing is implementation
dependent.

Also note that GMPs are unicast in the current specification release. Fu-
ture specification revisions may extend GMPs to multicast.

On an HCA, the GSI is only aware of agents residing below the verb layer.

C13-38: GMPs dispatched to agents implemented below the verb layer
shall not be visible above the verb layer.

C13-39: This compliance statement is obsolete and has been replaced by
C13-39.1.1:.

C13-39.1.1: GMPs that are not dispatched to agents implemented below
the verb layer shall be visible above the verb layer. Their reception shall
consume, in a manner visible by verbs, Receive Work Requests previ-
ously posted to the QP on which they were received.

The SL used by a GMP is neither specified nor constrained by virtue of
the fact it is a GMP. The choice of SL is outside of the scope of these sec-
tions. Note that unlike SMPs which follow special and unique VL rules,
GMPs are standard unreliable datagrams subject to and only to the SL/VL
usage rules applicable to all unreliable datagrams.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 753 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If redirection has been configured for a management class, GMPs des-
tined to the QP specified in the redirection are treated exactly the same
as any other unreliable datagram. Since the destination QP is not QP1,
they do not appear at the GSI but are delivered directly to the QP specified
in the redirection by the IB transport in the same manner as any other un-
reliable datagram.

C13-40: GSAs that are accessed using redirection shall validate arriving
MADs according to the same rules as apply for queue pair 1.

Any management entity using a QP that has the well-known Q_Key
(0x8001_0000) can assume all Unreliable Datagrams received on that QP
are GMPs. This is a consequence of the fact that the well-known Q_Key
is reserved for MADs, which is implied by the combination of C9-48: on
page 277, C9-49: on page 278, C13-51.1.1: on page 770, and C13-52.1.1:
on page 770.

GMPs may contain a GRH and may be forwarded across subnet bound-
aries. Whether or not a given class manager supports cross subnet com-
munications with corresponding class service agents is implementation
dependent.

Table 121 Management Interfaces Summary on page 753 summarizes
the properties associated with the above described management
interfaces.

13.5.2 GSI REDIRECTION

By default, the interface from the wire to class service agents is the GSI.
A mechanism is provided by which the interface to a given class service
agent may be relocated to another queue pair. This mechanism is called
redirection and is specified in detail below. The SA as well as each GSA
may individually support this mechanism or not. The ClassPortInfo at-
tribute is used to indicate if redirection is supported, and, if so, contains
redirection information for MADs of the subject class.

Table 121 Management Interfaces Summary

Subnet Management Interface General Services Interface

Queue Pair QP0 QP1 (destination before redirection)

VL VL 15 not VL15

Partitioning not enforced enforced

Q_Key not enforced enforced (Q_Key = 0x8001_0000)

Scope Within subnet only Routable across subnets

Class Key Management Key (M_Key) class dependent

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 754 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-41: If, for a class, redirection is not being used, any GMP destined to
the associated class agent via QP1 shall be processed by that agent.

C13-42: For any request sent to QP1 with MADHeader:MgmtClass equal
to the class value of a class being redirected, a response shall be re-
turned containing ClassPortInfo for the class specified in the request.

C13-42.1.1: The response described in C13-42: shall also occur when a
request is sent to a location to which a class has already been redirected,
if it is further redirected from there.

C13-43: The Status field in a response including ClassPortInfo because
of redirection shall have the MADHeader:Status.RedirectionRequired bit
set indicating that a ClassPortInfo attribute was returned rather than the
expected attribute.

C13-43.1.1: When a request for a particular MADHeader:MgmtClass has
been redirected to another location, that location shall continue to service
requests for the MADHeader:MgmtClass until either the location becomes
inoperable for some reason or the requests are redirected again away
from that location.

A response with the MADHeader:Status.RedirectionRequired bit set indi-
cates that the request was not performed and that the request must be is-
sued to the alternate interface specified in ClassPortInfo.

Redirection may be used at any time, so requesters should always be pre-
pared to be redirected.

It is permissible for different requesters for the same management class
on a channel adapter, switch, or router to be redirected to a different inter-
face. The redirection operation is depicted in Figure 154 GSI Redirection
on page 754.

Manager Node

Set(), Get()

GetResp() with
appropriate Status value
set and containing the
ClassPortInfo attribute

Responder redirects
the Requester to an

alternate
QP/DLID/GID/SL

Figure 154 GSI Redirection

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 755 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Redirection information is also available by doing a normal Get() speci-
fying the class of interest in the MADHeader:MgmtClass field of the MAD
header and ClassPortInfo as the attribute.

The ClassPortInfo attribute contains all of the information necessary to ac-
cess the redirected service either from within the same subnet or from a
different subnet. ClassPortInfo may be programmed to include all of the
parameters a source needs to form a complete GRH.

C13-44: A GRH shall be included in redirected class messages only if the
ClassPortInfo:RedirectGID is non zero.

If ClassPortInfo:RedirectGID is non-zero, and redirection is in effect, then
a GRH also need not be used if the MAD does not have to exit a subnet.

It is the responsibility of any entity programming ClassPortInfo to assure
that the parameters provided for accessing redirected services are con-
sistent with address and access controls applicable to the redirected ser-
vice.

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. The Status field is described in 13.4.7 Status Field on page 731.

13.5.3 MAD VALIDATION

Packets arriving at a port of a channel adapter, switch, or router are vali-
dated according to the validation rules specified in 5.2 Data Packet
Format on page 151 and 9.6 Packet Transport Header Validation on page
269. Only packets so validated are delivered to management entities. The
contents of the data payload are further validated by management entities
to validate that the data payload contains a valid MAD.

Valid MADs are delivered to appropriate management entities for pro-
cessing.

13.5.3.1 MAD VALIDATION FOR SUBNET MANAGEMENT MADS

C13-45: This compliance statement is obsolete and has been replaced by
C13-45.1.1:.

C13-45.1.1: Data payloads arriving at the SMI (QP0) shall be validated
as indicated in the bulleted list below. Packets failing one or more of these
check are discarded and no action is taken in response unless the method
is a Get() or a Set(). For Get() and Set() methods, the return of a Get-
Resp() when validation has failed is optional.

• The data payload length shall be 256 bytes
• LRH:VL shall be 15

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 756 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• BTH:QP shall be 0
• BTH:OpCode shall be Send only UD
• MADHeader:BaseVersion shall be 1
• MADHeader:MgmtClass shall specify a class of Subn or Directed

Route Subn
• MADHeader:Method shall specify a method supported by the

class specified in MADHeader:MgmtClass
• MADHeader:AttributeID shall specify an attribute supported by

the class specified in MADHeader:MgmtClass; and the MAD-
Header:Method/MADHeader:AttributeID combination shall be
valid, e.g., the combination of method and attributeID is identified
by “X” in the method/attribute map table of a class (e.g.,
Table 130, “Subnet Management Attribute / Method Map,” on
page 811).

o13-18: If a GetResp() is returned, any conditions detected that have cor-
responding codes assigned in Table 115 MAD Common Status Field Bit
Values on page 732 shall be reflected by corresponding settings of bits in
MADHeader:StatusField in the response.

If a channel adapter, switch, or router supports a subnet manager, some
MADs may be destined for the SMA while others may be destined for the
SM. The discrimination between the SMA as a destination and the SM as
a destination is based on the class, the method, and the attribute. See
14.2 Subnet Management Class on page 794. Table 122 SM MAD
Sources and Destinations on page 756 indicates which SMPs originate at
an SM, which SMPs originate at an SMA, and which SMPs may be des-
tined to SMAs or to SMs.

Table 122 SM MAD Sources and Destinations

MAD Type Source Destination Notes

Get(*)a SM SMA Applies for all attributes except SMInfo

Get(SMInfo) SM SM Applies only for the SMInfo attribute

Set(*)a SM SMA Applies for all attributes except SMInfo

Set(SMInfo) SM SM Applies only for the SMInfo attribute

GetResp(*)a SMA SM Applies for all attributes except SMInfo

GetResp(SMInfo) SM SM Applies only for the SMInfo attribute

Trap() SMA SM Applies to all subnet management traps.

TrapRepress() SM SMA Applies to all subnet management traps.

a. The asterisk is used to indicate any attribute other than SMInfo.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 757 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This specification does not require that subnet managers be implemented
in any particular way. It does require that subnet managers be able to orig-
inate and receive subnet management MADs. However an SM is realized,
it must create and receive packets adhering to the on-the-wire formats
specified.

C13-45.1.2: The SM shall only send packets with a source QP of 0 and
and a destination QP of 0, using VL15.

It is recommended that any packet received on QP 0 be discarded if its
Source QP is different from zero.

C13-46: The SMI shall handle all Directed Route SMPs as described in
14.2.2 SMPs and Directed Route Algorithm on page 797.

13.5.3.2 MAD VALIDATION FOR SUBNET ADMINISTRATION AND GENERAL SERVICES
13.5.3.2.1 MAD VALIDATION AT THE GSI

C13-47: Data payloads arriving at the GSI (QP1) shall be validated as
specified in the bulleted list below. Packets failing one or more of these
checks are discarded and no action is taken in response unless the
method is a Get() or a Set(). For Get() and Set() methods, the return of a
GetResp() when validation has failed is optional.

• The data payload length must be 256 bytes.

• LRH:VL must not be 15

• BTH:QP must be 1

• BTH:OpCode must be Send only UD

• MADHeader:Baseversion must be 1

• MADHeader:MgmtClass must specify a class supported on the
channel adapter, switch, or router.

o13-19: If a GetResp() is returned, any conditions detected that have cor-
responding codes assigned in Table 115 MAD Common Status Field Bit
Values on page 732 shall be reflected by corresponding settings of the
bits in MADHeader:StatusField of the response.

It is not specified how GMPs passing through the GSI are dispatched to
the appropriate class agents that are supported and which are not redi-
rected.

If a class is supported and if redirection has been configured for that class,
the response to a request arriving at the GSI containing MADHeader:Mg-
mtClass of a redirected class is to reply with the redirection information for
the class as specified in 13.5.2 GSI Redirection on page 753.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 758 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

On CAs implementing the verbs layer specified in Chapter 11: Software
Transport Verbs on page 546, GSMs may be implemented either below
the verb layer or above the verb layer. For a GSM implemented above the
verb layer and communicating via a source QP1, it is not specified how
disambiguation between GMPs destined to GSAs on that CA and GMPs
destined to that GSM is performed. The basis for such differentiation is
both class and context dependent as well as implementation dependent.

C13-48: If a CA does not support operation of a GSM via QP1 from on top
of its verb layer, that is, if it does not implement disambiguation of GMPs
destined to a GSA below the verbs and GMPs destined to QP1 associated
with a GSM implemented above the verbs, it shall not permit QP1 to be
created above the verb layer.

See also 13.5.1.2 Processing General Services Management Packets
(GMPs) on page 752.

Regardless of the implementation, the behavior of GSAs and GSMs with
respect to the injection of messages on the wire, processing of messages
from the wire, and responding to messages received must conform to the
requirements of applicable sections in Chapter 16: General Services.

Implicitly, implementations of SAs, GSMs and GSAs must be able to send
GMPs destined to QP1.

13.5.3.2.2 MAD VALIDATION AT THE SA AND GSAS

Packets arriving at an SA or GSA via QP1 have already been validated as
properly formed MADs.

Packets arriving at a SA or GSA via any QP other than QP1 have been
redirected. Such packets have not been validated as properly formed
MADs.

o13-20: This compliance statement is obsolete and has been replaced by
C13-48.1.1:

C13-48.1.1: Agents processing GMPs that have been redirected shall
first validate the GMPs as follows:

• The data payload length shall be 256 bytes

• LRH:VL shall not be 15

• The BTH:OpCode shall be Send only UD

• MADHeader:BaseVersion shall be 1

• MADHeader:MgmtClass shall specify a class supported on the
channel adapter, switch, or router.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 759 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-49: This compliance statement is obsolete and has been replaced by
C13-49.1.1:.

C13-49.1.1: All packets arriving for processing at an SA or a GSA shall
be further validated as follows:

• MADHeader:Method shall specify a method supported by the
class specified in MADHeader:MgmtClass

• MADHeader:AttributeID must specify an attribute supported by
the class specified in MADHeader:MgmtClass; and the MAD-
Header:Method/MADHeader:AttributeID combination must be
valid, e.g., the combination of method and attributeID is identified
by “X” in the method/attribute map table of the class.

C13-50: GMPs failing one or more validity checks shall be discarded un-
less the method is one for which a response is normally returned (such as
Get(), Set(), or Report()). The return of a response when validation has
failed is optional.

o13-21: If a GetResp() is returned, any conditions detected that have cor-
responding codes assigned in Table 115 MAD Common Status Field Bit
Values on page 732 shall be reflected by corresponding settings of the
bits in the status field of the response.

GSAs are not required to check the validity of the attribute content.

Additional class specific checking requirements may be specified. Such
requirements, if any, are defined in the class specific sections of Chapter
15: Subnet Administration on page 882 and Chapter 16: General Services
on page 930.

13.5.3.3 CONSOLIDATED MAD VALIDATION FLOW DIAGRAMS

The figures which follow provide a consolidated view of the entire valida-
tion process for a SMP or GMP MAD. Both pseudo-code and flowcharts
are used, depending on which afforded the greatest clarity. For complete-
ness, it includes MAD tests specified in this chapter and Chapter 14:
Subnet Management on page 794, as well as the subset of the LRH and
GRH checks that apply to MADs. The latter were derived from the checks
specified in Chapter 7: Link Layer on page 167, Chapter 8: Network Layer
on page 222 and Chapter 9: Transport Layer on page 230; those chapters
should be considered authoritative if any discrepancy between this sec-
tion and those chapters is noted.

The process begins at the start of Figure 155, LRH Check, on page 760.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 760 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 155 LRH Check

If
• ICRC and VCRC are good /* C7-11: */
• and LRH:Lver = 0 /* C7-11: */
• and ((LRH:LNH=0b10) & (LRH:PktLen =72)) | ((LRH:LNH=0b11) & (LRH:PktLen =82)) /* C7-11:, C13-3: */
• and LRH:DLID=PortInfo:LID or 0xFFFF /* C7-11: */
• and (VL is operational and PortState = (Active or Armed)) | (VL = 15 and DLID is unicast) /* C7-11: */
• and (VL is not 15) or (LNH indicates IBA local packet) /* C7-11: */
then go to Figure 156, BTH Check, on page 760;
else, drop packet.

If BTH:DestQP= 0 /* C9-37:, C13-33:, C13-45.1.1::*/
then
 if
 • BTH:Tver=0 /* C9-5:, C9-36: */
 • and LRH:LNH!=0b11
 then if
 • BTH:OpCode=0b01100100 (Send UD only) /* C13-45.1.1: */
 then go to Figure 159, SMP Check 1, on page 761
 else, go to Figure 157, BTH Check Extension, on page 760
 else drop packet.
else if
• BTH:DestQP= 1 /* C9-37:, C13-34:, C13-47: */
then
 i
 • BTH:Tver=0 /* C9-5:, C9-36: */
 • and LRH:LNH!=0b1)1

or [GRH is present (LRH:LNH=0b11) and GRH check succeeds (see Figure 158, GRH Check, on page 761)]
 • and BTH:P_Key is valid /* C9-41:, C9-42: */
 • and DETH:Q_Key= 0x8001_0000 /* C9-48:, C9-49: */
 • and DLID!=0xFFFF /* C9-55: */
 then if
 • BTH:OpCode=0b01100100 (Send UD only) /* C13-47: */
 then go to Figure 169, GMP Check, on page 767
 else, go to Figure 157, BTH Check Extension, on page 760
 else, drop packet.
else, drop packet.

Figure 156 BTH Check

Figure 157 BTH Check Extension

if Method = Set() or Get() /* C13-45.1.1:, C13-47: */
then
• Optional:GetResp() with Bad Version /* C13-45.1.1:, C13-47: */
• drop packet.
else, drop packet.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 761 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 158 GRH Check

If
• GRH:IPVer=6 /* C8-2:, C9-45: */
• and GRH:PayLen=280 /* C8-6: */
• and GRH:NxtHdr=0x1B /* C8-7:, C9-44: */
• and GRH:DGID is my GID /* C8-11:, C9-46: */
then return into Figure 156, BTH Check, on page 760, indicating the check succeeded.
else return into Figure 156, BTH Check, on page 760, indicating the check failed (drop packet)

No

Figure 159 SMP Check 1

Drop Packet

Yes

Yes

Yes

LRH:VL =15

Base version
supported?

Class version
Supported?

Other

No

SubnDIR (0x81) SubnLID (0x01)

MgmtClass =?

Go to Figure 163, SMP Direct
Route Check 1, on page 763

Go to Figure 160, SMP
M_Key Check, on page 762

Optional: GetResp()
with Bad Version

No

C13-45.1.1:

C13-45.1.1:

C13-45.1.1:

C13-4:

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 762 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 160 SMP M_Key Check

Drop Packet
Send Trap() or

Log Notice #256

No

No

Yes
Yes

No

Yes

0 or 1

2 or 3

C14-3:,
C14-15:

C14-16:

C14-16:, C14-65:,
C14-66:, C14-67:

C14-16:

No

Yes
C14-16: C14-9:,

o14-10:
C13-30.1.2:

Go to Figure 161, SMP
Check 2, on page 762

PortInfo:M_Key=0

Method=Get,
Set or TrapRep

M_Key match

Method=Get

PortInfo:M_KeyProtectBits

Method

Figure 161 SMP Check 2

Optional: GetResp()
with Method
unsupported

No

Yes

No
C13-45.1.1:, C13-

18.1.1:, C14-24.1.1:

C13-45.1.1:, o13-
18:, C14-24.1.1:

GetResp, Trap
or otherwise

Drop Packet

Optional: GetResp()
with Method/Attribute

unsupported

Set/Get or TrapRep

Yes

Good SMP

PortInfo:IsSM=1
& Method = Get(SMInfo),
Set(SMInfo), GetResp or

Trap

Go to Figure 162 SMP -
SM Check on page 763

Attribute/Method
combination OK (Table 130)

Note: If PortInfo:IsSMDisabled=1,
then PortInfo:IsSM must be 0

(see C14-70:)

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 763 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 162 SMP - SM Check

If
• Attribute is supported (Table 129 on page 810) /* C14-38:, C14-24.1.1: */
• and AttributeID and Method combination corresponds (Table 129 on page 810)
then GOOD SMP.
else drop packet

D bit=?

Figure 163 SMP Direct Route Check 1

Hop Pointer +=1

1

No

C14-9:.1

Initial path[Hop Pointer]
is a valid port number

Drop Packet

Yes

0

Yes

Switches: LRH:SLID=0xFFFF
CAs: LRH:SLID=PortInfo:LID or 0xFFFF

LRH:DLID=DrLID

No

Output packet on port
Initial path[Hop Pointer]

Go to Figure 166, SMP
Direct Route Check 4,
on page 765

Node is a switch

No

Yes

Drop Packet

Yes

Yes

Return Path[Hop Pointer] =
received port number

Output packet on port
Initial path[Hop Pointer]

No

Hop Pointer +=1

Drop Packet

Initial path[Hop Pointer]
is a valid port number

No

LRH:DLID=0xFFFF
LRH:SLID=0xFFFF

Go to Figure 164,
SMP Direct Route
Check 2, on page
764

(Hop Count ≠ 0) &
(1≤Hop Pointer≤

Hop Count-1)

(Hop Count ≠ 0)
& (Hop Pointer=0)

C14-9:.2

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 764 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Hop Pointer=Hop Count

Figure 164 SMP Direct Route Check 2

No

Yes

C14-13.1.1:.3

Drop Packet

Hop Count=0 NoHop pointer +=1
Return Path[Hop Pointer]=

received port number;
Hop Pointer +=1

Yes

YesNo

No Yes No

Go to Figure 165, SMP
- Direct Route Check
3, on page 764

Yes

Node is a switchDrDLID=0xFFFF DrDLID=0xFFFF

optional
LRH:SLID=0xFFFF

LRH:DLID=DrDLID

LRH:SLID=0xFFFFLRH:SLID=PortInfo:LID

Go to Figure 165, SMP
- Direct Route Check
3, on page 764

Output the packet as
LID routed

LRH:DLID=DrDLIDLRH:DLID=DrDLIDLRH:DLID=DrDLID

Figure 165 SMP - Direct Route Check 3

If
• Hop Pointer = Hop Count +1 (responder node) /*C14-9: 4 */
then go to Figure 160, SMP M_Key Check, on page 762.
else /* this means Hop count + 2 ≤Hop pointer ≤255 */
• drop packet /* C14-9:.5 */

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 765 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 166 SMP Direct Route Check 4

Hop pointer -=1

No

C14-13:.1

Drop PacketYes

Yes

No

LRH:DLID=0xFFFF

Output packet on port
Return path[Hop Pointer]

Switches: LRH:SLID=0xFFFF
CAs: LRH:SLID=PortInfo:LID or 0xFFFF

Return path[Hop Pointer]
is a valid port number

No

Yes

C14-13:.2

Drop Packet

Yes

Yes

Hop pointer -=1

Output packet on port
Return path[Hop Pointer]

LRH:DLID=0xFFFF
LRH:SLID=0xFFFF

No

Go to Figure 167,
SMP Direct Route
Check 5, on page
766

(Hop Count ≠ 0) &
(2≤Hop Pointer≤

Hop Count)

Drop Packet
No

Node is a switch

Return path[Hop Pointer]
is a valid port number

(Hop Count ≠ 0) &
(Hop Pointer=
Hop Count+1)

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 766 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Hop Pointer=1

Figure 167 SMP Direct Route Check 5

No

Yes

C14-13:.3

Hop pointer -=1

Go to Figure 168, SMP
- Direct Route Check
6, on page 766

Drop Packet

Output the packet as
LID routed

YesNo

No Yes No

Go to Figure 168, SMP
- Direct Route Check 6,
on page 766

Yes

Node is a switchDrSLID=0xFFFF DrSLID=0xFFFF

LRH:DLID=DrDLIDLRH:DLID=DrDLIDLRH:DLID=DrSLID

LRH:SLID=0xFFFF

LRH:DLID=DrSLID

LRH:SLID=0xFFFFLRH:SLID=PortInfo:LID

Figure 168 SMP - Direct Route Check 6

If
• Hop pointer = 0 (requester node - SM) /* C14-13:.4 */
then go to Figure 160, SMP M_Key Check, on page 762.
else (Hop count + 2 ≤Hop pointer ≤255) drop packet /* C14-3:.5 */

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 767 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Yes
Good Packet

No

NoYes
Good Packet

LRH:VL=15

Figure 169 GMP Check

YesC13-47: Drop Packet

No

No
C13-47:

C13-5:, C13-47:

Yes

Class version supported?
No

Packet destined to manager?
(class dependent)

Yes

No

Yes

Yes

No

Yes

Attribute/Method
combination OK?

No

Yes

Yes

Drop Packet

No

GetResp() with
Redirection Required

and ClassPortInfo

Optional: GetResp()
with Method
Unsupported

Base version supported?

Management
class supported on this port

Redirection required?

Method supported?

Optional: GetResp()
with Method/Attribute

Unsupported

Optional: GetResp()
with Bad Version

No

No

Yes

Attribute/Method
combination OK for Manager?

Method supported
by Manager?

Optional: GetResp()
with Method
Unsupported

Optional: GetResp()
with Method/Attribute

Unsupported

Is Class Manager?

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 768 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.5.4 RESPONSE GENERATION AND REVERSIBLE PATHS

Some MAD methods require that the recipient return a response to the
sender. Since in many situations the recipient will be unable or not
equipped to obtain a path in the reverse direction from Subnet Adminis-
tration, this requires the existence of a reversible path from sender to re-
cipient. This section discusses reversible paths and response generation.

13.5.4.1 REVERSIBLE PATHS

Loosely, a reversible path is one for which a responder can construct a
valid response packet that will reach the original sender using only header
information present in the request packet. Not all paths in an IBA fabric are
guaranteed to be reversible, and non-reversible paths in some topologies
may not be as desirable as reversible paths. However, at least one revers-
ible path must be available between every pair of endports in a subnet
(see 14.4.3 Initialization Actions on page 868). The reverse path con-
structed from the request headers may or may not traverse the same
physical links as the forward path and might not be as efficient as a path
to the same endport that was explicitly acquired from SA.

The following sections describe how a recipient constructs a response
packet received on a reversible path. The sender may be in the local
subnet or in a remote one, so a request packet may or may not include a
GRH. Note that the initial subsections which follow describe constructing
a response in general; MADs are not the only case that may require re-
versible path response generation. 13.5.4.5 Responses to MADs on page
769 indicates additional specific requirements for responding to MADs
and sending requests that require responses.

The precise definition of a reversible path is a path for which the proce-
dure described below will construct a packet that can be successfully
transmitted back to the sender.

13.5.4.2 COMMON RESPONSE ACTIONS

A responder always takes the following actions in constructing a response
packet:

• The SLID of the received packet is used as the DLID in the response
packet.

• The Source QP of the received packet is used as the destination QP
in the response packet.

• The SL specified in the received packet is used as the SL in the re-
sponse packet.

• The responder's P_Key used to match the P_Key in the received
packet is used as the P_Key in the response packet.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 769 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Unless it can be determined by some other means that other values
apply, the following values are also used:
• MTU = 256 bytes
• Rate = 2.5 Gb/s
• QP = source QP of received packet
• Q_Key = source Q_Key of received packet

13.5.4.3 CONSTRUCTING A RESPONSE WITHOUT A GRH

If the request packet does not contain a GRH, the response packet does
not contain a GRH and is constructed as follows:

• Perform the actions specified in 13.5.4.2 Common Response Actions
on page 768.

• Fields not otherwise specified in that section are filled in according to
the requirements of the transport service. See Chapter 9: Transport
Layer on page 230.

13.5.4.4 CONSTRUCTING A RESPONSE WITH A GRH

If the original request packet contained a GRH, then the response packet
must contain a GRH. In this case the response packet is constructed as
follows:

• Perform the actions specified in 13.5.4.2 Common Response Actions
on page 768.

• Insert a GRH in the response packet with its fields set as follows:
• The DGID is copied from the SGID in the GRH of the received

packet.
• FlowLabel and TrafficClass are copied from the GRH in the re-

ceived packet.
• HopLimit is set to 0xFF.

• Fields not otherwise specified in this section are filled in according to
the requirements of the transport service. See Chapter 9: Transport
Layer on page 230.

13.5.4.5 RESPONSES TO MADS

C13-50.1.1: A sender of a request MAD requiring a response shall send
that request MAD using a reversible path.

Reversible paths can be acquired from the SA using PathRecord:Revers-
ible (see 15.2.5.16 PathRecord on page 899).

C13-51: This compliance statement is obsolete and has been replaced by
C13-51.1.1:.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 770 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-51.1.1: If the request MAD does not contain a GRH, the response
MAD shall be constructed as described in 13.5.4.3 Constructing a Re-
sponse Without a GRH on page 769 with the addition that, for GMPs re-
ceived on the GSI or redirected, the well-known Q_Key (0x8001_0000)
shall be used in the DETH.

C13-52: This compliance statement is obsolete and has been replaced by
C13-52.1.1:

C13-52.1.1: If the request MAD contained a GRH, then the response
MAD shall be constructed as described in 13.5.4.4 Constructing a Re-
sponse With a GRH on page 769, with the addition that, for GMPs re-
ceived on the GSI or redirected, the well-known Q_Key (0x8001_0000)
shall be used in the DETH.

13.6 RELIABLE MULTI-PACKET TRANSACTION PROTOCOL

Management Datagrams necessarily use a least-common-denominator
form of communication: minimal-MTU (256 byte) Unreliable Datagrams.
However, there are circumstances where management classes must reli-
ably transfer data in quantities greater than will fit in a single MAD. To fa-
cilitate this, IBA management defines a standard Reliable Multi-Packet
Transaction Protocol (RMPP) that may be used by any class needing the
ability to transfer large amounts of data (up to 232 packets) in a single log-
ical transaction. This section defines that protocol. The intent of the defi-
nition is to allow implementation of a single instance of the RMPP protocol
engine that may be used by all management classes present at an end-
port, freeing the class implementations from considering protocol ele-
ments such as retries, acknowledgements, timeout processing, etc.

RMPP is specified in terms of two communicating entities with comple-
mentary roles: A Sender, which is the source of the data transferred; and
a Receiver which consumes the data transferred. The entities fulfilling the
Sender and Receiver roles may be class managers, management agents,
or entities with other relationships to the class (such a clients to a server
class). Any of those entities may take on either role, or both roles—per-
forming both at different times or even simultaneously, if multiple simulta-
neous RMPP transmissions are supported by the protocol implementation
(they are allowed by the protocol).

RMPP implements a sliding window recovery protocol that is vaguely rem-
iniscent of TCP: The Sender emits up to a predetermined number of
packets (window size). The Receiver moves the window forward by re-
plying to the Sender with acknowledgement messages. The window size
always starts at 1; it may be changed by the Receiver to larger values, and
later decreased, through a parameter carried by acknowledgement
packets. The Receiver implicitly requests retransmissions by ceasing to
acknowledge packets; when the Sender times out waiting for an acknowl-

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 771 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

edgement, it begins retransmission starting with the packet following the
last one acknowledged.

13.6.1 MANAGEMENT CLASS USE OF RMPP
The specification of a management class that uses RMPP must include
the following:

• The RMPP header. This must be present in every packet of the man-
agement class, immediately following the MAD Base Format Header,
i.e., starting at byte 24 of every MAD of the class (see 13.6.2.1 RMPP
Header on page 772). Any additional header information used by the
class must follow the RMPP header.

• A specification of the types of transfers used. Receiver-initiated and
Sender-initiated transfers are both possible, as is a double-sided
RMPP transfer: Sender initiates an RMPP transfer, following which a
response is returned as an RMPP transfer in the opposite direction
(the two entities switch roles after completing the first transfer). See
13.6.6 Startup Scenarios on page 790.

• A specification of when the RMPP protocol is activated, i.e., when the
bit RMPPFlags.Active=1 (see 13.6.2.1 RMPP Header on page 772)
and which role (Sender, Receiver) is taken by which entity. RMPP
does not specify which methods, attributes, etc., use the protocol.
This specification is often most conveniently done by specifying par-
ticular methods which activate and use RMPP. (Note, a packet which
causes RMPP to begin need not itself be part of the RMPP protocol,
i.e., need not have RMPPFlags.Active=1; see, for example, 13.6.4
Ladder Diagram (Example) on page 780 and 13.6.6.1 Receiver-Initi-
ated Transfer on page 790.) While it is not strictly required by RMPP
that a particular method always use or initiate RMPP for every trans-
fer, even for those that happen to fit in a single packet, such transfers
will work and the specification will be simplified if this is done.

• Ensure that each RMPP transfer sequence be uniquely identified us-
ing a MAD Base Header TransactionID that remains constant
through the entire transfer.

A common RMPP engine can examine each packet of a class using
RMPP as they flow by, ignoring packets with RMPPFlags.Active=0 and
pre-processing those with RMPPFlags.Active=1 for the class. That engine
recognizes multiple packets belonging to the same RMPP transmission
sequence by using the TransactionID (and other elements; see 13.6.5.2
Context & Dispatching on page 783).

The responsibilities of the implementer of a class using the RMPP pro-
tocol will vary depending on the facilities made available by a vendor sup-
plying the RMPP protocol engine implementation. However, it is likely that
at least part of the RMPP header setup required must be indirectly or di-
rectly specified by the implementer.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 772 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The implementer of the protocol must adhere to all the compliance state-
ments in this section: 13.6 Reliable Multi-Packet Transaction Protocol on
page 770.

13.6.2 RMPP PACKET FORMATS

The packet formats used by RMPP are described here. Note that RMPP
does not define or describe any of the fields in the standard MAD header.
In particular, the method, attribute, status, and other fields may be used in
any way by the class that uses RMPP.

o13-21.1.1: If a management class uses RMPP, it shall use the header
formats, packet formats, and field definitions described in 13.6.2 RMPP
Packet Formats on page 772.

13.6.2.1 RMPP HEADER

o13-21.1.2: If a management class uses RMPP, it shall include the RMPP
header shown in Figure 170 RMPP Header Layout on page 772 in every
MAD of that class type, in the position shown in that table, with the mean-
ings documented in Table 123 RMPP Header Fields on page 773.

o13-21.1.3: If a management class uses RMPP, and RMPPFlags.Active
= 0, all other RMPP Header fields shall be reserved.

The standard definition of a “reserved” field defined in 13.4.1 Conventions
on page 717 is implied in o13-21.1.3:: Set to 0 when sent, and ignored
when received.

o13-21.1.4: RMPPVersion shall have a value of 1 in all MADs containing
an RMPP header with RMPPFlags.Active=1.

The contents of the Standard MAD header, including Method, Attribute,
AttributeModifier, and Status, are class-specific.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0-23 Standard MAD Header (see Figure 145 MAD Base Format on page 719)

24 RMPPVersion RMPPType RRespTime RMPPFlags RMPPStatus

28 Data1

32 Data2

Figure 170 RMPP Header Layout

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 773 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.6.2.2 STATUS CODES

o13-21.1.5: If a management class uses RMPP, it shall use the status
codes shown in Table 124 RMPPStatus Codes on page 774 to indicate the
conditions described there. If a status code is received with an RMPPType
value other than those it applies to, the Receiver shall discard the packet,
terminate the protocol, and issue an RMPP ABORT packet with status
code “Illegal Status” unless the illegal code appeared in an ABORT or
STOP packet; in the latter case the Receiver shall discard the packet and
terminate the protocol without issuing any additional packets.

Note that the status codes listed in Table 124 represent only status of the
RMPP protocol itself; other status information may be carried in the Base
MAD Header Status field. Also note that in that same table, “transmitter of
the packet” refers to the entity that sends the MAD containing the status
code, i.e., the transmitter of the packet can be either a Sender or a Re-
ceiver.

Table 123 RMPP Header Fields

Field Length
(bits) Description

RMPPVersion 8 Version of RMPP. Shall be set to the version of RMPP implemented.

RMPPType 8 Indicates the type of RMPP packet being transferred:
• 0: Not an RMPP packet; illegal if RMPPFlags.Active=1.
• 1: DATA packet; shall be sent only from Sender to Receiver.
• 2: ACK packet; shall be sent only from Receiver to Sender.
• 3: STOP packet; may be sent in either direction
• 4: ABORT packet; may be sent in either direction
• 5-255: reserved.

RRespTime 5 Encodes a time value in the manner of ClassPortInfo:RespTimeValue (13.4.6.2.1 Port-
Info:SubnetTimeout on page 727), with the exception that the value 32 (0x1F) is used to
indicate that no time value is provided. The use of RRespTime is discussed in 13.6.3
Timeouts on page 777).

RMPPFlags 3 Flags providing information about the packet:
• bit 2: Last. If RMPPType = DATA, 1 indicates that this is the last packet of the transfer;

0 indicates it is not. If RMPPType is not DATA, shall be 0.
• bit 1: First. If RMPPType = DATA, 1 indicates that this is the first packet of the transfer;

0 indicates it is not. If RMPPType is not DATA, shall be 0.
• bit 0: Active. Shall be 1 on every packet that is part of an RMPP transmission

sequence; shall be 0 otherwise. See o13-21.1.3: on page 772.

RMPPStatus 8 Status code, used by RMPP to signal error status or lack thereof. The values defined in
13.6.2.2 Status Codes on page 773 shall be used.

Data1 32 Meaning varies by RMPPType; see the following subsections

Data2 32 Meaning varies by RMPPType; see the following subsections.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 774 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 124 RMPPStatus Codes

RMPPStatus
Value

Applies to
RMPPTypes

Diagram
Abbreva Name and Description

0 DATA, ACK Normal. No errors or other conditions are being reported. Note that this is
not an allowed status value for STOP and ABORT packets.

1 STOP ResX Resources Exhausted. The transmitter of the packet must terminate the
protocol because it has exhausted its resources.

2-117 Reserved; reception of any RMPP packet containing any of these RMPP-
StatusValues shall cause the packet’s recipient to emit an ABORT packet
carrying RMPPStatusValue 124, “Illegal Status.”

118 ABORT T2L Total Time Too Long. The total time taken by the entire transaction
exceeded the time allocated.

119 ABORT Inconsistent Last and PayloadLength. A packet was received with
RMPPFlag.Last=1, but the total data transferred does not match the Pay-
loadLength specified in the first packet of the transfer; or the length of data
transferred in a packet equals or exceeds the PayloadLength initially
specified, and RMPPLast=0 in that packet.

120 ABORT Inconsistent First and SegmentNumber. A packet was received with
RMPPFlags.First = 1 and SegmentNumber not 1, or SegmentNumber=1
and RMPPFlags.First not 1.

121 ABORT BadT Bad RMPPType. A packet was received containing an illegal RMPPType
value.

122 ABORT W2S NewWindowLast Too Small. An ACK packet was received specifying a
new WL value that is less than the current WL value.

123 ABORT S2B SegmentNumber Too Big. An ACK packet was received for a segment
that has not been sent.

124 ABORT Illegal Status. An RMPPStatus code that is undefined or applied to an
invalid RMPPType was received by the transmitter of the packet.

125 ABORT UnV Unsupported Version. The transmitter of the packet does not support the
version of RMPP designated by the RMPPVersion value it received.

126 ABORT TMR Too Many Retries. The vendor-specific limit on the number of retries was
exceeded.

127 ABORT Unspecified. An error in the protocol occurred that is not covered by any
other status code. It is recommended that vendors use a vendor-specific
code rather than “Unspecified” if feasible.

128-191 class-
specific

Class-Specific. These codes are used to indicate conditions specific to
the class using RMPP. Their reception may or may not indicate that the
protocol should be terminated. It is recommended that these codes be
used only for errors directly related to the class’s use of RMPP; errors
unrelated to RMPP should be indicated using class-specific encodings of
the Status field of the standard MAD header.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 775 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.6.2.3 DATA PACKET

The RMPP DATA packet is used to transfer data from the Sender to the
Receiver. Its layout is shown in Figure 171 RMPP DATA Packet Layout on
page 775.

The SegmentNumber field is a unique identifier of the relative position of
each packet within a multipacket request or response. RMPP packets with
duplicate SegmentNumbers are considered duplicate packets and may
be discarded. SegmentNumbers for multi-packet requests and responses
begin at segment number 1. If RMPPFlags.First=1, SegmentNumber
must be 1, and vice versa. If this is not the case, the Receiver emits an
ABORT packet with an RMPPStatus of “Inconsistent First and Segment-
Number” and terminates the transfer.

The PayloadLength field is valid only for the first and last packet of an
RMPP transfer; if RMPPFlags.First=0 and RMPPFlags.Last=0, Payloa-
dlength is ignored.

In the first packet of an RMPP transfer (RMPPFlags.First=1), Payloa-
dLength may indicate the sum of the lengths, in bytes, of the Transferred-
Data fields in all packets of the entire multipacket response; this is done
by using a nonzero value for PayloadLength in the first packet. If Payloa-
dLength is zero in the first packet of an RMPP transfer, it indicates that the
transfer continues until a packet is received with RMPPFlags.Last=1.

192-255 STOP,
ABORT

Vendor-Specific. These codes may be used to indicate vendor-specific
errors that force termination of the protocol.

a. This is the abbreviation used in the flow diagrams (13.6.5 Flow Diagrams on page 782) to save space in those diagrams.
Codes not used in the diagrams have no abbreviations. Code 0, “Normal,” is used where no code is indicated, so its
abbreviation is blank.

Table 124 RMPPStatus Codes (Continued)

RMPPStatus
Value

Applies to
RMPPTypes

Diagram
Abbreva Name and Description

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0-23 Standard MAD Header (see Figure 145 MAD Base Format on page 719)

24 RMPPVersion RMPPType=DATA RRespTime RMPPFlags RMPPStatus

28 SegmentNumber

32 PayloadLength

36-252 TransferredData (class specific)

Figure 171 RMPP DATA Packet Layout

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 776 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note that PayloadLength counts all the bytes in the TransferredData field
of the DATA packet format. If a class has additional header information
contained in that area, the bytes used by that header information are
counted in PayloadLength, even though they may appear to the class to
not be usable data transferred. This applies in all cases, even when no
data is actually transferred. For example, if a class has a 20-byte header
in the RMPP TransferredData field, and RMPP is used to transfer no data
at all, the PayloadLength is nevertheless 20.

In the last packet of an RMPP transfer (RMPPFlags.Last=1), Payloa-
dLength indicates the number of valid bytes in the TransferredData field,
allowing data transfers that are not an integral multiple of the length of the
TransferredData field. A transfer terminates when either: (a) a packet con-
taining RMPPFlags.Last=1 is received; or (b) a nonzero PayloadLength
was given in the first packet of a transfer, and a packet is received con-
taining sufficient TransferredData bytes to equal or exceed the Payloa-
dLength originally provided. If case (b) occurs and RMPPFlags.Last is not
1 for that packet, the Receiver sends an ABORT packet with RMPPStatus
of “Inconsistent Last and PayloadLength” and terminates the transfer.

The same packet may have both RMPPFlags.First=1 and RMPP-
Flags.Last=1. This indicates the case of a single-packet RMPP transfer.
In this case PayloadLength must indicate the number of bytes of data con-
tained in the TransferredData field of that packet. PayloadLength may be
zero, indicating the case of no data transferred.

13.6.2.4 ACK PACKET

The RMPP ACK packet is used by the Receiver to acknowledge the re-
ceipt of data from the Sender, and to signal how many more packets the
Receiver is able to accept before the Sender must pause, waiting for an-
other ACK packet. The ACK packet layout is shown in Figure 172 RMPP
ACK Packet Layout on page 776.

The SegmentNumber field identifies which packets have been received.
A SegmentNumber value of S indicates that the Receiver has success-
fully received all packets with SegmentNumbers ≤ S. After receiving an

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0-23 Standard MAD Header (see Figure 145 MAD Base Format on page 719)

24 RMPPVersion RMPPType=ACK RRespTime RMPPFlags RMPPStatus

28 SegmentNumber

32 NewWindowLast

36-252 Reserved

Figure 172 RMPP ACK Packet Layout

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 777 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ACK packet with SegmentNumber = S, the Sender will discard any ACK
packets with SegmentNumbers ≤ S.

The NewWindowLast field indicates the SegmentNumber at which the
Sender must pause, awaiting an ACK, before sending more packets.
NewWindowLast must be greater than or equal to SegmentNumber and
must be greater than or equal to any value of NewWindowLast previously
sent in this RMPP sequence.

The SegmentNumber and NewWindowLast values received in an ACK
cause the Sender to move the resend window in the transmission se-
quence; see 13.6.5.1 Context State Variables on page 782.

13.6.2.5 ABORT AND STOP PACKETS

The RMPP ABORT packet is used to signal a protocol violation and ter-
minate the transmission sequence. The RMPP STOP packet terminates
the transmission sequence for a reason allowed in the protocol, such as
either side of a transfer running out of resources. The formats of these
packet types are identical except for their RMPPType value and the RM-
PPStatus codes used, and some optional data. That format is shown in
Figure 173 RMPP ABORT & STOP Packet Layouts on page 777.

The Optional Extended Error Data field may be used in conjunction with
class-specific and vendor-specific error codes to transmit additional error
information. If neither of those two types of codes are present, it is re-
served.

13.6.3 TIMEOUTS

RMPP timeouts are based on four timeout values:

• PathRecord:PacketLifeTime: This is the maximum lifetime of a pack-
et transferred from each participant to the other (possibly two differ-
ent values) along a path. It is contained in the PathRecord attribute

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0-23 Standard MAD Header (see Figure 145 MAD Base Format on page 719)

24 RMPPVersion RMPPType=ABORT
or STOP

RRespTime RMPPFlags RMPPStatus

28 Reserved

32 Reserved

36-252 Optional Extended Error Data

Figure 173 RMPP ABORT & STOP Packet Layouts

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 778 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

obtained from Subnet Administration that is used to obtain the param-
eters needed to send packets from one side to the other. (See
15.2.5.16 PathRecord on page 899.)

• PortInfo:SubnetTimeout. This is the maximum lifetime of a packet
from an endport to any other endport in a subnet (see 13.4.6.2 Tim-
ers and Timeouts on page 727). It may be used instead if the transfer
is known to be within a single subnet or cases where the PacketLife-
Time is unavailable. However, PacketLifeTime will in general be pref-
erable since it may be smaller and is also valid across subnets.

• ClassPortInfo:RespTimeValue for the entity using RMPP. This is the
processing time for the management agent or SA; see 13.4.6.2.2 Re-
spTimeValue on page 728.

• RRespTime. This is a processing time communicated directly in the
RMPP header; see Table 123 RMPP Header Fields on page 773.

The above timeouts are used to calculate two timeout periods used by
RMPP: the Response Timeout (Resp) and the Total Transaction Timeout
(Ttime). Their calculation is described below. Note that Resp can be dif-
ferent for the Receiver and the Sender, since the entities on each side
may have different processing times (e.g., different ClassPortInfo:RespTi-
meValues, when they have ClassPortInfo attributes).

13.6.3.1 RESPONSE TIMEOUT (RESP)

Resp (Response Timeout) is the maximum expected time for a packet to
traverse the fabric, be processed on the other side, and a response re-
turned to the original Sender. If it expires without the response being re-
ceived, it is assumed that either the original packet or the response was
lost. Resp is defined as

where PLT is the PathRecord:PacketLifeTime of a port A sending a packet
to a port B. The definition of RTV, loosely “response time value,” is more
complex:

• At the start of each RMPP transfer sequence the value of RTV de-
pends on the nature of the entity receiving the packet on port B:

• If that entity has a ClassPortInfo attribute (e.g., is an agent), RTV
is the entity’s ClassPortInfo:RespTimeValue.

• Otherwise (the entity has no ClassPortInfo or is unreachable with-
in the time constraints), RTV is 20, corresponding to a processing
time of approximately 4.3 seconds.21

21. The value 20 is chosen to be consistent with C13-13.1.1: on page 728, even
though the entity being communicated with is not an agent. Communication that
is not between managers and agents occurs, for example, between SA and its
clients; those clients do not necessarily have ClassPortInfo attributes.

4.096 µsec 2 2PLT× 2RTV+()×

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 779 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

It is recommended that a non-default RRespTime value be pro-
vided in Sender-initiated data transfers in order to avoid using the
default as described above.

• During the transfer sequence, the entity on port B may change RTV,
and hence Resp, by encoding a non-default RRespTime value in any
RMPP packet; the value received is used to compute Resp for subse-
quent packets, until and unless it is changed again. Any such adjust-
ments to RTV are specific to the RMPP transfer sequence in which
they occur; they do not affect any other sequence.

Resp is used by the Sender when sending a DATA packet and expecting
an ACK in return at the end of a transmission window. See Figure 179,
RMPP Receiver Termination Flow, on page 787 for the Sender behavior
when this time period expires.

13.6.3.2 TOTAL TRANSACTION TIMEOUT (TTIME)
Ttime (Total Transaction Timeout) is a timeout of the entire duration of an
RMPP data transfer sequence. It is used by the Receiver to abort an
RMPP sequence in the event that the Sender becomes unresponsive.
Ttime is calculated by the Receiver after it receives the first DATA packet
of the sequence, whose PayloadLength field may contain the total number
of data bytes to be transferred (see 13.6.2.3 DATA Packet on page 775).
If the PayloadLength is provided in that first packet, Ttime is calculated
as22

where:

• the notation indicates rounding up the division

• Ps is the PacketLifeTime of the path used from Sender to Receiver

• Pr is the PacketLifeTime of the path used from Receiver to Sender

• Rr is the Receiver’s own RespTimeValue

• RTV is the sender's response time value defined in 13.6.3.1 Re-
sponse Timeout (Resp) on page 778.

• 220 is the number of data bytes transferred in a single RMPP DATA
packet

• 8 is a multiplier to allow for lost packet retransmission.

If no indication of the PayloadLength is present, the class may define its
own timeout. If that is not done, a default of 40 seconds is used.

22. This formula is intended to represent the total time to transfer a sequence of
PayloadLength bytes with a window size of 1 and a multiplier of 8 to allow for
retries. The use of larger window sizes will decrease the transfer time
significantly.

4.096 µsec 8× Payloadlength
220

--------------------------------------- 2Ps 2Rr 2Pr 2RTV+ + +()××

…

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 780 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.6.4 LADDER DIAGRAM (EXAMPLE)

Figure 174 RMPP Example on page 780 illustrates the packet flow for a
Receiver-initiated RMPP transfer.

In Figure 174, the Receiver initiates the multi-packet protocol by first (not
shown in the diagram) creating a receive context for the transfer (see
13.6.5.1 Context State Variables on page 782) and then sending a packet
whose method or other characteristics informs the Sender class what data
to transfer and the TransctionID to use for the transfer. That packet is not
itself part of the RMPP transfer; its RMPPFlags.Active bit is 0.

When the request packet is sent, the Receiver initializes the response
timer for the transaction, using the initial Response Timeout (described in
13.6.3.1 Response Timeout (Resp) on page 778). If the Receiver does not
receive a response packet after the response timer expires, it may retry

Response
Timeout

 Receiver Sender

Response Timeout

Figure 174 RMPP Example

Initiation (class-dependent)

DATA(1)

ACK(seg#=1,nwl=last)

DATA (2)

DATA (3)

DATA (last)

ACK(seg#=last,nwl=last)

RTV

RTV

Response Timeout

Reset

Transaction
Timeout

Reset

Reset

Reset

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 781 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the request a vendor-specific number of times; after all retries are ex-
hausted, it terminates.

When the Sender has the data to send, it sends the first DATA packet; this
has SegmentNumber=1 and RMPPFlags.First=1, and may contain a Pay-
loadLength indicating the size of the total transfer. Since each transmis-
sion sequence begins with a window size of one, the Sender then waits
for an ACK packet, using its Resp timeout for this transfer. If an ACK
packet is not received in time, it may retry, ABORTing if retries fail.

When Receiver receives the initial DATA packet, it resets its original timer
set for receiving the initial DATA packet and it sets a timer using the trans-
action timer (described in 13.6.3 Timeouts on page 777) for the entire
RMPP transaction. It then responds with an ACK packet that acknowl-
edges receipt of SegmentNumber 1 and informs the Sender of a new
window size, picking a value the Receiver deems appropriate; for ex-
ample, it may allow sending a number of packets equal to the number of
receive work requests it has enqueued for the transfer. In Figure 174, for
simplicity, the window size is set large enough to encompass the entire
rest of the transfer. If it were not, additional ACKs and pauses between
sending of DATA packets by the Sender would be necessary.

On receiving the ACK, the Sender begins transmission of a stream of
DATA packets, starting with SegmentNumber=2. Each time a DATA
packet is received, the Receiver can optionally send an ACK packet ac-
knowledging the receipt of DATA packets up to the SegmentNumber re-
ceived (not illustrated.)

The Sender continues sending packets until all the packets up to the
window size specified by the Receiver have been sent. In Figure 174, this
would be all the packets to be sent. The last packet sent has RMPP-
Flags.Last=1, and PayloadLength set equal to the amount of data con-
tained in the last packet. After sending the last packet in the window, the
Sender initializes its timeout to Response Timeout and waits for an ACK
packet.

The Receiver sends an ACK at the end of the window, indicating that the
final packet of the window was successfully received. If this were the last
packet sent, the Receiver resets its transaction timer, marks the transac-
tion as successfully completed and sets a timer to delete the context after
Response Timeout (described in 13.6.3.1 Response Timeout (Resp) on
page 778) to ensure that any subsequent resends by the Sender (due to
lost ACK packets) does not result in the Sender incorrectly assuming that
the transaction completed in error.

If an ACK is not received within the Sender’s timeout, the Sender resends
the DATA packets from the last acknowledged packet up to the end of the
current window, with ABORT if the retries fail.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 782 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the Receiver does not receive all the packets in this transaction within
its transaction timer, it ABORTs the transaction and terminates

13.6.5 FLOW DIAGRAMS

The flow diagrams which follow define the characteristics of RMPP that
are constant across all classes using this facility.

In order to be sufficiently detailed, this description contains constructs
such as explicit state variables, assumptions about threading and state,
etc. It is neither required nor expected that any implementation implement
these literally. Rather, these constructs are intended only as a way to spe-
cifically describe the external behavior of the protocol to ensure on-the-
wire interoperability among implementations.

13.6.5.1 CONTEXT STATE VARIABLES

The description assumes that each RMPP transaction operates in a con-
text, meaning a collection of state variables specific to that transaction
whose settings are modified during the course of the operation. Each set
of such variables is associated with a tuple of {TID, GID, class} or {TID,
LID, class} (see 13.4.6.4 TransactionID usage on page 731), which is con-
stant over the course of each RMPP transmission sequence and serves
to uniquely identify that sequence. The number of such contexts simulta-
neously maintained is vendor-dependent; a minimum of one is required to
perform the protocol. Both the Sender and the Receiver will in any imple-
mentation contain state variables representing information beyond what is
specified here.

The descriptions of window and state variables below refer to the Seg-
mentNumber field of RMPP DATA and ACK packets, often abbreviated
“seg#” in the diagrams and text of this section.

The state variables relating to the retry window are WF, WL, and NS on
the Sender side; and ES on the Receiver side. The relationship between
these and the current window is illustrated in Figure 175 RMPP Window
State Variable Relationships on page 783.

• WF = Window First: Number of the segment that is the first packet in
the current window.

• WL = Window Last: Number of the segment that is the last packet in
the current window.

• NS = Next Segment number. The number of the segment that will be
transmitted next.

• ES = Expected Segment number. The seg# that the Receiver ex-
pects to receive in the next packet containing data.

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 783 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the protocol is operating correctly, it is always the case that WF≤WL,
WF≤NS≤(WL+1), and WF≤ES<NS. Should either side determine that
those relationships are violated, the protocol terminates either by explicitly
sending an ABORT packet or by timeout. For example, if the Sender re-
ceives an ACK acknowledging a packet that has not yet been sent, im-
plying ES≥NS, an ABORT is sent to the Receiver by the Sender.

Additional state variables used are:

• IsDS = Is Double-Sided. This is a boolean value (True or False) indi-
cating whether the context is being used as the first half of a double-
sided transfer (discussed in 13.6.6.3 Sender-Initiated Double-Sided
Transfer on page 792). It is present in both Receiver and Sender con-
texts.

• Resp = The current Resp timeout value, defined in 13.6.3.1 Re-
sponse Timeout (Resp) on page 778. It is present in both Receiver
and Sender contexts.

• Ttime = The current total transaction timeout value, as defined in
13.6.3.2 Total Transaction Timeout (Ttime) on page 779. It is present
only in the Receiver context.

13.6.5.2 CONTEXT & DISPATCHING

Figure 176 RMPP Dispatcher on page 784 illustrates the operation of the
top-level dispatcher that resumes, and in some cases creates and starts
RMPP operation within particular contexts.

o13-21.1.6: A class implementing RMPP shall exhibit the external, on-
the-wire behavior implied by Figure 176 RMPP Dispatcher on page 784.

Figure 175 RMPP Window State Variable Relationships

seg# = 3
seg# = 4
seg# = 5
seg# = 6
seg# = 7
seg# = 8
seg# = 9
seg# = 10
seg# = 11
seg# = 12

WF

Packet Stream Receiver Variables

WL

Range of NS

 Sender Variables

Range of ES

current window

seg# = 13
seg# = 14
seg# = 15
seg# = 16

NS

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 784 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Entry to Figure 176 is at the point labelled START HERE.

The following abbreviations are used in Figure 176:

• Res Avail? = the resources are available to allocate a new Receiver
context.

• TID Check = combination of TID, SLID or SGID, and class of a pack-
et identifies it as being part of a transfer that is either in process (cur-
rent), or has been completed or terminated (old) or is neither of those
two cases (new).

• Version Check = determines if the RMPPVersion in the packet indi-
cates a version supported by this implementation.

When either the Receiver or the Sender protocols enter a wait state, they
implicitly return to the IDLE state in the dispatcher.

If RMPP packets for a transmission sequence are received while that se-
quence’s processing is under way—after it has been dispatched and be-
fore it has re-entered a wait—those packets are implicitly queued in the
order in which they are received. When the processing of that sequence
re-enters the wait state, it is re-dispatched with the next waiting packet.

Figure 176 RMPP Dispatcher

IDLE not RMPP

RMPP pkt

dispatch TID’s wait
state to either Sender

or Receiver flow

new

current

TID Check Res Avail?

no

yes

START HERE

B

allocate receive context for
this transaction with ES←1

entry to Figure 178 RMPP Receiver
Main Flow Diagram on page 786

STOP(ResX),
discard pkt

Version Check
OK

ABORT(UnV),
discard pkt

bad

Type=DATA
& Seg#=1?

Yes

ABORT(BadT)
, discard pkt

No

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 785 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If RMPP packets are received for a transmission sequence that is not cur-
rently executing, but another transfer is currently executing, a separate
thread and/or context may be created and dispatched; whether this is
done is implementation-specific and may depend on the resources avail-
able.

When any currently in-process transmission sequence returns to its wait
state, any other may be dispatched with a waiting packet. While the order
of packets within any given transfer is preserved, ordering across se-
quences need not be preserved.

13.6.5.3 COMMON TERMINATION FLOW

Both the Sender and the Receiver use a common flow as their final termi-
nation operation to wait for any packets that may have been delayed in the
network and as a result arrive after the protocol has terminated. That flow
is shown in Figure 177 RMPP Common Termination Flow on page
785.This flow is entered from several others, and is implicitly required
whenever they are required. However, note that while Figure 177 is not
used for non-error termination in the Receiver case; it has its own termi-
nation for that situation.

Note that by the time the flow of Figure 177 is entered, the transaction has
completed. Receipt of an ABORT therefore has no effect; ABORT
packets are discarded like all other packets.

13.6.5.4 RECEIVER FLOW DIAGRAM

Figure 178 RMPP Receiver Main Flow Diagram on page 786 shows the
Receiver logical flow. In addition to what is shown there, Receiver can
send a STOP message at any time and terminate this transaction. The
processing at the end of a successful Receive operation is shown in

Figure 177 RMPP Common Termination Flow

wait timer←Resp

MAD received

timeout
Wait for

RMPP MAD with
this thread’s TID,

or timeout

purge
context

discard pkt

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 786 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 179 RMPP Receiver Termination Flow on page 787; it is separate
from Figure 178 only for convenience of representation.

o13-21.1.7: A class implementing RMPP shall exhibit the external, on-
the-wire behavior implied by Figure 178 RMPP Receiver Main Flow Dia-
gram on page 786.

Entry to Figure 178 is at the points labelled B, C or D, depending on how
the transfer is initiated.

Figure 178 RMPP Receiver Main Flow Diagram

MAD OK?

optional
ABORT(varies),

terminate

discard pkt

MAD received
No

Yes

No

Yes

seg# = 1?

Last Pkt?

No

Yes

YesNo

No

Yes

PayloadLength Processing;
computes TTIME & sets wait timer

C

A

DATA

ABORT, STOP

Type?

seg# = ES?

discard pkt,
terminate

discard pktdiscard pkt,
ABORT(BadT),

terminate

Store Data;
ES++

Wait for
RMPP MAD with
this thread’s TID,

or timeout

A

other
ACK

A

ABORT(T2L),
purge context

enter Figure 179 RMPP Receiver
Termination Flow on page 787

send ACK(ES-1)

C

B

C

DD

Time to
ACK?

timeout

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 787 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Abbreviations and notation used in Figure 178 and Figure 179:

• terminate = enter Figure 177 RMPP Common Termination Flow on
page 785. This is used in Figure 178 only to terminate in error cases
situations; normal termination enters Figure 179.

• MAD OK? = partly class-specific test that various characteristics of
the received MAD are appropriate. E.g.: Status in the Standard MAD
Header is a value expected; method is a method expected; attribute
is an attribute expected; etc. In addition, if the RRespTime value in

Figure 179 RMPP Receiver Termination Flow

send ACK(ES-1)

wait timer←Resp

MAD received

timeoutWait for
RMPP MAD with
this thread’s TID,

or timeout

purge context

MAD OK? No

Yes

Type?

ACK

other
discard packet,
ABORT(BadT),

terminate

optional
ABORT(varies),

terminate

enter Figure 180 RMPP Sender Main Flow
Diagram on page 789 at point labelled “send”

DATA

IsDS?

True

False

IsDS←False,
initialize Sender context
setting NS = WF = 1 and
WL = NewWindowLast

(NWL) from ACK packet

Send

discard pkt,
terminate

ABORT, STOP

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 788 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the packet is not the default value, the Resp timeout for this se-
quence is adjusted accordingly (see 13.6.3.1 Response Timeout (Re-
sp) on page 778).

• Type? = dispatch based on RMPPType field.
• Last Pkt? = based on either the RMPPFlags.Last value or on the

payload length, the packet just received is determined to be the last
packet of the transaction. Consistency of PayloadLength and flag
settings is checked here and may result in an ABORT packet being
sent; see discussion in 13.6.2.3 DATA Packet on page 775.

• Time to ACK? = the Receiver decides to send an ACK of the last-re-
ceived segment. This must be done if the packet was the last in the
current window; it may also be done at any time prior to that (vendor-
specific).

• Store Data = the data transferred in the last-received packet is stored
and/or transferred to the receiving agent or manager. If this was the
last packet of a transmission, the PayloadLength indicates the
amount of data contained in the packet; otherwise the entire data part
of the packet (class-specific) is transferred.

• Abort(value) = an RMPP packet is sent with RMPPType=ABORT
and RMPPStatus=value.

• ACK(ES-1) = an RMPP packet is sent with RMPPType=ACK, Seg-
mentNumber=ES-1, and NewWindowLast = what the Receiver de-
sires to indicate as the length of the current window.

13.6.5.5 SENDER MAIN FLOW DIAGRAM

Figure 180 RMPP Sender Main Flow Diagram on page 789 shows the
Sender logical flow. In addition to what is shown there, Sender can send
a STOP message at any time and terminate this transaction.

o13-21.1.8: A class implementing RMPP shall exhibit the external, on-
the-wire behavior implied by Figure 180 RMPP Sender Main Flow Dia-
gram on page 789.

Abbreviations and notation used in Figure 180:

• terminate = enter Figure 177 RMPP Common Termination Flow on
page 785.

• MAD OK? = identical to the “MAD OK?” processing of 13.6.5.4 Re-
ceiver Flow Diagram on page 785. The class-specific tests may, how-
ever, be different.

• Retry? = vendor-specific number of retries has not been exceeded.
• send DATA, inc NS = send one or more DATA packets and incre-

ment NS accordingly. E.g., enqueue send requests for DATA packets
that transfer data using successive SequenceNumbers, incrementing

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 789 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

False

Figure 180 RMPP Sender Main Flow Diagram

NS ≤ WL?

Send

pkt rcvd?

MAD OK? No

Yes

Type?

ACK

send DATA,
inc NS

Yes

No

No

Yes

ABORT(S2B),
terminate

>WL <WF discard pkt

update WF, WL

Send
otherwise

seg#?

Send

NWL<
WL?Yes No

No

terminate

ACK of
last pkt?

other

Yes

discard pkt

Send

DATA

ABORT, STOP

wait timer←Resp

Retry?

NS←WF

MAD
received

timeout

No

Yes
Wait for

RMPP MAD with
this thread’s TID,

or timeout

ABORT(W2S),
terminate

ABORT(TMR),
purge context

discard packet,
ABORT(BadT),

terminate

optional
ABORT(varies),

terminate

IsDS?

True

enter Figure 181 RMPP Sender
Direction Switch Flow Diagram on

page 791

discard pkt,
terminate

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 790 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

NS by 1 for each enqueued request. The sending (or enqueueing)
process should stop when either (a) NS reaches WL+1; or (a) all the
data for this transmission sequence has been sent.

• update WF, WL = set WL to NewWindowLast in the incoming ACK
packet and WF to SegmentNumber+1.

• Type? = dispatch based on RMPPType field.
• seg#? = dispatch based on the value of the segment # field in the

MAD.

13.6.5.6 DIRECTION SWITCH

A switch from Sender to Receiver, and vice versa, is required as part of a
double-sided transfer (see 13.6.6.3 Sender-Initiated Double-Sided
Transfer on page 792). The basic sequence for this direction switch is as
follows (ignoring errors, retries, etc.):

• The original Receiver, on receipt of the final DATA packet of the initial
sequence, sends an ACK of that packet (true whether it’s double-sid-
ed or not).

• The original Sender, on receiving that ACK, responds with an ACK in-
dicating a SegmentNumber of 0 and whatever window size it wishes
to use initially; it then enters the Receiver Main Flow, becoming a Re-
ceiver, and begins receiving packets normally.

• The original Receiver, on receiving an ACK from the original Sender,
enters the Sender Main Flow, becoming a Sender, and begins send-
ing packets normally.

Figure 181 RMPP Sender Direction Switch Flow Diagram on page 791
provides the details of the Sender direction switch operation. The Re-
ceiver direction switch flow is contained in Figure 179 RMPP Receiver
Termination Flow on page 787.The abbreviations and notation used in
Figure 181 are the same as those used in prior figures.

13.6.6 STARTUP SCENARIOS

This section illustrates how RMPP transfers may be initiated. Other tech-
niques than those described may be used; this is in general class-depen-
dent.

13.6.6.1 RECEIVER-INITIATED TRANSFER

A Receiver may effectively initiate an RMPP transfer by sending a single-
packet MAD which the receiving class interprets as a request for the initi-
ation of an RMPP transfer. For example, this is what the GetTable()
method of SA does.

A way for the Receiver to do this is to perform the following sequence. (Is-
sues of allocating receive buffers, posting receive work requests, etc., are
not covered.)

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 791 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) Allocate a TID for the operation.

2) Allocate a receive context for the receiving operation, setting ES = 1
and IsDS=0.

3) Register the context with the dispatcher, using the TID, LID or GID of
this endport (the Receiver), and the class of either the Sender or the
Receiver depending on whether which is a class manager or agent.

4) Operating in that context, perform the actions shown in Figure 182
RMPP Receiver-Initiated Flow on page 792, ultimately either termi-
nating or entering Figure 178 RMPP Receiver Main Flow Diagram on
page 786 at point B.

On receiving the request MAD, the manager or agent on the Sender side
should perform the steps described below in 13.6.6.2 Sender-Initiated
Transfer on page 792, with the exception that instead of a new TID, it uses
the TID provided in the request MAD. This will cause the first DATA packet
to be sent (with RMPPFlags.Active=1), retried if needed. On receiving that
first DATA packet, the Receiver-side dispatcher dispatches the previously
prepared context and the transfer has begun.

discard pkt,
terminate

ABORT, STOP

Figure 181 RMPP Sender Direction Switch Flow Diagram

send ACK with
Seg# = 0,

NWL = desired window;
wait timer←Resp

Retry?

MAD received

timeout No
Yes

Wait for
RMPP MAD with
this thread’s TID,

or timeout

ABORT(TMR),
purge context

MAD OK? No

Yes

Type?

DATA

other discard packet,
ABORT(BadT),

terminate

optional
ABORT(varies),

terminate

enter Figure 178 RMPP Receiver Main
Flow Diagram on page 786 at point D

ACK

IsDS←False

D

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 792 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

13.6.6.2 SENDER-INITIATED TRANSFER

A Sender may initiate an RMPP transfer performing the following se-
quence (issues of allocating send buffers, posting send work requests,
etc., are not covered):

1) Allocate a TID for the operation.

2) Allocate a send context for the receiving operation, setting the state
variables as follows:

• WF = WL = NS = 1; IsDS = 0.
• other state variables indicating the class, method, attribute, data

source, etc., of the packets to be sent as appropriate to the class
and the implementation.

3) Register the context with the dispatcher, using the TID, the LID of the
endnode this operation is being performed on, and the class of the
manager performing this request or the target of the request packet.

4) Enter the Sender state diagram at the point labelled Send.

This will cause the request packet to be sent, and retries performed ap-
propriately. The Receiver-side context is allocated and initiated on receipt
of the first RMPP packet as indicated in Figure 176 RMPP Dispatcher on
page 784.

13.6.6.3 SENDER-INITIATED DOUBLE-SIDED TRANSFER

It is also possible for a single transaction to involve an RMPP transfer sent
in one direction followed by another RMPP transfer in the other direction,

Figure 182 RMPP Receiver-Initiated Flow

MAD
received

timeout

No

Yes
Wait for

RMPP MAD with
this thread’s TID,

or timeout

ABORT(TMR),
purge context

enter Figure 178 RMPP Receiver Main
Flow Diagram on page 786at point BB

wait timer←Resp

send the MAD which should cause
its recipient (the Sender) to begin
sending an RMPP data sequence

Retry?

InfiniBandTM Architecture Release 1.2 Management Model October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 793 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

typically sent in response. This is used, for example, in the GetMulti()
method of SA. This may be accomplished as follows:

1) Allocate a TID, initialize and register with the dispatcher both send
and receive contexts as described in the prior two sections, steps 1,
2, and 3, except that in the Sender context, IsDS=1.

2) Begin the initial transfer by starting the send operation at the point la-
belled Send. The method or other indication should be interpreted on
the other side as initiating a double-sided transfer, causing the re-
ceive context to set IsDS=1.

3) When the Send operation terminates, IsDS=1 in the initially-used
Sender and Receiver contexts will cause a transfer in the opposite di-
rection to be initiated, according to the sequence described in
13.6.5.6 Direction Switch on page 790.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 794 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 14: SUBNET MANAGEMENT

14.1 SUBNET MANAGEMENT MODEL

Each subnet has at least one subnet manager (SM). Each SM resides on
a port of a CA, router, or switch and can be implemented either in hard-
ware or software. When there are multiple SMs on a subnet, one SM will
be the master SM. The remaining SMs must be standby SMs. There is
only one SM per port.

The master SM is a key element in initializing and configuring an IB
subnet. The master SM is elected as part of the initialization process for
the subnet and is responsible for:

• Discovering the physical topology of the subnet
• Assigning Local Identifiers (LIDs) to the endnodes, switches, and

routers
• Establishing possible paths among the endnodes
• Sweeping the subnet, discovering topology changes and managing

changes as nodes are added and deleted.
The communication between the master SM and the SMAs, and among
the SMs, is performed with subnet management packets (SMPs). SMPs
provide a fundamental mechanism for subnet management.

There are two types of SMPs: LID routed and directed route. LID routed
SMPs are forwarded through the subnet (by the switches) based on the
LID of the destination. Directed route SMPs are forwarded based on a
vector of port numbers that define a path through the subnet. Directed
route SMPs are used to implement several management functions, in par-
ticular, before the LIDs are assigned to the nodes. SMPs are specified in
14.2 Subnet Management Class on page 794.

Every switch, CA, and router has a subnet management agent (SMA),
managed by the master SM. SMA are specified in 14.3 Subnet Manage-
ment Agent on page 852.

The details of operation for both master and standby SMs are described
in 14.4 Subnet Manager on page 859

14.2 SUBNET MANAGEMENT CLASS

This section defines the Subnet Management class of MADs. These
MADs are also referred to as Subnet Management Packets, or SMPs. The
purpose of this class is to provide subnet configuration, monitoring and

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 795 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

query of nodes within a subnet. SMPs are exchanged between a SM and
SMAs on the subnet as described in Table 122 SM MAD Sources and
Destinations on page 756.

There are two management classes dedicated to subnet management.

C14-1: The subnet management classes shall be identified by the MAD-
Header:MgmtClass value of 0x01 for the LID Routed class and 0x81 for
the Directed Route class as listed in Table 113 Management Class Values
on page 720.

This section will describe class-specific methods, attributes, standard
header fields and protocols for the Subnet Management Classes.

14.2.1 DATAGRAM FORMATS AND USE

C14-2: The datagrams in this class shall conform to the MAD format and
usage rules as specified in 13.4.2 Management Datagram Format on
page 718.

14.2.1.1 SMP DATA FORMAT - LID ROUTED

LID Routed SMPs are routed through the subnet using the normal switch
forwarding tables set up during subnet initialization.

C14-3: A LID routed SMP shall have a format shown in Figure 183 on
page 795 and Table 125 on page 796.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 M_Key

28

32 Reserved (32 bytes)

...

60

64 SMP Data (64 bytes)

128 Reserved (128 bytes)

252

Figure 183 SMP Format (LID Routed)

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 796 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.1.2 SMP DATA FORMAT - DIRECTED ROUTE

Directed route SMPs are routed through the subnet from SMA to SMA
using a store-and-forward technique between neighboring nodes. They
are therefore not dependent on routing table entries. Directed route SMPs
are primarily used for discovering the physical connectivity of a subnet be-
fore it has been initialized.

C14-4: A Directed Routed SMP shall have a format shown in Figure 184
SMP Format (Directed Route) on page 796 and Table 126 SMP Fields (Di-
rected Route) on page 797.

Table 125 SMP Fields (LID Routed)

Object Length Description

Common MAD
Header

24 bytes Common MAD as described in 13.4.2 Management Datagram Format on
page 718.

M_Key 8 bytes A 64 bit key, which is employed for SM authentication. Usage is defined in
14.2.4 Management Key on page 806.

Reserved 32 bytes For aligning the SMP data field with the directed route SMP data field.

SMP Data 64 bytes 64 byte field of SMP data used to contain the method’s attribute.

Reserved 128 bytes Reserved.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header1

4 D Status Hop Pointer Hop Count

... Common MAD Header2

20

24 M_Key

28

32 DrSLID DrDLID

36 Reserved (28 bytes)

...
60
64 SMP Data (64 bytes)

128 Initial Path (64 bytes)

Figure 184 SMP Format (Directed Route)

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 797 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.2 SMPS AND DIRECTED ROUTE ALGORITHM

Directed route SMPs provide a mechanism for forwarding management
packets throughout a configured, unconfigured, or partially configured
subnet. This mechanism can be used to discover nodes in the subnet,
perform diagnostics or verify link connectivity, bypassing the normal
switch LID forwarding mechanism.

192 Return Path (64 bytes)

...
252

Table 126 SMP Fields (Directed Route)

Object Length Description

Common MAD
Header1

4 bytes Bytes 0-3 of the common MAD as described in 13.4.2 Manage-
ment Datagram Format on page 718.

D 1 bit Normally part of the class specific status field, this Direction bit is
used by directed routing to determine direction of packet.
If 0, the direction is outbound, from SM to node.
If 1, the direction is inbound, from node to SM.

Status 15 bits Code indicating status of method, as defined in 13.4.7 Status
Field on page 731. There are no SMP status bits (bits 14-8 must
be zero).

Hop Pointer 1 byte Hop Pointer is used to indicate the current byte of the Ini-
tial/Return Path field.

Hop Count 1 byte Hop Count is used to contain the number of valid bytes in the Ini-
tial/Return Path. It indicates how many direct route ‘hops’ to take.

Common MAD
Header2

16 bytes Bytes 8-23 of common MAD as described in 13.4.2 Management
Datagram Format on page 718.

M_Key 8 bytes A 64-bit key, which is employed for SM authentication. Usage is
defined in 14.2.4 Management Key on page 806.

DrSLID 2 bytes Directed route source LID. Used in directed routing.

DrDLID 2 bytes Directed route destination LID. Used in directed routing.

Reserved 28 bytes For the purpose of aligning the Data field on a 64 byte boundary.

Data 64 bytes 64-byte field of SMP data used to contain the method’s attribute.

Initial Path 64 bytes 64-byte field containing the initial directed path. Each byte in this
field represents a port.

Return Path 64 bytes 64-byte field containing the returning directed path. Each byte in
this field represents a port.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

Figure 184 SMP Format (Directed Route) (Continued)

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 798 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

There are two components that support this mechanism in subnets: the
Permissive destination address and directed routing. The Permissive des-
tination address is defined in 4.1 Terminology And Concepts on page 142.
When a node, including switches, receives a packet with this address it
forwards it to its Subnet Management Interface. Directed routing permits
the definition of an explicit route, based on intervening switch port num-
bers, that a packet is to traverse throughout the subnet.

Directed routing, in general, progresses much more slowly than normal
switching. This is because each switch along the route has to perform
some processing on every directed routed packet. Moreover, the IBA per-
mits nodes to reserve a minimal amount of buffering for processing of
SMPs. As a result, SMPs may be discarded in the subnet if the injection
rate exceeds the buffering and processing capacity of the subnet and end-
nodes. Therefore, it is recommended that directed routing only be used
where necessary.

The directed routing algorithm provides a method to use normal LID
routing on either side of the directed route. No support is provided for
more than one directed route. It is not possible to specify two or more di-
rected routes with intervening LID routes. This is illustrated in Figure 185
Complete route using directed routing on page 799. The complete route
between two nodes is made up of three parts, each of them potentially
empty:

• From the source node to the source switch. This part uses LID rout-
ing, the source node and the source switch are identified by their
LIDs. There may be other switches between them but this portion of
the subnet has already been configured to allow LID routing.

• From the source switch to the destination switch. This part uses di-
rect routing. The route is specified by stating the port number a pack-
et must use to leave a switch. This portion of the subnet need not
have been configured to allow LID routing.

• From the destination switch to the destination node. This part uses
LID routing, the destination node and the destination switch are iden-
tified by their LIDs. There may be other switches between them but
this portion of the subnet has already been configured to allow LID
routing.

Since each part may be empty, there are eight combinations, although
only four are really useful:

• All three parts are empty; this refers to the case when HopCount=0,
DrSLID=0xFFFF and DrDLID=0xFFFF. This is used to loopback to
oneself before a LID has been assigned. See Figure 186 Loopback
using directed routing on page 799.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 799 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Both LID routed parts are empty. This is a pure directed route used in
a portion of a subnet not configured for LID routing. See Figure 187
Pure directed route on page 799.

• One of the LID routed part is empty. This is used when a portion of
the subnet, either at the source or at the destination, has been config-
ured for LID routing. See Figure 188 Directed route with LID-Routed
part at the source on page 800 and Figure 189 Directed route with
LID-Routed part at the destination on page 800.

• No part is empty. This is the general case as illustrated in Figure 185
Complete route using directed routing on page 799 when portions of
the subnet have been initialized both at the source and destination
but not in between.

The following section describes how a directed route packet is initialized,
how a return packet is initialized, and the algorithm used along the route
by switches to forward the packets. Note that in the switched portions of

LID

LID LID

LID

Port #

Port #

Port # Port #

Port #

Port #

Node Node

Switch
Switch Switch

Switch

Figure 185 Complete route using
directed routing

SOURCE DESTINATION

Node

SOURCE
DESTINATION

Figure 186 Loopback using
directed routing

Port #

Port #

Port #

Port # Port #

Port #

Port #
Node Node

Switch Switch

SOURCE DESTINATION

Figure 187 Pure directed route

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 800 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a route, the nodes are not directly involved; the packet is switched along
the path just as any other packet is.

14.2.2.1 OUTGOING DIRECTED ROUTE SMP INITIALIZATION

C14-5: Only a SM shall originate a directed route SMP.

C14-5.a1: The SM shall insure that all nodes on a LID routed segment
shall be properly initialized for LID routing.

In the following sections, the source node where the SM originator resides
is called the requester node, and the destination node is called the re-
sponder node, even when describing the return process. When directed
route is used, it refers to the directed route part only, not the complete
route.

C14-6: The fields of the directed route SMP shall be initialized as follows:

• Mgmt Class shall be set to the directed route Subnet Management
class as specified in Table 113 Management Class Values on page
720.

• Method shall be set to SubnGet() or SubnSet() as specified in Table
114 Common Management Methods on page 722.

LID

LID

Port #

Port #

Port # Port #

Port #

Port #

Node

NodeSwitch
Switch Switch

SOURCE

DESTINATION

Figure 188 Directed route with
LID-Routed part at the source

LID

LID

Port #

Port #

Port # Port #

Port #

Port #
Node

Node

Switch Switch
Switch

SOURCE

DESTINATION
Figure 189 Directed route with

LID-Routed part at the destination

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 801 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• D bit shall be set to 0.

• Hop Pointer shall be set to 0.

• Hop Count shall be set to the number of links traversed along the di-
rected route part of the path. Valid values are from 0 to 63. In Figure
185 Complete route using directed routing on page 799, this number
would be 3. In Figure 186 Loopback using directed routing on page
799, this number would be 0.

• If the directed route part starts from the requester node, i.e. there is
no LID routed part at the source as illustrated in Figure 186 Loopback
using directed routing on page 799, Figure 187 Pure directed route
on page 799 or Figure 189 Directed route with LID-Routed part at the
destination on page 800, then the DrSLID shall be set to the Permis-
sive LID. If the directed route does not start from the requester node,
then DrSLID shall be set to the LID of the requester node, which
must have been assigned.

• If the directed route ends at the responder node, i.e. there is no LID
routed part at the destination as illustrated in Figure 186 Loopback
using directed routing on page 799, Figure 187 Pure directed route
on page 799 or Figure 188 Directed route with LID-Routed part at the
source on page 800, then the DrDLID shall be set to the Permissive
LID. If the directed route does not end at the responder node, then
the DrDLID shall be set to the LID of the responder node, which must
have been assigned.

• Initial Path shall be set to an array of Hop Count port numbers corre-
sponding to the ports at the starting end of hops, specifically, the port
from which the SMP will start travelling on the inter-node link along
the directed route. The array shall be laid out in the initial Path field
so that the byte at offset 0 in that field is reserved and the following
bytes are filled with the port numbers in order.

• Return Path shall be set to an array of Hop Count zeroes. The array
shall be laid out in the Return Path field so that the byte at offset 0 in
that field is reserved and the following bytes are filled with zeroes.

• All other fields shall be set the same way they are for a LID routed
SMP.

C14-7: The data packet headers for the unreliable datagram encapsu-
lating the directed route SMP shall be initialized as follows:

• If the directed route part starts from the requester node, the
LRH:SLID shall be set to the Permissive LID or a LID of this port. If
the directed route does not start from the requester node, the
LRH:SLID shall be set to the LID of the requester node, which must
have been assigned.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 802 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• LRH:DLID shall be set to the Permissive LID if the directed route part
starts from the requester node. If not, it shall be set to the LID of the
source switch in the directed route part. That LID must have been as-
signed and routing must have been initialized between that switch
and the requester node.

• All other fields shall be set the same way they are for a LID routed
SMP.

The SM will then hand the packet to the SMI. If the directed route part
starts from the requester node, the SMI processes the packet as de-
scribed in 14.2.2.2 Outgoing Directed Route SMP handling by SMI on
page 802. Otherwise, the SMI will output the packet as it does any LID
routed packet.

14.2.2.2 OUTGOING DIRECTED ROUTE SMP HANDLING BY SMI

C14-8: Any SMP arriving at the SMI with a MADHeader:MgmtClass set to
0x81 (Directed Route class) shall be processed by the SMI.

C14-9: The SMI shall handle outgoing directed route SMPs (D bit is 0) as
defined by one of the following mutually exclusive cases:

1) If Hop Count is nonzero and Hop Pointer is zero, the SMI is at the be-
ginning of the directed route portion of the path. The SMI shall alter
the contents of the directed route SMP as follows:

• The Hop Pointer shall be incremented by 1.

• For switches, the LRH:SLID shall be set to the Permissive LID.
For CA’s the LRH:SLID shall be set to a LID of this port or the
Permissive LID.

• LRH:DLID shall be set to the Permissive LID.

The SMI shall output the packet on the port whose number is in the
entry indexed by Hop Pointer in the Initial Path. If that port number is
invalid, the SMI shall discard the SMP.

2) If Hop Count is non zero and Hop Pointer is in the range 1 ≤ Hop
Pointer < Hop Count, this SMI is an intermediate hop in the directed
route portion of the path. If the node is not a switch, the SMI shall
discard the SMP, otherwise the SMI shall alter the contents of the di-
rected route SMP as follows:

• The entry indexed by Hop Pointer in the Return Path array of port
numbers shall be set to the port number where the SMP was re-
ceived and then the Hop Pointer shall be incremented by 1.

• The LRH:SLID shall be set to the Permissive LID.

• The LRH:DLID shall be set to the Permissive LID.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 803 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The SMI shall output the packet on the port whose number is in the
entry indexed by Hop Pointer in the Initial Path. If that port number is
invalid, the SMI shall discard the SMP.

3) If Hop Pointer is equal to Hop Count, the SMI is at the end of the di-
rected route portion of the path. The SMI shall alter the contents of
the directed route SMP as follows:

• If the Hop Count is zero, the Hop Pointer shall be incremented by
1. Otherwise, the entry indexed by Hop Pointer in the Return Path
array of port numbers shall be set to the port number where the
SMP was received and then the Hop Pointer shall be increment-
ed by 1.

• For switches, the LRH:SLID of the outgoing directed route SMP
shall be altered as follows: If the DrDLID is the Permissive LID,
the LRH:SLID shall be set to the Permissive LID. If the DrDLID is
not the Permissive LID, the LRH:SLID shall be set to the base
LID of this node. For CA’s, if the DrDLID is the Permissive LID,
the LRH:SLID may be set to the Permissive LID; otherwise, the
SMP is silently dropped.

• The LRH:DLID shall be set to the DrDLID.
If the LRH:DLID is the Permissive LID, this node is the responder node
and the SMI shall hand the packet to the SMA or SM, which may
check that Hop Pointer is equal to HopCount+1.

If the LRH:DLID is not the Permissive LID, the SMI will output the
packet as it does any LID routed packet.

4) If Hop Pointer is equal to Hop Count+1, this node is the responder
node and the SMI shall hand the packet to the SMA or SM, which
may check that Hop Pointer is equal to Hop Count+1.

5) If Hop Pointer is in the range (Hop Count+1) < Hop Pointer ≤ 255, the
SMI shall silently discard the SMP.

The handling of returning directed route SMPs (D bit is 1) is described in
14.2.2.3 Returning Directed Route SMP Initialization on page 803.

14.2.2.3 RETURNING DIRECTED ROUTE SMP INITIALIZATION

The SMA or SM receiving a directed route SMP processes it (with regard
to handling of the method and attribute) as it does a LID routed SMP. The
receiving SMA or SM may determine that it should send a response.

C14-10: The fields of the directed route response SMP shall be initialized
as follows:

• Method shall be set to SubnGetResp() as specified in Table 114
Common Management Methods on page 722.

• D bit shall be set to 1.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 804 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Mgmt Class, Hop Pointer, Hop Count, DrSLID, DrDLID, Initial Path
and Return Path shall be copied as is from the request SMP.

• All other fields shall be set the way they are set for a LID routed SMP.
C14-11: The data packet headers for the unreliable datagram encapsu-
lating the directed route response SMP shall also be initialized as follows:

• If the directed route part starts from the responder node, the
LRH:SLID shall be set to the Permissive LID or a LID of this port. If
the directed route does not start from the responder node, the
LRH:SLID shall be set to the LID of the responder node, which must
have been assigned.

• The LRH:DLID shall be set to the LRH:SLID of the directed route re-
quest SMP.

• All other fields shall be set the way they are set for a LID routed SMP.
The SMA or SM will then hand the packet to the SMI. If the directed route
part starts from the responder node, the SMI processes the packet as de-
scribed in 14.2.2.4 Returning Directed Route SMP handling by SMI on
page 804. Otherwise, the SMI will output the packet as it does any LID
routed packet.

14.2.2.4 RETURNING DIRECTED ROUTE SMP HANDLING BY SMI

C14-12: This compliance statement is obsolete and has been removed.

C14-13: The SMI shall handle returning directed route SMPs (D bit is 1)
as defined by one of the following mutually exclusive cases:

1) If Hop Count is non-zero and Hop Pointer is equal to Hop Count + 1,
the SMI is at the beginning of the directed route portion of the path.
The SMI shall alter the contents of the directed route SMP as fol-
lows:

• Hop Pointer shall be decremented by 1.
• For switches, the LRH:SLID shall be set to the Permissive LID.

For CA’s the LRH:SLID shall be set to a LID of this port or the
Permissive LID.

• LRH:DLID shall be set to the Permissive LID.
The SMI shall output the packet on the port whose number is in the
entry indexed by Hop Pointer in the Return Path. If that port number is
invalid, the SMI shall discard the SMP.

2) If Hop Count is non-zero and Hop Pointer is in the range 2 ≤ Hop
Pointer ≤ HopCount, this SMI is an intermediate hop in the directed
route portion of the path. If the node is not a switch, the SMI shall
discard the SMP, otherwise, he SMI shall alter the contents of the di-
rected route SMP as follows:

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 805 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Hop Pointer shall be decremented by 1.

• The LRH:SLID shall be set to the Permissive LID.

• The LRH:DLID shall be set to the Permissive LID.

The SMI shall output the packet on the port whose number is in the
entry indexed by Hop Pointer in the Return Path. If that port number is
invalid, the SMI shall discard the SMP.

3) If Hop Pointer is equal to 1, the SMI is at the end of the directed route
portion of the path. The SMI shall alter the fields of the directed route
SMP as follows:

• HopPointer shall be decremented by 1.

• For switches, the LRH:SLID of the returning directed route SMP
shall be altered as follows: If the DrSLID is the Permissive LID,
the LRH:SLID shall be set to the Permissive LID. If the DrSLID is
not the Permissive LID, the LRH:SLID shall be set to the LID of
this node. For CA’s, if the DrSLID is the Permissive LID, the
LRH:SLID may be set to the Permissive LID; otherwise, the SMP
shall be silently dropped.

• LRH:DLID shall be set to the DrSLID.

If the LRH:DLID is the Permissive LID, then this node is the requester
node and the SMI must hand the packet to the SM which may check
that HopPointer is equal to 0.

If the LRH:DLID is not the Permissive LID, the SMI will output the
packet as it does any LID routed packet.

4) If Hop Pointer is equal to 0, this node is the requester node and the
SMI must hand the packet to the SM, which may check that Hop
Pointer is equal to 0.

5) If Hop Pointer is in the range (Hop Count + 2) ≤ Hop Pointer ≤ 255,
then the SMI shall silently discard the SMP.

The handling of outgoing directed route SMPs (D bit is 0) is described in
14.2.2.2 Outgoing Directed Route SMP handling by SMI on page 802.

14.2.3 METHODS

The Subnet Management class uses a subset of the common methods
described in 13.4.5 Management Class Methods on page 721.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 806 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-13.1.1: Subnet management entities shall support the methods
listed in Table 127 Subnet Management Methods on page 806. All method
type values not listed in the table are reserved.

Table 122 SM MAD Sources and Destinations on page 756 indicates
which methods are applied to SMPs that originate at a SM, SMPs that
originate at a SMA, and SMPs that may be destined to SMAs or to SMs.

C14-14: This compliance statement is obsolete and has been removed.

Subnet Management entities, the SMA and SM, support the methods
listed in Table 127 Subnet Management Methods on page 806.

14.2.4 MANAGEMENT KEY

SMPs are used to initialize and configure CAs, switches and routers, and
are therefore considered privileged operations. As a result, there is a
mechanism provided to authorize subnet management operations based
on:

• a Key stored in the MADHeader:M_Key of the LID routed and Direct-
ed route subnet management class datagram as shown in Figure 183
SMP Format (LID Routed) on page 795 and Figure 184 SMP Format
(Directed Route) on page 796, respectively.

• a Key kept locally on each port in the PortInfo:M_Key component of
the PortInfo attribute that is described in Table 145 PortInfo on page
822.

Authentication is performed by the management entity at the destination
port and is achieved by comparing the key contained in the SMP with the
key residing at the destination port. This key is known as the Management
Key (M_Key).

C14-15: An M_Key contained in the MADHeader:M_Key of the SMP shall
not be checked at the receiving port with the PortInfo:M_Key set to zero.
As a result, no authentication is performed.

Table 127 Subnet Management Methods

Method Type Value Description

SubnGet() 0x01 Request a get (read) of an attribute.

SubnSet() 0x02 Request a set (write) of an attribute.

SubnGetResp() 0x81 Response from a get or set request.

SubnTrap() 0x05 Notify an event occurred.

SubnTrapRepress() 0x07 Cease sending repeated Trap.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 807 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the PortInfo:M_Key is nonzero, authentication at the receiving port and
access to the port attributes is determined by the contents of the Port-
Info:M_KeyProtectBits as described in 14.2.4.1 Levels of Protection on
page 807. Finally, M_Keys can be lost, so Key recovery is provided by the
PortInfo:M_KeyLeasePeriod components and is described in 14.2.4.2
Lease Period on page 807.

Note that M_Key components of PortInfo are undefined for switch phys-
ical ports. M_Key checking for switch physical port attributes is performed
using PortInfo:M_Key of switch port 0.

14.2.4.1 LEVELS OF PROTECTION

C14-16: If the PortInfo:M_Key is non-zero, the management entity re-
siding at the port shall perform authentication determined by the contents
of the PortInfo:M_KeyProtectBits and the behaviors described in Table
128 Protection Levels on page 807.

14.2.4.2 LEASE PERIOD

A Lease Period is specified by setting the contents of the Port-
Info:M_KeyLeasePeriod component. It is intended to allow an M_Key to
'expire' if the master SM inadvertently goes away without sharing the

Table 128 Protection Levels

PortInfo:M_KeyProtectBits Description

0 SubnGet(*) shall succeed for any key in the MADHeader:M_Key
and SubnGetResp(PortInfo) shall return the contents of the Port-
Info:M_Key component.
SubnSet(*) and SubnTrapRepress(*) shall fail if MAD-
Header:M_Key does not match the PortInfo:M_Key component
in the port.

1 SubnGet(*) shall succeed for any key in the MADHeader:M_Key
and SubnGetResp(PortInfo) shall return the contents of the Port-
Info:M_Key component set to zero if MADHeader:M_Key does
not match the PortInfo:M_Key component in the port.
SubnSet(*) and SubnTrapRepress(*) shall fail if MAD-
Header:M_Key does not match the PortInfo:M_Key component
in the port.

2 SubnGet(*), SubnSet(*), and SubnTrapRepress(*) shall fail if
MADHeader:M_Key does not match the PortInfo:M_Key compo-
nent in the port.

3 SubnGet(*), SubnSet(*), and SubnTrapRepress(*) shall fail if
MADHeader:M_Key does not match the PortInfo:M_Key compo-
nent in the port. This function is identical to the function of Port-
Info:M_KeyProtectBits = 2. It is retained only for backward
compatibility.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 808 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

M_Key with backup SMs and there is no other out-of-band recovery
mechanism available.

C14-17: The lease period timer shall start counting down toward zero on
a port when a SMP is received for which the M_Key check was performed
according to Table 128 Protection Levels on page 807 and failed. If the
lease timer countdown is already underway, it shall not be interrupted by
the arrival of that SMP.

C14-18: The PortInfo:M_KeyViolations component shall be incremented
on a port when a SMP is received by that port for which the M_Key check
was performed according to Table 128 Protection Levels on page 807 and
failed. The incrementing shall stop when the component reaches all 1s.

Furthermore, an M_Key violation trap/notice must be generated as de-
scribed in 14.3.9 M_Key mismatch on page 857 indicating that the lease
timer has started counting. In response to that trap, the master SM may
refresh the Lease Period. If the master SM that originally set the M_Key
has gone away, the Lease Period may expire.

C14-19: The lease period counter shall cease counting down and shall
be reset to the value contained in PortInfo:M_KeyLeasePeriod compo-
nent on a port when any SMP is received with MADHeader:M_Key that
matches the PortInfo:M_Key.

C14-20: The PortInfo:M_KeyProtectBits shall be set to zero when the
lease period counter transitions from non-zero to zero.

When the lease period expires, clearing the M_Key Protection bits will
allow any SM to read (and then set) the M_Key.

C14-21: When the PortInfo:M_KeyLeasePeriod is set to zero, the lease
period shall never expire.

Whether there is an out-of-band mechanism to reset data protected with
a lease period of zero is outside the scope of the specification.

14.2.4.3 NOTES ON EXPECTED USAGE

• The SM is responsible for keeping track of the M_Keys for the
nodes that it is managing, to make sure that it uses the correct
key for each node.

• If standby SMs exist in the subnet for redundancy, then the
M_Keys may be shared so that failover to another SM can be ac-
commodated easily.

• An SM may have exclusive access to a node (or set of nodes), by
using an M_Key which is only known by that SM and the particu-
lar node(s).

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 809 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• SubnSet() is always protected by this mechanism as it can affect
the state of the node. SubnGet() is protected only if PortIn-
fo:M_KeyProtectBits is appropriately set.

14.2.4.4 UPDATE PROCEDURE

Node protection/ownership is assigned in one “atomic” operation.

C14-22: The PortInfo:M_Key, the PortInfo:M_KeyProtectBits, the Port-
Info:M_KeyLeasePeriod components in the PortInfo Attribute shall be set
in one SubnSet(PortInfo) method.

A returned SubnGetResp(PortInfo) with a status of zero indicates to the
SM that it has taken ownership of the node.

14.2.4.5 INITIALIZATION

C14-23: When initially powered-up or reset, the PortInfo:M_Key, the Port-
Info:M_KeyProtectBits, the PortInfo:M_KeyLeasePeriod components of
an endport shall be set to zero if NVRAM is not used or to a value stored
in NVRAM.

If the M_Key related components are not stored in NVRAM, the Port-
Info:M_Key, the PortInfo:M_KeyProtectBits, the Port-
Info:M_KeyLeasePeriod components may be set by any master SM
during subnet initialization. Initialization of M_KeyLeasePeriod to a value
of zero (infinite) notwithstanding, whenever a port's M_Key-related com-
ponents are not stored in NVRAM, any subnet manager can successfully
read and then set the port’s M_Key during subnet initialization.

14.2.4.6 SMI

The SMI will not check the M_Key in the header of a SMP since that is the
responsibility of the management entities that reside behind the SMI.

14.2.5 ATTRIBUTES

In the SMP, attributes can be up to 64 bytes long. Table 129 Subnet Man-
agement Attributes (Summary) on page 810 summarizes the subnet man-
agement attributes and Table 130 Subnet Management Attribute / Method
Map on page 811 indicates which methods apply to each attribute.

C14-24: This compliance statement is obsolete and has been replaced by
C14-24.1.1:

C14-24.1.1: Subnet management entities shall support the attributes and
methods as listed in Table 129 Subnet Management Attributes (Summary)
on page 810 and Table 130 Subnet Management Attribute / Method Map

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 810 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

on page 811. All attribute IDs not listed in Table 129: Subnet Management
Attributes (Summary) are reserved.

Table 129 Subnet Management Attributes (Summary)

Attribute Name Attribute
ID AttributeModifier Description Applicable

To

Notice 0x0002 0x0000_0000 Information regarding the associ-
ated Notice or Trap(). See
14.2.5.1 Notices and Traps on
page 812.

All Endports
on All
Nodes

NodeDescription 0x0010 0x0000_0000 Node Description String. See
14.2.5.2 NodeDescription on
page 818.

All Nodes

NodeInfo 0x0011 0x0000_0000 Generic Node Data. See 14.2.5.3
NodeInfo on page 818.

All Ports on
All Nodes

SwitchInfo 0x0012 0x0000_0000 Switch Information. See 14.2.5.4
SwitchInfo on page 819.

Switches

GUIDInfo 0x0014 GUID Block Assigned GUIDs. See 14.2.5.5
GUIDInfo on page 821.

All Endports

PortInfo 0x0015 Port Number Port Information. See 14.2.5.6
PortInfo on page 821.

All Ports on
All Nodes

P_KeyTable 0x0016 Port Number/P_Key block Partition Table. See 14.2.5.7
P_KeyTable on page 834.

All Ports on
All Nodes

SLtoVLMappingTable 0x0017 Input/Output Port Number Service Level to Virtual Lane
mapping Information. See
14.2.5.8 SLtoVLMappingTable
on page 835.

All Ports on
All Nodes
(optionala)

VLArbitrationTable 0x0018 Output Port/Component List of Weights. See 14.2.5.9
VLArbitrationTable on page 836.

All Ports on
All Nodes
(optionalb)

LinearForwardingTable 0x0019 Block Identifier Linear Forwarding Table Informa-
tion. See 14.2.5.10 LinearFor-
wardingTable on page 837.

Switches
(optionalc)

RandomForwardingTable 0x001A Block Identifier Random Forwarding Table Infor-
mation. See 14.2.5.11 Random-
ForwardingTable on page 838.

Switches
(optionalc)

MulticastForwardingTable 0x001B Block Identifier Multicast Forwarding Table Infor-
mation. See 14.2.5.12 Multicast-
ForwardingTable on page 838.

Switches
(optional)

SMInfo 0x0020 0x0000_0000 - 0x0000_0005 Subnet Management Informa-
tion. See 14.2.5.13 SMInfo on
page 840.

All nodes
hosting an
SM

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 811 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Several of the SM attributes described in the sections that follow (Linear-
ForwardingTable, RandomForwardingTable,MulticastForwardingTable,
VLArbitrationTable, GUIDInfo, and P_KeyTable) are used to load and
read contents of tables in switches and CAs. Each of those attributes uses
a block of table entries and an offset into the table specified using the

VendorDiag 0x0030 0x0000_0000 - 0x0000_FFFF Vendor Specific Diagnostic. See
14.2.5.14 VendorDiag on page
840.

All Ports on
All Nodes

LedInfo 0x0031 0x0000_0000 Turn on/off LED. See 14.2.5.15
LedInfo on page 842.

All nodes
(optional)

0xFF00-
0xFFFF

0x0000_0000 - 0xFFFF_FFFF Range reserved for Vendor Spe-
cific attributes.

a. Optional on ports that support only one data VL.
b. Prohibited on ports that support only one data VL.
c. LinearForwardingTable and RandomForwardingTable are mutually exclusive, but one is required.

Table 129 Subnet Management Attributes (Summary) (Continued)

Attribute Name Attribute
ID AttributeModifier Description Applicable

To

Table 130 Subnet Management Attribute / Method Map

Attribute Name Get Set Trap TrapRepress

Notice X X X X

NodeDescription X

NodeInfo X

SwitchInfo X X

GUIDInfo X X

PortInfo X X

P_KeyTable X X

SLtoVLMappingTable X X

VLArbitrationTable X X

LinearForwardingTable X X

RandomForwardingTable X X

MulticastForwardingTable X X

SMInfo X X

VendorDiag X

LedInfo X X

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 812 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

MadHeader:AttributeModifier component. Successive block elements are
loaded or read starting at the specified offset.

The number of table entries in a block is fixed, and the offset (Attribute-
Modifier) is specified in units of block size. Also, there is no requirement
that the actual table lengths, as indicated by related Cap or Top compo-
nents, be an integer multiple of the block size.23

As long as some of a block's entries address valid table entries, this is not
an error. The block elements corresponding to invalid table entries are ig-
nored on write and read back as all zeros.

However, if none of the block entries address valid table entries, it must
mean that the AttributeModifer value specifies an offset that is past the
end (Cap or Top) of the table. In this case a MADHeader:Status.Code of
7 is returned, since that is the status code for an invalid attribute modifier
value (see 13.4.7 Status Field on page 731). The attribute contents ac-
companying that Status Code are implementation-specific.

14.2.5.1 NOTICES AND TRAPS

This attribute is a common attribute described in 13.4.8.2 Notice on page
737. The following traps are defined for the Subnet Management class.

23. All of the table attributes except LinearForwardingTable use a Cap
component only. For example, SwitchInfo:RandomFDBCap is used for
RandomForwardingTable. The LinearForwardingTable uses both a Cap and a
Top. See 14.2.5.10 LinearForwardingTable on page 837. This implies that the
last, i.e., largest offset, block that is loaded or read from a table may overflow
past the end of a table, implicitly addressing table entries that are invalid. When
the table size happens to be less than the block size, such a "last" block will also
be the first, and only valid, block.

Table 131 Traps

Trap
Number Typea Kind of

Sending Node DataDetails

64 Informational subnet manager <GIDADDR> is now in service; see 14.4.9 In and Out of Service Traps on
page 880

65 Informational subnet manager <GIDADDR> is out of service; see 14.4.9 In and Out of Service Traps on
page 880

66 Informational subnet manager New multicast group with multicast address <GIDADDR> is now created;
see 14.4.10 Multicast Group Create/Delete Traps on page 880

67 Informational subnet manager Multicast group with multicast address <GIDADDR> is now deleted; see
14.4.10 Multicast Group Create/Delete Traps on page 880

128 Urgent switch Link state of at least one port of switch at <LIDADDR> has changed. ; see
14.3.6 Port State Change on page 855.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 813 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Traps use the layouts shown in the tables below for the DataDetails com-
ponent of their Notice attributes.

C14-24.1.2: Unless the Directed Route Notice option is implemented by
an SMA as indicated by PortInfo:CapabilityMask.IsDRNoticeSupported,
all components of all SMP Notice DataDetails for Trap 256 whose name
begins with the letters “DR” shall be ignored on read; their content is un-
specified.

C14-24.1.3: If the Directed Route Notice option is implemented by an
SMA (PortInfo:CapabilityMask.IsDRNoticeSupported=1), and an M_Key
violation is caused as a result of the arrival of a LID Routed SMP, the SMA
shall set to 0 the DRNotice attribute of the associated Notice's DataDe-
tails. If the M_Key violation was caused by the arrival of a Directed Route
SMP, the SMA shall set the following notice attributes in the associated
Notice's DataDetails as specified below:

• DRNotice shall be set to 1.

129 Urgent any Local Link Integrity threshold reached at <LIDADDR><PORTNO>

130 Urgent any Excessive Buffer Overrun threshold reached at <LIDADDR><PORTNO>

131 Urgent switch Flow Control Update watchdog timer expired at <LIDADDR><PORTNO>

144 Informational any The CapabilityMask at <LIDADDR> has been modified and its new value
is <CAPABILITYMASK>. This trap is optional; see 14.3.11 Change Capa-
bilityMask on page 858.

145 Informational any The SystemImageGUID at <LIDADDR> has been modified and its new
value is <SYSTEMIMAGEGUID>. This trap is optional; see 14.3.12
Change SystemImageGUID on page 858

256 Security any Bad M_Key, <MKEY> from <LIDADDR> attempted <METHOD> with
<ATTRIBUTEID> and <ATTRIBUTEMODIFIER>; if MAD was directed
route, see C14-24.1.2: on page 813 and C14-24.1.3: on page 813

257 Security any Bad P_Key, <KEY> from <LIDADDR1>/<GIDADDR1>/<QP1> to
<LIDADDR2>/<GIDADDR2>/<QP2> on <SL>.

258 Security any Bad Q_Key, <KEY> from <LIDADDR1>/<GIDADDR1>/<QP1> to
<LIDADDR2>/<GIDADDR2>/<QP2> on <SL>.

259 Security switch Bad P_Key <PKEY> from <LIDADDR1>/<GIDADDR1>/<QP1> to
<LIDADDR2>/<GIDADDR2>/<QP2> on <SL> at switch <LIDADDR>
external port <PORTNO>, where the validity of all the above fields is indi-
cated by <DataValid>. This trap is optional; see 14.3.7 P_Key Mismatch
on Switch External Ports on page 856.

a. For these traps, the type field is ignored in all MADs using the Notice attribute.

Table 131 Traps (Continued)

Trap
Number Typea Kind of

Sending Node DataDetails

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 814 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• DRPathTruncated shall be set to 0 if the return path of the directed
route SMP is short enough to fit completely in the Notice's DRNo-
ticeReturnPath component; otherwise DRPathTruncated shall be set
to 1.

• DRHopCount shall be set to the number of hops placed in this No-
tice.

• DRSLID shall be set to the DrSLID component of the Directed Route
SMP.

• The ReturnPath of the SMP shall be placed in the DRNoticeReturn-
Path field. The lowest-offset ReturnPath byte shall be placed in the
lowest offset DRNoticeReturnPath byte; the second-lowest in the
second-lowest; etc. If the ReturnPath is too long to fit in the Notice's
DRNoticeReturnPath, the highest offset bytes of the ReturnPath are
not recorded.

Generation of this Notice takes place in the SMA, after the Directed Route
SMP has been processed by the SMI.

Table 132 Notice DataDetails For Traps 64, 65, 66, and 67

Field Length(bits) Description

Reserved 48 Reserved

GIDADDR 128 Global Identifier

Padding 256 Shall be ignored on read. Content
is unspecified.

Table 133 Notice DataDetails For Trap 128

Field Length(bits) Description

LIDADDR 16 Local Identifier

Padding 416 Shall be ignored on read. Content
is unspecified.

Table 134 Notice DataDetails For Traps 129, 130 and 131

Field Length(bits) Description

Reserved 16 Reserved

LIDADDR 16 Local Identifier

PORTNO 8 Port number

Padding 392 Shall be ignored on read. Content
is unspecified.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 815 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 135 Notice DataDetails For Trap 144

Field Length(bits) Description

Reserved 16 Reserved

LIDADDR 16 Local Identifier

Reserved 16 Reserved

CAPABILITYMASK 32 Contents of the CapabilityMask at
<LIDADDR>

Padding 352 Shall be ignored on read. Content
is unspecified.

Table 136 Notice DataDetails For Trap 145

Field Length(bits) Description

Reserved 16 Reserved

LIDADDR 16 Local Identifier

Reserved 16 Reserved

SYSTEMIMAGEGUID 64 Contents of the SystemIm-
ageGUID at <LIDADDR>

Padding 320 Shall be ignored on read. Content
is unspecified.

Table 137 Notice DataDetails For Trap 256

Field Length(bits) Description

Reserved 16 Reserved

LIDADDR 16 Local Identifier

DRSLID 16 DrSLID of the directed route SMP
causing this Notice, if any. See
C14-24.1.3: on page 813

METHOD 8 Method

Reserved 8 Reserved

ATTRIBUTEID 16 Attribute ID

ATTRIBUTEMODIFIER 32 AttributeModifier

MKEY 64 M_Key

Reserved 8 Reserved

DRNotice 1 Indicates whether this Notice
results from a directed route SMP
See C14-24.1.3: on page 813.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 816 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DRPathTruncated 1 Indicates that the DRNoticeRe-
turnPath is truncated. See C14-
24.1.3: on page 813.

DRHopCount 6 Number of bytes in the DRNo-
ticeReturnPath. See C14-24.1.3:
on page 813.

DRNoticeReturnPath 240 ReturnPath from the directed
route SMP. See C14-24.1.3: on
page 813.

Table 138 Notice DataDetails For Traps 257 and 258

Field Length(bits) Description

Reserved 16 Reserved

LIDADDR1 16 Local Identifier

LIDADDR2 16 Local Identifier

KEY 32 Q_Key or P_Key.
If P_Key, the 16 most significant
bits of the field shall be set to 0
and the 16 least significant bits of
the field shall be set to the
P_Key.

SL 4 Service Level

Reserved 4 Reserved

QP1 24 Queue Pair

Reserved 8 Reserved

QP2 24 Queue Pair

GIDADDR1 128 Global Identifier.
If no GRH is present in the offend-
ing packet, this field shall be filled
with zeroes.

GIDADDR2 128 Global Identifier.
If no GRH is present in the offend-
ing packet, this field shall be filled
with zeroes.

Padding 32 Shall be ignored on read. Content
is unspecified.

Table 137 Notice DataDetails For Trap 256 (Continued)

Field Length(bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 817 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 139 Notice DataDetails For Trap 259

Field Length(bits) Description

DataValid 16 Indicates validity of optional data
fields; 0 = field invalid; 1 = field
valid:
• bit 0: LIDADDR1
• bit 1: LIDADDR2
• bit 2: PKEY
• bit 3: SL
• bit 4: QP1
• bit 5: QP2
• bit 6: GIDADDR1
• bit 7: GIDADDR2
• bits 8-15: Reserved

LIDADDR1 16 Local Identifier

LIDADDR2 16 Local Identifier

PKEY 16 P_Key

SL 4 Service Level

Reserved 4 Reserved

QP1 24 Queue Pair

Reserved 8 Reserved

QP2 24 Queue Pair

GIDADDR1 128 Global Identifier. Shall be set to
zero to indicate lack of a GRH in
the offending packet when Data-
Valid bit 6 is 1.

GIDADDR2 128 Global Identifier. Shall be set to
zero to indicate lack of a GRH in
the offending packet when Data-
Valid bit 7 is 1.

SWLIDADDR 16 Local Identifier of switch

PORTNO 8 Port Number

Padding 24 Shall be ignored on read. Content
is unspecified.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 818 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.2 NODEDESCRIPTION

The contents of the NodeDescription attribute are the same for all ports
on a node.

14.2.5.3 NODEINFO

The NodeInfo Attribute provides fundamental management information
common to all CAs, routers, and switches. It shall be implemented by all
nodes.The value of some NodeInfo components varies by port within a
node.

Table 140 NodeDescription

Component Access Length(bits) Description

NodeString RO 512 UTF-8 encoded string to describe node in text format.

Table 141 NodeInfo

Component Access Length (bits) Offset (bits) Description

BaseVersiona RO 8 0 Supported MAD Base Version. Indicates that this node
supports up to and including this version. Set to 1.

ClassVersiona RO 8 8 Supported Subnet Management Class (SMP) Version.
Indicates that this node supports up to and including this
version. Set to 1.

NodeTypea RO 8 16 1: Channel Adapter
2: Switch
3: Router
0, 4 - 255: Reserved

NumPortsa RO 8 24 Number of physical ports on this node.

SystemIm-
ageGUIDa

RO 64 32 GUID associating this node with other nodes controlled
by common supervisory code. Provides a means for sys-
tem software to indicate the availability of multiple paths
to the same destination via multiple nodes. Set to zero if
indication of node association is not desired. The Sys-
temImageGUID may be the NodeGUID of one of the
associated nodes if that node is not field-replaceable.

NodeGUIDa RO 64 96 GUID of the HCA, TCA, switch, or router itself. All ports
on the same node shall report the same Node-GUID.
Provides a means to uniquely identify a node within a
subnet and determine co-location of ports.

PortGUIDb RO 64 160 GUID of this port itself. One port within a node can return
the NodeGUID as its PortGUID if the port is an integral
part of the node and is not field-replaceable.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 819 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.4 SWITCHINFO

The SwitchInfo Attribute provides management information specific to
switch nodes. It shall be implemented by all switches.

PartitionCapa RO 16 224 Number of entries in the Partition Table for CA, router,
and the switch management port. This is at a minimum
set to 1 for all nodes including switches.

DeviceIDa RO 16 240 Device ID information as assigned by device manufac-
turer.

Revisiona RO 32 256 Device revision, assigned by manufacturer.

LocalPortNum RO 8 288 The number of the link port which received this SMP.

VendorIDa RO 24 296 Device vendor, per IEEE.

a. Value shall be the same for all ports on a node.
b. Value shall differ for each end port on a CA or router, but the same for all ports of a switch.

Table 141 NodeInfo (Continued)

Component Access Length (bits) Offset (bits) Description

Table 142 SwitchInfo

Component Access Length (bits) Offset (bits) Description

LinearFDBCap RO 16 0 Number of entries supported in the Linear Unicast For-
warding Table (starting at LID=0x0000 going up). Lin-
earFDBCap = 0 indicates that there is no Linear
Forwarding Table.

RandomFDBCap RO 16 16 Number of entries supported in the Random Unicast
Forwarding Table. RandomFDBCap = 0 indicates that
there is no Random Forwarding Table.

MulticastFDBCap RO 16 32 Number of entries supported in the Multicast Forward-
ing Table (starting at LID=0xC000 going up).

LinearFDBTop RW 16 48 Indicates the top of the linear forwarding table. Packets
received with unicast DLIDs greater than this value are
discarded by the switch. A valid LinearFdbTop is less
than LinearFdbCap. This component applies only to
switches that implement linear forwarding tables and is
ignored by switches that implement random forwarding
tables.

DefaultPort RW 8 64 Forward to this port all the unicast packets from the
other ports whose DLID does not exist in the random
forwarding table, see Chapter 18:: Switches. If set to a
non-existent port, subsequent responses may contain
any non-existent port number.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 820 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DefaultMulticastPri-
maryPort

RW 8 72 Forward to this port all the multicast packets from the
other ports whose DLID does not exist in the forwarding
table, see 18.2.4.3.3 Required Multicast Relay on page
1053. If set to a non-existent port, subsequent
responses may contain any non-existent port number.

DefaultMulticast-
NotPrimaryPort

RW 8 80 Forward to this port all the multicast packets from the
Default Primary port whose DLID does not exist in the
forwarding table, see 18.2.4.3.3 Required Multicast
Relay on page 1053. If set to a non-existent port, sub-
sequent responses may contain any non-existent port
number.

LifeTimeValue RW 5 88 Sets the time a packet can live in the switch, see
18.2.5.4 Transmitter Queueing on page 1057.

PortStateChange RW 1 93 It is set to one anytime the PortState component in the
PortInfo of any ports transitions from Down to Initialize,
Initialize to Down, Armed to Down, or Active to Down as
a result of link state machine logic. Changes in Ports-
tate resulting from SubnSet() do not change this bit.
This bit is cleared by writing one, writing zero is
ignored.

Reserved RO 2 94 Reserved

LIDsPerPort RO 16 96 Specifies the number of LID/LMC combinations that
may be assigned to a given external port for switches
that support the Random Forwarding table.

PartitionEnforce-
mentCap

RO 16 112 Specifies the number of entries in the partition enforce-
ment table per physical port. Zero indicates that parti-
tion enforcement is not supported by the switch.

InboundEnforce-
mentCap

RO 1 128 Indicates switch is capable of partition enforcement on
received packets

OutboundEnforce-
mentCap

RO 1 129 Indicates switch is capable of partition enforcement on
transmitted packets

FilterRawInbound-
Cap

RO 1 130 Indicates switch is capable of raw packet enforcement
on received packets

FilterRawOut-
boundCap

RO 1 131 Indicates switch is capable of raw packet enforcement
on transmitted packets

EnhancedPort0 RO 1 132 When set to 1, indicates switch port 0 supports
enhanced functions (TCA port). When set to 0, indi-
cates switch port 0 is a base switch port 0.

Reserved RO 3 133 Reserved

Table 142 SwitchInfo (Continued)

Component Access Length (bits) Offset (bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 821 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.5 GUIDINFO

The GUIDInfo Attribute provides the means for setting the assigned local
scope EUI-64 identifiers of channel adapter, router, and enhanced switch
management ports. These local scope EUI-64 identifiers are concate-
nated with a subnet prefix to form GIDs that are described in 4.1.1 GID
Usage and Properties on page 143.

The AttributeModifier is a pointer to a block of 8 GUIDs to which this at-
tribute applies. Valid values are from 0 to 31 and are further limited by the
size of the GUIDCap of the port; see 14.2.5 Attributes on page 809. The
GUID Block Element at offset zero of the first GUIDBlock (AttributeModi-
fier = 0) is read-only and is a copy of the PortGUID component.

The attribute selected corresponds to the port that received the SMP.

14.2.5.6 PORTINFO

The PortInfo Attribute provides port-specific management information. It
shall be implemented for every port on a node. Note that the values of
some PortInfo components vary by node type and by port within a node.

The AttributeModifier selects the port upon which the operation specified
by the SMP is performed. For switches, channel adapters, and routers,
the range of values between 0 to N, where N is the number of ports and:

• For channel adapters and routers the value of zero indicates that the
operation is performed on the port that received the SMP. Otherwise,
if the value is non-zero and does not match the port number where
the SMP is received, the PortInfo attribute is RO and the M_Key is
checked for both the port where the SMP was received and the port
selected by the AttributeModifier.

• For switches, a value of zero selects the management port. Other-
wise, if the value is non-zero, a physical port is selected.

C14-24.2.1: If PortInfo:Portstate=Down, then

Table 143 GUIDInfo

Component Access Length(bits) Description

GUIDBlock RW 512 List of 8 GUID Block Elements.

Table 144 GUID Block Element

Component Length(bits) Description

GUID 64 GUID to be assigned to port.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 822 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• a SubnGet(PortInfo) shall produce valid data for PortInfo:PortState
and PortInfo:PortPhysicalState; whether any other component has
valid data is vendor-dependent.

• a SubnSet(PortInfo) shall make any changes it specifies to PortIn-
fo:PortPhysicalState; any other result is vendor-dependent.

In Table 145: PortInfo, the “Used By” columns indicate how and whether
a component is used by a particular type of port: Channel Adapter (CA),
Router (Router), Switch external port (Sw Ext.), Base Switch Port 0 (Base
SP0) and Enhanced Switch Port 0 (Enh. SP0). The notation used in the
columns is: X = required; 0 = must be 0; 1 = must be 1; and blank = un-
used.

Table 145 PortInfo

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

M_Key X X X X RW 64 0 The 8-byte management key. See 14.2.4 Manage-
ment Key on page 806.

GidPrefix X X X X RW 64 64 GID prefix for this port.

LID X X X X RW 16 128 The base LID of this port.

MasterSMLID X X X X RW 16 144 The LID of the master SM that is managing this
port.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 823 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CapabilityMask X X X X RO 32 160 Supported capabilities of this node. A bit set to 1 for
affirmation of supported capability.
0: Reserved
1: IsSM
2: IsNoticeSupported
3: IsTrapSupported
4: IsOptionalIPDSupporteda

5: IsAutomaticMigrationSupported
6: IsSLMappingSupported
7: IsMKeyNVRAM (supports M_Key in NVRAM)
8: IsPKeyNVRAM (supports P_Key in NVRAM)
9: IsLEDInfoSupported
10: IsSMdisabled
11: IsSystemImageGUIDSupported
12: IsPKeySwitchExternalPortTrapSupported
13-15: Reserved
16: IsCommunicationManagementSupported
17: IsSNMPTunnelingSupported
18: IsReinitSupported
19: IsDeviceManagementSupported
20: IsVendorClassSupported
21: IsDRNoticeSupported
22: IsCapabilityMaskNoticeSupported
23: IsBootManagementSupported
24: IsLinkRoundTripLatencySupported
25: IsClientReregistrationSupported
26-31: Reserved

DiagCode X X X X RO 16 192 Diagnostic code, as described in 14.2.5.6.1 Inter-
pretation of DiagCode on page 832.

M_KeyLeasePeriod X X X X RW 16 208 Specifies the initial value of the lease period timer
in seconds.
The lease period is the length of time that the
M_Key Protection bits are to remain non zero after
a SubnSet(PortInfo) fails a M_Key check. See
14.2.4 Management Key on page 806.

LocalPortNum X X X X X RO 8 224 The number of the link port which received this
SMP.

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 824 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LinkWidthEnabled X X X X RW 8 232 Enabled link width, indicated as follows:
0: No State Change; valid only on Set()
1: 1x
2: 4x
3: 1x or 4x
4: 8x
5: 1x or 8x
6: 4x or 8x
7: 1x or 4x or 8x
8: 12x
9: 1x or 12x
10: 4x or 12x
11: 1x or 4x or 12x
12: 8x or 12x
13: 1x or 8x or 12x
14: 4x or 8x or 12x
15: 1x or 4x or 8x or 12x
16 - 254: Reserved
255: Set to LinkWidthSupported value.
Changes to this component do not take effect
immediately. See InfiniBand Architecture Specifica-
tion Volume 2, Link/Phy Interface chapter.

LinkWidthSupported X X X X RO 8 240 Supported link width, indicated as follows:
1: 1x
3: 1x or 4x
7: 1x or 4x or 8x
11: 1x or 4x or 12x
15: 1x or 4x or 8x or 12x
0, 2, 4-6, 7-10, 12-14, 16-255: Reserved

LinkWidthActive X X X X RO 8 248 Currently active link width, indicated as follows:
1: 1x
2: 4x
4: 8x
8: 12x
0, 3, 5-7, 9-255: Reserved

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 825 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LinkSpeedSupported X X X X RO 4 256 Supported link speed, indicated as follows:
1: 2.5 Gbps
3: 2.5 or 5.0 Gbps
5: 2.5 or 10.0 Gbps
7: 2.5 or 5.0 or 10.0 Gbps
0, 2, 4, 6, 8-15: Reserved

PortState X X X X RW 4 260 Port State. Enumerated as:
0: No State Change; valid only on Set().
1: Down (includes failed links)
2: Initialize
3: Armed
4: Active
5 - 15: Reserved
When writing this field, only legal transitions are
valid. See 7.2 Link States on page 168.

PortPhysicalState X X X X RW 4 264 0: No state change; valid only on Set()
1: Sleep
2: Polling
3: Disabled
4: PortConfigurationTraining
5: LinkUp
6: LinkErrorRecovery
7: Phy Test
8 - 15: Reserved
When writing this field, only values 0, 1, 2, and 3
are valid. Other values are ignored. See InfiniBand
Architecture Specification Volume 2, Link/Phy Inter-
face chapter.

LinkDownDefaultState X X X X RW 4 268 0: No state change; valid only on Set()
1: Sleep
2: Polling
3 - 15: Reserved
See InfiniBand Architecture Specification Volume
2, Link/Phy Interface chapter.

M_KeyProtectBits X X X X RW 2 272 See 14.2.4 Management Key on page 806.

Reserved X X X X X RO 3 274 Reserved

LMC X X 0 X RW 3 277 LID mask count for multipath support; its usage is
described in 7.11 Subnet Multipathing on page 219.

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 826 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LinkSpeedActive X X X X RO 4 280 Currently active link speed, indicated as follows:
1: 2.5 Gbps
2: 5.0 Gbps
4: 10.0 Gbps
0, 3, 5-15: reserved

LinkSpeedEnabled X X X X RW 4 284 Enabled link speed, indicated as follows:
0: No State Change; valid only on Set()
1: 2.5 Gbps
2: 5.0 Gbps
3: 2.5 or 5.0 Gbps
4: 10.0 Gbps
5: 2.5 or 10.0 Gbps
6: 5.0 or 10.0 Gbps
7: 2.5 or 5.0 or 10.0 Gbps
8-14 Reserved
15: Set to LinkSpeedSupported values
Changes to this component do not take effect
immediately. See InfiniBand Architecture Specifica-
tion Volume 2, Link/Phy Interface chapter.

NeighborMTU X X X X RW 4 288 Active maximum MTU enabled on this port for
transmit:
1: 256
2: 512
3: 1024
4: 2048
5: 4096
0, 6 - 15: reserved

MasterSMSL X X X X RW 4 292 The administrative SL of the master SM that is
managing this port.

VLCap X X X X RO 4 296 Virtual Lanes supported on this port, indicated as
follows:
1: VL0
2: VL0, VL1
3: VL0 - VL3
4: VL0 - VL7
5: VL0 - VL14
0, 6 - 15: reserved

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 827 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

InitType X X X X RO 4 300 Optional; shall be 0 if not implemented. Type of ini-
tialization requested by this port before SM moves
it to Active or Armed state. See 14.4.4 Node Reini-
tialization on page 871.
• bit 0: NoLoad. 0 = Port is requesting that its

attributes be initialized (see 14.4.3 Initialization
Actions on page 868). 1 = Port is requesting that
no data be loaded into its attributes at all, assert-
ing that the last-loaded data still exists and is
valid.

• bit 1: PreserveContent. 0 = Port makes no
request regarding content of the data that is
loaded into its attributes. 1 = Port is requesting
that all such data, if loaded, be set to the most
recent content loaded by the SM.

• bit 2: PreservePresence. 0 = Port is requesting
that all settable SA attributes referencing this port
(see Table 190 Subnet Administration Attribute /
Method Map on page 890) be removed prior to
activating this port and Report()s of in/out of ser-
vice (trap numbers 64/65) be sent. 1 = Port is
requesting that all such data be preserved, and
Report()s of in/out of service (trap numbers
64/65) not be sent for this port.

• bit 3: DoNotResuscitate. 0 = bits 0, 1, and 2 of this
field are valid; initialization of this port should
begin based on their values. 1 = bits 0, 1, and 2
are not valid; port is requesting that reinitialization
of this port, and any Report()s of in/out of service
(trap numbers 64/65) be delayed until this bit is
set to 0.

VLHighLimit X X X X RW 8 304 Limit of High Priority component of VL Arbitration
Table, as defined in 7.6.9 VL Arbitration and Priori-
tization on page 188.

VLArbitrationHighCap X X X X RO 8 312 VL/Weight pairs supported on this port in the VLAr-
bitration table for high priority. Shall be 1 to 64 if
more than one data VL is supported on this port, 0
otherwise. See 7.6.9 VL Arbitration and Prioritiza-
tion on page 188.

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 828 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VLArbitrationLowCap X X X X RO 8 320 VL/Weight pairs supported on this port in the VLAr-
bitration table for low priority. Shall be N to 64 if
more than one data VL is supported on this port, 0
otherwise, N being the number of data VLs sup-
ported. See 7.6.9 VL Arbitration and Prioritization
on page 188.

InitTypeReply X X X X RW 4 328 Written by the SM prior to changing the port to
Active or Armed state. Optional; shall be set to all
0s if not implemented (PortInfo:Capability-
Mask.IsReinitSupported=0 or SA's ClassPort-
Info:CapabilityMask.IsReinitSupported=0).
Indicates the type of initialization performed. See
14.4.4 Node Reinitialization on page 871.
• bit 0: NoLoadReply. 0 = Port attributes were ini-

tialized (see 14.4.3 Initialization Actions on page
868). 1 = No data was loaded into the port
attributes.

• bit 1: PreserveContentReply. 0 = No information
is available regarding content of the data loaded
into the port attributes. 1 = The data loaded into
the port attributes was set to the content most
recently loaded by the SM.

• bit 2: PreservePresenceReply. 0 = All settable SA
attributes referencing this port (see Table 190
Subnet Administration Attribute / Method Map on
page 890) were removed prior to activating this
port and Report()s of in/out of service (trap num-
bers 64/65) were sent. 1 = All such data existing
when this port was last active was not removed
and Report()s of in/out of service (trap numbers
64/65) were not sent.

• bit 3: Reserved.

MTUCap X X X X RO 4 332 Maximum MTU supported by this port.
1: 256
2: 512
3: 1024
4: 2048
5: 4096
0, 6 - 15: reserved

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 829 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VLStallCount X RW 3 336 Specifies the number of sequential packets
dropped that causes the port to enter the VLStalled
state. The result of setting the VLStallCount to a
value of zero is undefined. Refer to 18.2.5.4 Trans-
mitter Queueing on page 1057 for details.

HOQLife X X RW 5 339 Sets the time a packet can live at the head of a VL
queue. Refer to 18.2.5.4 Transmitter Queueing on
page 1057 for details.

OperationalVLs X X X X RW 4 344 Virtual Lanes operational on this port, indicated as
follows:
0: No change; valid only on Set()
1: VL0
2: VL0, VL1
3: VL0 - VL3
4: VL0 - VL7
5: VL0 - VL14
6 - 15: reserved
Changing OperationalVLs in certain PortStates
may cause flow control update errors which may
initiate Link/Phy retraining.

PartitionEnforce-
mentInbound

X RW 1 348 Indicates support of optional partition enforcement.
If set to one, enables partition enforcement on
packets received on this port. Zero disables parti-
tion enforcement on packets received on this port.

PartitionEnforce-
mentOutbound

X RW 1 349 Indicates support of optional partition enforcement.
If set to one, enables partition enforcement on
packets transmitted from this port. Zero disables
partition enforcement on packets transmitted on
this port.

FilterRawInbound X RW 1 350 Indicates support of optional raw packet enforce-
ment. If set to 1, raw packets arriving on this port
are discarded. If set to 0, inbound raw packets are
not discarded; they are processed normally. See
C18-16: on page 1046.

FilterRawOutbound X RW 1 351 Indicates support of optional raw packet enforce-
ment. If set to 1, raw packets departing on this port
are discarded. If set to 0, outbound raw packets are
not discarded; they are processed normally. See
C18-52: on page 1056.

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 830 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

M_KeyViolations X X X X RW 16 352 Counts the number of SMP packets that have been
received at this port that have had invalid M_Keys,
since power-on or reset. Increments till count
reaches all 1s and then shall be set back to zero to
re-enable incrementing. Setting this component to
any value other than zero results in undefined
behavior; however, it is recommended that any
attempt to set the counter to a non-zero value
results in it being left unchanged.

P_KeyViolations X X X X RW 16 368 Counts the number of packets that have been
received at this port that have had invalid P_Keys,
since power-on or reset. Refer to 10.9.4 Bad
P_Key Trap and P_Key Violations Counter
(Optional) on page 526 for usage description.
Increments till count reaches all 1s and then shall
be set back to zero to re-enable incrementing. Set-
ting this component to any value other than zero
results in undefined behavior; however, it is recom-
mended that any attempt to set the counter to a
non-zero value results in it being left unchanged.

Q_KeyViolations X X X X RW 16 384 Counts the number of packets that have been
received at this port that have had invalid Q_Keys,
since power-on or reset. See 10.2.5 Q_Keys on
page 439 for usage description. Increments till
count reaches all 1s and then shall be set back to
zero to re-enable incrementing. Setting this compo-
nent to any value other than zero results in unde-
fined behavior; however, it is recommended that
any attempt to set the counter to a non-zero value
results in it being left unchanged.

GUIDCap X X X X RO 8 400 Number of GUID entries supported in the GUIDInfo
attribute for this port.

ClientReregister X X X X RW 1 408 Optional: shall be 0 if not implemented (Port-
Info:CapabilityMask.IsClientReregistrationSup-
ported = 0). Used by SM to request endnode client
reregistration of SA subscriptions. See 14.4.11 Cli-
ent Reregistration on page 881.

Reserved X X X X X RO 2 409 Reserved

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 831 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SubnetTimeOut X X X X RW 5 411 Specifies the maximum expected subnet propaga-
tion delay, which depends upon the configuration of
the switches, to reach any other port in the subnet
and shall also be used to determine the maximum
rate which SubnTrap()s can be sent from this port.
The duration of time is calculated based on
(4.096 µsec * 2SubnetTimeOut).

Reserved X X X X X RO 3 416 Reserved

RespTimeValue X X X X RO 5 419 Specifies the expected maximum time between the
port reception of a SMP and the transmission of the
associated response. The duration of time is calcu-
lated based on (4.096 µsec * 2RespTimeValue).

LocalPhyErrors X X X X RW 4 424 Threshold value. When the count of marginal link
errors exceeds this threshold, the local link integrity
error shall be detected as described in 7.12.2 Error
Recovery Procedures on page 221.

OverrunErrors X X X X RW 4 428 Threshold value. When the count of buffer overruns
over consecutive flow control update periods
exceeds this threshold as described in 7.12 Error
detection and handling on page 219, the excessive
buffer overrun error shall be detected as described
in that section.

MaxCreditHint X X X X RO 16 432 Optional; shall be 0 if not implemented (Port-
Info:CapabilityMask.IsLinkRoundTripLatencySup-
ported = 0). This value provides a vendor-
dependent indication of the maximum number of
credits available per VL on the Port.

Reserved X X X X X RO 8 448 Reserved

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 832 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.6.1 INTERPRETATION OF DIAGCODE

Endports of an IBA network will have functions attached to the non-IBA
side of those endports. The 16-bit PortInfo:DiagCode field provides both
generic and vendor-specific diagnostic status for those non-IBA functions.
It is valid only on endports and all bits set to zero means the function
status is good. Any non-zero value means there are possible error condi-
tions. Additional status information specific to a particular management
class may also be provided, depending on the function, but PortInfo:Diag-
Code is always present.

The PortInfo:DiagCode can provide three levels of diagnostic data:

• A high level, universal set of status codes. A PortInfo:DiagCode of all
zeroes indicates no exception conditions exist. Nonzero values of bits
3-0 of PortInfo:DiagCode have the same meanings for all non-IBA at-
tached functions; these meanings are documented below in Table
146 Standard Encoding of DiagCode Bits 3-0 on page 833.

LinkRoundTripLatency X X X 0 RO 24 456 Optional; shall be 0 if not implemented (Port-
Info:CapabilityMask.IsLinkRoundTripLatencySup-
ported = 0). This value represents a measurement
of the round-trip latency of the link attached to this
port. It is an unsigned 24-bit integer counting 4
nsec. intervals. This value might not be accurate to
better than +/- 4 nsec. A value of 0 is valid when
implemented, and indicates a latency of up to 4
nsec. LinkRoundTripLatency is reset to 0xFFFFFF
whenever this port transitions to PortState = Down.
Each time a link heartbeat reply (ACK) is received
on this port when PortState is not Down, this value
is set to the minimum of (a) the prior value of this
attribute; and (b) the time elapsed since the corre-
sponding heartbeat (SND) was sent. Note that
while the value of this component will never
increase, it may change over time due to varying
queueing delays associated with traffic load. Note
that this component is always 0 for Enhanced SP
0. See InfiniBand Architecture Volume 2, Link/Phy
Interface chapter.

a. IsOptionallPDSupported is ignored, and support for the optional IPD values (see Table 315, “Static Rate Control IPD Values,”
on page 1029) is assumed to be present, if PortInfo:LinkSpeedSupported is other than 1, or if PortInfo:LinkWidthSupported is other
than 1, 3, or 11.

Table 145 PortInfo (Continued)

Component

Used By

A
cc

es
s

Length
(bits)

Offset
(bits) Description

C
A

R
ou

te
r

Sw
 E

xt
.

B
as

e
SP

0

En
h.

 S
P0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 833 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• An optional, high level vendor-specific diagnostic code in bits 14-4 of
PortInfo:DiagCode. Interpretation of this field requires knowledge of
the diagnostic codes supported by the functions behind the endport.

• An optional, more detailed vendor-specific port attribute pointed to by
PortInfo:DiagCode. Availability of this information is indicated by bit
15 of PortInfo:DiagCode and the pertinent port attribute is then point-
ed to by bits 14-4.

Figure 190 DiagCode Fields on page 833 summarizes the structure and
interpretation of PortInfo:DiagCode fields.

The error information in bits 3-0 is interpreted in a standard fashion for all
endports as shown in Table 146 Standard Encoding of DiagCode Bits 3-0
on page 833.

DiagCode
0000 0 0 0 0 0 0 0 0 0 0 0 0

Bit 15 Bit 0

PortInfo

DiagCode

Bits 3-0 are re-
served for the
universal diag-
nostic codes.

Bits 14-4 pro-
vide vendor-
specific diag-
nostic codes.

Bit 15 provides
a means to
chain vendor di-
agnostic at-
tributes
together.Figure 190 DiagCode Fields

Table 146 Standard Encoding of DiagCode Bits 3-0

DiagCode Bits 3-0 Description

0x0 Function Ready

0x1 Performing Self Test

0x2 initializing

0x3 soft error - function has a non-fatal error and may be used

0x4 hard error - function may not be used

0x5 - 0xF reserved

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 834 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Bits 14-4 of PortInfo:DiagCode are used for vendor-specific modifiers to
the standard diagnostic information, as shown in Figure 191 Example of
DiagCode Bits on page 834.

If bit 15, the IndexForward bit, is zero (0), bits 14-4 of the PortInfo:Diag-
Code represent a vendor-specific diagnostic code. Interpretation of the re-
turned information is outside the scope of this specification. Further
diagnostic information might be provided in known locations in one or
more vendor-specific attributes.

If the IndexForward bit is set, bits 14-4 of the PortInfo:DiagCode field are
used to index into the VendorDiag Attribute data for vendor-specific diag-
nostic information. This allows dynamic chaining of diagnostic information
based on the type of exception. Bits 14-4 are interpreted as an Attribute-
Modifier to be specified with an SubnGet(VendorDiag) to the port being
examined as defined in 14.2.5.14 VendorDiag on page 840.

14.2.5.7 P_KEYTABLE

The P_KeyTable Attribute provides the means for assigning the P_Keys
for ports.

The AttributeModifier is divided in two halves:

• The least significant 16 bits are a pointer to a block of 32 P_Key en-
tries to which this Attribute applies. Valid values are 0 - 2047, and are
further limited by the size of the P_Key table for that node (specified
by the PartitionCap for CAs, routers, and switch management ports
or PartitionEnforcementCap for external ports on switches). See
14.2.5 Attributes on page 809.

• For switches, the upper 16 bits select the switch port, where valid val-
ues are 1 - 254 to select physical ports and zero to select the switch
management port.

bit 15 bit 0DiagCode

Generic Fail indicator with
vendor specific modifiers

0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0

Bits 4 - 14 are vendor specific
information regarding the Hard Fail

0x4
Indicates Hard Failure

Figure 191 Example of DiagCode Bits

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 835 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For CA and router, the upper 16 bits are ignored and the operation is
performed on the port that received the SMP.

14.2.5.8 SLTOVLMAPPINGTABLE

The SLtoVLMappingTable Attribute provides the means for setting the SL
to VL Mapping of a switch, CA, and router and its usage is described in
7.6.6 VL Mapping Within a Subnet on page 186.

For a switch, this attribute is specific to an input port / output port combi-
nation to which the specific SL to VL mapping applies:

• bits 31-16 must be zero.
• bits 15-8 of the AttributeModifier specify the input port which can be 1

to N, where N selects the physical port or 0 to indicate that the input
port is the management port.

• bits 7-0 of the AttributeModifier specify the output port which can be 1
to N, where N selects the physical port. For implementations support-
ing enhanced switch port 0, N = 0 indicates the management port.

For CA and router, this attribute corresponds to the port receiving the SMP
(the AttributeModifier is ignored)..

Table 147 P_KeyTable

Component Access Length (bits) Description

P_KeyTable
Block

RW 512 List of 32 P_Key Block Elements.

Table 148 P_Key Block Element

Component Length (bits) Description

Membership-
Type

1 If set to zero, the P_Key is limited type and the endnode may
accept a packet with a matching full P_Key, but may not accept a
packets with a matching limited P_Key. If set to one, the P_Key is
full type and the endnode may receive packets with matching full or
limited P_Key. A full description is in 10.9.1.1 Limited and Full
Membership on page 524.

P_KeyBase 15 Base value of the P_Key that the endnode will use to check against
incoming packets.

Table 149 SLtoVLMappingTable

Component Access Length(bits) Offset (bits) Description

SL0toVL RW 4 0 The number of the VL on which packets using SL0
are output. 15 forces the packets to be dropped.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 836 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.9 VLARBITRATIONTABLE

The VLArbitrationTable Attribute provides the means for setting the VL Ar-
bitration for ports on CAs, routers and switches; its usage is described in
7.6.9 VL Arbitration and Prioritization on page 188.

The AttributeModifier is divided in two halves. The upper 16 bits specify
the part of the tables that is accessed.

• 1 - lower 32 entries of the low priority VL Arbitration Table.

• 2 - upper 32 entries of the low priority VL Arbitration Table.

• 3 - lower 32 entries of the high priority VL Arbitration Table.

• 4 - upper 32 entries of the high priority VL Arbitration Table.

• 0, 5-65535 - reserved.

For switches, the least significant 16 bits of the AttributeModifier specify
the external port or enhanced (not base) port 0 in bits 7-0; and bits 15-8
are reserved.

For CA and router, this attribute corresponds to the port receiving the SMP
(the lower 16 bits of the AttributeModifier are ignored).

SL1toVL RW 4 4 The VL associated with SL1

SL2toVL RW 4 8 The VL associated with SL2

SL3toVL RW 4 12 The VL associated with SL3

SL4toVL RW 4 16 The VL associated with SL4

SL5toVL RW 4 20 The VL associated with SL5

SL6toVL RW 4 24 The VL associated with SL6

SL7toVL RW 4 28 The VL associated with SL7

SL8toVL RW 4 32 The VL associated with SL8

SL9toVL RW 4 36 The VL associated with SL9

SL10toVL RW 4 40 The VL associated with SL10

SL11toVL RW 4 44 The VL associated with SL11

SL12toVL RW 4 48 The VL associated with SL12

SL13toVL RW 4 52 The VL associated with SL13

SL14toVL RW 4 56 The VL associated with SL14

SL15toVL RW 4 60 The VL associated with SL15

Table 149 SLtoVLMappingTable (Continued)

Component Access Length(bits) Offset (bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 837 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The size of the VLArbitrationTable, based on PortInfo:VLArbitra-
tionHighCap and PortInfo:VLArbitrationLowCap, further limits the valid
values. See 14.2.5 Attributes on page 809

14.2.5.10 LINEARFORWARDINGTABLE

The LinearForwardingTable Attribute provides the means for setting the
linear forwarding table of a switch for the Unicast LIDs.

The AttributeModifier is a pointer to a block of 64 LIDs to which this at-
tribute applies. Valid values are from 0 to 767, and are further limited by
the size of the LinearForwardingTable of the switch. An implementation
may choose either SwitchInfo:LinearFDBCap or SwitchInfo:Lin-
earFDBTop to denote the size of the LinearForwardingTable. See 14.2.5
Attributes on page 809.

Table 150 VLArbitrationTable

Component Access Length (bits) Offset (bits) Description

VL/Weight
pairs

RW 512 0 Lists of 32 VL/Weight Block elements, for which there
may be up to 64 in total for a given priority.

Table 151 VL/Weight Block Element

Component Length (bits) Offset (bits) Description

Reserved 4 0 Reserved

VL 4 4 VL associated with element.

Weight 8 8 Weight associated with element, as defined in 7.6.9
VL Arbitration and Prioritization on page 188, zero
indicates that this element is skipped.

Table 152 LinearForwardingTable

Component Access Length(bits) Description

LinearForwarding-
Table Block

RW 512 List of 64 Port Block Elements.

Table 153 Port Block Element

Component Length(bits) Description

Port 8 Port to which packets with the LID corresponding to this
entry are to be forwarded.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 838 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.11 RANDOMFORWARDINGTABLE

The RandomForwardingTable Attribute provides the means for setting the
random forwarding table of a switch for the Unicast LIDs.

The AttributeModifier is a pointer to a block of 16 LID/port pairs to which
this Attribute applies. Valid values are from 0 to 3071, and are further lim-
ited by the size of the RandomForwardingTable of the switch based on
SwitchInfo:RandomFDBCap. See 14.2.5 Attributes on page 809. If an in-
valid port number is written into an entry that has the Valid bit set to 1,
packets sent to the LIDs specified in the entry will be discarded and that
entry's Port shall be read back as 0xFF to indicate that an invalid port
number was used. If two or more entries specify LID ranges that overlap
based on LMCs, and the Valid bit for these entries is set to 1, switch for-
warding behavior for packets sent to these LIDs is implementation-depen-
dent.

14.2.5.12 MULTICASTFORWARDINGTABLE

This MulticastForwardingTable Attribute provides the means for setting
the multicast forwarding table of a switch.

The nine low-order bits of the AttributeModifier are a pointer to a block of
32 PortMask entries to which this attribute applies. Valid values are limited
by the size of the MulticastForwardingTable of the switch based on
SwitchInfo:MulticastFDBCap; see 14.2.5 Attributes on page 809. See
Figure 192 MulticastForwardingTable Bit Layout on page 839 for how
blocks of PortMasks are mapped into MulticastForwardingTable entries.

Table 154 RandomForwardingTable

Component Access Length(bits) Description

RandomFor-
wardingTable
Block

RW 512 List of 16 LID/Port Block Elements.

Table 155 LID/Port Block Element

Component Length(bits) Offset (bits) Description

LID 16 0 Base LID.

Valid 1 16 This LID/Port pair is valid. Note that setting this parameter to 0
allows the removal of entries.

LMC 3 17 the LMC of this LID.

Reserved 4 20 Reserved

Port 8 24 Port to which packets with this LID/LMC corresponding to this
entry are to be forwarded.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 839 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The four high-order bits of the AttributeModifier indicate the position (p) of
the 16-bit PortMask entry of this Attribute. Each PortMask entry specifies
only 16 bits of the 256 possible bits of a port mask of a maximum size
switch. (see Figure 192 MulticastForwardingTable Bit Layout on page
839). Valid values of the position bits are limited by the number of ports on
the switch. PortMask bits in a block that are beyond the number of switch
ports are ignored on write and read back as zero.

The remaining 18 bits (bits 27:9) of the AttributeModifier shall be set to
zero.

 .

Figure 192 MulticastForwardingTable Bit Layout

AM 31:28
(p bits) … 1 1 0 0 … 0 0

M
LI

D
 fo

r
M

ul
tic

as
t

Fo
rw

ar
di

ng
Ta

bl
e

En
tr

y

AM
8:0

Output Port # … 17 16 15 14 … 01 00

… x x x x … x x 0xC000 0

… x x x x … x x 0xC001 0

… … … … … … … … … …

… x x x x … x x 0xC01E 0

… x x x x … x x 0xC01F 0

… x x x x … x x 0xC020 1

… x x x x … x x 0xC021 1

… … … … … … … … … …MulticastForwardingTable
Blocks (shaded)

PortMask 31

PortMask 1

PortMask 0

Table 156 MulticastForwardingTable

Component Access Length(bits) Description

MulticastFor-
wardingTable
Block

RW 512 List of 32 PortMask Block Elements.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 840 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.5.13 SMINFO

The SMInfo attribute is used by Subnet Managers to exchange informa-
tion during subnet discovery and polling as described in 14.4 Subnet Man-
ager on page 859. This attribute shall be available on a port where a
Subnet Manager resides.

14.2.5.14 VENDORDIAG

The VendorDiag Attribute provides a way to obtain vendor specific diag-
nostic information. The interpretation of the VendorDiag:DiagData is spe-

Table 157 PortMask Block Element

Component Length(bits) Description

PortMask 16 16 bits starting at position 16×p of the PortMask associated
with this LID where each bit in the PortMask shall refer to a
port number that is equal to 16×p plus the position of the bit
within the PortMask. For example, when p equals zero, the
least significant bit of the PortMask refers to port 0 and when
p equals one, the least significant bit of the PortMask refers
to port 16. An incoming packet with this LID is forwarded to
all ports for which the bit in the PortMask is set to 1.

Table 158 SMInfo

Component Access Length (bits) Offset10 (bits) Description

GUID RO 64 0 PortGUID of the port where the SM resides.

SM_Key RO 64 64 Key of this SM. This is shown as 0 unless the
requesting SM is authenticated (see 14.4.7 Authenti-
cation on page 878).

ActCount RO 32 128 Counter that increments each time the SM issues an
SMP or performs other management activities. Used
as a “heartbeat” indicator by standby SMs.

Priority RO 4 160 Administratively assigned priority for this SM. Can be
reset by master SM. Zero is lowest priority. An out-of-
band mechanism for setting this value shall be pro-
vided. The default value, if not set by the out-of-band
mechanism, shall be zero.

SMState RO 4 164 Enumerated value indicating this SM’s state. Enumer-
ated as follows:
0 - not active
1 - discovering
2 - standby
3 - master
4-15 - Reserved

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 841 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cific to the port in question. It is accessible from ports on CAs, routers, and
the management port on a switch.

14.2.5.6.1 Interpretation of DiagCode on page 832 describes how the
PortInfo:DiagCode forwarding mechanism is used to obtain the address
modifier for the VendorDiag attribute during interpretation of diagnostic
codes. An example of the use of the IndexForward bit, bit 15 of the Port-
Info:DiagCode component, is shown in Figure 193 Index Forwarded Diag-
nostic Information on page 841.

Table 159 VendorDiag

Component Access Length (bits) Offset (bits) Description

NextIndex RO 16 0 Next AttributeModifier to get to diagnostic Info. Set to
zero if this is last or only diagnostic data.

DiagData RO 496 16 Vendor specific diagnostic information. Format is
undefined.

bit 15 bit 0PortInfo:DiagCode

Index Forwarded Diagnostic
Information

1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

Error Code 4
HARD Fail

If set, indicates new
AttributeModifier (AM)

to use for next
VendorDiag “Get”

Get VendorDiag with
AttributeModifier 5 for

Vendor Data

VendorDiag, AM = 6

NEXTINDEX = 0

DIAGDATA

VendorDiag, AM = 5

NEXTINDEX = 6

DIAGDATA

Figure 193 Index Forwarded Diagnostic Information

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 842 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the above example the PortInfo:DiagCode with the IndexForward bit set
indicates that VendorDiag AttributeModifier 5 of this port contains vendor-
specific diagnostic information. When VendorDiag AttributeModifier 5 is
retrieved, the VendorDiag:NextIndex value indicates more data at Attribu-
teModifier 6. The retrieval of AttributeModifier 6 returns a Vendor-
Diag:NextIndex of 0, indicating the end of the diagnostic data.

14.2.5.15 LEDINFO

The LedInfo Attribute provides the ability to turn on or off a LED optionally
provided by a CA, router, and switch using SMPs. This LED is not speci-
fied and the implementation of this LED is vendor-specific. It has no asso-
ciation with LEDs that are specified by this or other volumes of the IB
specification. A CA, router, and switch shall indicate its support of this at-
tribute in the PortInfo:CapabilityMask.

14.2.6 SUBNET MANAGEMENT MAD STATUS

This section provides a consolidated interpretation of a large number of
status-code-related compliance statements in the IBTA Specification
Volume 1, Chapters 13, 14, and 16. It is provided to aid interoperability.
Note, however, that this document is not compliance.

Following the error condition definitions and their respective error status
handling specified here satisfies the minimum requirement for being com-
pliant to all the IB compliance rules relating to the MAD Status. Any addi-
tional error conditions and error handling that are beyond what are
specified here, without violating any IB compliance rules, can be consid-
ered optional to the implementation.

14.2.6.1 STATUS PRECEDENCE

In this implementation approach, there is an implicit precedence among
various status settings. The higher the status value, the lower its prece-
dence. This status precedence implementation is only one of many pos-
sible implementations. It does not violate nor override any of the
compliance rules defined. Other implementations may return an error
status without following this status precedence. Instead, if multiple errors

Table 160 LedInfo

Component Type Length (bits) Offset (bits) Description

LedMask RW 1 0 Set to 1 for LED on, and 0 for LED off. The response
packet shall indicate actual LED state.

Reserved RO 31 1 Reserved

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 843 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

were detected, any one of the error status may be returned in the Get-
Resp().

14.2.6.2 SMP VERSION NOT SUPPORTED (STATUS_FIELD[4:2] = 0X1)

14.2.6.3 SMP METHOD NOT SUPPORTED (STATUS_FIELD[4:2] = 0X2)
Upon receiving a request packet with a method that is unsupported by the
receiving entity, any of the following are acceptable:

• Packet is silently discarded without a response
• Packet is returned as status 2 with the R bit in the method field set to

one without regarding the overall meaning of the method field.
• Packet is returned as status 2 with the GetResp() method

14.2.6.4 SMP METHOD/ATTRIBUTE COMBINATION NOT SUPPORTED (STATUS_FIELD[4:2] = 0X3)

Table 161 Status Precedence

Precedence
(0x1 is

highest)

Status[4:
2] Violations

1 0x1 Bad version.

2 0x2 The method specified is not supported.

3 0x3 The method/attribute combination is not supported.

4 0x7 One or more fields in the attribute or attribute modifier contain an invalid value.

5 0x0 None of above violations were found.

Table 162 Version Errors in SMPs

Fields Invalid Values

BaseVersion outside the vendor specification

ClassVersion outside the vendor specification

BaseVersion + ClassVer-
sion

outside the vendor specification

Table 163 Subnet Management Attribute / Method Map Errors

Attribute Get Set Trap TrapRepress

Notice error if PortInfo:Capability-
Mask.IsNoticeSupported =

0, otherwise valid

error if PortInfo:Capability-
Mask.IsNoticeSupported =

0, otherwise valid

valid valid

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 844 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

NodeDescription valid error error error

NodeInfo valid error error error

SwitchInfo valid if NodeInfo:Node-
Type is Switch, otherwise

error

valid if NodeInfo:Node-
Type is Switch, otherwise

error

error error

GUIDInfo valid valid error error

PortInfo valid valid error error

P_KeyTable valid valid error error

SLtoVLMappingTable error if PortInfo:Capability-
Mask.IsSLMappingSup-

ported = 0, otherwise valid

error if PortInfo:Capability-
Mask.IsSLMappingSup-

ported = 0, otherwise valid

error error

VLArbitrationTable error if PortInfo:VLCap = 1,
otherwise valid

error if PortInfo:VLCap = 1,
otherwise valid

error error

LinearForwardingTable error if SwitchInfo:Lin-
earFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error if SwitchInfo:Lin-
earFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error error

RandomForwarding-
Table

error if SwitchInfo:Ran-
domFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error if SwitchInfo:Ran-
domFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error error

MulticastForwarding-
Table

error if SwitchInfo:Multi-
castFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error if SwitchInfo:Multi-
castFDBCap = 0 or

NodeInfo:NodeType is not
Switch, otherwise valid

error error

SMInfo error if PortInfo:Capability-
Mask.IsSMdisabled = 0
AND PortInfo:Capability-

Mask.IsSM = 0, otherwise
valida

error if PortInfo:Capability-
Mask.IsSMdisabled = 0
AND PortInfo:Capability-

Mask.IsSM = 0, otherwise
valida.

error error

VendorDiag valid error error error

LedInfo error if PortInfo:Capability-
Mask.IsLEDInfoSupported

= 0, otherwise valid

error if PortInfo:Capability-
Mask.IsLEDInfoSup-

ported = 0, otherwise valid

error error

Table 163 Subnet Management Attribute / Method Map Errors (Continued)

Attribute Get Set Trap TrapRepress

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 845 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.6.5 SMP ATTRIBUTEMODIFIER ERRORS (STATUS_FIELD[4:2] = 0X7)

Vendor Specific
attributes with
AttributeID ranging from
0xFF00 to 0xFFFF

error if Vendor Specific
attributes are not sup-
ported by this method

error if Vendor Specific
attributes are not sup-
ported by this method

error if
Vendor
Spe-
cific

attribut
es are

not
sup-

ported
by this
method

error if Vendor
Specific

attributes are
not supported
by this method

None of above error error error error

a. packet discard if PortInfo:CapabilityMask.IsSMdisabled = 1.

Table 163 Subnet Management Attribute / Method Map Errors (Continued)

Attribute Get Set Trap TrapRepress

Table 164 SMP AttributeModifier Errors

Attribute Invalid AttributeModifier for Switch with
BSP0

Invalid AttributeModifier for
CA/Router/Switch with ESP0

Notice AM[31:0] > 0x0 AM[31:0] > 0x0

NodeDescription AM[31:0] > 0x0 AM[31:0] > 0x0

NodeInfo AM[31:0] > 0x0 AM[31:0] > 0x0

SwitchInfoa AM[31:0] > 0x0 AM[31:0] > 0x0

GUIDInfo AM[31:0] > ((PortInfo:GUIDCap-1) / 8)b AM[31:0] > ((PortInfo:GUIDCap-1) / 8)b.

PortInfoc AM[31:0] > NodeInfo:NumPorts AM[31:0] > NodeInfo:NumPorts

P_KeyTable AM[31:16]a. > NodeInfo:NumPorts AM[31:16]a. > NodeInfo:NumPorts

 AM[15:0] > ((NodeInfo:PartitionCap or
SwitchInfo:PartitionEnforcementCap-1) /

32)b.

 AM[15:0] > ((NodeInfo:PartitionCap or
SwitchInfo:PartitionEnforcementCap-1) /

32)b.

SLtoVLMapping-
Tablea.

AM[15:8] (input port) > NodeInfo:NumPorts (AM[15:8] (input port) > NodeInfo:Num-
Ports)

AM[7:0] (output port) > NodeInfo:NumPorts (AM[7:0] (output port) > NodeInfo:Num-
Ports)

AM[7:0] (output port) = 0x0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 846 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VLArbitrationTable (AM[7:0] (output port) > NodeInfo:Num-
Ports)a.

(AM[7:0] (output port) > NodeInfo:Num-
Ports)a.

(AM[7:0] (output port) = 0x0)a.

if (PortInfo:VLArbitrationHighCap < 32),
AM[31:16]!=0x3

if (PortInfo:VLArbitrationHighCap < 32),
AM[31:16]!=0x3

if (PortInfo:VLArbitrationLowCap < 32),
AM[31:16]!=0x1

if (PortInfo:VLArbitrationLowCap < 32),
AM[31:16]!=0x1

if (33 < PortInfo:VLArbitrationHighCap <
64),

AM[31:16]!= 0x3,0x4

if (33 < PortInfo:VLArbitrationHighCap <
64),

AM[31:16]!= 0x3,0x4

if (33 < PortInfo:VLArbitrationLowCap <
64),

AM[31:16]!= 0x1,0x2

if (33 < PortInfo:VLArbitrationLowCap <
64),

AM[31:16]!= 0x1,0x2

LinearForwarding-
Tablea.

AM[31:0] > (either SwitchInfo:LinearFDB-
Cap ord (SwitchInfo:LinearFDBTop-1)) /

64)b.

AM[31:0] > (either SwitchInfo:LinearFDB-
Cap ord. (SwitchInfo:LinearFDBTop-1)) /

64)b.

AM[31:0] > 767 AM[31:0] > 767

RandomForwarding-
Tablea.

AM[31:0] > ((SwitchInfo:RandomFDBCap-
1) / 16)b.

AM[31:0] > ((SwitchInfo:RandomFDBCap-
1) / 16)b.

AM[31:0] > 3071 AM[31:0] > 3071

MulticastForwarding-
Tablea.

AM[31:28] > (NodeInfo:NumPorts/16)b. AM[31:28] > (NodeInfo:NumPorts/16)b.

AM[8:0] > ((SwitchInfo:MulticastFDBCap-
1) / 32)b.

AM[8:0] > ((SwitchInfo:MulticastFDBCap-
1) / 32)b.

SMInfoe For Set(), AM[31:0]!= 0x1,0x2,0x3,0x4,0x5
OR invalid SMInfo state transitions

For Set(), AM[31:0]!= 0x1,0x2,0x3,0x4,0x5
OR invalid SMInfo state transitions

For Get(), AM[31:0]!= 0x0 For Get(), AM[31:0]!= 0x0

VendorDiag AM[31:0] > 0x0000_FFFF AM[31:0] > 0x0000_FFFF

LedInfo AM[31:0] > 0x0 AM[31:0] > 0x0

Vendor Specific
attributes with
AttributeID ranging
from 0xFF00 to
0xFFFF

AM[31:0] > 0x0000_FFFF AM[31:0] > 0x0000_FFFF

a. For switch only.
b. Integer division with fraction truncated.
c. For CAs or routers, when AM is non-zero and not matching the port number where the SMP is received, all attribute
components become RO. In such case, no status 7 due to illegal attribute components is possible.

Table 164 SMP AttributeModifier Errors (Continued)

Attribute Invalid AttributeModifier for Switch with
BSP0

Invalid AttributeModifier for
CA/Router/Switch with ESP0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 847 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.2.6.6 SMP ATTRIBUTE COMPONENT ERRORS (STATUS_FIELD[4:2] = 0X7)
The Following tables list SMP attribute components that are of concern to
the SM attribute component errors. These errors can only be detected
while performing SubnSet() operations targeting RW components. Some
RO components are also listed because of their special characteristics.

Table 166 NodeDescription Attribute Component Errors
All RO components, no component errors.

Table 167 NodeInfo Attribute Component Errors
All RO components, no component errors.

d. Up to the implementation of choice. Using SwitchInfo:LinearFDBCap allows updates to the LinearForwardingTable
beyond the SwitchInfo:LinearFDBTop before moving the SwitchInfo:LinearFDBTop.
e. For SM only.

Table 165 Notice Attribute Component Errors

Component Invalid Set()
Component Value

NoticeToggle no invalids,
error handling state-
ments exist for non

matching NoticeTog-
gle

NoticeCount no invalids,
error handling state-

ments exist for Notice-
Count > Notice queue

depth

Table 168 SwitchInfo Attribute Component Errors

Component Invalid Set() Component Value for
Switch

LinearFDBTop > SwitchInfo:LinearFDBCap

DefaultPort no invalids

DefaultMulticastPrimaryPort no invalids

DefaultMulticastNotPrimary-
Port

no invalids

LifeTimeValue no invalids

PortStateChange no invalids

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 848 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 169 GUIDInfo Attribute Component Errors

Component Invalid Set() Component
Value

GUID no invalids

Table 170 PortInfo (CA/Router/Switch Port0) Attribute Component Errors

Component Invalid Set() Component
Value for BSP0

Invalid Set() Component Value for
CA/Router/ESP0

M_Key no invalids no invalids

GidPrefix no invalids no invalids

LID = 0x0000 = 0x0000

> 0xC000 > 0xC000

MasterSMLID = 0x0000 = 0x0000

> 0xC000 > 0xC000

M_KeyLeasePeriod no invalids no invalids

LinkWidthEnabled
(LWE)

N/A 1x PORT:
0x2, 0x4 < LWE < 0x8, 0xA, 0xC < LWE <

0xFE

4x PORT:
0x4 < LWE < 0x8, 0xC < LWE < 0xFE

12x PORT:
0x4 < LWE < 0x7, 0xC < LWE < 0xFE

PortState N/A 0x2, > 0x5

set to Arm while in Arm, or Down

set to Active while in Active, Initialize, or Down

PortPhysicalState N/A 0x3a, > 0x4

LinkDownDefautState N/A > 0x3

M_KeyProtectBits no invalids no invalids

LMC > 0x1 no invalids

LinkSpeedEnabled
(LSE)

N/A 0x2 < LSE < 0xE

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 849 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

NeighborMTU N/A > PortInfo:MTUCap

= 0

> 5

MasterSMSL no invalids no invalids

VLHighLimit N/A no invalids

InitTypeReply no invalids no invalids

HOQLife N/A no invalidsb

OperationalVLs N/A > PortInfo:VLCap

> 5

M_KeyViolations no invalids no invalids

P_KeyViolations no invalids no invalids

Q_KeyViolations no invalids no invalids

SubnetTimeOut no invalids no invalids

LocalPhyErrors N/A no invalids

OverrunErrors N/A no invalids

a. Invalid only for the enhanced switch port 0.
b. For router only.

Table 170 PortInfo (CA/Router/Switch Port0) Attribute Component Errors (Continued)

Component Invalid Set() Component
Value for BSP0

Invalid Set() Component Value for
CA/Router/ESP0

Table 171 PortInfo (Switch External Port) Attribute Component
Errors

Component Invalid Set() Component Value

LinkWidthEnabled (LWE) 1x PORT:
0x2, 0x4 < LWE < 0x8, 0xA, 0xC < LWE < 0xFE

4x PORT:
0x4 < LWE < 0x8, 0xC < LWE < 0xFE

12x PORT:
0x4 < LWE < 0x7, 0xC < LWE < 0xFE

PortState 0x2, > 0x5

set to Arm while in Arm, or Down

set to Active while in Active, Initialize, or Down

PortPhysicalState > 0x4

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 850 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LinkDownDefautState > 0x3

LMC N/A

LinkSpeedEnabled (LSE) 0x2 < LSE < 0xE

NeighborMTU > PortInfo:MTUCap

= 0

> 5

VLHighLimit no invalids

VLStallCount no invalids

HOQLife no invalids

OperationalVLs > PortInfo:VLCap

> 5

PartionEnforcementIn-
bound

set to 1 when SwitchInfo:InboundEnforcement-
Cap is 0

PartionEnforcementOut-
bound

set to 1 when SwitchInfo:OutboundEnforcement-
Cap is 0

FilterRawInbound set to 1 when SwitchInfo:FilterRawInboundCap is
0

FilterRawOutbound set to 1 when SwitchInfo:FilterRawOutboundCap
is 0

LocalPhyErrors no invalids

OverrunErrors no invalids

Table 172 P_Key Attribute Component Errors

Component Invalid Set()
Component Value

MembershipType no invalids

P_KeyBase no invalids

Table 171 PortInfo (Switch External Port) Attribute Component
Errors (Continued)

Component Invalid Set() Component Value

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 851 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 173 SLtoVLMappingTable Attribute Component Errors

Component Invalid Set()
Component Value

SL0toVL no invalids

SL1toVL no invalids

SL2toVL no invalids

SL3toVL no invalids

SL4toVL no invalids

SL5toVL no invalids

SL6toVL no invalids

SL7toVL no invalids

SL8toVL no invalids

SL9toVL no invalids

SL10toVL no invalids

SL11toVL no invalids

SL12toVL no invalids

SL13toVL no invalids

SL14toVL no invalids

SL15toVL no invalids

Table 174 VLArbitrationTable Attribute Component Errors

Component Invalid Set()
Component Value

VL no invalids

Weight no invalids

Table 175 LinearForwardingTable Attribute Component Errors

Component Invalid Set() Component Value

Port > NodeInfo:NumPorts, read back as 0xFF

No error status!

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 852 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 178 SMInfo Attribute Component Errors
All RO components, no component errors.

Table 179 VendorDiag Attribute Component Errors
All RO components, no component errors.

Table 181 Vendor Specific Attribute
No component errors.

14.3 SUBNET MANAGEMENT AGENT

Each CA and router, and switch will have a Subnet Management Agent
(SMA) that communicates with the SMI and SM as described in 13.3.2
Required Managers and Agents on page 716. The SMA will respond and
generate SMPs as described in Table 122 SM MAD Sources and Desti-
nations on page 756. This section describes the detailed requirements of
SMA behavior where the operations defined below assume the receipt of

Table 176 RandomForwardingTable Attribute Component
Errors

Component Invalid Set() Component Value

LID no invalids

Valid no invalids

LMC no invalids

Port > NodeInfo:NumPorts when Valid = 0x1

No error status!

Table 177 Multicast ForwardingTable Attribute Component
Errors

Component Invalid Set() Component Value

PortMask PortMask bits corresponding to ports that are beyond
NodeInfo:NumPorts are read back as 0x0

No error status!

Table 180 LedInfo Attribute Component Errors

Component Invalid Set()
Component Value

LedMask no invalids

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 853 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a valid SMP. A SMP is valid if it satisfies all applicable validation checks
as specified in 13.5.3 MAD Validation on page 755.

14.3.1 SUBNGET()

A SMA may receive a SMP from the subnet containing a SubnGet() at any
time. The requester, the master SM, will fill the MADHeader:M_Key field
of the SMP header with a M_Key that matches the value of the M_Key of
the port corresponding to the receiving SMA if it expects the receiving
SMA to check it.

A SMP containing a SubnGetResp() is returned according to the rules in
14.3.3 SubnGetResp() on page 853.

14.3.2 SUBNSET()

An SMA may receive a SMP from the subnet containing a SubnSet() at
any time. The requester, the master SM, will fill the MADHeader:M_Key
field of the SMP header with a M_Key that matches the value of the
M_Key of the port corresponding to the receiving SMA if it expects the re-
ceiving SMA to check it.

C14-25: If the PortInfo:M_Key component is zero, the SMA shall update
the appropriate components with the contents of the attribute contained in
the SMP.

C14-26: If the PortInfo:M_Key component is non-zero and M_Key
matching, if required, is successful according to the rules specified in
14.2.4 Management Key on page 806, the SMA shall update the appro-
priate components with the contents of the attribute contained in the SMP.

C14-27: The SMA shall ignore requests to change non-settable (RO)
components of attributes.

A SMP containing a SubnGetResp() is returned according to the rules in
14.3.3 SubnGetResp() on page 853.

14.3.3 SUBNGETRESP()

C14-28: When the SMA receives a validated SubnGet() or SubnSet() and
the PortInfo:M_Key component is zero, then the SMA shall generate a
SubnGetResp().

C14-29: When the SMA receives a validated SubnGet() or SubnSet() and
the PortInfo:M_Key component is non-zero and M_Key matching, if re-
quired, is successful according to the rules specified in 14.2.4 Manage-
ment Key on page 806, then the SMA shall generate a SubnGetResp(),
otherwise the request is silently discarded.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 854 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-30: If the SMA generates a SubnGetResp(), it shall fill the attribute
identified in the request with the appropriate contents of component infor-
mation.

C14-31: If the SMA generates a SubnGetResp(), it shall use the MAD-
Header:TransactionID obtained from the request SMP in the response
SMP.

C14-32: This compliance statement is obsolete and has been removed.

If the SMA generates a SubnGetResp(), the content of MAD-
Header:M_Key in the SMP header is undefined. It could, for example, be
copied without change from the request or zeroed out. If the SMA gener-
ates a SubnGetResp(), it should send the SMP containing the SubnGet-
Resp() in less than PortInfo:RespTimeValue of the receiving port, where
requirements for response time are described in 13.4.6.2 Timers and Tim-
eouts on page 727.

After transmission of the response, the SMA discards any residual state
associated with that SMP.

14.3.4 SUBNTRAP()

Traps may be issued by any port on the subnet. Ports that support this
mechanism will indicate this by setting the PortInfo:CapabilityMask:Is-
TrapSupported bit.

o14-1: If the SMA generates a SubnTrap(), it shall fill the M_Key field of
the SMP with zero.

o14-2: If the SMA generates a sequence of traps, the interval between su-
cessive traps shall not be smaller than the subnet timeout, which is spec-
ified by the PortInfo:SubnetTimeOut component.

This mechanism is used to limit the number of traps sent on the subnet.

o14-3: IThis compliance statement is obsolete and has been replaced by
o14-3.2.1:.

o14-3.2.1: If the SMA generates a trap, it shall send it only in the following
circumstances:

• if the SMA resides on a CA or router, PortInfo:PortState is Active for
the port on which the trap is to be sent

• if the SMA resides on a switch with an Extended Switch Port 0, Port-
Info:PortState is Active for Extended Switch Port 0

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 855 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• if the SMA resides on a switch with Basic Switch Port 0, PortIn-
fo:PortState is Active for the external switch port on which the trap will
be sent.

o14-3.a1: If the SMA generates a trap, it shall set the source LID to the
PortInfo:LID of the originating port.

This section describes the application of the architected traps for subnet
management event reporting. The entire list of subnet management class
traps are described in 14.2.5.1 Notices and Traps on page 812.

14.3.5 SUBNTRAPREPRESS()
An SMA may receive a SMP from the subnet containing a SubnTrapRe-
press() in reaction to a SubnTrap() sent by the SMA itself. The requester,
the master SM, will fill the MADHeader:M_Key field of the SMP header
with a M_Key that matches the value of the M_Key of the port corre-
sponding to the receiving SMA if it expects the receiving SMA to check it.

o14-3.a2: If the PortInfo:M_Key component is zero, the SMA shall pro-
cess the SubnTrapRepress() according to 13.4.9 Traps on page 741.

o14-3.a3: If the PortInfo:M_Key component is non-zero and M_Key
matching, if required, is successful according to the rules specified in
14.2.4 Management Key on page 806, the SMA shall process the Subn-
TrapRepress() according to 13.4.9 Traps on page 741.

o14-3.a4: The SMA shall not send any message in response to a valid
SubnTrapRepress() message.

14.3.6 PORT STATE CHANGE

Switches are capable of reporting port state changes.

o14-4: This compliance statement is obsolete and has been removed.

o14-5: This compliance statement is obsolete and has been replaced by
o14-5.1.1:.

o14-5.1.1: If a switch supports Traps (PortInfo:CapabilityMask.IsTrap-
Supported is one), its SMA shall send trap 128 to the SM indicated by the
PortInfo:MasterSMLID under any condition that would cause Switch-
Info:PortStateChange to be set to one. (See 14.2.5.4 SwitchInfo on page
819.)

o14-6: This compliance statement is obsolete and has been replaced by
o14-6.1.1:.

o14-6.1.1: If a switch supports Notices (PortInfo:CapabilityMask.IsNotice-
Supported is one), its SMA shall log a Notice using Notice:TrapNumber

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 856 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

128 under any condition that would cause SwitchInfo:PortStateChange to
be set to one. (See 14.2.5.4 SwitchInfo on page 819.)

The contents of the trap or notice is filled with information from Table 133
Notice DataDetails For Trap 128 on page 814.

14.3.7 P_KEY MISMATCH ON SWITCH EXTERNAL PORTS

P_Key mismatch happens when a P_Key residing in the headers of an in-
coming or outgoing packet on a switch external port does not match any
entry of the P_KeyTable for that switch external port as described in
18.2.4 Packet Relay Requirements on page 1044.

o14-6.1.2: If the switch management port's PortInfo:Capability-
Mask.IsPKeySwitchExternalPortTrapSupported is set, the SMA on the
switch management port shall monitor P_Key mismatches on each
switch external port according to 18.2.4 Packet Relay Requirements on
page 1044.

o14-6.1.3: If the switch management port's PortInfo:Capability-
Mask.IsPKeySwitchExternalPortTrapSupported and PortInfo:Capability-
Mask.IsTrapSupported are set, and if a P_Key mismatch is detected
according to 18.2.4 Packet Relay Requirements on page 1044, then the
SMA shall send a trap 259 to the SM indicated by the PortInfo:Mas-
terSMLID. The DataDetails of the trap shall be filled with information from
Table 139 Notice DataDetails For Trap 259 on page 817 for P_Key mis-
matches on a switch external port.

o14-6.1.4: If the switch management port's PortInfo:Capability-
Mask.IsPKeySwitchExternalPortTrapSupported and PortInfo:Capability-
Mask.IsNoticeSupported are set, and if a P_Key mismatch is detected
according to 18.2.4 Packet Relay Requirements on page 1044, then the
SMA shall log a Notice using Notice:TrapNumber 259. The DataDetails
of the Notice shall be filled with information from Table 139 Notice Data-
Details For Trap 259 on page 817 for P_Key mismatches on a switch ex-
ternal port.

14.3.8 TRANSPORT KEY MISMATCH

Transport key mismatch happens when a key residing in the headers of
an incoming packet does not match the key for the destination QP during
packet validation as described in 9.6 Packet Transport Header Validation
on page 269.

C14-33: The SMA shall monitor P_Key and Q_Key mismatches detected
by the transport services on that port.

C14-34: If a P_Key or Q_Key mismatch occurs, the SMA shall report the
current count via the contents of PortInfo:P_KeyViolations or Port-

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 857 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Info:Q_KeyViolations components of the PortInfo attribute (see 14.2.5.6
PortInfo on page 821).

o14-7: If the port supports Traps as indicated in the PortInfo:Capability-
Mask.IsTrapSupported, the SMA shall send a trap 257 or 258 to the SM
indicated by the PortInfo:MasterSMLID for P_Key and Q_Key mis-
matches, respectively.

o14-8: If the port supports Notices as indicated the PortInfo:Capability-
Mask.IsNoticeSupported, the SMA shall log a notice for P_Key and
Q_Key mismatches using Notice:TrapNumber 257 or 258.

The contents of the trap or notice is filled with information from Table 138
Notice DataDetails For Traps 257 and 258 on page 816 for P_Key and
Q_Key mismatches, respectively.

14.3.9 M_KEY MISMATCH

As a result of the M_Key residing in the SMP header, the SMA is respon-
sible for checking it. The SMA will perform an M_Key check as described
in 14.2.4.1 Levels of Protection on page 807. If the check fails and a lease
period countdown is not already in effect, the SMA starts a lease period
countdown as described in 14.2.4.2 Lease Period on page 807.

o14-9: If a port receives a SMP for which an M_Key mismatch is detected,
then, if the port supports Traps as indicated in PortInfo:CapabilityMask.Is-
TrapSupported, the SMA of that port shall send a trap 256 to the SM in-
dicated by PortInfo:MasterSMLID.

o14-10: If a port receives a SMP for which an M_Key mismatch is de-
tected, then, if the port supports Notices as indicated PortInfo:Capability-
Mask.IsNoticeSupported, the SMA of that port shall log a Notice using
Notice:TrapNumber 256.

The contents of the trap or notice is filled with information from Table 137
Notice DataDetails For Trap 256 on page 815.

14.3.10 LINK LAYER ERRORS

The link layer performs error detection and recovery as described in 7.12
Error detection and handling on page 219. The SMA is responsible for
monitoring the Local link integrity, excessive buffer overrun, and flow con-
trol update errors detected by the link layer of the port.

o14-11: When a Local Link Integrity error occurs on a port that supports
Traps (PortInfo:CapabilityMask.IsTrapSupported is set), the port's SMA
shall send Trap 129 to the SM at the address contained in PortInfo:Mas-
terSMLID; when an Excessive Buffer Overrun error occurs, Trap 130

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 858 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

shall be sent; and when a Flow Control Update error occurs, Trap 131
shall be sent.

o14-12: If the port supports Notices as indicated the PortInfo:Capability-
Mask.IsNoticeSupported, the SMA shall log a notice using Notice:Trap-
Number 129, 130, or 121, respectively, when the Local link integrity,
excessive buffer overrun, or flow control update counters increment.

The contents of the trap or notice is filled with information from Table 134
Notice DataDetails For Traps 129, 130 and 131 on page 814 for Local link
integrity, excessive buffer overrun, and flow control update counter
changes, respectively.

14.3.11 CHANGE CAPABILITYMASK

The PortInfo:CapabilityMask component is RO and therefore cannot be
changed by the SM. However, the PortInfo:CapabilityMask may be modi-
fied at runtime under normal subnet operational conditions by entities on
an endnode. The SMA is responsible for monitoring and reporting
changes in the PortInfo:CapabilityMask.

o14-12.1.1: If the port supports Traps as indicated in the PortInfo:Capa-
bilityMask.IsTrapSupported and the port is capable of sending the Capa-
bilityMask trap as indicated in the PortInfo:CapabilityMask.IsCapability-
MaskNoticeSupported bit, then the SMA shall send a trap 144 to the SM
indicated by the PortInfo:MasterSMLID when the PortInfo:CapabilityMask
is modified at runtime.

o14-12.1.2: If the management port supports Notices as indicated in the
PortInfo:CapabilityMask.IsNoticeSupported and the port is capable of log-
ging the CapabilityMask notice as indicated in the PortInfo:Capability-
Mask.IsCapabilityMaskNoticeSupported, the SMA shall log a Notice
using Notice:TrapNumber 144 when the PortInfo:CapabilityMask is mod-
ified at runtime.

The contents of the trap or notice is filled with information from Table 135
Notice DataDetails For Trap 144 on page 815 for CapabilityMask
changes.

14.3.12 CHANGE SYSTEMIMAGEGUID
The NodeInfo:SystemImageGUID component is RO and therefore cannot
be changed by the SM. However, it may be modified at runtime under
normal subnet operational conditions by entities on an endnode. The SMA
is responsible for monitoring and reporting changes in the NodeInfo:Sys-
temImageGUID.

o14-12.1.3: If the port supports Traps and SystemImageGUID (as indi-
cated by PortInfo:CapabilityMask.IsTrapSupported and PortInfo:Capabil-

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 859 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ityMask.IsSystemImageGUIDSupported) then the SMA shall send a trap
145 to the SM indicated by the PortInfo:MasterSMLID when the No-
deInfo:SystemImageGUID is modified at runtime.

o14-12.1.4: If the management port supports Notices and SystemIm-
ageGUID (as indicated by PortInfo:CapabilityMask.IsNoticeSupported
and PortInfo:CapabilityMask.IsSystemImageGUIDSupported) then the
SMA shall log a Notice using Notice:TrapNumber 145 when the No-
deInfo:SystemImageGUID is modified at runtime.

The contents of the trap or notice is filled with information from Table 136
Notice DataDetails For Trap 145 on page 815 for SystemImageGUID
changes.

14.4 SUBNET MANAGER

There may be one or more Subnet Managers operating on a subnet as
described in 13.3.2 Required Managers and Agents on page 716. There
may be several SMs on a particular node, each residing on different sub-
nets.

C14-35: An SM shall always be associated with one port and one subnet.

C14-35.1.1: A Subnet Manager (SM) shall indicate its presence on the
subnet by setting the IsSM bit in the PortInfo:CapabilityMask on the port
where it resides (see Table 145 PortInfo on page 822).

The mechanism for activating an SM is beyond the scope of the specifi-
cation. The ability to modify the IsSM bit is provided by the Verbs for HCAs
(see 11.2.1.3 Modify HCA Attributes on page 556) and is otherwise be-
yond the scope of the specification.

Each SM is always in a particular state: Master, Standby, Discovering or
Not-active.

The algorithm used to initialize the subnet, the algorithm for adding/de-
leting routes in response to subnet changes, the mechanisms for failover
from master SM to standby SM, and the mechanism for transfer of mas-
tership from master SM to standby SM are beyond the scope of the spec-
ification. However, there are mechanisms specified in this section that
may be used to support these operations.

C14-36: An SM shall comply with the state machine shown in Figure 194
SMInfo State Transitions on page 861 during its startup and shall become
either a master or standby SM.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 860 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Correct execution of the state machine ensures that there be only one
Master SM on a subnet at any time and that after startup, a SM becomes
either a Standby or Master on the subnet.

Furthermore, the state machine specifies how a single Master SM is main-
tained during subnet topology changes, packet loss, addition/removal of
SMs, and subnet mergers. Subsequent sections include the specification
of optional mechanism that may be used by SMs to communicate and a
description of some SM operations on the subnet, but none of these are
required for SM compliance.

14.4.1 SM STATE MACHINE

The behavior of the SM is specified in terms of the SM state machine. This
section starts by defining the specific mechanisms used by the SM: the
SMInfo attribute, control packets that SMs may exchange, a set of timers,
and the exception conditions reported to the higher layer (administrator).

Each SM provides a SMInfo attribute that is specified in Table 158 SMInfo
on page 840 and is exported from the port where it resides.

C14-37: This compliance statement is obsolete and has been replaced by
C14-37.1.1:

C14-37.1.1: The SMInfo:Priority and SMInfo:SM_Key shall be config-
urable only through an out-of-band mechanism that is outside the scope
of this specification.

C14-37.1.2: The SM shall keep the SMInfo:Priority provided to it (see
C14-37.1.1:) in nonvolatile memory.

The contents of the components in the SMInfo attribute determine which
SM in a multi-SM subnet becomes Master: the one with the highest Pri-
ority and the lowest GUID.

Each Standby SM should be ready to become Master when the current
Master fails (or gets disconnected). Also, mastership will be handed over
when the Master detects another SM with a higher Priority (or same Pri-
ority and lower GUID), e.g., during merger of two subnets. Handover takes
place only between SMs that have the right SM_Key.

Under certain circumstances, e.g., when the number of Standby SMs be-
comes an obstacle to scaleability, then a Master SM may force other SMs
to become Not-active.

C14-38: In order to assure interoperability, each SM shall respond to
SubnGet(SMInfo) or SubnSet(SMInfo) with a SubnGetResp(SMInfo).

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 861 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 194 SMInfo State Transitions on page 861 summarizes the states
that a SM may represent in the SMInfo:SMState.

The state transitions correspond to the event numbers in the text below.
The following sections describe the behavior of the SM in each of the
states and the (externally driven) events that cause state changes.

14.4.1.1 CONTROL PACKETS

Control packets may be exchanged between SMs using a SMP that con-
tains a SubnSet(SMInfo) where the MADHeader:AttributeModifier is used
to select from one of the following actions specified in Table 182 SM Con-
trol Packets on page 862. The SM is not required to generate these con-
trol packets and may use mechanisms that are beyond the scope of the
specification to implement similar functions, however, a SM is required to
correctly respond to them.

Discovering

Standby

Master

Discovery
completed (2)

HANDOVER (6)

Polling timeout (3) SM with higher priority
or Master is detected (1)

Figure 194 SMInfo State Transitions

OR DISCOVER (4)

Not-active

DISABLE (5)

STANDBY (11)

Init

ACKNOWLEDGE (9)

Respond to poll (7)
OR topology change (8)
OR HANDOVER (10)

HANDOVER (12)

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 862 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-38.1.1: An SM that receives a SubnSet(SMInfo) control packet re-
questing an invalid state transition shall ignore the requested action and
return a SubnGetResp(SMInfo) with a MADHeader:Status code of 7.

Invalid state transition control packets include those with a MAD-
Header:AttributeModifier of 1, 3, 4, or 5 that were not sent by the Master
SM; or those with a MADHeader:AttributeModifier of 2 that were not sent
by a Standby SM; or those requesting a state transition that is not present
in Figure 194 SMInfo State Transitions on page 861. When an invalid state
transition control packet is received by an SM, that SM may also want to
notify a higher layer (through an interface beyond the scope of the speci-
fication).

14.4.1.2 DISCOVERING STATE

DISCOVERING is the initial state.

C14-39: At startup, a SM shall enter the DISCOVERING state.

C14-40: In the DISCOVERING state, the SM shall perform repetitive
SubnGet(*) to find all nodes and SMs on the subnet.

Section 14.4.2 Subnet Discovery Actions on page 867 summaries many
of the attributes that are collected during discovery. The SM will typically
use direct-routed SMPs to reach all the endnodes. The sequence of dis-
covery is implementation specific and beyond the scope of the specifica-
tion.

C14-41: This compliance statement is obsolete and has been replaced by
C14-41.1.1:

C14-41.1.1: An SM in the DISCOVERING state shall yield and change its
SMInfo:SMState to STANDBY if it finds another SM that either:

• has SMInfo:SMState = MASTER;

Table 182 SM Control Packets

MADHeader:AttributeModifier Description

1 HANDOVER: Is used to initiate the process of handing over Mas-
tership to a higher priority Standby SM or Master.

2 ACKNOWLEDGE: Is used to acknowledge the handover

3 DISABLE: Is used to disable a Standby SM.

4 STANDBY: Is used to return a Not-active SM to Standby.

5 DISCOVER: Causes a Standby SM to go to Discovering.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 863 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• or is in a state other than NOT-ACTIVE and has either a higher Prior-
ity than its own or the same Priority and a lower GUID.

See Figure 194 SMInfo State Transitions on page 861, number 1. At this
point the SM stops the discovery and starts operating as a Standby SM.

C14-42: This compliance statement is obsolete and has been replaced by
C14-41.1.1:

C14-42.1.1: An SM in the DISCOVERING state shall assume the role of
a Master by changing its SMInfo:State to MASTER if it completes the dis-
covery process without finding a Master or a higher priority (lower GUID)
SM that is in a state other than NOT-ACTIVE.

C14-43: The master SM shall initially send to all the nodes on the subnet
SubnSet(PortInfo) SMPs with PortInfo:MasterSMLID and PortInfo:Mas-
terSMSL that specify a path to itself.

See Figure 194 SMInfo State Transitions on page 861, number 2.

C14-44: If the SM discovers that it does not have a M_Key required to
configure a CA, switch, or router on the subnet it shall notify the higher-
layer (through an interface beyond the scope of the specification).

14.4.1.3 STANDBY STATE

C14-45: Standby SMs shall not configure the subnet.

C14-46: Each Standby SM shall poll the Master SM with Sub-
nGet(SMInfo) SMPs, addressed to its PortInfo:MasterSMLID. As long as
the Standby determines that the Master is alive, it stays in SMInfo:SM-
State = STANDBY.

The minimum interval between polling is set by the higher-layer (through
an interface beyond the scope of the specification). The actual interval
may be longer for Standby SMs with lower Priority or when there is a
larger number of Standby SMs on the subnet. The actual polling interval
is installation specific and is not specified in the architecture. The Master
may use the optional control packets to disable Standby SMs if it deter-
mines that there is excessive polling in the subnet.

C14-47: If the Standby SM does not receive a SubnGetResp(SMInfo) that
indicates progress in the ActCount, within the number of retries that is set
by the higher-layer (through an interface beyond the scope of the specifi-
cation), then it should conclude that the Master is no longer alive (or ac-
cessible) and it shall change its SMInfo:SMState back to DISCOVERING.

See Figure 194 SMInfo State Transitions on page 861, number 3.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 864 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-48: If a Standby SM receives a DISCOVER packet, i.e. a
SubnSet(SMInfo) with MADHeader:AttributeModifier set to the value of 5,
then it shall change its SMInfo:SMState to DISCOVERING.

See Figure 194 SMInfo State Transitions on page 861, number 4.

C14-49: If a Standby SM receives a DISABLE packet, i.e., a
SubnSet(SMInfo) with MADHeader:AttributeModifier set to the value of 3,
then it shall change its SMInfo:SMState to NOT-ACTIVE.

See Figure 194 SMInfo State Transitions on page 861, number 5. This al-
lows the Master to disable Standby SMs if it determines that the amount
of polling creates a scaleability problem.

Event 6 specifies the Standby SM behavior when a Master SM determines
that the Standby SM has higher priority and the correct SM_Key, and sub-
sequently relinquishes mastership to that Standby SM. The Master’s be-
havior is specified in 14.4.1.5 Master State on page 865.

C14-50: If a Standby SM receives a HANDOVER control packet, i.e., a
SubnSet(SMInfo) with MADHeader:AttributeModifier set to the value of 1,
it shall return a SubnGetResp(SMInfo).

The steps necessary to take control of the subnet are beyond the scope
of specification. However, the standby SM may, for example, perform the
following operations:

1) The standby SM receiving the HANDOVER control packet obtains
necessary topology information, possibly obtaining data defined as
required record attributes specified in 15.2.5.1 Summary of Attributes
on page 888 from subnet administration residing with the current
Master SM.

2) The standby SM should send to all the nodes on the subnet a
SubnSet(PortInfo) with MasterSMLID and MasterSMSL that specify a
path to itself.

3) The standby SM may send the current Master SM an AC-
KNOWLEDGE control packet, i.e. an SubnSet(SMInfo) with MAD-
Header:AttributeModifier set to the value of 2.

4) If the standby SM does not receive a SubnGetResp(SMInfo), it
should notify the higher-layer (through an interface beyond the scope
of the specification). This is an indication that the Master may have
died in the middle of an unsuccessful hand over.

5) After receiving a SubnGetResp(SMInfo), it assumes the role of a
Master by changing its SMInfo:State to MASTER. See Figure 194
SMInfo State Transitions on page 861, number 6.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 865 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.4.1.4 NOT-ACTIVE STATE

C14-51: If a SM is in the NOT-ACTIVE state, it shall indicate this by set-
ting the SMInfo:SMState to NOT-ACTIVE.

C14-52: If the SM is in the NOT-ACTIVE state, it shall not send SubnSet()
or SubnGet() SMPs.

C14-53: If the SM is in the NOT-ACTIVE state, it shall respond to
SubnSet(SMInfo) and SubnGet(SMInfo) SMPs.

C14-54: This compliance statement is obsolete and has been replaced by
C14-54.1.1:.

C14-54.1.1: If the SM is in the NOT-ACTIVE state and it receives a
STANDBY packet, i.e., a SubnSet(SMInfo) with MADHeader:Attribute-
Modifier set to the value of 4, it shall change its state to STANDBY.

See Figure 194 SMInfo State Transitions on page 861, number 11.

14.4.1.5 MASTER STATE

The Master starts its operation by topology discovery, LID verification and
assignment (if applicable), path verification and calculation, etc. (as spec-
ified in 14.4.3 Initialization Actions on page 868).

C14-55: Only the Master SM shall configure subnet nodes.

C14-56: This compliance statement is obsolete and has been deleted.

C14-57: If the M_Key protection mechanism, as described in 14.2.4.1
Levels of Protection on page 807, is being used, the Master SM shall
sweep the subnet at a rate that will refresh the lease period of every port
on the subnet.

Section 14.4.6 Subnet Sweeping on page 878 describes the sweep activ-
ities.

C14-58: The Master shall increment the SMInfo.ActCount every time it
performs a management operation or issues an SMP.

When the SM in Master state receives a valid SubnGet(SMInfo) or
SubnSet(SMInfo), it should respond with a SubnGetResp(SMInfo) when
M_Key matching, if required, is successful as described in 14.4.7 Authen-
tication on page 878. This is required in order to support the Standby
polling mechanism.

C14-59: If during the sweep the Master detects a topology change, then
it shall perform the operations listed below:

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 866 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If the change is a link going down, then the Master needs to pos-
sibly establish new paths and send new MasterSMLID/SLs to the
affected nodes. The details are beyond the scope of the specifi-
cation.

• If the Master detects a new link, then it starts discovering the sub-
net beyond the new links, using (partially) direct routed SMPs.

If the SM discovers that it does not have a M_Key required to con-
figure a CA, switch, or router on the subnet, it will notify the higher-
layer (through an interface beyond the scope of the specification).

C14-60: This compliance statement is obsolete and has been replaced by
C14-60.2.1:.

C14-60.2.1: If a Master SM finds another Master SM with lower priority (or
same priority and higher GUID) it shall ensure that it is the highest priority
(or same priority and lower GUID) on the subnet, and if so it shall wait for
the other Master (or Masters) to relinquish control if its portion of the
subnet.

C14-61: This compliance statement is obsolete and has been replaced by
C14-61.1.1:

C14-61.1.1: If the Master SM finds an SM that is in a state other than
NOT-ACTIVE, has a higher priority (or same priority and lower GUID), and
has the appropriate SM_Key; then it shall complete the discovery or
sweep in order to determine the highest priority SM (with an appropriate
SM_Key) in the new part of the subnet (if applicable) and it shall relin-
quish control of its portion of the subnet to that SM.

The steps necessary to transfer control of the subnet from one master SM
to another is beyond the scope of specification, however, the master SM
may use the optional control packets to perform the handover process as
follows:

• It may complete operations in progress.

• It sends the higher priority SM a HANDOVER packet, i.e. a
SubnSet(SMInfo) with MADHeader:AttributeModifier set to the
value of 1.

• It continues responding to polls from Standby SMs until it re-
ceives an ACKNOWLEDGE packet, i.e., a SubnSet(SMInfo) with
MADHeader:AttributeModifier set to the value of 2 from the higher
priority SM.

• When it receives an ACKNOWLEDGE packet, it will change its
SMInfo:SMState to STANDBY and return a SubnGetResp(SMIn-
fo). See Figure 194 SMInfo State Transitions on page 861, num-
ber 9.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 867 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If it does not receive an ACKNOWLEDGE packet, then it informs
the higher-layer (through an interface beyond the scope of the
specification).

C14-61.2.1: If a Master SM determines that a higher priority Master SM
does not have the proper SM_Key, then it shall not relinquish mastership
of its portion of the subnet, and shall not change the state of the subnet.

C14-61.2.2: If a Master SM determines that a lower priority Master SM
has not performed a handover within a vendor-specific time period, then
it shall not change the state of the subnet.

Should a Master SM determine the occurrence of the conditions de-
scribed in either C14-61.2.1: or C14-61.2.2:, it should report the occur-
rence to a higher level protocol (through an interface beyond the scope of
the specification). An acceptable technique for determining whether or not
a Master SM will ever do a HANDOVER can include polling of the Master
SM as would normally be done by a standby SM (see C14-46:).

C14-61.2.3: If a SM in the MASTER state receives a HANDOVER control
packet, i.e., a SubnSet(SMInfo) with MADHeader:AttributeModifier set to
the value of 1, it shall return a SubnGetResp(SMInfo). See Figure 194
SMInfo State Transitions on page 861, number 10.

14.4.2 SUBNET DISCOVERY ACTIONS

The SM collects information from the attributes and records them for later
use during configuration of the subnet. The discovery algorithm is outside
the scope of the specification, however, discovery may consist of:

• probing the subnet with directed route packets
• loading a topology database from persistent storage
• a combination of information that is loaded from persistent storage

and obtained by probing subnet nodes
During discovery, the SM scans the attributes described in 14.2.5 At-
tributes on page 809 to obtain information not limited to the following:

• VLs on each Port
• MTU of the Port
• Link Width on each Port
• Link Speed on each Port
• Physical topology, connectivity of links between nodes
• P_Key table sizes
• GUID table sizes
• support for various capabilities

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 868 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• device type: switch, CA, or router
• power-on diagnostic status
• for switches,

• size of switch linear-forwarding or random-forwarding tables
• support for multicast forwarding table and size
• presence of the optional VL arbitration table
• presence of the optional SL-to-VL mapping table

14.4.3 INITIALIZATION ACTIONS

The algorithms and policies that are necessary to set many of the subnet
attributes are outside the scope of the specification. However, there is a
core set of attributes that the SM is responsible for setting in order to make
the subnet functional.

C14-62: This compliance statement is obsolete and has been replaced by
C14-62.1.1:.

C14-62.1.1: The Master SM shall initialize the subnet components spec-
ified in the following Table 183 Initialization on page 868.

Table 183 Initialization

Component Description

PortInfo:LID The SM shall assign a unicast LID address to each endport on the subnet. LID
usage is described in 4.1.2 Channel Adapter, Switch, and Router Addressing Rules
on page 147 and 4.1.3 Local Identifiers on page 147. The SM shall also set up the
forwarding tables of the switches in the subnet such that each base LID of a port on
a CA, Router, or switch port 0 is reachable from any other port on the subnet within
the boundaries set by partitions.

PortInfo:LMC The SM shall assign an LMC for each CA and router port on the subnet. LMC usage
is described in 4.1.3 Local Identifiers on page 147. The SM may program the LMC on
a port to any value between 0 and 7 to allow use of multiple LIDs in addressing the
port. The SM shall not assign overlapping ranges of LIDs based on LMCs to different
ports.

PortInfo:GidPrefix The SM shall assign a Subnet Prefix for the subnet based on the presence of a
router and the rules specified in 4.1.3 Local Identifiers on page 147.

PortInfo:OperationalVL The SM shall initialize the VL tables for CAs, switches and routers. The SM will
examine the supported VLs in the PortInfo:VLCap at both ends of every link and sets
the maximum number of VLs by setting the PortInfo:OperationalVL at each end to
the smaller of the two supported number of VLs. The description of VL initialization
resides in 7.6.7 Initialization and Configuration on page 188. In the case of an
enhanced switch port 0, there is, effectively, just one end of the link; in that case
OperationalVLs may be set to any value allowing any number of VLs up to and
including the VLCap of the port.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 869 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortInfo:NeighborMTU The SM shall initialize the port MTU for CAs, switches and routers.
• The SM on other than an enhanced switch port 0 shall examines the supported

MTU size in the PortInfo:MTUCap at both ends of every link and set the maximum
MTU parameter on the ports in their PortInfo.NeighborMTU at each end to the
smaller of the two supported sizes.

• In the case of an enhanced switch port 0, there is, effectively, just one end of the
link; in that case NeighborMTU shall be set to any value up to and including the
MTUCap of the port.

PortInfo:SubnetTimeOut The SM shall set the maximum trap generation rate for all nodes in the subnet by ini-
tializing the PortInfo.SubnetTimeOut component in all ports as described in
13.4.6.2.1 PortInfo:SubnetTimeout on page 727.

PortInfo:MasterSMLID The SM shall store the LID of the port where it resides in the PortInfo:MasterSMLID
of each port on the subnet.

PortInfo:MasterSMSL The SM shall store the SL required for sending a non-SMP message to the SM
using that LID in the PortInfo:MasterSMSL of each port on the subnet

PortInfo:PortPhysicalState The default state on power-on is polling as described in Volume 2.

PortInfo:LinkDownDefault-
State

The default state on power-on is polling as described in Volume 2.

PortInfo:VLHighLimit The SM shall set the Limit of High-Priority limit for the number of bytes of high-prior-
ity packets that can be transmitted if the ports on both ends of a link may be operated
with multiple data VLs as described in 7.6 Virtual Lanes Mechanisms on page 180

PortInfo:M_Key The SM may initialize the PortInfo:M_Key for each port on the subnet as described in
14.2.4.5 Initialization on page 809. The rules for assigning these values is outside the
scope of the specification.

PortInfo:M_KeyProtectBits The SM may initialize the PortInfo:M_KeyProtectBits for each port on the subnet as
described in 14.2.4 Management Key on page 806. The rules for assigning these
values is outside the scope of the specification.

PortInfo:M_KeyLeasePeriod The SM may initialize the PortInfo:M_KeyLeasePeriod for each port on the subnet as
described in 14.2.4 Management Key on page 806. The rules for assigning these
values is outside the scope of the specification.

PortInfo:M_KeyViolations The SM shall clear the PortInfo:M_KeyViolations component for all ports on the sub-
net.

PortInfo:P_KeyViolations The SM shall clear the PortInfo:P_KeyViolations component for all ports on the sub-
net.

PortInfo:Q_KeyViolations The SM shall clear the PortInfo:Q_KeyViolations component for all ports on the sub-
net.

PortInfo:VLStallCount The SM shall set a value for the PortInfo:VLStallCount as described in 18.2.5.4
Transmitter Queueing on page 1057. The rules for assigning these values is outside
the scope of the specification.

Table 183 Initialization (Continued)

Component Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 870 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortInfo:HOQLife The SM shall set a value for the PortInfo:HOQLife as described in 18.2.5.4 Transmit-
ter Queueing on page 1057. The rules for assigning these values is outside the
scope of the specification.

PortInfo:DiagCode The SM may check the PortInfo:DiagCode of every port on the subnet. The rules for
correcting faults detected on ports is outside the scope of the specification.

PortInfo:InitTypeReply If the SM implements Reinitialization (SA's ClassPortInfo:IsReinitSupported = 1), it
shall set these bits in PortInfo in accordance with the initialization performed prior to
activating a port. See 14.4.4 Node Reinitialization on page 871. Otherwise, these bits
shall be set to 0.

GUIDInfo The SM may assign GUIDs to ports to form GIDs as described in 4.1.1 GID Usage
and Properties on page 143. There is one pre-assigned read-only GUID for each port
that has the same value as NodeInfo:PortGUID. The requirements for setting addi-
tional GUIDs are beyond the scope of the specification.

SwitchInfo:LinearFDBTop On a switch that supports a linear forwarding table, the SM will program the highest
LID to port mapping used as described in 14.2.5.4 SwitchInfo on page 819.

SwitchInfo:DefaultPort On a switch that supports a random forwarding table, the SM shall set the default
port as described in 18.2.4.3.2 Random Forwarding Table Requirements on page
1051. The rules for assigning these values are outside the scope of the specification.

SwitchInfo:DefaultMulti-
castPrimaryPort

The SM shall set the DefaultMulticastPrimaryPort as described in 18.2.4.3.3
Required Multicast Relay on page 1053. The rules for assigning these values are
outside the scope of the specification.

SwitchInfo:DefaultMulticast-
NotPrimaryPort

The SM shall set the DefaultMulticastNotPrimaryPort as described in 18.2.4.3.3
Required Multicast Relay on page 1053. The rules for assigning these values are
outside the scope of the specification.

SwitchInfo:LifeTimeValue The SM shall set a value for the LifeTimeValue as described in 18.2.5.4 Transmitter
Queueing on page 1057. The rules for assigning these values are outside the scope
of the specification.

VLArbitrationTable VL arbitration described in 7.6.9 VL Arbitration and Prioritization on page 188 shall
be set by the SM for the output link of each CA, switch, and router.

SLtoVLmappingTable The application of VL is described in 7.6.6 VL Mapping Within a Subnet on page 186.
The SM will initialize the SL-to-VL mapping tables. The rules for assigning these val-
ues are outside the scope of the specification. The SM shall check for the existence
of the SLtoVLmappingTable and initializes it, if present.

P_KeyTable The SM may initialize the P_Key table by setting entries in the P_KeyTable attribute
for ports. It may also enable P_Key checking in switches. The policy for assigning
P_Keys is in general outside the scope of the specification. However, the SM shall
ensure that one of the P_KeyTable entries in every node contains either the value
0xFFFF (the default P_Key, full membership) or the value 0x7FFF (the default
P_Key, partial membership). The purpose of this specific P_Key value is to provide
communication with Subnet Administration (see 15.4.2 Locating Subnet Administra-
tion on page 923).

Table 183 Initialization (Continued)

Component Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 871 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-62.1.2: When establishing the contents of switch forwarding tables
and SL to VL maps, the subnet manager shall ensure that no cyclic flow
control dependencies exist in the fabric.

Cyclic dependencies in flow control can cause deadlock and subsequent
failure of an IBA fabric. There are a number of routing methods that may
be employed to prevent these dependencies. These include pruned and
fat tree structures, dimension order routing in meshes and hyper cubes,
and use of multiple virtual lanes to break the flow control cycle in routing
loops. While IBA does not specify a particular routing method, whatever
method is utilized must ensure deadlock-free operation.

C14-62.1.3: The SM shall ensure that no packet entering a subnet at any
port with any combination of SL and DLID can cause subnet deadlock.

This can be accomplished even if the subnet manager utilizes virtual
lanes to break cyclic flow control dependencies by putting appropriate en-
tries in the switches' SL to VL mapping tables to ensure that improper use
of SLs by nodes originating traffic (for example, nodes utilizing an SL in-
consistent with path records provided by the subnet administrator) are dis-
carded.

The above compliance statement does not imply that the subnet is re-
quired to deliver packets with improper SLs. It is permissible to discard
such packets.

C14-62.1.4: From every endport within the subnet, the SM shall provide
at least one reversible path to every other endport. See 13.5.4 Response
Generation and Reversible Paths on page 768.

14.4.4 NODE REINITIALIZATION

Any of the types of nodes in an IBA network may require reinitialization,
meaning reloading of attributes set by the SM as part of subnet initializa-
tion. This may occur for a variety of reasons involving failure of microcode,

LinearForwardingTable Unicast forwarding tables will be set by the SM based on route policy decisions and
Switch capabilities. The SM shall setup LID-to-port mappings if the Switch supports
a Linear Forwarding Table as indicated by the SwitchInfo:LinearFDBCap component.

RandomForwardingTable If the Switch supports a Random Forwarding Table as indicated by the Switch-
Info:RandomFDBCap component, the SM shall set up LID/LMC range to port map-
pings based on route policy decisions.

MulticastForwardingTable If a Switch supports a Multicast Forwarding Table as indicated by the SwitchInfo:Mul-
ticastFDBCap component, the SM may setup LID to multi-port mappings in the Multi-
cast Forwarding Table based on route policy decisions.

Table 183 Initialization (Continued)

Component Description

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 872 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

software, and hardware. This is true for any type of node: HCA, TCA,
switch, or router; and it may extend beyond the node itself to data held by
the SM and/or SA about the node, such as the node’s subscriptions to
events, membership in multicast groups, and service records identifying
services on the failed node.

The degree of reinitialization required optimally depends on the circum-
stances of the fault. For example, the following types of distinct errors
could occur:

1) Supervisor failure, for example, failure of the operating system, hy-
pervisor, or switch/router microcode. In this case, the supervisor will
presumably reboot and reinitialize all information internal to the node.
(The SM has no ability to control this.) This case is effectively equiva-
lent to a hot unplug of the port, followed by hot plugging it. All SM/SA
data, like subscriptions, should be removed in this case. There is
benefit to reloading the port’s attributes with data similar to what it
previously contained, but that benefit is not overwhelming; for ex-
ample, using the same LID previously used may eliminate repro-
gramming of some switch tables.

2) A channel adapter failure exhibiting itself to the supervisor as, for ex-
ample, a failure of verbs to perform as expected; but without any
failure of the supervisor. In this situation, there may be significant
added value an SM vendor can provide in being able to reload the
port with exactly the same data it contained previously, and in not
eliminating any SM/SA stored data. If that is done and the CA re-
started quickly, while connections to other ports will likely have to be
recreated, the supervisor may not have to terminate and restart appli-
cations, a potentially very lengthy and disruptive operation.

3) A port failure exhibiting itself only in that a port’s SMA becomes unre-
sponsive to the SM: MADs sent to the SMA do not return responses
or return anomalous responses. The CA may otherwise be operating
normally, but the SM has little choice but to force down the link to that
port (by forcing down a switch port attached to it), since it has lost
control of that port. Like case 2, there may be great value in reinitial-
izing the port exactly as it was previously, if the supervisor can take
advantage of that fact to avoid disruption.

4) The link attached to a port goes down due to an error that cannot be
corrected transparently by automatic retraining, such as the loss of a
physical lane—for example, a 4x link is reduced to a 1x link. In this
case the value loaded by the SM will not change (LinkWidthSup-
ported still says 4x, so the SM will set LinkWidthEnabled to either
allow 1x and 4x or just 1x as it wishes), but the LinkWidthActive will
come up as 1x at most, causing probable widespread changes in
PathMTUs elsewhere.

Of course, combinations of any the above could occur simultaneously.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 873 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The handling of all such cases begins when the SM is signalled that some
form of reinitialization is required by the port going “down,” i.e., its Port-
Info:PortState goes to the Down state. This can occur naturally (e.g., case
4), be forced by a supervisor using the 11.2.1.3 Modify HCA Attributes on
page 556 or equivalent TCA function to signal case 1 or case 2; or be
forced by the SM itself in case 3 by writing the Down value to the Port-
Info:PortState. When the SM does not force the link down, the SM can de-
tect it either in the course of a subnet scan or by receiving trap 128, see
Table 131 Traps on page 812.

Subsequent actions depend on whether the SM, the port, or both imple-
ment the Reinitialization option as indicated by the SA’s ClassPortInfo:Ca-
pabilityMask.IsReinitSupported (for the SM; see 15.2.1.3 SA-Specific
ClassPortInfo:CapabilityMask Bits on page 884) and the port’s Port-
Info:CapabilityMask.IsReinitSupported (for the port; see 14.2.5.6 PortInfo
on page 821).

If the SM does not support reinitialization, the action taken is vendor-spe-
cific.

If both the SM and the port support Reinitialization, the SM then deter-
mines the type of initialization desired by inspecting the PortInfo:InitType
component, set by the supervisor by using the 11.2.1.3 Modify HCA At-
tributes on page 556 or equivalent TCA function. The bits of this field rep-
resent requests by the supervisor to not reload any data (NoLoad),
preserve the prior content of the port’s attributes (PreserveContent),
and/or preserve subscriptions and all other SM/SA data referencing that
port (PreservePresence).

o14-12.1.5: If the SM supports Reinitialization, and a port does not, then
the SM shall reinitialize a port that has entered the down state as if the
port did support Reinitialization and had set all its PortInfo:InitType bits to
0; and shall set all InitTypeReply bits to 0.

It may not, however, be possible for the SM to honor one or more of these
requests. For example, the SM may not have kept any record of the prior
content of that port’s attributes; whether it does so is vendor value-add.
Even if the SM retains prior loaded data, it may be impossible to reload
with exactly the same data; for example, the values of P_Keys loaded into
the port’s P_Key Table may have changed since the port was last active;
or the LID it was assigned may have been reused for another port. The
PortInfo:InitTypeReply component enables the SM to signal the super-
visor which, if any, of its requests were honored.

o14-12.1.6: If both the SM and a port to be reinitialized support Reinitial-
ization, and the SM did successfully perform an action requested by any
of the PortInfo:InitType component bits, the SM shall set the corre-
sponding PortInfo:InitTypeReply bit to 1 (except for DoNotResuscitate,

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 874 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

which has no corresponding reply bit; see below). Otherwise the SM shall
set the corresponding reply bit to 0 (except for DoNotResuscitate; see
below).

It is possible that the most convenient thing for the SM to do is to reload
the port with attribute data it previously contained, even though the port
did not request this explicitly by setting PortInfo:InitType.PreserveContent
to 1.

o14-12.1.7: If both the SM and a port to be reinitialized support Reinitial-
ization, and the SM did reload data identical to the data most recently
loaded into the port’s attributes, then the SM shall set PortInfo:Init-
Type.PreserveContentReply to 1. The SM shall not set any other Port-
Info:InitType reply bit to 1 unless the corresponding PortInfo:InitType
request bit was 1.

The use of PreservePresence, in particular, has the potentially valuable
effect but has a restriction and an additional implication. Its value is in al-
lowing a short CA failure to be less disruptive to operation of a port. Con-
nections made to that port will probably be broken and must be re-
established; but other state data like reservations, service record registra-
tions, etc., can remain in force and their possible cached status in other
nodes is not affected.

However, PreservePresence should not be honored by the SM if it is un-
able to also reinitialize the port with exactly the same data it had previ-
ously (i.e., if it was unable to honor NoLoad or PreserveContent). Doing
so means that data cached in other places may not, in fact, be valid when
the port resumes operation.

o14-12.1.8: If both the SM and a port to be reinitialized support Reinitial-
ization, and the SM has reloaded the port with data not known to be the
same as the data previously (e.g., it could not honor NoLoad or Preserve-
Content requests by a port), the SM shall not honor a PreservePresence
request by that port.

Additionally, honoring PreservePresence has the additional implication
that Report()s for trap number 65, indicating a port is out of service, not be
issued. If those Report()s were issued, other nodes holding data related
to this port, such as managers holding subscriptions to traps, would in all
likelihood eliminate that data since they’ve been informed that the node is
no longer reachable.

o14-12.1.9: If both the SM and a port to be reinitialized support Reinitial-
ization, and the SM was able to honor a PreservePresence request, Re-
port()s for trap 65 (and 64) shall not be issued.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 875 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Otherwise, the definition of the trap number 64 event (see 14.4.9 In and
Out of Service Traps on page 880) implies that a link going down should
cause Report()s of trap 65 be sent for the port attached to that link; and
when the port is reinitialized, Report()s of trap 64 should be sent.

PreservePresence has no effect on the ServiceLease processing of Ser-
viceRecords by SA. I.e., even if a PreservePresence request was hon-
ored, ServiceRecord entries in SA may have been deleted because their
ServiceLease period expired while a port was down.

PortInfo:InitType also provides the DoNotResuscitate bit. This exists to
eliminate a possible race between the SM, reading the PortInfo:InitType
bits; and the supervisor, setting them. DoNotResuscitate requests the SM
to delay reinitializing the port until this bit is set to 0. Setting this bit to 1
immediately following port activation, and leaving it set to 1 while oper-
ating, should (in the absence of some other failures) guarantee that the
SM will see that bit set to 1 when the SM first accesses the port after a link
down. As a result, the SM will not preemptively reinitialize the port while
the supervisor is assessing the situation, figuring out how it wants the
other initialization bits set. DoNotResuscitate being 1 also tells the SM that
trap 65 (out of service) should not be immediately Report()ed, since Pre-
servePresence may be requested; and that SM/SA resources used by this
port should not be recovered, for the same reason. After this bit becomes
zero, the settings of PortInfo:InitType may or may not cause trap 65 to be
reported and resources to be reclaimed. There is no corresponding reply
bit for DoNotResuscitate, since a node is notified resuscitation by an event
(see 11.6.3 Asynchronous Events on page 637). As was true of the other
PortInfo:InitType bits, the SM may not honor a DoNotResuscitate request,
and it likely should not do so after some (vendor-specific) time has
passed. For example, the supervisor could have failed in a manner that
left the node in a coma but the DoNotResuscitate bit reporting “1” forever.

Table 184 PortInfo:InitType Interpretations on page 876 shows the inter-
pretation of all possible combinations of PortInfo:InitType bits. In that
table, the phrase “preserve the port’s external presence” refers to pre-

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 876 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

serving all SM/SA data related to that port and refraining from sending Re-
port()s of trap numbers 64 and 65.

Finally, it should be noted that reinitialization is in many circumstances a
work around for a problem that ultimately must be diagnosed and cor-
rected. Since reinitialization may itself destroy information needed for di-
agnosis, it is important to maintain adequate logging facilities that record
reasons for reinitialization problems. For example: Did a supervisor force
a port down because the supervisor ran into internal problems, or did it do
so because it noticed some form of problem with the other side of the link?

Table 184 PortInfo:InitType Interpretations

InitType Bits Interpretation

N
oL

oa
d

Pr
es

er
ve

-
C

on
te

nt

Pr
es

er
ve

-
Pr

es
en

ce

D
oN

ot
-

R
es

us
ci

ta
te Send trap #

64/65 report &
release SM/SA

resources?

Description

any any any 1 wait Port is requesting that the SM delay reinitialization while
DoNotResuscitate is 1, including the possible Report()ing of
trap #s 64 and 65 and the releasing of SM/SA resources asso-
ciated with this port.

0 0 0 0 Y Port is oblivious to reinitialization issues; SM reinitializes it,
and may do so in any way that is convenient.

0 0 1 0 N if content pre-
served; other-

wise Y

Port does not request that all data be the same as the most
recent content loaded by the SM; but if it is (by choice of the
SM), then the port’s external presence should be preserved.

0 1 0 0 Y Port is requesting that it be reloaded and all data be the same
as the most recent content loaded by the SM; but its external
presence should not be maintained.

0 1 1 0 N if content pre-
served; other-

wise Y.

Port is requesting that it be reloaded and all data be the same
as the most recent content loaded by the SM and that its exter-
nal presence should be maintained.

1 0 0 0 Y Port is requesting that no data be loaded into its attributes at
all, asserting that the last-loaded data still exists and is valid;
but if it is loaded, SM may do so in any way that is convenient.

1 0 1 0 N if content pre-
served; other-

wise Y.

Port is requesting that no data be loaded into its attributes; but
if this request is not honored, SM may do so in any way that is
convenient.

1 1 0 0 Y Port is requesting that no data be loaded into its attributes; if
this request is not honored, port requests that all data be the
same as the most recent content loaded by the SM.

1 1 1 0 N if content pre-
served; other-

wise Y.

Port is requesting that no data be loaded into its attributes; if
this request is not honored, port requests that all data be the
same as the most recent content loaded by the SM.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 877 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Without a supervisor-maintained log of the reason for the forced downing
of the link, it may be very difficult to separate those cases after the fact.

14.4.5 PORT STATE TRANSITIONS

When power is applied to a device, its ports attempt to reach an opera-
tional state according to the steps described in the InfiniBand Architecture
specification, Volume 2, Link/Phy Interface Chapter and 6.2 Services pro-
vided by the Physical Layer. on page 163. A physical subnet is established
when a group of devices are connected together and the state of a set of
ports reaches operational state.

C14-63: A SM shall determine that a subnet is operational when the Port-
Info:Portstate on the port where it resides is at the initialize state.

The SM may access the management entities of remote CAs, switches,
and routers while the ports along the physical links are in initialize state
since the SMI on that port will recognize a packet on QP0 and VL15, with
a LID destination address 0xFFFF as referring to the SMA.

The SM may change the state of a port to active, armed, initialize or down
that are described in 14.4.5 Port State Transitions on page 877.

The SM may perform most port and device configuration activities while
the PortInfo:Portstate is in the initialize state. However, all control and con-
figuration options are also available in the armed state and the active
state. In addition to the link level behaviors, the PortInfo:Portstate has an
additional role because it is manipulated by the SM to communicate to
endnodes the readiness of the subnet. CAs and Routers may start
sending packets on the subnet if one of its ports enters the active state.
As a result, moving a port from active state is likely to be disruptive to
subnet activity.

An SM that becomes the master SM may enable transmission of packets
through the subnet at any time. This is accomplished after establishing
routes by setting the switch forwarding tables and initializing the other at-
tributes as described in 14.4.3 Initialization Actions on page 868 for CAs,
switches, and routers along those routes, and then setting the Port-
Info:Portstate to armed for the ports along those routes. The SM changes
the state of an Endnode from armed to active to signal to the Endnode that
it may begin to send packets. Ports on switches and along that route and
endnodes that are destinations of those packets will transition from armed
to active automatically as described in 14.4.5 Port State Transitions on
page 877.

The SM may reset port related state by:

1) setting the PortInfo:LinkDownDefaultState to polling state

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 878 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) setting the PortInfo:Portstate to the down state.

The PortInfo:Portstate should return to the initialize state after clearing its
state as described by the link state machine in Figure 50 Link State Ma-
chine on page 170.

14.4.6 SUBNET SWEEPING

C14-64: After the subnet is up and running, the SM shall periodically
gather information about topology changes, PortInfo:CapabilityMask
changes, and Notices reported by nodes.

This is referred to as sweeping the subnet. The frequency of subnet
sweeps is undefined for this architecture, as it will vary due to topology
and other implementation considerations.

The SM detects topology changes by examining the port state of nodes in
the subnet. For example, when the value of the PortInfo.Portstate compo-
nent of a port changes from down to initialize, the SM will use directed
routed packets to probe the other end of the link on that port to determine
what has been added to the subnet. Conversely, if the PortInfo.Portstate
component changes from active to down, the SM may perform operations
such as updating switch forwarding tables to delete routes to the end-
node(s) that are no longer accessible. To speed up detection of port state
changes, switches support a SwitchInfo:PortStateChange component,
described in Table 142 SwitchInfo on page 819, that the SM may examine.
If the state of this component indicates that the state of one of the switch
ports has changed, the SM may proceed to check the status of each port
on that switch.

14.4.7 AUTHENTICATION

During initialization of a SMP, the SM may fill in the MADHeader:M_Key
field of the SMP with the value that matches the M_Key stored in the des-
tination port if it expects the destination management entity to check it.

C14-65: The SM shall not check the MADHeader:M_Key stored in a Sub-
nGetResp(*).

C14-66: If the SM receives a validated SMP containing a
SubnSet(SMInfo) or SubnGet(SMInfo) and the PortInfo:M_Key compo-
nent is zero, then the SM shall generate a SubnGetResp.

C14-67: If the SM receives a validated SMP containing a
SubnSet(SMInfo) or SubnGet(SMInfo), and the PortInfo:M_Key compo-
nent is non-zero, and M_Key matching, if required, is successful ac-
cording to the rules specified in 14.2.4 Management Key on page 806,
then the SM shall generate a SubnGetResp(). Otherwise the
SubnSet(SMInfo) or SubnGet(SMInfo) is silently discarded.

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 879 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-68: When a Master SM receives a SMP containing a SubnTrap(), it
shall not check that the MADHeader:M_Key field matches the Port-
Info:M_Key of the port where the SMP was received.

The SMInfo:SM_Key is used by the Master SM to authenticate other
standby SMs and master SMs, in the case of a subnet merge, on the
subnet. Exactly how the key is used is implementation specific. A SM
should fill the SM_Key in the SMInfo:SM_Key component in a response if
it expects the requesting SM to check it.

14.4.8 SM DISABLE MECHANISM

C14-69: If a SM can reside on a port, a vendor defined, out-of-band mech-
anism shall be provided that when asserted will disable the capability of
running a SM from that port and the state of the mechanism shall be in-
dicated in the Portinfo:CapabilityMask.IsSMdisabled bit.

C14-70: When the Portinfo:CapabilityMask.IsSMdisabled bit is asserted,
the port behavior shall be:

• SubnSet(SMInfo) or SubnGet(SMInfo) sent to that port shall be dis-
carded

• SubnSet(*) or SubnGet(*) shall not be sent from that port

• The Portinfo:CapabilityMask.IsSM bit for that port shall not be set.

C14-71: When PortInfo:CapabilityMask.IsSMdisabled is not asserted, the
port behavior shall be:

• SubnSet(SMInfo) or SubnGet(SMInfo) sent to that port will be for-
warded to management entities if the appropriate entity is operational

• SubnSet(*) or SubnGet(*) may be sent by management entities from
the port

• The Portinfo:CapabilityMask.IsSM bit is controlled by management
entities behind that port.

C14-72: The state of the PortInfo:CapabilityMask.IsSMdisabled on a port
shall be changeable at any time while the port is operational.

The mechanism for changing the state of the Portinfo:Capability-
Mask.IsSMdisabled bit is beyond the scope of the specification.

Changing the state of Portinfo:CapabilityMask.IsSMdisabled bit from as-
serted to not-asserted while the port is otherwise operational allows as-
sertion of the IsSM bit in the PortInfo:CapabilityMask and allows activation
of an SM behind the port (see 14.4 Subnet Manager on page 859).

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 880 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

14.4.9 IN AND OUT OF SERVICE TRAPS

Trap numbers 64 and 65, indicating when an endport comes in or out of
service (see Table 131 Traps on page 812), are never used in SubnTrap()
SMPs sent on a subnet; the corresponding events are generated within
the Master SM itself, and so do not have to be signalled to the SM by
SubnTrap() messages. These trap numbers are only used to allow the SM
to report the events to endnodes through the Subnet Administrator (see
15.4.3 Event Forwarding Subsystem on page 923) using SubnAdmRe-
port() GMPs. They may also appear in the corresponding SubnAdmRe-
portResp() GMPs.

The events reported by these Notice()s indicate that an endport's reach-
ability from a subscribing endport has changed. Endport A is reachable
from subscriber endport B if there is a PathRecord with source B and des-
tination A (see 15.2.5.16 PathRecord on page 899). Endport reachability
may change as a result of changes to restrictions on access through par-
titioning, or endports commencing or ceasing participation on the subnet.
These events are a logical equivalent of hot plug and unplug as seen from
the viewpoint of the subscriber.

C14-72.1.1: When an endport A becomes reachable from an endport B
that has subscribed to trap 64, the SM shall cause the SA to send a Sub-
nAdmReport() to B using trap number 64 with the associated Notice at-
tribute DataDetails providing the GID of A as described in Table 132
Notice DataDetails For Traps 64, 65, 66, and 67 on page 814

C14-72.1.2: When an endport A ceases to be reachable from an endport
B that has subscribed to trap 65, the SM shall cause the SA to send a
SubnAdmReport() to B using trap number 65 with the associated Notice
attribute DataDetails providing the GID of A as described in Table 132 No-
tice DataDetails For Traps 64, 65, 66, and 67 on page 814.

14.4.10 MULTICAST GROUP CREATE/DELETE TRAPS

Trap numbers 66 and 67, indicating when a multicast group is created or
deleted, are events that are generated by the SA when a multicast group
is created or deleted (see 15.2.5.17 MCMemberRecord on page 908).
These trap numbers are used to report these events through the SA using
SubnAdmReport() GMPs. These traps are similar to trap numbers 64/65
(see 14.4.9 In and Out of Service Traps on page 880) in that they are
never used in SubnTrap() SMPs sent on a subnet. These traps are option-
ally supported by the SA as indicated by the SA's ClassPortInfo:Capabil-
ityMask.IsUDMulticastSupported bit.

o14-12.1.10: If SA supports UD multicast, then if an endport has sub-
scribed to trap 66 for a specific or wildcarded MGID, the SA shall send a
SubnAdmReport() to that endport when a multicast group is created with
a matching MGID (as specified in 15.2.5.17 MCMemberRecord on page

InfiniBandTM Architecture Release 1.2 Subnet Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 881 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

908) using trap 66 with the associated Notice attribute DataDetails as de-
scribed in Table 132 Notice DataDetails For Traps 64, 65, 66, and 67 on
page 814.

o14-12.1.11: If SA supports UD multicast, then if an endport has sub-
scribed to trap 67 for a specific or wildcarded MGID, the SA shall send a
SubnAdmReport() to that endport when the last receiving member of mul-
ticast group with a matching MGID leaves the group (as specified in
15.2.5.17 MCMemberRecord on page 908) using trap 67 with the associ-
ated Notice attribute DataDetails as described in Table 132 Notice Data-
Details For Traps 64, 65, 66, and 67 on page 814.

14.4.11 CLIENT REREGISTRATION

Client reregistration allows the Subnet Manager to request that a client re-
register all subscriptions previously requested from this port. The SM may
request this at any time of any port supporting this option. A reason for the
SM doing this might be that the SM suffered a failure and as a result lost
its own records of such subscriptions.

The SM class uses the PortInfo attribute to affect client reregistration. A
port indicates it supports client reregistration for the SM class by setting
PortInfo:CapabilityMask.IsClientReregistrationSupported = 1.

o14-12.2.1: If a port supports client reregistration (PortInfo.IsClientRereg-
istrationSupported = 1), the SMA shall respond to a SubnSet(PortInfo)
with PortInfo:ClientReregister=1 as follows:

• a SubnGetResp(PortInfo) shall be returned with PortInfo:ClientRe-
register =1

• an asynchronous unaffiliated event of type Client Reregistration shall
be generated (see 11.6.3.3 Unaffiliated Asynchronous Events on
page 640).

o14-12.2.2: Compliance statement o14-12.2.1: is the only situation in
which any SMA shall return a PortInfo with ClientReregister=1; in all other
cases, it shall be 0.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 882 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 15: SUBNET ADMINISTRATION

15.1 INTRODUCTION AND OVERVIEW

All compliance statements in this chapter from releases prior to 1.1
are obsolete and have been deleted from the specification.

This chapter defines IBA Subnet Administration (SA) and its functions: the
MADs used, and the functions with which they are associated.

C15-0.1.1: Every IBA subnet shall provide SA.

15.1.1 SA FUNCTION

Through the use of Subnet Administration class MADs, SA provides ac-
cess to and storage of information of several types, some optional.

C15-0.1.2: The information that shall be provided by SA is specified in
Table 189 Subnet Administration Attributes (Summary) on page 888.

The types of information involved are:

• Information that endnodes require for operation in a subnet. Such in-
formation includes paths between endnodes, notification of events,
service attributes, etc. This information is required.

• Information that is non-algorithmic, typically. Information that cannot
be recovered algorithmically by inspection of the network after a pow-
er-on or initialization event. Such information includes partitioning da-
ta, M_Keys, SL to VL mappings, etc. This information is required to
allow off-line migration from one vendor’s subnet management imple-
mentation to another’s. This is required.

• Information that may be useful to other management entities such as
standby SMs, who may, for example, wish to use it to maintain syn-
chronization with the master SM. Such information includes subnet
topology data, switch forwarding tables, etc. This is optional.

In order to perform these activities, SA includes two functions:

• A query subsystem required to identify the information to be sent and
received

• An event-forwarding subsystem that forwards SM-received traps and
notices to subscribed parties.

The actual SA implementation is outside the scope of architecture. The
actual access QP and DLID may be redirected by the GSI.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 883 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.1.2 RELATIONSHIP BETWEEN SA AND THE SM
Much, but not all, of the information provided by SA is created or collected
by the SM. SA must therefore have a close relationship with the master
SM. That relationship is defined as follows:

• SA is part of the SM. Its functions are discussed separately from the
SM only for convenience of description. This descriptive convenience
is not intended to imply or require any particular implementation orga-
nization of the SM (or SA) by any vendor.

• As is the case for any class of IB management, SA functions may be
implemented on a node separate from the one holding the SM;
whether this is done is vendor-specific. If any SM function is imple-
mented at a location different from the one identified as holding the
SM, including but not limited to SA functions, any or all communica-
tion between that function and any other SM elements is vendor-spe-
cific.

C15-0.1.3: Should an SM be elected master SM, all of its components
shall also be implicitly elected master, including but not limited to SA,
however they may be implemented. If an SM ceases to be master, all of
its components, including but not limited to SA, all shall cease responding
to messages from client nodes.

15.1.3 OVERVIEW

The remainder of this chapter first defines the MADs used by SA. It also
defines the operation of SA. The SA operations described include locating
SA and SA methods and their operation. Also described are identification
of information attributes, access restrictions that must be implemented,
and event forwarding.

15.2 SA MADS

This section defines the MADs sent and received by SA.

C15-0.1.4: The SA MADs are GMPs and shall conform to MAD use as
specified in 13.4 Management Datagrams on page 717.

15.2.1 SA MAD FORMAT

C15-0.1.5: Subnet Administration shall use the datagram format shown
in Figure 195 Subnet Administration Format on page 884 with the fields
specified in Table 185 Subnet Administration Fields on page 884.

C15-0.1.6: The MADHeader:ClassVersion component for the SA class
shall be 2 for this version of the specification.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 884 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.1.1 SA HEADER

15.2.1.2 SA HEADER FIELDS

15.2.1.3 SA-SPECIFIC CLASSPORTINFO:CAPABILITYMASK BITS

Table 186 SA-Specific ClassPortInfo:CapabilityMask Bits on page 885

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0-32 Standard MAD Header with RMPP header (see Figure 170 RMPP Header Layout on page 772)

36 SM_Key

40

44 AttributeOffset Reserved

48 ComponentMask

52

56 SubnetAdminData (200 bytes)

...

252

Figure 195 Subnet Administration Format

Table 185 Subnet Administration Fields

Field Length Description

SM_Key 64 bits Subnet Manager verification key: Used to authenticate a request as being
from a trusted source.
• For SA requests this field shall be either zero or a valid SM_Key. If nei-

ther of these values is present, the request shall be discarded, and it is
recommended that suitable note of this occurrence be made by the SM.

• For SA responses, this field shall be set to zero. Refer to Chapter 14:
Subnet Management on page 794 and 15.4.1 Restrictions on Access on
page 921.

AttributeOffset 16 bits In an RMPP DATA packet: Number of 8-byte words from the beginning of
an attribute to the beginning of the next attribute. To compute the offset in
bytes, multiply AttributeOffset by eight. AttributeOffset shall not change
during any single RMPP transfer.
Otherwise: Ignored

Reserved 16 bits Reserved

ComponentMask 64 bits Used to indicate attribute components to be used for SA operations. Bit 0
maps to first attribute component, bit 1 the second attribute component,
and so forth. A bit set to one indicates attribute component is used to form
a SA operation, otherwise field is to be ignored.Refer to 15.4.4 Administra-
tion Query Subsystem on page 923

SubnetAdminData 1600 bits Data field where attribute content is stored.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 885 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

specifies the use of class-specific bits of ClassPortInfo:CapabilityMask by
the Subnet Administration class:

C15-0.1.7: Subnet Administration shall behave in accordance with the
descriptions in Table 186 SA-Specific ClassPortInfo:CapabilityMask Bits
on page 885.

See 13.4.8.1 ClassPortInfo on page 734 for an overall description of
ClassPortInfo:CapabilityMask.

15.2.2 SUMMARY OF METHODS

Table 187 Subnet Administration Methods on page 885 summarizes the
methods provided by the Subnet Administration class. Several of these
are common methods described in 13.4.5 Management Class Methods
on page 721; some are unique to this class. Subnet Administration
methods are described in more detail in 15.4 Operations on page 921.

C15-0.1.8: SA shall support all the methods listed in Table 187 Subnet
Administration Methods on page 885. All Method Type Values not listed in
the table are reserved.

Table 186 SA-Specific ClassPortInfo:CapabilityMask Bits
Name Bit Description

IsSubnetOptional-
RecordsSupported

8 If this value is 1, SA shall support all attributes listed as optional in Table 189
Subnet Administration Attributes (Summary) on page 888, except for MCMem-
berRecord, TraceRecord, and MultiPathRecord. This bit shall not be used to
indicate support a subset of those attributes.
If this value is 0, SA shall support none of the above attributes and methods.

IsUDMulticastSup-
ported

9 If this value is 1, SA shall support MCMemberRecord as listed in Table 189
Subnet Administration Attributes (Summary) on page 888.

IsMultiPathSupported 10 If this value is 1, SA shall support the TraceRecord and MultiPathRecord
attributes as listed in Table 189 Subnet Administration Attributes (Summary) on
page 888, as well as SubnAdmGetTraceTable(), SubnAdmGetMulti(), and Sub-
nAdmGetMultiResp() methods, as listed in Table 187 Subnet Administration
Methods on page 885.

IsReinitSupported 11 If this value is 1, reinitialization shall be supported by the SM/SA for this port,
as described in 14.4.4 Node Reinitialization on page 871.

Table 187 Subnet Administration Methods

Method Type Value
Optional/
Required

Description

SubnAdmGet() 0x01 Required Request a get (read) of an attribute from a node

SubnAdmGetResp() 0x81 Required The response from an attribute get or set request

SubnAdmSet() 0x02 Required Request a set (write) of an attribute in a node. The responder
shall issue a SubnAdmGetResp() as its response.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 886 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.3 SUBNET ADMINISTRATION STATUS VALUES

For SA, values for the class-specific status bits (see 13.4.7 Status Field
on page 731) have the meaning specified in Table 188 SA MAD Class-
Specific Status Encodings on page 886.

SubnAdmReport() 0x06 Required Forward an event previously subscribed for

SubnAdmReportResp() 0x86 Required Reply to a SubAdmReport() method

SubnAdmGetTable() 0x12 Required Table request

SubnAdmGetTableResp() 0x92 Required Table request response

SubnAdmGetTraceTable() 0x13 Optional Request path trace table

SubnAdmGetMulti() 0x14 Optional Multi-packet request

SubnAdmGetMultiResp() 0x94 Optional Multi-packet response

SubnAdmDelete() 0x15 Required Request to delete an attribute

SubnAdmDeleteResp() 0x95 Required Response to SubnAdmDelete() method

Table 187 Subnet Administration Methods (Continued)

Method Type Value
Optional/
Required

Description

Table 188 SA MAD Class-Specific Status Encodings

Name Value Meaning

NO_ERROR 0 No class-specific error

ERR_NO_RESOURCES 1 Insufficient resources to complete the request. This error may be
returned for any SA request which could not be processed due to
insufficient resources.

ERR_REQ_INVALID 2 Supplied request or update is invalid.

ERR_NO_RECORDS 3 No records match query. May be returned only by a SubnAdmGe-
tResp(). Never returned for an RMPP response because an
RMPP transaction with a payload length of zero is a valid transac-
tion.

ERR_TOO_MANY_RECORDS 4 Too many records match query.

ERR_REQ_INVALID_GID 5 Invalid GID in SA request.

ERR_REQ_INSUFFICIENT_COMPONENTS 6 Request did not contain the required components.

Reserved 7-255 Reserved; reception of any of these status codes shall be consid-
ered an error.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 887 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.4 ATTRIBUTES AND ATTRIBUTE TABLES

In common with all management classes, the AttributeID component of
the standard MAD header identifies the format and semantics of the data
in each MAD. The format and semantics of SA attributes are described in
detail in section 15.2.5 Attributes on page 888.

C15-0.1.9: For every subnet node, port, and link discovered by the SM,
SA shall make available all the attributes necessary to describe the state
of that node, port, or link. The exact attributes available will depend upon
the type of entity. If the SM discovers that a node, port, or link is no longer
accessible or down, the attributes describing it shall no longer be avail-
able from SA.

There is a class of SA attributes which have characteristics different from
attributes found in other management classes. In addition, unlike other
classes, SA can return tables of attributes. This section describes those
characteristics and the tables.

15.2.4.1 EMBEDDED ATTRIBUTES

A significant function of SA is to allow user programs and other entities to
use GMPs to obtain data known by the SM. For this reason, in many
cases the data formats and semantics used by SA are actually the formats
and semantics defined by the SM; in effect, SM attribute data is often em-
bedded in SA attributes.

The SM data embedded in an attribute may be stored in SA, or stored in
the SM, or obtained on demand from the nodes which contain it, or other-
wise obtained. Which is done for any attribute is implementation-depen-
dent. The format and semantics of the embedded SM data is neither
defined by SA nor described in this chapter, but rather defined and de-
scribed by the SM; see 14.1 Subnet Management Model on page 794 for
that information.

15.2.4.2 RECORD IDENTIFIER (RID) FIELDS

In addition to embedded data, SA attributes contain additional information
which identifies the entity whose attribute is embedded. For example,
PortInfoRecord contains, in addition to the SM-defined PortInfo data itself,
the LID of the switch containing the port whose PortInfo is referred to, and
the Port Number of that port on that switch. The fields containing that iden-
tifying information are referred to as the Record Identifier fields (RID
fields). RID fields are always at the start of an attribute. The specific RID
fields used for a particular attribute depend on the type of attribute. The
individual attribute descriptions define each attribute’s RID fields in detail.

The LIDs used in RID fields may in effect be aliased. This happens be-
cause use of the LMC facility for subnet multipathing (see 7.11 Subnet
Multipathing on page 219) can map multiple LIDs to the same port. All

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 888 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

such aliased values are valid RID field values: Given a RID field con-
taining a LID that can be used to communicate with a given port, SA must
reference information about that port. This is true both for queries and for
methods that write data. Attributes returned from a query, however, con-
tain the base LID.

C15-0.1.10: Any LID usable to route a packet to a port may be used in a
query as the LID component in a RID, and shall identify the port to which
it routes.

C15-0.1.11: Query responses shall contain a port's base LID in any LID
component of a RID.

15.2.4.3 TABLES

Collections of attributes transferred to or from subnet administration are
called tables. These tables consist of a single type of attribute, such as
NodeRecords.

15.2.5 ATTRIBUTES

This section first provides a summary of all the SA attributes, and then lists
the data format of each, with descriptions where warranted.

15.2.5.1 SUMMARY OF ATTRIBUTES

C15-0.1.12: SA shall support the attributes and methods listed as re-
quired in Table 189 Subnet Administration Attributes (Summary) on page
888, and.Table 190 Subnet Administration Attribute / Method Map on
page 890, respectively. All attribute IDs not listed in Table 189: Subnet Ad-
ministration Attributes (Summary) are reserved.

Table 189 Subnet Administration Attributes (Summary)

Attribute Name Attribute
ID

O
pt

io
na

l /
R

eq
ui

re
d

Em
be

dd
ed

A
ttr

ib
ut

e

Description

ClassPortInfo 0x0001 R n Class information. See 13.4.8.1 ClassPortInfo on page
734

Notice 0x0002 R n Notice information. See 13.4.8.2 Notice on page 737

InformInfo 0x0003 R n Subscription (Inform) Information. See 13.4.8.3 InformInfo
on page 739

NodeRecord 0x0011 R Y Container for NodeInfo. See 15.2.5.2 NodeRecord on
page 891

PortInfoRecord 0x0012 R Y Container for PortInfo. See 15.2.5.3 PortInfoRecord on
page 891

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 889 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SLtoVLMappingTableRecord 0x0013 R Y Container for SLtoVLMappingTable entry. See 15.2.5.4
SLtoVLMappingTableRecord on page 892

SwitchInfoRecord 0x0014 O Y Container for SwitchInfo. See 15.2.5.5 SwitchInfoRecord
on page 892

LinearForwardingTableRecord 0x0015 O Y Container for LinearForwardingTable entry. See 15.2.5.6
LinearForwardingTableRecord on page 892

RandomForwardingTableRecord 0x0016 O Y Container for RandomForwardingTable entry. See
15.2.5.7 RandomForwardingTableRecord on page 893

MulticastForwardingTableRecord 0x0017 O Y Container for MulticastForwardingTable entry. See
15.2.5.8 MulticastForwardingTableRecord on page 893

SMInfoRecord 0x0018 O Y Container for SMInfo. See 15.2.5.10 SMInfoRecord on
page 894

InformInfoRecord 0x00F3 O Y Container for InformInfo. See 15.2.5.12 InformInfoRecord
on page 894

LinkRecord 0x0020 O n Inter-node linkage information. See 15.2.5.13 LinkRecord
on page 895

GuidInfoRecord 0x0030 O Y Container for a port’s GUIDInfo. See 15.2.5.18 GuidIn-
foRecord on page 916

ServiceRecord 0x0031 R n Information on advertised services. See 15.2.5.14 Ser-
viceRecord on page 895

P_KeyTableRecord 0x0033 R Y Container for P_Key Table. See 15.2.5.11
P_KeyTableRecord on page 894

PathRecord 0x0035 R n Information on paths through the subnet. See 15.2.5.16
PathRecord on page 899

VLArbitrationTableRecord 0x0036 R Y Container for VLArbitrationTable entry. See 15.2.5.9 VLAr-
bitrationTableRecord on page 893

MCMemberRecord 0x0038 O n Multicast member attribute. See 15.2.5.17 MCMember-
Record on page 908

TraceRecord 0x0039 O n Path trace information. See 15.2.5.19 TraceRecord on
page 916

MultiPathRecord 0x003A O n Request for multiple paths. See 15.2.5.20 MultiPath-
Record on page 917

ServiceAssociationRecord 0x003B O n ServiceRecord ServiceName/ServiceKey association.
See 15.2.5.15 ServiceAssociationRecord on page 899

Table 189 Subnet Administration Attributes (Summary) (Continued)

Attribute Name Attribute
ID

O
pt

io
na

l /
R

eq
ui

re
d

Em
be

dd
ed

A
ttr

ib
ut

e

Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 890 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The AttributeModifier (see Table 112 Common MAD Fields on page 719)
from the common header is not used with any of the Subnet Administra-
tion attributes.

Table 190 Subnet Administration Attribute / Method Map on page 890 as-
sociates SA attributes with methods.

Table 190 Subnet Administration Attribute / Method Map

Attribute Get Set Report GetTable GetTraceTable GetMulti Delete

ClassPortInfo X

Notice X

InformInfo X

NodeRecord X X

PortInfoRecord X X

SLtoVLMapping-
TableRecord

X X

SwitchInfoRecord X X

LinearForwarding-
TableRecord

X X

RandomForwarding-
TableRecord

X X

MulticastForwarding-
TableRecord

X X

VLArbitrationTableRecord X X

SMInfoRecord X X

InformInfoRecord X X

LinkRecord X X

GUIDInfoRecord X X

ServiceRecord X X X X

P_KeyTableRecord X X

PathRecord X X

MCMemberRecord X X X X

TraceRecorda X

MultiPathRecord X

ServiceAssociationRecord X X

a. TraceRecord is returned only in SubnAdmGetTableResp(), see 15.4.9 SubnAdmGetTraceTable(): Trace a Path on page 928

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 891 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The detailed layouts of all the SA-specific attributes follows. Attributes
which are containers for Subnet Management attributes require little de-
scription beyond their layout; others have more extensive descriptions

15.2.5.2 NODERECORD

There is one NodeRecord for each endport on a subnet.

Note: If a channel adapter or router has multiple ports on the same subnet,
there will be multiple NodeRecords available for that node from SA, one
for each possible PortGUID value of NodeInfo for that node on that
subnet.

15.2.5.3 PORTINFORECORD

Table 191 NodeRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 For a CA or router: LID of the port.
For a switch: LID of switch port 0.

Reserved 16 16 Reserved

NodeInfo 320 32 NodeInfo attribute contents; see Table 141 NodeInfo on
page 818

NodeDescription 512 352 NodeDescription attribute contents; see Table 140 Node-
Description on page 818

Table 192 PortInfoRecord

Component Length(bits) Offset(bits) Description

R
ID

EndportLID 16 0 For a CA or router: LID of the port.
For a switch: LID of switch port 0.

PortNum 8 16 For a switch: port number
For a channel adapter or router: reserved

Reserved 8 24 Reserved

PortInfo 432 32 PortInfo attribute contents; see Table 145 PortInfo on page 822

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 892 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.4 SLTOVLMAPPINGTABLERECORD

15.2.5.5 SWITCHINFORECORD

15.2.5.6 LINEARFORWARDINGTABLERECORD

Table 193 SLtoVLMappingTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 For a CA or router: LID of the port.
For a switch: LID of switch port 0

InputPortNum 8 16 For a switch: input port number
For a channel adapter or router: reserved

OutputPortNum 8 24 For a switch: output port number
For a channel adapter or router: reserved

Reserved 32 32 Reserved

SLtoVLMappingTable 64 64 SLtoVLMappingTable attribute contents; see Table 149
SLtoVLMappingTable on page 835

Table 194 SwitchInfoRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of switch port 0

Reserved 16 16 Reserved

SwitchInfo 136 32 SwitchInfo attribute contents; see Table 142 SwitchInfo
on page 819

Table 195 LinearForwardingTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of switch port 0

BlockNum 16 16 LinearForwardingTable block number

Reserved 32 32 Reserved

LinearForwardingTable 512 64 Contents of LinearForwardingTable block # BlockNum con-
tents; see Table 152 LinearForwardingTable on page 837

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 893 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.7 RANDOMFORWARDINGTABLERECORD

15.2.5.8 MULTICASTFORWARDINGTABLERECORD

15.2.5.9 VLARBITRATIONTABLERECORD

Table 196 RandomForwardingTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of switch port 0

BlockNum 16 16 RandomForwardingTable block number; see Table 155
LID/Port Block Element on page 838

Reserved 32 32 Reserved

RandomForwarding-
Table

512 64 Contents of RandomForwardingTable block # BlockNum;
see Table 154 RandomForwardingTable on page 838

Table 197 MulticastForwardingTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of switch port 0

Position 4 16 Position field of this attribute as defined in 14.2.5.12 Multi-
castForwardingTable on page 838.

Reserved 3 20 Reserved.

BlockNum 9 23 Pointer to a block of 32 PortMask entries for this attribute.
See 14.2.5.12 MulticastForwardingTable on page 838

Reserved 32 32 Reserved

MulticastForwarding-
Table

512 64 Contents of MulticastForwardingTable block identified by
BlockNum and Position; see Table 156 MulticastForward-
ingTable on page 839

Table 198 VLArbitrationTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 For a CA or router: LID of the port.
For a switch: LID of switch port 0.

OutputPortNum 8 16 For a switch: output port number
For a channel adapter or router: reserved

BlockNum 8 24 VL/Weight block number; see Table 151 VL/Weight Block
Element on page 837

Reserved 32 32 Reserved

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 894 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.10 SMINFORECORD

15.2.5.11 P_KEYTABLERECORD

15.2.5.12 INFORMINFORECORD

VLArbitrationTable 512 64 Contents of VLArbitrationTable block # BlockNum; see Table
150 VLArbitrationTable on page 837

Table 198 VLArbitrationTableRecord (Continued)

Component Length(bits) Offset(bits) Description

Table 199 SMInfoRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of the port

Reserved 16 16 Reserved

SMInfo 168 32 SMInfo attribute contents; see Table 158 SMInfo on
page 840

Table 200 P_KeyTableRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 For a CA or router: LID of the port.
For a switch: LID of switch port 0.

BlockNum 16 16 P_Key Table block number

PortNum 8 32 For a switch: port number
For a CA or router: reserved

Reserved 24 40 Reserved

P_Key Table 512 64 Contents of P_KeyTable block number BlockNum; see
Table 147 P_KeyTable on page 835

Table 201 InformInfoRecord

Component Length(bits) Offset(bits) Description

R
ID

SubscriberGID 128 0 GID of the subscriber port

Enum 16 128 Identifier unique among all subscriptions requested through
port

Reserved 48 144 Reserved

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 895 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.13 LINKRECORD

LinkRecords are synthesized by SA to serve as informational topology
data for management entities in need of such data. It is intended to identify
physical links between specific port pairs. The “From” side of the
LinkRecord refers to where the link departs and the “To” side of the
LinkRecords refers to where the link arrives. Note that since links are bi-
directional, two LinkRecords will be synthesized for each link in a subnet.

15.2.5.14 SERVICERECORD

InformInfo 288 192 InformInfo attribute contents; see Table 119 InformInfo on
page 739

Table 201 InformInfoRecord (Continued)

Component Length(bits) Offset(bits) Description

Table 202 LinkRecord

Component Length(bits) Offset(bits) Description

R
ID

FromLID 16 0 For a CA or router: LID of a port connected by a link to another port.
For a switch: LID of a switch port 0 whose port number FromPort is con-
nected by a link to another port.

FromPort 8 16 For a CA or router: 0
For a switch: port number, other than port 0

ToPort 8 24 If the port specified by FromLID/FromPort is connected by a link to
• a CA or router port: ToPort is 0
• a switch port: ToPort is the port number of that switch port

ToLID 16 32 If the port specified by FromLID/FromPort is connected by a link to
• a CA or router port: ToLID is the LID of that CA or router port
• a switch port: ToLID is the LID of port 0 of that switch

Table 203 ServiceRecord

Component Length(bits) Offset(bits) Description

R
ID

ServiceID 64 0 The identifier of the service on the port specified by
ServiceGID

ServiceGID 128 64 The port GID for the service.

ServiceP_Key 16 192 The P_Key used in contacting the service.

Reserved 16 208 Reserved for alignment.

ServiceLease 32 224 Lease period remaining for this service, in seconds.
0xFFFFFFFF is an indefinite lease.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 896 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ServiceRecords provide a first level or “bootstrap” advertisement of basic
services that cannot be found prior to a query of SA. These could be ser-
vices such as a boot service or a name service. Managers which define
events (trap numbers) should create ServiceRecords so entities wishing
to subscribe to their events can find them. ServiceRecords are not in-
tended to substitute for a full function, highly scalable, network directory
service.

15.2.5.14.1 SERVICEP_KEY

The ServiceP_Key is a P_Key which may be used to contact the service.
As required by 15.4.1.2 Access Restrictions For Other Attributes on page
922, SA returns to a requesting port only ServiceRecords whose
ServiceP_Key matches an entry in that port’s P_Key Table.

C15-0.1.13: SA shall reject as invalid any attempt to create, modify, or de-
lete a ServiceRecord in which the ServiceP_Key is not present in the
P_Key Tables of both the port identified by the ServiceGID and the port
from which the request came.

15.2.5.14.2 SERVICEKEY

The ServiceKey may be used to allow authentication of the creation, re-
placement and deletion of ServiceRecords with selected ServiceNames.

C15-0.1.14: SA shall provide a means for associating ServiceNames with
ServiceKeys.

This association is vendor-specific. Implementations may differ in such
aspects as how the association is created and maintained; how many dif-
ferent associations may be held by SA; whether a ServiceName may be

ServiceKey 128 256 Key value that may be associated with the Service-
Name; see discussion following.

ServiceName 512 384 UTF-8 encoded, null-terminated character string used
to identify the service (e.g., “BIS.IBTA”).

N
ot

e:
 m

or
e

th
an

 o
ne

ServiceData8.1 …
ServiceData8.16

8×16=128 896 Data for this ServiceRecord; content is opaque to SA.
One ComponentMask bit per byte. See discussion.

ServiceData16.1 …
ServiceData16.8

16×8=128 1024 Data for this ServiceRecord; content is opaque to SA.
One ComponentMask bit per 16 bits. See discussion.

ServiceData32.1 …
ServiceData32.4

32×4=128 1152 Data for this ServiceRecord; content is opaque to SA.
One ComponentMask bit per 32 bits. See discussion.

ServiceData64.1 …
ServiceData64.2

64×2=128 1280 Data for this ServiceRecord; content is opaque to SA.
One ComponentMask bit per 64 bits. See discussion.

Table 203 ServiceRecord (Continued)

Component Length(bits) Offset(bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 897 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

associated with multiple ServiceKeys; whether different ServiceNames
may have the same ServiceKey; etc. The set of {ServiceName, Ser-
viceKey} associations can be retrieved, but not SubnAdmSet(), by using
the ServiceAssociationRecord; see 15.2.5.15 ServiceAssociationRecord
on page 899.

C15-0.1.15: Requests to SubnAdmSet(ServiceRecord) or SubnAdmDe-
lete(ServiceRecord) shall be performed as if the procedure described
below were used. In what follows, Ns is the ServiceName in the attribute
supplied with the MAD, Ks is the ServiceKey, and Rs is the RID. In all
cases it is assumed that the ComponentMask is appropriately set.

1) If no {ServiceName, ServiceKey} association exists with Service-
Name=Ns, ignore Ks and perform the requested operation, i.e.:

a) If the method is SubnAdmDelete(), then

i) if there is a stored ServiceRecord with a RID matching Rs,
then delete that stored ServiceRecord.

ii) otherwise reject the operation.
b) If the method is SubnAdmSet(), then

i) if there is a stored ServiceRecord with a RID matching Rs, re-
place that stored ServiceRecord with the one supplied.

ii) otherwise add the supplied ServiceRecord.
2) Otherwise, if Ks does not equal any ServiceKey associated with Ns,

i.e., no {Ns, Ks} association exists, then reject the operation.

• Note, having passed step 2 means that in steps 3 and 4, an {Ns, Ks}
association is known to exist.

3) If the method is SubnAdmSet(), then:

a) if there is no stored ServiceRecord with a RID matching Rs, add
the supplied ServiceRecord.

b) if there is a stored ServiceRecord with a RID matching Rs and a
ServiceKey matching Ks, then replace the stored ServiceRecord
with the one supplied.

c) otherwise, reject the operation

4) If the method is SubnAdmDelete(), then:

a) if there is a stored ServiceRecord with a RID matching Rs and a
ServiceKey matching Ks, then delete that ServiceRecord.

b) otherwise, reject the operation.

An implication of C15-0.1.15: is that requests to add, delete, or replace a
ServiceRecord, whether successful or not, have no effect on associations.
SubnAdmSet()s and SubnAdmDelete()s do not change which Service-
Names are associated with ServiceKeys or whether specific Service-

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 898 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Names are associated with specific ServiceKeys. In particular, adding a
ServiceRecord with a previously unassociated ServiceName does not
create a new association. When there is no association with a Service-
Name, the ServiceKey is always ignored.

Queries of ServiceRecords, e.g., using SubnAdmGet() or SubnAdmGet-
Table() methods, match the ServiceKey like any other component. It is an-
ticipated that most queries will use the ComponentMask to wildcard
ServiceKey.

As specified in 15.4.1.2 Access Restrictions For Other Attributes on page
922, SA returns ServiceRecords with the ServiceKey replaced by 0 ex-
cept when responding to a trusted subnet manager.

15.2.5.14.3 SERVICELEASE

ServiceLease values that are long or indefinite can conceivably span a
time period that includes subnet reinitialization, including reinitialization of
SA. Whether such ServiceRecords are nonvolatile, i.e., whether or not
reinitialized SA begins with those ServiceRecords in place, is vendor-de-
pendent.

SA may impose a maximum ServiceLease. That is, it may reject attempts
to write ServiceRecords with a ServiceLease period that is indefinite or
larger than some amount. Whether this is done, and the way the max-
imum is determined, is vendor-dependent.

C15-0.1.16: SA shall begin counting down each non-indefinite Service-
Lease period immediately on creation or modification of a ServiceRecord.
The ServiceLease value returned in a ServiceRecord query shall be the
time remaining in its ServiceLease.

C15-0.1.17: When a ServiceRecord’s ServiceLease period expires, SA
shall delete the ServiceRecord.

15.2.5.14.4 SERVICEDATA

The ServiceData8.1 through ServiceData64.2 components together con-
stitutes a 64-byte area in which any data may be placed. It is intended to
be a convenient way for a service to provide its clients with some initial
data.

In addition, this 64-byte area is formally divided into a total of 30 compo-
nents—16 8-bit components, then 8 16-bit components, etc.—thereby as-
signing ComponentMask bits to variously-sized segments of the data.
This allows query operations to be used which match parts of the Service-
Data, making it possible, for example, for service-specific parts of the Ser-
viceData to serve as a binary-coded extension to the ServiceName for
purposes of lookup.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 899 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Since the breakup of ServiceData into components is purely formal (no
semantics apply to it); and since the matching performed in a query is a
simple bitwise match; it’s the case that adjacent formal components of
ServiceData can in effect be arbitrarily concatenated into larger entities if
convenient. For example, a 32-bit binary value to be used in matching
could occupy the first four bytes of ServiceData (components
ServiceData8.1 through ServiceData8.4). It can be matched against by
setting to 1 the first four bits of ComponentMask corresponding to those
first four formal ServiceData components. The client doing the lookup
must, of course, be cognizant of the way the service it is requesting uses
these components.

15.2.5.15 SERVICEASSOCIATIONRECORD

This attribute cannot be modified using SubnAdmSet(). Its purpose is to
allow SA of another vendor to obtain all the {ServiceName, ServiceKey}
associations currently stored in SA by using a SubnAdmGetTable(Servi-
ceAssociationRecord) with a ComponentMask of all zeros.

15.2.5.16 PATHRECORD

Table 204 ServiceAssociationRecord

Component Length(bits) Offset(bits) Description

ServiceKey 128 0 Key value that may be associated with the Service-
Name; see discussion following.

ServiceName 512 128 UTF-8 encoded, null-terminated character string used
to identify the service (e.g., “BIS.IBTA”).

Table 205 PathRecord

Component Length(bits) Offset(bits)
Required For

GetTable
Request

Description

Reserved 32 0 Reserved

Reserved 32 32 Offset for alignment

DGID 128 64 Destination GID to establish path to

SGID 128 192 X Source GID to establish path from; shall be a unicast
GID

DLID 16 320 Destination LID

SLID 16 336 Source LID; shall be a unicast LID

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 900 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RawTraffic 1 352 Raw Packet path
0 - IB Packet (P_Key must be valid)
1 - Raw Packet traffic (No P_Key)

Reserved 3 353 Reserved

FlowLabel 20 356 Flow Label

HopLimit 8 376 Hop limit

TClass 8 384 Traffic Class

Reversible 1 392 In a query request:
• 1 indicates that a reversible path is required; see

13.5.4 Response Generation and Reversible Paths
on page 768

• 0 indicates that reversibility is not required
In a query response:
• 1 indicates the path is reversible
• 0 indicates the path is not reversible

NumbPath 7 393 X In a query request: Maximum number of paths to
return for each unique SGID-DGID combination. If
more paths that satisfy the PathRecord query exist for
a given SGID-DGID combination, only NumbPath
paths shall be returned (implementation defined).
In a query response: undefined.

P_Key 16 400 Partition Key for this path

Reserved 12 416 Reserved

SL 4 428 Service level

MtuSelector 2 432 In a query request:
 3-largest MTU available
If MTU is specified (i.e., the ComponentMask bit for
MTU is 1):
 0-greater than MTU specified
 1-less than MTU specified
 2-exactly the MTU specified
Otherwise, this component is ignored in a query
request.
In a query response: value shall be 2 indicating path
has exactly the MTU specified.

Table 205 PathRecord (Continued)

Component Length(bits) Offset(bits)
Required For

GetTable
Request

Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 901 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Mtu 6 434 Enumeration of the MTU required:
1: 256
2: 512
3: 1024
4: 2048
5: 4096
0,6-63: reserved
In a query request, if MtuSelector is not specified (i.e.,
the ComponentMask bit for MtuSelector is 0) or if it is
specified and has a value of 3, this component is
ignored.

RateSelector 2 440 In a query request:
 3-largest rate available
If Rate is specified (i.e., the ComponentMask bit for
Rate is 1):
 0-greater than Rate specified
 1-less than Rate specified
 2-exactly the Rate specified
Otherwise, this component is ignored in a query
request.
In a query response: value shall be 2 indicating path
has exactly the Rate specified.

Rate 6 442 Enumeration of the rate:
2: 2.5 Gb/sec.
3: 10 Gb/sec.
4: 30 Gb/sec.
5: 5 Gb/sec.
6: 20 Gb/sec.
7: 40 Gb/sec.
8: 60 Gb/sec.
9: 80 Gb/sec.
10: 120 Gb/sec.
0, 1, 11-63: reserved
In a query request, if RateSelector is not specified
(i.e., the ComponentMaskBit for RateSelector is 0) or
if it is specified and has a value of 3, this component
is ignored.
SA shall return to an endport only PathRecord:Rate
values that the endport can support, as indicated by
the values provided in that endport's PortInfo compo-
nents LinkSpeedSupported and LnkWidthSupported,
unless PortInfo:IsOptionalIPDSupported=1; in the lat-
ter case, any rate value can be returned.

Table 205 PathRecord (Continued)

Component Length(bits) Offset(bits)
Required For

GetTable
Request

Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 902 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The PathRecord is used to request routing information between endn-
odes. Its results are required to create connections and perform other
tasks. The data returned in a PathRecord is usually generated, based on
the routing algorithm used by the SM.

For unicast communication, a PathRecord specifying a path from SGID A
to DGID B exists if all the following conditions hold:

• there is a LID-routed path from port A to port B,

• PortInfo:PortState of port A is Active,

• PortInfo:PortState is Armed or Active for all intermediate switch and
router ports in the path from port A to port B, and

PacketLife-
TimeSelector

2 448 In a query request:
 3-smallest PacketLifeTime available
If PacketLifeTime is specified (i.e., the Component-
Mask bit for PacketLifeTime is 1):
 0-greater than PacketLifeTime specified
 1-less than PacketLifeTime specified
 2-exactly the PacketLifeTime specified
Otherwise, this component is ignored in a query
request.
In a query response: value shall be 2 indicating path
has exactly the PacketLifeTime specified.

PacketLife-
Time

6 450 Maximum time for a packet to traverse this path,
where time in microseconds is derived from time =
4.096 µsec * 2PacketLifeTime.
In a query request, if PacketLifeTimeSelector is not
specified (i.e., the ComponentMask bit for PacketLife-
TimeSelector is 0) or if it is specified and has a value
of 3, this component is ignored.
For loopback paths, shall be zero.

Preference 8 456 In responses containing multiple paths: Indicates an
order of preference among paths returned that over-
rides differences that may be indicated by MTU, Rate,
and/or PacketLifetime. Larger numbers indicate
worse paths. Identical numbers indicate no prefer-
ence among paths aside from that which may be clear
from other PathRecord fields. The precise meaning of
this field and the features on which it is based is
implementation dependent.

Reserved 48 464 Reserved

Table 205 PathRecord (Continued)

Component Length(bits) Offset(bits)
Required For

GetTable
Request

Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 903 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• PortInfo:PortState of port B is Armed or Active.

For multicast communication, a PathRecord specifying a path from SGID
A to MGID (multicast GID) B exists if PortInfo:PortState of port A is Active,
and port A belongs to the multicast group with MGID B.

Requesters of PathRecords can use the Administration Query Subsystem
(15.4.4 Administration Query Subsystem on page 923) to request paths
with desired properties. Using the ComponentMask, the requester can
build a SubnAdmGetTable() request and supply the known fields in the at-
tribute; the reply from SA will supply the response entries which match the
request. For example, by setting the ComponentMask used to cause ev-
erything but the SGID and DGID to be ignored, a SubnAdmGetTable() will
return PathRecords for all paths from the SLID to the DLID. By selectively
specifying the qualities desired, a path with any given qualities can be re-
quested.

In calculating PMTU, SL, and rate for a path terminating at a base switch
port 0, the PortInfo components for that base switch port 0 are ignored.

It is legal to request a PathRecord from a port to itself. Such “loopback”
PathRecords are useful for diagnostic purposes as well as for normal
traffic between clients on the same endnode. SA handles such queries as
though the port were connected by a point-to-point link to another port
having identical capabilities. This implies that certain characteristics, for
example NeighborMTU, may be implicitly changed; this is feasible be-
cause loopback traffic never reaches the physical link.

Normally the DGID is known (or at some point learned, as with, e.g., name
service). But during a “boot” sequence, it may be useful to leave it unspec-
ified, thus returning paths to all endnodes reachable from an SGID.

The equivalent of an operating system's “bus walk” operation, used to find
out which device slots are populated, can be accomplished using a single
PathRecord query. For example, consider a SubnAdmGetTable(Path-
Record) query with:

• SGID set to a GID of some port

• NumbPath set to 1

• ComponentMask all 0 except for SGID and NumbPath positions,
which are 1.

Then SA will return a table containing paths from the physical port identi-
fied by the SGID to every physical port reachable from that SGID port,
given the partitioning in force when the query is done (see 15.4.1 Restric-
tions on Access on page 921). Multiple paths to each physical destination
port may be returned: Each physical destination port may have multiple

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 904 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

GUIDs if its PortInfo:GUIDCap is greater than 1, and each of those defines
a separate GID.

Since NumbPath=1, and is defined as the number of paths connecting
each SGID and DGID, there will be only one path returned to each reach-
able DGID even if both the SGID port and the DGID port have multiple
LIDs (i.e., their LMC values are not 0).

ComponentMask matching for PathRecord queries involves several ex-
ceptions to the matching mechanism specified in C15-0.1.28:. Refer to the
descriptions in Table 205 PathRecord on page 899 for details on using
NumbPath, MtuSelector/Mtu, RateSelector/Rate, and PacketLifeTimeSe-
lector/PacketLifeTime in query requests.

The following example shows a PathRecord query request, seeking as
many as two paths with a specified set of characteristics. Table 206 Ex-
ample PathRecord Request MAD Header Fields on page 904 shows the
header fields of this request; only those header fields whose values differ
from the defaults are shown.

Table 207 Example PathRecord Request Data on page 905 shows what
the data fields in the request would look like if up to two paths are re-
quested to a particular port The GID of that port is assumed already avail-
able; it might, for example, be the port on which some service is located,
obtained by doing a lookup of a ServiceRecord. The specifications for the
paths being requested are:

• the MTU is no larger than 1024,
• the rate must be at 2.5 Gb/sec.,
• the path must be in the partition to which the requester has access,

Table 206 Example PathRecord Request MAD Header Fields

Component Value Description

MADHeader:MgmtClass 0x03 Specifying SubnAdm class

MADHeader:Method 0x12 Specifying SubnAdmGetTable()

MADHeader:TransactionID 0x0000000011223344 Transaction ID (to be returned in the response)

MADHeader:AttributeID 0x0035 Specifying PathRecord

RMPPHeader:RMPP-
Flags.Active

0 Information flags:RMPP is not active

SAHeader:SM_Key 0 SM_Key value is zero; see 15.4.1 Restrictions on
Access on page 921

SAHeader:ComponentMask 0x00000000000F904C Selecting those components to be used; see Compo-
nentMask Bit column in Table 207 on page 905:

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 905 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• using service level 8,
• for any PacketLifeTime cost,
• for any TClass,
• for IB traffic,
• any flow label,
• or any number of “hops”

Table 207 Example PathRecord Request Data

Component Component
Mask Bit Value Meaning/Implication

Reserved 0 0

Reserved 0 0

DGID 1 GID GID of the port to which paths are requested

SGID 1 Requester GID GID of the port from which requested paths are to begin

DLID 0 0 Indicates to SA that the path may be to any port on the
destination node.

SLID 0 0 Indicates to SA that the path may be from any port on the
local node.

RawTraffic 1 0 IB traffic (P_Key will be valid)

Reserved 0 0 ignored - set to 0

FlowLabel 0 0 Flow Label

HopLimit 0 0 Hop Limit

TClass 0 0 Traffic Class

Reversible 0 0 Non-reversible path is acceptable

NumbPath 1 2 Requesting only 2 paths which meet these specifications

P_Key 0 0 No P_Key specified for this path

Reserved 0 0

SL 1 0x8 Desired SL for this path (SL 8)

MtuSelector 1 1 Paths must have an MTU less than 2048

Mtu 1 4 Mtu is less than 2048, i.e., 1024 or lower

RateSelector 1 2 Path rate must be exactly 2.5Gb/sec.

Rate 1 2 Rate is equal to 2.5Gb/sec.

PacketLife-
TimeSelector

0 0 Return paths with any PacketLifeTime

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 906 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For this example the following is a possible resulting response header and
the PathRecords found in the data field of the response; again, only the
fields whose values differ from defaults are shown:

PacketLife-
Time

0 0

Preference 0 0 Not used on requests

Reserved 0 0 Padding

Table 207 Example PathRecord Request Data

Component Component
Mask Bit Value Meaning/Implication

Table 208 Example PathRecord Response MAD Header Fields

Component Value Meaning/Implication

MADHeader:MgmtClass 0x03 Specifying SubnAdm class

MADHeader:Method 0x92 SubnAdmGetTableResp()

MADHeader:Status 0 Good Status

MADHeader:TransactionID 0x0000000011223344 Same as in request

MADHeader:AttributeID 0x0035 Specifying PathRecord

RMPPHeader:RMPPType 1 Specifying a data packet

RMPPHeader:RRespTime 0x1F No time value provided

RMPPHeader:RMPPFlags.First 1 Information flags: first packet

RMPPHeader:RMPPFlags.Last 1 Information flags: last packet

RMPPHeader:RMPPFlags.Active 1 Information flags:RMPP is active

RMPPHeader:RMPPStatus 0 Normal data packet status

RMPPHeader:SegmentNumber 00000001 First segment

RMPPHeader:PayLoadLength 148 2*8*AttributeOffset + sizeof (SAHheader) in
bytes

SAHeader:SM_Key 0x0 SM_Key value from query

SAHeader:AttributeOffset 0x08 Offset from an attribute to the next in the data, in
8-byte words

SAHeader:ComponentMask 0x00000000000F904C ComponentMask from query

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 907 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following are the attributes in the data field of the resulting response:

Table 209 Example PathRecord Response Data

Component Value Meaning/Implication

Reserved 0

Reserved 0

DGID GID GID of the port at which this path ends

SGID Requester GID GID of the port from which this path is to begin

DLID 0x0008 The LID assigned to the port where this path ends

SLID 0x000A The LID assigned to the port where this path begins

RawTraffic 0 IB traffic (P_Key will be valid)

Reserved 0 ignored - set to 0

FlowLabel 0 Flow Label

HopLimit 0 Default Hop Limit since this is an intra-subnet DGID

TClass 0 Traffic Class

Reversible 0 Path is not reversible

NumbPath 0 Ignored - set to 0

P_Key 0x1234 P_Key in use for this path

Reserved 0 Ignored - set to 0

SL 0x8 SL of this path is 8

MtuSelector 2 Path Mtu is exact

Mtu 3 Specified Mtu is exactly 1024

RateSelector 2 Path rate is exact

Rate 2 Path rate is exactly 2.5Gb

PacketLifeTimeSelector 2 Path PacketLifeTime is exact.

PacketLifeTime 2 Path PacketLifeTime is 4.096µsec * 22 = 16.384µsec exactly.

Preference 0 0

Reserved 0

Reserved 0

Reserved 0

DGID GID GID of the port at which this path ends

SGID Requester GID GID of the port from which this path is to begin

DLID 0x0009 The LID assigned to the port where this path ends

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 908 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.17 MCMEMBERRECORD

SLID 0x000A The LID assigned to the port where this path begins

RawTraffic 0 IB traffic (P_Key will be valid)

Reserved 0 Ignored - set to 0

FlowLabel 0 FlowLabel

HopLimit 0 Default HopLimit since this is an intra-subnet DGID

TClass 0 Traffic Class

Reversible 0 Path is not reversible

NumbPath 0 Ignored - set to 0

P_Key 0x1234 P_Key in use for this path

Reserved 0 Ignored - set to 0

SL 0x8 SL of this path is 8

MtuSelector 2 Path Mtu is exact

Mtu 2 Path Mtu is exactly 512

RateSelector 2 Path rate is exact

Rate 2 Path rate is exactly 2.5Gb/sec.

PacketLifeTimeSelector 2 Path PacketLifeTime is exact.

PacketLifeTime 0x0A Path PacketLifeTime is 4.096µsec * 210 = 4.2msec exactly.

Preference 0 0

Reserved 0 Reserved

Table 209 Example PathRecord Response Data (Continued)

Component Value Meaning/Implication

Table 210 MCMemberRecord

Component Length
(bits)

Offset
(bits) Description

R
ID

MGID 128 0 Multicast GID address for this multicast group. See discussion below

PortGID 128 128 Valid GID of the endport joining this multicast group.

Q_Key 32 256 Q_Key to be used by this multicast group.

MLID 16 288 Multicast LID for this multicast group, assigned by SA at creation time.

MTUSelector 2 304 Semantics identical to PathRecord component MtuSelector on page 900

MTU 6 306 Semantics identical to PathRecord component Mtu on page 901

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 909 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An entity that wishes to create, join or leave an IBA multicast group, can
do so using the SubnAdmSet() and SubnAdmDelete() methods with the
MCMemberRecord attribute. This section only defines the interface to SA
and SM that provides them with the information needed to set up routing
of multicast packets. In order for an endnode to receive multicast packets,
other additional operations need to be performed at that endnode; see
10.5 Multicast Services on page 465.

TClass 8 312 Semantics identical to PathRecord component TClass on page 900

P_Key 16 320 Partition key for this multicast group. This partition key shall indicate full
membership (see 10.9.1.1 Limited and Full Membership on page 524). All
members of the multicast group shall have full membership in the partition
indicated by this partition key.

RateSelector 2 336 Semantics identical to PathRecord component RateSelector on page 901

Rate 6 338 Semantics identical to PathRecord component Rate on page 901

PacketLifeTimeSelector 2 344 Semantics identical to PathRecord component PacketLifeTimeSelector on
page 902

PacketLifeTime 6 346 Maximum estimated time for a packet to traverse a path within the multicast
group.

SL 4 352 Semantics identical to PathRecord component SL on page 900

FlowLabel 20 356 Semantics identical to PathRecord component FlowLabel on page 900

HopLimit 8 376 Semantics identical to PathRecord component HopLimit on page 900

Scope 4 384 Semantics identical to MGID Address Scope Table 3 Multicast Address
Scope on page 146. See discussion below

JoinState 4 388 Join/Leave Status requested by the port. See discussion below.
bit 0: FullMember: Include/delete this endport from the multicast group as a
member sender and receiver.
bit 1: NonMember: Include/delete this endport from the multicast group as
a non-member sender and receiver.
bit 2: SendOnlyNonMember: Include/delete this endport from the multicast
group as a non-member sender only.
bit 3: Reserved

ProxyJoin 1 392 Proxy join: This is computed by the SA. It is ignored on SubnAdmSet(), and
always returned as zero except for the case of a trusted request (see
15.4.1.2 Access Restrictions For Other Attributes on page 922).
• 0: Join was performed by the endport identified by PortGID.
• 1: Join was performed on behalf of the endport identified by PortGID by

another port within the same partition.

Reserved 23 393 Reserved

Table 210 MCMemberRecord (Continued)

Component Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 910 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note: This version of the specification does not provide management sup-
port for raw multicast.

SubnAdmSet() method is used to create or join a multicast group. Sub-
nAdmDelete() method is used to delete or leave a multicast group.

o15-0.1.1: If SA supports UD multicast, then a SubnAdmSet(MCMember-
Record) which would result in the port being added to the multicast group
implies that the SM shall program routers and switches with the new mul-
ticast information. If the SM is unable to program the fabric with the new
multicast information, SA shall return an error status of
ERR_NO_RESOURCES in its response to the corresponding Sub-
nAdmSet() method.

The ProxyJoin component is used by SA to keep track of join requests for
multicast groups by ports other than the port specified by PortGID, and to
ensure that only ports within the partition can delete a MCMemberRecord
for the port specified by PortGID, and then only if it was a proxy join. In the
case of a non-proxy join, SA allows only the port specified by PortGID to
request the deletion.

o15-0.1.2: IThis compliance statement is obsolete and has been replaced
by statement o15-0.2.1:.

o15-0.2.1: If SA supports UD multicast, then if SA receives a Sub-
nAdmSet() or SubnAdmDelete() method that would modify an existing
MCMemberRecord, SA shall not modify that MCMemberRecord and
shall return an error status of ERR_REQ_INVALID in response in the fol-
lowing cases:

• Saved MCMemberRecord.ProxyJoin is not set and the re-
quest is issued by a requester with a GID other than the Port-
GID.

• Saved MCMemberRecord.ProxyJoin is set and the requester
is no part of the partition for that MCMemberRecord.

o15-0.1.3: If SA supports UD multicast, then if SA receives a Sub-
nAdmSet() or SubnAdmDelete() method without the required components
as specified below, SA shall return an error status of
ERR_REQ_INSUFFICIENT_COMPONENTS in its response. Exactly
which components are required depends upon the type of request.

In 15.2.5.17.2 Creating a Multicast Group on page 912 and 15.2.5.17.3
Joining a Multicast Group on page 913 below, the term “unrealizable” is
used. “Unrealizable” means that a requested multicast group creation or
join is impossible because the request specifies properties that are phys-
ically impossible to achieve given the hardware configuration of the
subnet. For example, creation of a group with an MTU or Rate larger than

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 911 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

that supported anywhere in a subnet is unrealizable, as is a group with a
PacketLifeTime shorter than that required to deliver packets between any
of the endnodes of the subnet. Similarly, a join request is unrealizable if,
for example, there is no path to the port joining which is able to support
the MTU, Rate, etc., of the multicast group.

15.2.5.17.1 GROUP MEMBERSHIP

An endport must specify the type of multicast subscription or deletion that
it wants. The MCMemberRecord:JoinState component indicates the
membership qualities a port wishes to add (in joining or creating a group)
or remove (in leaving a group). The meanings of the MCMember-
Record:JoinState bits are:

• FullMember: Group messages are routed both to and from the port.
The port is considered a member for purposes of group creation and
deletion, i.e.: if no member ports with FullMember=1 remain, the
group may be deleted; otherwise it may not.

• NonMember: Group messages are routed both to and from the port.
The port is not considered a member for purposes of group cre-
ation/deletion.

• SendOnlyNonMember: Group messages are only routed from the
port; none are routed to the port. The port is not considered a mem-
ber for purposes of group creation/deletion.

Any combination of the MCMemberRecord:JoinState bits may be 1. When
multiple bits are 1, the qualities of the port's type of membership are the
union of the qualities specified by the bits that are 1. For example, if either
or both of MCMemberRecord:JoinState.FullMember and MCMember-
Record:JoinState.NonMember are 1, group messages are routed both to
and from the port no matter what value MCMemberRecord:Join-
State.SendOnlyNonMember has; and if MCMemberRecord:Join-
State.FullMember is 1, the port is counted as a member for purposes of
creation/deletion no matter what the settings of MCMemberRecord:Join-
State.NonMember or MCMemberRecord:JoinState.SendOnlyNon-
Member may be.

MCMemberRecord:JoinState.FullMember bit must be set to 1 in the Sub-
nAdmSet() request that creates a multicast group. Subsequent join or
leave requests referencing that multicast group can contain any combina-
tion of the MCMemberRecord:JoinState bits. When SA receives a join re-
quest with the same RID as an already existing MCMemberRecord, SA
updates the MCMemberRecord:JoinState component of the MCMember-
Record to be the logical OR of the MCMemberRecord:JoinState in the re-
quest with the current JoinState maintained for that MCMemberRecord.
When SA receives a leave request, it updates the referenced MCMember-
Record’s MCMemberRecord:JoinState components to be the logical AND
of the MCMemberRecord’s current MCMemberRecord:JoinState with the

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 912 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

logical NOT of the MCMemberRecord:JoinState in the request. If this
leave request causes there to be no MCMemberRecord for a multicast
group that has the MCMemberRecord:JoinState.FullMember bit set, the
multicast group may be deleted by the SM/SA.

15.2.5.17.2 CREATING A MULTICAST GROUP

o15-0.1.4: This compliance statement is obsolete and has been replaced
by statement o15-0.2.2:.

o15-0.2.2: If SA supports UD multicast, then SA shall create a multicast
group if it receives a SubnAdmSet() method for a MCMemberRecord, with
the MGID set to 0 and the MCMemberRecord:JoinState.FullMember bit
set to 1. The required components in the MCMemberRecord for the group
to be created are P_Key, Q_Key, SL, FlowLabel, TClass, JoinState and
PortGID (see o15-0.1.3:) with the corresponding bits in the Component-
Mask set. All other components may be wildcarded. This results in an im-
plicit join for the port specified by PortGID.

o15-0.1.5: If SA supports UD multicast, then if SA receives a request to
create a multicast group with the MGID set to 0, the MGID that it creates
shall be of the following format:

where the Scope bits are provided by the client in the MCMember-
Record:Scope component and the 32-bit subnet-unique ID is chosen by
SA such that MGIDs generated by SA shall be unique among multicast
groups existing at any given time within the scope used24. If the multicast
group creator does not provide the Scope component, SA shall choose
the scope bits for the MGID with the broadest possible scope allowed as
specified by the GID prefix.

o15-0.1.6: This compliance statement is obsolete and has been replaced
by statement o15-0.2.3:.

o15-0.2.3: If SA supports UD multicast, then SA shall create a multicast
group if it receives a SubnAdmSet() method for a MCMemberRecord with
a valid MGID specified, there does not exist a multicast group with that
MGID and the MCMemberRecord:JoinState.FullMember bit is set to 1.
The required components in the MCMemberRecord for the group to be
created shall be P_Key, Q_Key, SL, FlowLabel, TClass, JoinState and

 12 bits 4 bits

Figure 196 SA-Created Multicast GID Format

0xFF1 Scope 0xA01B

64-bit GID Prefix 32-bit subnet-unique ID
16 bit

signature

24. Uniqueness across different SAs within a fabric is guaranteed by inclusion
of the GID prefix

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 913 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortGID (see o15-0.1.3:) with the corresponding bits in the Component-
Mask set. All other components may be wildcarded.This results in an im-
plicit join for the port specified by PortGID. The Scope component is
ignored in this case.

A multicast GID is considered to be invalid if:

• it does not comply with the rules as specified in 4.1.1 GID Usage and
Properties on page 143

• it contains the SA-specific signature of “0xA01B” and has the link-lo-
cal scope bits set.

Additional cases of invalidity may appear for non-local subnets and may
be provided in future revisions of the specification.

The entity may also supply the other components such as HopLimit, MTU
etc. during group creation time. If these components are not provided
during group creation time, SA will provide them for the group. The values
chosen are vendor-dependent and beyond the scope of the specification.

o15-0.1.7: If SA supports UD multicast, then a request to create a multi-
cast group with an invalid MGID shall result in SA returning an error status
of ERR_REQ_INVALID_GID in its response.

o15-0.1.8: If SA supports UD multicast, then if SA receives a request that
would result in the creation of a multicast group with components speci-
fied that are unrealizable for its subnet, SA shall return an error status of
ERR_REQ_INVALID in its response.

o15-0.1.9: If SA supports UD multicast, then if SA receives a request
which would create a multicast group and the MCMemberRecord:Join-
State.FullMember bit is not set to 1, SA shall return an error status of
ERR_REQ_INVALID in its response.

15.2.5.17.3 JOINING A MULTICAST GROUP

o15-0.1.10: This statement is obsolete and has been replaced by state-
ment o15-0.2.4:.

o15-0.2.4: If SA supports UD multicast, then SA shall cause an endport
to join an existing multicast group if:

• it receives a SubnAdmSet() method for a MCMemberRecord, and

• the MGID is specified and matches an existing multicast group, and

• the MCMemberRecord:JoinState is not all 0s, and

• PortGID is specified and

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 914 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• all other components match that existing group, either by being wild-
carded or by having values identical to those specified by the compo-
nent mask and in use by the group with the exception of components
such as ProxyJoin and Reserved, which are ignored by SA.

o15-0.1.11: If SA supports UD multicast, then if an endport joins a multi-
cast group as specified in o15-0.1.10:, SA shall replace the endport’s cur-
rent MCMemberRecord:JoinState component with the logical OR of the
MCMemberRecord:JoinState component with the endport’s current MC-
MemberRecord:JoinState component if the endport had joined this multi-
cast group before.

o15-0.1.12: If SA supports UD multicast, then if an endport joins a multi-
cast group as defined in o15-0.1.10: and o15-0.1.11: and has only the MC-
MemberRecord:JoinState.SendOnlyNonMember bit set to 1, then SA
shall cause that endport to join the multicast group as a sender only.

o15-0.1.13: If SA supports UD multicast, then if SA receives a join request
for a multicast group with components specified or wildcarded that are un-
realizable for the port specified by PortGID, SA shall return an error status
of ERR_REQ_INVALID in its response.

15.2.5.17.4 LEAVING & DELETING A MULTICAST GROUP

In o15-0.1.14: and o15-0.1.15: below, the term “valid MC deletion MAD”
means a SubnAdmDelete(MCMemberRecord) MAD in which the Compo-
nentMask bits are set and the values are as specified for the following
components:

• the MAD’s PortGID and MGID components match the PortGID and
MIGID of a stored MCMemberRecord;

• and the MAD’s JoinState component contains at least one bit set to 1
in the same position as that stored MCMemberRecord’s JoinState
has a bit set to 1, i.e., the logical AND of the two JoinState compo-
nents is not all zeros;

• and the MAD’s JoinState component does not have some bits set
which are not set in the stored MCMemberRecord’s JoinState com-
ponent;

• and either

• the stored MCMemberRecord:ProxyJoin is reset (0), and the
MAD’s source is the stored PortGID;

• or the stored MCMemberRecord:ProxyJoin is set (1), (see o15-
0.1.2:); and the MAD’s source is a member of the partition indicat-
ed by the stored MCMemberRecord:P_Key.

o15-0.1.14: If SA supports UD multicast, then if it receives a valid MC de-
letion MAD, SA shall compute the logical AND of the matching stored

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 915 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

MCMemberRecord:JoinState with the logical NOT of the MAD’s Join-
State, and then:

• if the result is all 0s, SA shall cause the port to leave the multicast
group. The port specified by the MAD’s PortGID shall be removed
from the multicast group specified by MGID or from all the multicast
groups of which it is a member if the MGID is wildcarded;

• if the result is not all 0s, SA shall update the stored MCMember-
Record:JoinState to contain that result

If this port was the last receiving member, SA may delete the multicast
group and release all resources associated with it, including resources
that may exist in the fabric itself. The exact time at which this operation is
done is vendor-specific. When the last receiving member leaves the
group, SA must forward Trap 67 (see 14.4.10 Multicast Group Create/De-
lete Traps on page 880) to subscribing endnodes.

o15-0.1.15: If SA supports UD multicast, then if it receives a SubnAdm-
Delete(MCMemberRecord) which is not a valid MC deletion MAD, then
SA shall return an error status of ERR_REQ_INVALID in its response and
shall take no other action.

15.2.5.17.5 QUERYING A MULTICAST GROUP

SA can be queried for multicast groups by sending a SubnAdmGet() or a
SubnAdmGetTable() request to it using the SA query mechanism (see
15.4.4 Administration Query Subsystem on page 923). SA will return one
MCMemberRecord per multicast group matching the query, except in
cases where trust is specified as indicated in 15.4.1.2 Access Restrictions
For Other Attributes on page 922; in that case all the MCMemberRecords
associated with the multicast group are returned. The MCMemberRecord
will be returned with the PortGID, ProxyJoin, and the JoinState compo-
nents set to 0, except where trust is specified as indicated above, in that
case the actual contents for the above components will be provided.

o15-0.1.16: This compliance statement is obsolete and has been re-
placed by statement o15-0.2.5:.

o15-0.2.5: If SA supports UD multicast, then if it receives a SubnAdmGet-
Table(MCMemberRecord) with the MCMemberRecord:MGID wildcarded,
then SA shall return a single MCMemberRecord for each multicast group
that matches the query operation.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 916 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.2.5.18 GUIDINFORECORD

15.2.5.19 TRACERECORD

Table 211 GuidInfoRecord

Component Length(bits) Offset(bits) Description

R
ID

LID 16 0 LID of the Port

BlockNum 8 16 GUIDInfo block number; see Table 144 GUID Block Ele-
ment on page 821

Reserved 8 24 Reserved

Reserved 32 32 Reserved

GUIDInfo 512 64 GUIDInfo attribute contents; see Table 143 GUIDInfo on
page 821

Table 212 TraceRecord

Component Length (bits) Offset (bits) Description

GIDPrefix 64 0 GID Prefix of the subnet within which the IDComponents are consis-
tent. See discussion below.

IDGeneration 16 64 Generation of the IDs used in this attribute; see discussion below.

Reserved 8 80 Reserved

NodeType 8 88 Values and interpretation identical to NodeInfo:NodeType (seeTable
141 NodeInfo on page 818).

NodeID 64 96 ID of the Node

ChassisID 64 160 ID of the chassis or power domain, or 0 if ChassisGUID or equiva-
lent information is unavailable.

EntryPortID 64 224 If NodeType is channel adapter: ID of the port used.
If NodeType is router: ID of Entry Port.
Otherwise: Reserved.

ExitPortID 64 288 If NodeType is router, and path continues past this router: ID of the
exit port of the router.
Otherwise: Reserved

EntryPort 8 352 If NodeType is switch: number of the entry port.
Otherwise: Reserved.

ExitPort 8 360 If NodeType is switch, and path continues past this switch: number
of the exit port.
Otherwise: Reserved.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 917 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The TraceRecord attribute is used to describe the route a path takes from,
to, or through a single node. The entire path is described by a table of
TraceRecords returned as a response to the SubnAdmGetTraceTable()
method.For purposes of this discussion, let IDComponent be any of the
TraceRecord components NodeID, ChassisID, EntryPortID, or ExitPortID.

o15-0.1.17: This compliance statement is obsolete and has been re-
placed with o15-0.2.6:

o15-0.2.6: If ClassPortInfo:CapabilityMask.IsMultiPathSupported is 1 for
SA, then IDComponents of a TraceRecord shall not be GUIDs of the en-
tities they identify. IDComponents shall be comparable, i.e.: Given any
two TraceRecords obtained from the same SA (as indicated by their
having the same TraceRecord:GIDPrefix) with identical TraceRecord:ID-
Generation values; and given corresponding IDComponents in each of
the TraceRecords (both are ChassisIDs, or both NodeIDs, etc.); then the
values of the two IDComponents shall be identical if they identify the
same entity, and shall be different if they identify different entities.

Any identification scheme satisfying o15-0.2.6: may be used. For ex-
ample, a separately maintained identifier set could be used, a formal en-
cryption function could be applied to GUIDs, an informal method could be
used to obfuscate GUIDs such as XORing them with a word of alternating
0’s and 1’s, etc. How well the IDComponent values used mask the identi-
ties of the entities they represent is vendor-specific.

It is the responsibility of SA from which a path trace is requested to coor-
dinate with SAs of other subnets, if necessary, to provide useful, compa-
rable TraceRecords to the requester. Note that while it may be convenient
in some implementations, it is not necessary for all of the TraceRecords
in a path trace to come from the same SA nor to have identical IDGener-
ation values.

The IDGeneration field may be changed by SA when modifications must
be made to the mapping of entities to identifiers. As a result, programs
using this facility may need to re-request path traces using SubnAd-
mGetTraceTable() to obtain TraceRecords whose IDComponents can be
compared.

15.2.5.20 MULTIPATHRECORD

Table 213 MultiPathRecord

Component Length (bits) Offset (bits) Description

RawTraffic 1 0 Semantics identical to PathRecord component RawTraffic on page
900

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 918 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Reserved 3 1 Reserved

FlowLabel 20 4 Semantics identical to PathRecord component FlowLabel on page
900

HopLimit 8 24 Semantics identical to PathRecord component HopLimit on page
900

TClass 8 32 Semantics identical to PathRecord component TClass on page 900

Reversible 1 40 Semantics identical to PathRecord component Reversible on page
900

NumbPath 7 41 Maximum number of paths to return between SGIDs and DGIDs. If
more paths that satisfy the query exist between the SGIDs and the
DGIDs, only NumbPath paths shall be returned (implementation
defined).

P_Key 16 48 Semantics identical to PathRecord component P_Key on page 900

Reserved 12 64 Reserved

SL 4 76 Semantics identical to PathRecord component SL on page 900

MtuSelector 2 80 Semantics identical to PathRecord component MtuSelector on page
900

Mtu 6 82 Semantics identical to PathRecord component Mtu on page 901

RateSelector 2 88 Semantics identical to PathRecord component RateSelector on
page 901

Rate 6 90 Semantics identical to PathRecord component Rate on page 901

PacketLife-
TimeSelector

2 96 Semantics identical to PathRecord component PacketLifeTimeSe-
lector on page 902

PacketLife-
Time

6 98 Semantics identical to PathRecord component PacketLifeTime on
page 902

Reserved 8 104 Reserved.

Independence-
Selector

2 112 1 - paths that are as fault-independent as possible
0, 2, 3 - reserved

Reserved 6 114 Reserved

SGIDCount 8 120 Number of SGIDs at the start of the SDGIDn array below. Shall be
at least 1.

DGIDCount 8 128 Number of DGIDs following SGIDs in the SDGIDn array below.
Shall be at least 1.

Reserved 56 136 Offset for alignment

SDGID1 128 192 Source GID 1; shall be a unicast GID.

SDGID2 128 320 Source or Destination GID 2; shall be a unicast GID.

Table 213 MultiPathRecord (Continued)

Component Length (bits) Offset (bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 919 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The MultiPathRecord attribute can be used to request multiple paths be-
tween a set of sources and a set of destinations, for example to find inde-
pendent paths suitable for increasing availability and/or performance. It
may also be used to request a single path between any of a set of sources
and any of a set of destinations. There is no requirement that the number
of sources be equal to the number of destinations.

o15-0.1.18: This statement is obsolete and has been replaced by state-
ment o15-0.2.7:.

o15-0.2.7: If ClassPortInfo:CapabilityMask.IsMultiPathSupported is 1 for
SA, then SA shall respond to a SubnAdmGetMulti() containing a valid
MultiPathRecord attribute with a set of zero or more PathRecords satis-
fying the constraints indicated in the MultiPathRecord received. The Path-
Record Attribute ID shall be used in the response.

Since the length of the list of SDGID elements in MultiPathRecord may
vary from use to use, the length of the MultiPathRecord attribute is vari-
able. Its size may exceed the maximum size that will fit in an SA MAD (192
bytes). Its minimum and maximum lengths are 56 bytes and 8184 bytes,
respectively, corresponding to the minimum and maximum values of the
SGIDCount and DGIDCount fields (respectively 1 and 255). The SubnAd-
mGetMulti() method allows this variability by using the reliable multi-
packet protocol 15.3 Reliable Multi-Packet Transaction Protocol on page
919 to both send an attribute and receive the response.

The purpose of the IndependenceSelector component is to allow re-
questing paths that are fault-independent of each other, and therefore are,
for example, appropriate for use as alternate paths in Automatic Path Mi-
gration (see 17.2.8 Automatic Path Migration on page 1031).

If fewer paths are requested than exist between the sources and the des-
tinations, it is recommended that among the paths that satisfy the other
specified qualities, those paths with better preferences be returned.

15.3 RELIABLE MULTI-PACKET TRANSACTION PROTOCOL

SA uses the Reliable Multi-Packet Transaction Protocol (RMPP) defined
in 13.6 Reliable Multi-Packet Transaction Protocol on page 770 in con-
junction with the methods SubnAdmGetTable(), SubnAdmGetTable-

... 128 ... Source or Destination GIDs; shall be unicast GIDs.

SDGIDn 128 192 +
128×(n-1)

Last Destination GID; shall be a unicast GID. The total number of
SDGIDs shall equal SGIDCount + DGIDCount.

Table 213 MultiPathRecord (Continued)

Component Length (bits) Offset (bits) Description

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 920 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Resp(), SubnAdmGetTraceTable(), SubnAdmGetMulti(), and
SubnAdmGetMultiResp().

The AttributeOffset field of the SA header is used in all RMPP DATA
packets as described in Table 185 Subnet Administration Fields on page
884.

C15-0.1.18: SA shall respond to SubnAdmGetTable() and SubnAd-
mGetTraceTable() requests by performing the Sender role in a receiver-
initiated RMPP transmission sequence as described in 13.6.6.1 Receiver-
Initiated Transfer on page 790.

• The method used for all packets sent from the Receiver to the Send-
er shall be SubnAdmGetTable() or SubnAdmGetTraceTable(), de-
pending on which initiated the transfer.

• The method used for all packets sent from the Sender to the Receiv-
er shall be SubnAdmGetTableResp().

• The attribute contents in all packets except RMPP DATA packets
shall be ignored following the initial SubnAdmGetTable() or SubnAd-
mGetTraceTable().

• Transfers initiated by SubnAdmGetTable() shall use the Attribute ID
present in the initiating SubnAdmGetTable() for all packets of the pro-
tocol, unless specified otherwise for the attribute used in the initiating
SubnAdmGetTable().

• Transfers initiated by SubnAdmGetTraceTable shall use the Path-
Record Attribute ID for all packets sent from the Receiver to the
Sender, and the TraceRecord Attribute ID for all packets sent from
the Sender to the Receiver.

C15-0.1.19: SA shall respond to a SubnGetMulti() request by performing
a double-sided RMPP transmission sequence as described in 13.6.6.3
Sender-Initiated Double-Sided Transfer on page 792.

• The method used for all packets sent from the Receiver to the Send-
er shall be SubnGetMulti().

• The method used for all packets sent from the Sender to the Receiv-
er shall be SubnGetMultiResp().

• The attribute contents in all packets except RMPP DATA packets
shall be ignored following the initial SubnAdmGetMulti().

• All MADs in the transmission sequence shall use the Attribute ID
present in the initiating SubnAdmGetMulti().

C15-0.1.20: The initial DATA packet of all RMPP transmission sequences
to or from SA shall specify exactly the PayloadLength of the data trans-
ferred.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 921 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note that this PayloadLength must include not just the lengths of the Sub-
netAdminData data, but also 20 additional bytes per packet sent to ac-
count for the SA headers following the RMPP header (SM_Key,
AttributeOffset, Reserved, ComponentMask); and any additional padding
between multiple attributes as indicated by the AttributeOffset field.

15.4 OPERATIONS

This section describes the operational aspects of SA.

15.4.1 RESTRICTIONS ON ACCESS

There are two types of access restrictions involved in SA: Authenticating
the requester of information, and restricting the data that the requester is
allowed to receive. These are discussed below.

The SA access restrictions described here are based on partition mem-
bership, and are intended to implement this rule: If access to data is al-
lowed by partition membership, that access is granted; but if it is
disallowed, the requester should remain unaware of the existence of that
information and of the network elements containing that information. Ad-
ditionally, in no event is authentication information made available to un-
trusted requests. That a node’s PortInfo:M_Key and
PortInfo:M_KeyProtectBits may prohibit access to some data by SMPs
without a valid M_Key has no bearing on SA access restrictions.

15.4.1.1 ACCESS RESTRICTIONS FOR PATHRECORDS

C15-0.1.21: Subnet Administration shall return to a requester only path
attributes for which the source port, destination port, and requester all
share a P_Key pairwise. See the remainder of this section (15.4.1.1 Ac-
cess Restrictions For PathRecords on page 921) for a detailed explana-
tion.

• Two ports share a P_Key when there is at least one valid P_Key in
one port's P_Key Table that matches a P_Key in the other port's
P_Key Table. (See 10.9.3 Partition Key Matching on page 526 for the
definition of P_Key matching, and 10.9.1.2 Special P_Keys on page
524 for the definition of a valid P_Key.)

• “Pairwise” means that P_Key sharing shall be present between three
pairs of ports: path source port and path destination port; path source
port and a port of the requester; path destination port and a port of
the requester. Each of the three matches may be based on the
matching of different P_Keys.

• The path source and destination ports used to determine sharing are
the ones that are implicit in the SGID (or SLID) and DGID (or DLID) of
the path.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 922 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• All ports involved in this determination shall be on the subnet admin-
istered by the Subnet Administrator to which the request is directed.

15.4.1.2 ACCESS RESTRICTIONS FOR OTHER ATTRIBUTES

The term “trusted request” used in the following compliance statements
refers to a request that contains a valid SM_Key in the SM_Key compo-
nent of the SA header.

C15-0.1.22: This compliance statement is obsolete and has been re-
placed by statement C15-0.2.1:.

C15-0.2.1: When a requester node sends a trusted request to SA, the re-
quested data shall be returned. When a requester node sends a non-
trusted request for data to SA that would provide information about a sub-
ject node, the SA shall return only data providing information about sub-
ject nodes for which the requester shares a P_Key, with exceptions noted
below in C15-0.1.23:.

Sharing is defined as follows:

• Two endports share a P_Key when there is at least one valid P_Key
in one endport's P_Key Table that matches a P_Key in the other end-
port's P_Key Table. (See 10.9.3 Partition Key Matching on page 526
for the definition of P_Key matching, and 10.9.1.2 Special P_Keys on
page 524 for the definition of a valid P_Key.)

• All endports involved in this determination must be on the subnet ad-
ministered by the Subnet Administrator to which the request is direct-
ed.

As an example of a case where SA might return data that provides infor-
mation about other nodes that is covered by C15-0.1.22:, consider Table
203 ServiceRecord on page 895. That attribute contains a ServiceGID
component that identifies an endport. C15-0.1.22: implies that SA does
not return a ServiceRecord containing a ServiceGID which identifies an
endport that does not share a P_Key with the endport to which the Ser-
viceRecord is returned.

C15-0.1.23: This compliance statement is obsolete and has been re-
placed by statement C15-0.2.2:.

C15-0.2.2: Subnet Administration shall follow the following additional
rules concerning data access:

• PortInfoRecords shall always be provided with the M_Key compo-
nent set to 0, except in the case of a trusted request, in which case
the actual M_Key component contents shall be provided.

• P_KeyTableRecords and ServiceAssociationRecords shall only be
provided in responses to trusted requests.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 923 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• ServiceRecords shall always be provided with the ServiceKey com-
ponent set to 0, except in the case of a trusted request, in which case
the actual ServiceKey component contents shall be provided.

• InformInfoRecords shall always be provided with the QPN set to 0,
except for the case of a trusted request, in which case the actual sub-
scriber QPN shall be returned.

• MCMemberRecords shall always be provided with the PortGID, Join-
State and ProxyJoin components set to 0, except for the case of a
trusted request, in which case the actual component contents shall
be provided.

• TraceRecords shall be returned to any endnode requesting them.
• SubnAdmSet(InformInfo) subscriptions for SM security traps (see Ta-

ble 131 on page 812) shall be provided only if they come from a
trusted source.

15.4.2 LOCATING SUBNET ADMINISTRATION

C15-0.1.24: It shall be possible to determine the location of SA from any
endport by sending a GMP to QP1 (the GSI) of the node identified by the
endport's PortInfo:MasterSMLID, using in the GMP the base LID of the
endport as the SLID, the endport's PortInfo:MasterSMSL as the SL, the
well-known Q_Key (0x8001_0000), and whichever of the default P_Keys
(0xFFFF or 0x7FFF) was placed in the endport's P_Key Table by the SM
(Table 183 Initialization on page 868).

C15-0.1.25: A SubnAdmGet(ClassPortInfo) sent according to C15-
0.1.24: shall return all information needed to communicate with Subnet
Administration. Alternatively, valid GMPs for SA sent according to C15-
0.1.24: shall either return redirection responses providing all such infor-
mation, or shall be normally processed by SA.

15.4.3 EVENT FORWARDING SUBSYSTEM

The set of traps or notices that may be reported by SA are described in
14.2.5.1 Notices and Traps on page 812. Note: In sending Notices, SA
must abide by access restrictions; see o13-14.1.1: on page 746 and C15-
0.2.2: on page 922.

C15-0.1.26: Event forwarding operations directed at SA shall conform to
the common methods as described in 13.4.5 Management Class Methods
on page 721.

15.4.4 ADMINISTRATION QUERY SUBSYSTEM

In the administration query subsystem the 64 bit ComponentMask in the
SA MAD is used in query operations to specify particular attribute compo-
nents to query. The ComponentMask can refer to only an entire compo-
nent, not elements or parts of a component.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 924 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C15-0.1.27: For query operations, bit 0 of the ComponentMask shall refer
to the first component of the SA attribute, bit 1 shall refer to the second
component, and so forth. For purposes of this bit numbering, “component”
shall mean either:

• a named attribute component as defined by the attribute tables in this
chapter, including rows in which the “Component” column is named
“Reserved,” but not including rows solely referring to attribute compo-
nents defined by tables in other chapters (14.2.5.3 NodeInfo on page
818 is often referenced); call the latter rows “reference rows.”

• a named component of attributes defined by the table in another
chapter that is directly referred to by a reference row; if multiple such
components are referenced in the same SA attribute, the numbering
proceeds sequentially across them.

In other words, the bit numbering used in ComponentMask acts as if SA
reference rows are replaced by the attributes they reference, as if a tex-
tual macro expansion had been performed (to just one level of embed-
ding).

For example, in querying a PortInfoRecord (see 15.2.5.3 PortInfoRecord
on page 891), bit 7 of the ComponentMask refers to PortInfo:Capability-
Mask (see 14.2.5.6 PortInfo on page 821). As another example, in que-
rying a LinearForwardingTableRecord (see 15.2.5.6
LinearForwardingTableRecord on page 892), ComponentMask bit 3 iden-
tifies an entire LinearForwardingTableBlock (see Table 152 LinearFor-
wardingTable on page 837), but no ComponentMask bits correspond to
individual Port Block Elements (see Table 153 Port Block Element on
page 837). Also, this chapter's table entry in LinearForwarding-
TableRecord named “LinearForwardingTable” does not itself use a bit po-
sition.

C15-0.1.28: This compliance statement is obsolete and is replaced by
statement C15-0.2.3:.

C15-0.2.3: The rules for matching using the ComponentMask are as fol-
lows:

• When a ComponentMask bit is 1 in a query, the corresponding
component in all responses shall be bitwise identical to the value
provided in the query.

• When a ComponentMask bit is 0 in a query, the value of the cor-
responding component shall not be considered in choosing re-
sponses. This is called “wildcarding,” and a component whose
ComponentMask bit is 0 is said to have been “wildcarded.”

• Exceptions:

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 925 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Reserved fields shall not be considered in choosing respons-
es to a query.

• Particular attribute components may specify matching rules
that do not correspond to the above (for example, Path-
Record:MtuSelector).

ComponentMask matching is used in read, set, or delete operations. A
ComponentMask of all ones means that all components are used for a
query. The result of using a ComponentMask of all zeros in a query re-
quest is that all attributes of the queried attribute type are returned, except
for those not allowed according to 15.4.1 Restrictions on Access on page
921. For some attributes, e.g., PathRecords, some bits of the Component-
Mask must be set to 1 in query operations.

For the event forwarding subsystem the ComponentMask is unused.

15.4.5 SUBNADMGETTABLE() / SUBNADMGETTABLERESP()

SubnAdmGetTable() is used to request an attribute table. Operations are
allowed on a specific table only, specified by attribute identifier.

An example SubnAdmGetTable() query for PathRecords is shown in
Table 206 Example PathRecord Request MAD Header Fields on page
904. An example query for NodeRecords with a NodeType of 3 is shown
in Table 214 on page 925; as with Table 206, only header fields whose
values differ from their defaults are shown:

Subnet Administration uses the SubnAdmGetTableResp() to respond to
all SubnAdmGetTable() queries.

Table 214 SubnAdmGetTable query for all NodeRecords with a specific NodeType

Component Value Interpretation

MADHeader:MgmtClass 0x03 Specifying SubnAdm class

MADHeader:Method 0x12 Specifying SubnAdmGetTable()

MADHeader:TransactionID 0x0000000011223344 Transaction ID (to be returned in the response)

MADHeader:AttributeID 0x0011 Specifying NodeRecord

RMPPHeader:RMPPFlags.Active 0 Information flags:RMPP is not active

SAHeader:SM_Key 0 SM_Key value not needed for this query

SAHeader:ComponentMask 0x0000000000000010 Selecting those components to be used; only bit 4
is needed.

NodeRecord:NodeType 3 Obtain all NodeRecords with NodeType value of 3,
i.e., all routers.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 926 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C15-0.1.29: SA shall indicate a refused request by returning a SubnAd-
mGetTableResp() with the status field providing the reason for refusal.

A SubnAdmGetTable() and the corresponding SubnAdmGetTableResp()
is illustrated schematically in Figure 197 SubnAdmGetTable() Example on
page 926. Subsequent SubnAdmGetTableResp() MADs of this transac-
tion will have the RMPP header entry values set to indicate place in the
data stream (see 13.6.2 RMPP Packet Formats on page 772). The con-
tinuation of the data is to be reassembled by the requester in its own data
area.

The attributes for a SubnAdmGetTableResp() for the example of Figure
197 SubnAdmGetTable() Example on page 926 are contained within a SA
MAD as depicted. Note that attributes may be broken across successive
response MADs.

15.4.6 SUBNADMGET() / SUBNADMGETRESP(): GET AN ATTRIBUTE

C15-0.1.30: Ine response to a SubnAdmGet(), if a single attribute would
be returned based on the access rules specified in 15.4.1 Restrictions on
Access on page 921 and the matching of components specified by the

MAD Header

GetTableResp()

AttributeID=0x11

NodeRecord

NodeRecord

NodeRecord

MAD Header

GetTableResp()

AttributeID=0x11

NodeRecord

NodeRecord

NodeRecord

SubnAdmGetTable()
MAD for NodeRecords of

Current Subnet

SubnAdmGetTableResp()
MADs returning multiple

NodeRecords

Figure 197 SubnAdmGetTable() Example

MAD Header

GetTableResp()

AttributeID=0x11

NodeRecord

NodeRecord

NodeRecord

MAD Header

GetTable()

AttributeID=0x11

NodeRecord

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 927 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ComponentMask, then SubAdmGetResp() shall return that attribute with
a zero status value.

C15-0.1.31: If SubnAdmGet() fails to satisfy C15-0.1.30:, SubnAdmGet-
Resp() shall return with the status field providing the reason for failure
(see Table 188 SA MAD Class-Specific Status Encodings on page 886).

Table 215 SubnAdmGet() query for a Particular NodeRecord on page 927
shows an example SubnAdmGet() query which obtains a NodeRecord
given its PortGUID; as with Table 206 on page 904, only header fields
whose values differ from their defaults are shown:.

15.4.7 SUBNADMSET(): SET AN ATTRIBUTE

C15-0.1.32: In response to a SubnAdmSet(), if the attribute contained in
that MAD is added to SA, a SubAdmGetResp() shall be returned con-
taining the added attribute. Rules for adding an attribute of a given type
are specified in the corresponding attribute definition sections.

Note that attributes for which SubnAdmSet() is not supported (Table 190
Subnet Administration Attribute / Method Map on page 890) implicitly
cannot be added.

C15-0.1.33: If SubnAdmSet() fails to satisfy C15-0.1.32:, SubnAdmGet-
Resp() shall return with the status field providing the reason for failure
(see Table 188 SA MAD Class-Specific Status Encodings on page 886).

15.4.8 SUBNADMDELETE(): DELETE AN ATTRIBUTE

The SubnAdmDelete() method provides a means for deleting an attribute
that had been added to SA using SubnAdmSet(). Table 190 Subnet Ad-
ministration Attribute / Method Map on page 890 specifies the attributes

Table 215 SubnAdmGet() query for a Particular NodeRecord

Component Value Interpretation

MADHeader:MgmtClass 0x03 Specifying SubnAdm class

MADHeader:Method 0x01 Specifying SubnAdmGet()

MADHeader:TransactionID 0x0000000011223344 Transaction ID (to be returned in the response)

MADHeader:AttributeID 0x0011 Specifying NodeRecord

RMPPHeader:RMPPFlags.Active 0 Information flags:RMPP is not active

SAHeader:SM_Key 0 SM_Key value not needed for this query

SAHeader:ComponentMask 0x0000000000000080 Selecting those components to be used; only bit 7 is
needed.

NodeRecord:PortGUID 0x0000000000000004 Obtain NodeRecord with given PortGUID.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 928 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

for which SubnAdmDelete() is supported. Note that attributes for which
SubnAdmDelete() is not supported cannot be deleted. Rules for deleting
an attribute are specified in the corresponding attribute definition sections.

15.4.9 SUBNADMGETTRACETABLE(): TRACE A PATH

The SubnAdmGetTraceTable() method, with SubnAdmGetTableResp(),
provides a means for comparing paths provided by SA in order to deter-
mine in detail the degree to which they use the same nodes, ports, links,
or chassis. It may be used, for example, as a way to check or select a de-
sired degree of failure independence among a set of paths.

The PathRecord given to SubnAdmGetTraceTable() must be completely
specified and must specify an existing path that the requester is allowed
to access.

o15-0.1.19: This compliance statement is obsolete and has been re-
placed by statement o15-0.2.8:.

o15-0.2.8: If ClassPortInfo:CapabilityMask.IsMultiPathSupported is 1 for
SA, then SA shall reject as invalid any SubnAdmGetTraceTable() request
which contains a PathRecord that does not describe a valid path; or has
a multicast GID or LID as a source or destination component; or does not
describe a path the requester is allowed to access according to the rules
specified in 15.4.1.1 Access Restrictions For PathRecords on page 921;
or does not have all of its components specified, i.e., any bit of the Com-
ponentMask referring to a PathRecord component is 0. In any of these
cases, SA shall respond with a SubnAdmGetTableResp() indicating a
zero-length table and a status code indicating an ERR_REQ_INVALID.
(See Table 188 SA MAD Class-Specific Status Encodings on page 886.)

Given a valid PathRecord in a SubnAdmGetTraceTable() request that de-
scribes an existing path, SA uses SubnAdmGetTableResp() to return the
path’s elements as a table of TraceRecords, starting at the source and ter-
minating at the destination.

o15-0.1.20: This compliance statement is obsolete and has been re-
placed by statement o15-0.2.9:.

o15-0.2.9: If ClassPortInfo:CapabilityMask.IsMultiPathSupported is 1 for
SA, then if SubnAdmGetTraceTable() is sent to SA with a PathRecord
valid for SubnAdmGetTraceTable() (see o15-0.1.19:), then SA shall re-
spond with a SubnAdmGetTableResp() method that returns a table of
TraceRecord attributes. The TraceRecords of that table shall describe
every node traversed by the path sent to SA, and how that path traverses
each node. The order of TraceRecords in that table shall be the order that
a packet sent on that path would traverse those nodes, starting with the
path’s source node and ending with its destination node.

InfiniBandTM Architecture Release 1.2 Subnet Administration October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 929 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

15.4.10 SUBNADMGETMULTI() / SUBNADMGETMULTIRESP(): SEND & RECEIVE MULTIPLE PACKETS

SubnAdmGetMulti() is used when the reliable multipacket protocol
(RMPP) is used to send an attribute or attributes to SA from a client. Sub-
nAdmGetMultiResp() then, in response, uses RMPP to send an attribute
or attributes from SA to the client. In contrast, for example, RMPP is used
by SubnAdmGetTable() only to send attributes from SA to the client.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 930 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 16: GENERAL SERVICES

This chapter describes the range of management services that the IBA
provides under general services, except for the Subnet Administration
which is described in the previous chapter. General management services
provide the following management classes:

• Performance Management - provides methods that enable a manag-
er to retrieve performance statistics and error information from IBA
components.

• Baseboard Management - provides a means to transport messages
to components beyond the subnet, to “out of band” components. An
example might be to chassis temperature monitoring and control
hardware on an IBA channel adapter.

• Device Management - provides the means to perform I/O controller /
I/O unit management. This class defines the mechanisms to send
and receive device management packets between two subnet-at-
tached points, typically between an HCA and a TCA. The TCA pro-
vides an interface to the I/O controller and I/O device.

• SNMP Tunneling - provides a set of methods, data formats and at-
tributes to support SNMP tunneling. The SNMP packet is embedded
in the IBA-compliant management datagram.

• Vendor Specific - provides a set of general purpose methods. Ven-
dors are free to define new methods and attributes, however they
must conform to management datagram formats and restrictions de-
scribed herein.

• Application Specific - provides a set of general purpose methods. Ap-
plications are free to define new methods and attributes, however
they must conform to management datagram formats and restrictions
described herein.

• Communication Management - provides the mechanisms to estab-
lish, terminate, and migrate connections between nodes, and pro-
vides basic service ID resolution.

16.1 PERFORMANCE MANAGEMENT

C16-1: The Performance Management Agent is mandatory on all nodes.

The Performance Management class provides mechanisms to enable a
performance management entity to retrieve performance and error statis-
tics from InfiniBand components. Performance quantities are divided into
two classes:

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 931 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Mandatory for all ports of all nodes (TCAs, HCAs, Switches, and
Routers). These quantities are deemed necessary to support funda-
mental instrumentation and performance analysis of a multi-vendor
InfiniBand fabric

• Optional. These quantities may be implemented at the vendor’s dis-
cretion, and are described here as an aid to standardization.

16.1.1 MAD FORMAT

C16-2: The datagrams in the Performance class shall conform to the
MAD format and use as specified in 13.4 Management Datagrams on
page 717 and further customized in Figure 198 Performance Manage-
ment MAD Format on page 931 and Table 216 Performance Management
MAD Fields on page 931 below.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Reserved

...

60

64 Data

...

252

Figure 198 Performance Management MAD Format

Table 216 Performance Management MAD Fields

Field Name Length Description

Common MAD Header 24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on
page 718

Reserved 40 bytes Reserved.

Data 192 bytes Attribute data is mapped bit for bit from the format described in the following sec-
tions to the start of this data field. If the attribute is smaller than the data field, the
content of the remainder of the data field is unspecified.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 932 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. No class-
specific bits are defined.

16.1.2 METHODS

The Performance Management class uses a subset of the common
methods described in 13.4.5 Management Class Methods on page 721.

C16-2.1.1: A Performance Management Agent shall support the methods
listed in Table 218 Performance Management Methods on page 932. All
method type values not listed in the Table are reserved.

16.1.3 MANDATORY ATTRIBUTES

C16-2.1.2: A Performance Management Agent shall support the manda-
tory attributes listed in Table 219 Mandatory Performance Management
Attributes on page 932 and Table 220 Mandatory Performance Manage-
ment Attribute / Method Map on page 933. All attribute IDs not listed in
Table 219: Mandatory Performance Management Attributes and Table
226 Optional Performance Management Attributes on page 950 are re-
served.

The attributes are described in detail in the sections following the table.
The use model for these attributes is described in 16.1.3.6 Typical Perfor-
mance Attribute Use Model on page 949.

Table 217 Performance Management Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Class-specific bits are reserved

Table 218 Performance Management Methods

Method Type Value Description

PerformanceGet() 0x01 Request a get (read) of a class specific information attribute

PerformanceSet() 0x02 Request a set (write) of a class specific information attribute.

PerformanceGetResp() 0x81 Response from a Get() or Set() request.

Table 219 Mandatory Performance Management Attributes

Attribute Name Attribute
ID AttributeModifier Description

ClassPortInfo 0x0001 0x00000000 See 13.4.8.1 ClassPortInfo on page 734

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 933 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734.

16.1.3.2 PORTSAMPLESCONTROL

The PortSamplesControl attribute is mandatory. It provides a means of ini-
tiating a sample and selecting, for one selected port during the specified
interval, quantities to be sampled such as:

PortSamplesControl 0x0010 Selects one of n independent
sampling mechanisms; zero
(0) shall be implemented.

Port Performance Data Sampling Control.
See 16.1.3.2 PortSamplesControl on
page 933

PortSamplesResult 0x0011 Selects one of n independent
sampling mechanisms; zero
(0) shall be implemented.

Port Performance Data Sampling Results.
See 16.1.3.4 PortSamplesResult on page
944

PortCounters 0x0012 0x00000000 Port Basic Performance & Error
Counters. See 16.1.3.5 PortCounters on
page 945

Reserved 0x0013-
0x0014

0x00000000-0xFFFFFFFF Reserved

Table 219 Mandatory Performance Management Attributes (Continued)

Attribute Name Attribute
ID AttributeModifier Description

Table 220 Mandatory Performance Management Attribute /
Method Map

Attribute Name PerformanceGet() PerformanceSet()

ClassPortInfo X

PortSamplesControl X X

PortSamplesResult X

PortCounters X X

Table 221 Performance Management ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8 AllPortSelect If reported as 1, indicates that all attributes containing the PortSelect component support setting it to
0xFF to gather data from all ports at once. If reported as 0, using 0xFF in PortSelect results in unde-
fined behavior.

9-15 - Class-specific bits are reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 934 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The amount of data sent and received
• The number of packets sent and received
• The transmit queue depth at the start of the interval
The complete list of quantities that can be sampled using this mechanism
is given in Table 223 CounterSelect Values on page 941.

Sampling is initiated by means of a PerformanceSet(PortSamplesCon-
trol). Sampling status and results are obtained by means of a Perfor-
manceGet(PortSamplesResult).

To support random sampling that is decoupled from MAD latencies and
other port activities at either the sender or receiver, the PortSamplesCon-
trol attribute provides a means to specify a delayed start time for the
sample interval. See the SampleStart component in Table 222 PortSam-
plesControl on page 934.

Performance sampling operations are based on a standard time interval
called a tick. A tick is a multiple of the link transfer period. For example, a
multiple of 400 picoseconds for a link running at 2.5 giga-transfers per
second. Implementers are given a range of multipliers to choose from.

The AttributeModifier selects one of several possible independent sam-
pling mechanisms.

C16-3: All nodes shall implement PortSamplesControl and PortSamples-
Result corresponding to an AttributeModifier of zero. Implementation of
additional sets of PortSamplesControl and PortSamplesResult permits si-
multaneous sampling of multiple ports, and shall use ascending Attribu-
teModifier values starting with one (1). The number of additional sets
implemented is defined in PortSamplesControl.SampleMechanisms.

C16-4: This compliance statement is obsolete and has been replaced by
C16-4.1.1:.

C16-4.1.1: For each sampling mechanism, at least one and up to 15
counters shall be implemented.

Table 222 PortSamplesControl

Component Access Length
(bits)

Offset
(bits) Description

OpCode RW 8 0 Used to select a specific packet op code (as found in BTH) when
sampling optional quantities that are op code specific. If OpCode is
0xFF, all op codes are sampled as one otherwise only one op code
can be sampled at a time, although multiple quantities can be sam-
pled for the same op code.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 935 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortSelect RW 8 8 Selects the port that will be sampled. For a channel adapter or router,
PortSelect refers to an endport with the only valid value being the port
number of which the request was received. For a switch, PortSelect
refers to a switch port with valid values ranging from 0 to the number
of ports in the switch. However, 0 is only valid for the enhanced switch
management port; it is ignored for the base management port.
If gathering data from all ports at once is supported (see Table 221
Performance Management ClassPortInfo:CapabilityMask on page
933), setting PortSelect to 0xFF will cause samples from all valid
ports (as defined in the previous paragraph) to be accumulated.
When selecting invalid port values, any results are undefined.

Tick RO 8 16 Indicates the node’s sampling clock interval as a multiple of 10x the
link transfer period. For a 2.5 Gtransfer link, the transfer period is 400
picoseconds. The encoding is:
0x00 = 10 x link transfer period (4 nanoseconds for a 2.5 Gtransfer
link)
0x01 = 20 x link transfer period
0x02 = 30 x link transfer period
...
0xFF = 2560 x link transfer period
To maximize utility of the performance attributes, implementers are
encouraged to choose the smallest practical tick size

Reserved RO 5 24 Reserved

CounterWidth RO 3 29 Indicates the actual width in bits of the following components:
• SampleStart
• SampleInterval
• PortSamplesResult:Counter0 to 14
The encoding is:
0 = 16 bits
1 = 20 bits
2 = 24 bits
3 = 28 bits
4 = 32 bits
5-7 = reserved
Counters smaller than 32 bits shall be implemented as the least sig-
nificant bits of the corresponding 32-bit attribute component, with the
unimplemented upper bits of the component returning zeroes for Get
and ignored for Set.

Reserved RO 2 32 Reserved

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 936 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterMask0 RO 3 34 A bitmask that determines the capabilities of PortSamplesRe-
sult:Counter0.
Bit 0 = supports all mandatory quantities; shall be 1
Bit 1 = supports optional quantities
Bit 2 = supports vendor-defined quantities

CounterMasks1to9 RO 27 37 An array of nine 3-bit bitmasks, each of which determines the capabil-
ities of an optional counter in PortSamplesResult. The most signifi-
cant 3-bit field corresponds to PortSamplesResult:Counter1; the least
significant field corresponds to PortSamplesResult:Counter9
Encoding:
Bit 0 = supports all mandatory quantities
Bit 1 = supports optional quantities
Bit 2 = supports vendor-defined quantities
All bits zero means the counter is not implemented

Reserved RO 1 64 Reserved.

CounterMasks10to
14

RO 15 65 An array of five 3-bit bitmasks, each of which determines the capabili-
ties of an optional counter in PortSamplesResult. The most significant
3-bit field corresponds to PortSamplesResult:Counter10; the least
significant field corresponds to PortSamplesResult:Counter14
Encoding:
Bit 0 = supports all mandatory quantities
Bit 1 = supports optional quantities
Bit 2 = supports vendor-defined quantities
All bits zero means the counter is not implemented

SampleMecha-
nisms

RO 8 80 The number of independent sample mechanisms implemented (i.e.,
sets of PortSamplesControl and PortSamplesResult), minus one:
0 = one sample mechanism is available (addressed via AttributeModi-
fier zero)
1 = two sample mechanisms are available, AttributeModifiers 0 and 1
...
255 = 256 sample mechanisms are available, addressed via Attribute-
Modifiers 0 through 255
Providing multiple sampling mechanisms is optional. N sample mech-
anisms would permit N independent samples to be run simulta-
neously. The result of using an AttributeModifier value of
0xFFFFFFFF is vendor-specific.

Reserved RO 6 88 Reserved

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 937 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SampleStatus RO 2 94 Indicates the status of sampling:
0 = sampling is complete and the results are available from the PortS-
amplesResult attribute
1 = the SampleStart timer is running. All sample counter values in
PortSamplesResult are undefined
2 = sampling is underway. All sample counter values in PortSamples-
Result are undefined
3 = reserved
While SampleStatus is non-zero, a PerformanceSet(PortSamples-
Control) will not affect PortSamplesControl and will return the existing
values of all components

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 938 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

OptionMask RO 64 96 A bit mask indicating which optional InfiniBand performance quanti-
ties are implemented, if any. See Table 223 CounterSelect Values on
page 941 for a description of each quantity or set of quantities:
Bit 0 (LSB) = reserved.
Bit 1 = PortXmitQueue[n]
Bit 2 = PortXmitDataVL[n]
Bit 3 = PortRcvDataVL[n]
Bit 4 = PortXmitPktVL[n]
Bit 5 = PortRcvPktVL[n]
Bit 6 = PortRcvErrorDetails:PortLocalPhysicalErrors
Bit 7 = PortRcvErrorDetails:PortMalformedPacketErrors
Bit 8 = PortRcvErrorDetails:PortBufferOverrunErrors
Bit 9 = PortRcvErrorDetails:PortDLIDMappingErrors
Bit 10 = PortRcvErrorDetails:PortVLMappingErrors
Bit 11 = PortRcvErrorDetails:PortLoopingErrors
Bit 12 = PortXmitDiscardDetails:PortInactiveDiscards
Bit 13 = PortXmitDiscardDetails:PortNeighborMTUDiscards
Bit 14 = PortXmitDiscardDetails:PortSwLifetimeLimitDiscards
Bit 15 = PortXmitDiscardDetails:PortSwHOQLifetimeLimitDiscards
Bit 16 = PortOpRcvCounters:PortOpRcvPkts
Bit 17 = PortOpRcvCounters:PortOpRcvData
Bit 18 = PortFlowCtlCounters:PortXmitFlowPkts
Bit 19 = PortFlowCtlCounters:PortRcvFlowPkts
Bit 20 = PortVLOpPackets:PortVLOpPackets[n]
Bit 21 = PortVLOpData:PortVLOpData[n]
Bit 22 = PortVLXmitFlowCtlUpdateErrors:PortVLXmitFlowCtlUpda-
teErrors[n]
Bit 23 = PortVLXmitWaitCounters:PortVLXmitWait[n]
Bits 24 - 47 Reserved
Bit 48 = SwPortVLCongestion:SWPortVLCongestion[n]
Bit 49 = PortRcvConCtrl:PortPktRcvFECN
Bit 50 = PortRcvConCtrl:PortPktRcvBECN
Bit 51 = PortSLRcvFECN:PortSLPktRcvFECN[n]
Bit 52 = PortSLRcvBECN:PortSLPktRcvBECN[n]
Bit 53 = PortXmitConCtrl:PortXmitTimeCong
Bit 54 = PortVLXmitTimeCong:PortVLXmitTimeCong[n]
Bits 55 - 63 Reserved
Performance quantities that are counted per VL are limited to the
actual number of VLs implemented. The result of selecting an unim-
plemented quantity is all zeroes.
See Annex <<ref to Congestion Control Annex>> for descriptions of
the counters designated by bits 49 - 54.

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 939 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

VendorMask RO 64 160 A bitmask indicating which vendor-specific counters are implemented.
Shall be zero if the node does not support any vendor-specific
counters, otherwise use is vendor-defined

SampleStart RW 32 224 Determines when the sampling interval starts. When Set, this value is
loaded into a timer and the following events occur:
• SampleStatus is set to 1
• Counters in PortSamplesResult are set to zero
• The timer begins decrementing once per tick
When the timer reaches zero, timing stops and the following events
occur
• The PortXmitQueue quantities if selected are latched
• PortSamplesResult counters are started
• SampleStatus is set to 2
• The SampleInterval timer is started
The SampleStart timer allows a performance application to randomize
the sample start time and insure decoupling from node or network
events. Values used will typically be 10’s of milliseconds. It is the fine
granularity of this interval with respect to the link rate that makes
decoupling possible

SampleInterval RW 32 256 Determines the length of the sampling interval. When Set, this value
is loaded into a timer. When the SampleStart counter reaches zero,
this timer begins decrementing once per tick. When it reaches zero,
timing stops and the following events occur:
• PortSamplesResult counters are stopped and the resulting values

made available
• SampleStatus is set to zero

Tag RW 16 288 Used by a performance application when it does a Performanc-
eSet(PortSamplesControl) to uniquely identify its sample run in case
of a collision with another performance application
When an application wishes to start a sample run, it should pick a ran-
dom Tag value and do a PerformanceSet(PortSamplesControl). If the
returned value of Tag does not match the selected value, another
application is using the sampling mechanism. In this case the first
application should wait for a suitable time and retry its sample

CounterSelect0 RW 16 304 Selects quantity to be sampled by PortSamplesResult:Counter0 as
defined in Table 223 CounterSelect Values on page 941. If an unim-
plemented quantity is selected, a Get to PortSamplesResult:Counter0
returns zeroes

CounterSelect1 RW 16 320 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter1

CounterSelect2 RW 16 336 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter2

CounterSelect3 RW 16 352 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter3

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 940 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.3.3 COUNTERSELECT VALUES

Table 223 CounterSelect Values on page 941 lists the values that can be
used in the CounterSelect[n] components of the PortSamplesControl at-
tribute to select a particular quantity to sample.

Quantities that can be sampled are divided into 3 ranges:

• Mandatory quantities (0x0000 - 0x3FFF).

C16-5: Mandatory quantities for performance sampling shall be imple-
mented on ports as specified by PortSamplesControl:PortSelect.

• Optional quantities (0x4000 - 0xBFFF).

o16-1: If provided, optional quantities for performance sampling shall be
implemented as described.

CounterSelect4 RW 16 368 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter4

CounterSelect5 RW 16 384 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter5

CounterSelect6 RW 16 400 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter6

CounterSelect7 RW 16 416 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter7

CounterSelect8 RW 16 432 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter8

CounterSelect9 RW 16 448 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter9

CounterSelect10 RW 16 464 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter10

CounterSelect11 RW 16 480 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter11

CounterSelect12 RW 16 496 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter12

CounterSelect13 RW 16 512 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter13

CounterSelect14 RW 16 528 Similar to CounterSelect0; selects quantity to be sampled by PortS-
amplesResult:Counter14

Table 222 PortSamplesControl (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 941 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Vendor quantities (0xC000 - 0xFFFF). Vendors may define and im-
plement their own quantities in this range

Table 223 CounterSelect Values

Sample Select Value Name Description

Mandatory Quantities
0x0000 Reserved Reserved

0x0001 PortXmitData Total number of data octets, divided by 4, transmitted on all
VLs during the sampling interval from the port selected by
PortSelect. This includes all octets between (and not includ-
ing) the start of packet delimiter and the VCRC, and may
include packets containing errors (see Figure 51 Packet
Receiver State Machine on page 174 and Figure 52 Data
Packet Check machine on page 176). It excludes all link pack-
ets.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported in units of four octets.

0x0002 PortRcvData Total number of data octets, divided by 4, received on all VLs
during the sampling interval at the port selected by PortSelect.
This includes all octets between (and not including) the start of
packet delimiter and the VCRC, and may include packets con-
taining errors (see Figure 51 Packet Receiver State Machine
on page 174 and Figure 52 Data Packet Check machine on
page 176). It excludes all link packets.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported in units of four octets.

0x0003 PortXmitPkts Total number of packets transmitted on all VLs from this port.
This may include packets with errors (see Figure 51 Packet
Receiver State Machine on page 174 and Figure 52 Data
Packet Check machine on page 176), and excludes link pack-
ets.

0x0004 PortRcvPkts Total number of packets, including packets containing errors
(see Figure 51 Packet Receiver State Machine on page 174
and Figure 52 Data Packet Check machine on page 176) and
excluding link packets, received on all VLs during the sampling
interval on the port selected by PortSelect.

0x0005 PortXmitWait The number of ticks during which the port selected by PortSe-
lect had data to transmit but no data was sent during the entire
tick either because of insufficient credits or because of lack of
arbitration.

0x0006-0x3FFF Reserved Reserved.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 942 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Optional InfiniBand Quantities
All quantities that are available in optional attributes as free-running counters are also optionally available for sampling over a
given period. Each sampling counter corresponding to an optional running counter is reset to zero for each sample and incre-
ments along with the selected running counter during the sampling interval. For certain quantities, such as PortXmitQueue[n],

there are no corresponding optional attributes.
All values between 0x4000 and 0xBFFF not listed here are reserved and the result of sampling is all zeroes

0x4n00 PortXmitQueue[n] Contains the transmit queue depth in bytes on VL “n” of the
port selected by PortSelect at the time the SampleStart timer
expired
The goal of measuring queue depths is to enable software to
compute the average time data waits for transmission inside a
node. Ideally, a node should increment a counter upon arrival
of each byte that is destined for a given output port and should
decrement the counter upon departure of each byte from the
output port. In practice, this will be impossible to implement
precisely. Implementers are encouraged to measure queue
depths as accurately as practical and to document any sys-
tematic measurement errors.
Note that an implementation can compensate for an inherent
delay in accounting for arriving bytes by introducing an equal
delay in accounting for departing bytes

0x4n01 PortXmitDataVL[n] Total number of data octets, divided by 4, transmitted on VL “n”
from the port selected by PortSelect. This includes all octets
between the start of packet and end of packet delimiters. It
excludes all control groups and VCRCs.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported as a multiple of four
octets

0x4n02 PortRcvDataVL[n] Total number of data octets, divided by 4, received on input VL
“n” on the port selected by PortSelect. This includes all octets
between the start of packet and end of packet delimiters. It
excludes all control groups and VCRCs.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported as a multiple of four
octets

0x4n03 PortXmitPktVL[n] Total number of packets transmitted on VL “n” from the port
selected by PortSelect with or without errors.

0x4n04 PortRcvPktVL[n] Total number of packets received on input VL “n” from the port
selected by PortSelect with or without errors.

0x4005 PortRcvErrorDetails:PortLo-
calPhysicalErrors

See Table 228 PortRcvErrorDetails on page 951.

0x4006 PortRcvErrorDetails:PortMal-
formedPacketErrors

See Table 228 PortRcvErrorDetails on page 951.

Table 223 CounterSelect Values (Continued)

Sample Select Value Name Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 943 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

0x4007 PortRcvErrorDetails:PortBuffer-
OverrunErrors

See Table 228 PortRcvErrorDetails on page 951.

0x4008 PortRcvErrorDetails:PortDLID-
MappingErrors

See Table 228 PortRcvErrorDetails on page 951.

0x4009 PortRcvErrorDetails:PortVLMap-
pingErrors

See Table 228 PortRcvErrorDetails on page 951.

0x400A PortRcvErrorDetails:PortLoop-
ingErrors

See Table 228 PortRcvErrorDetails on page 951.

0x400B PortXmitDiscardDetails:PortInac-
tiveDiscards

See Table 229 PortXmitDiscardDetails on page 953.

0x400C PortXmitDiscardDetails:Port-
NeighborMTUDiscards

See Table 229 PortXmitDiscardDetails on page 953.

0x400D PortXmitDiscardDetails:PortS-
wLifetimeLimitDiscards

See Table 229 PortXmitDiscardDetails on page 953.

0x400E PortXmitDiscardDetails:PortS-
wHOQLifetimeLimitDiscards

See Table 229 PortXmitDiscardDetails on page 953.

0x400F PortOpRcvCounters:PortO-
pRcvPkts

See Table 230 PortOpRcvCounters on page 953. The op code
to be sampled is selected by PortSamplesControl:OpCode.

0x4010 PortOpRcvCounters:PortOpRcv-
Data

See Table 230 PortOpRcvCounters on page 953. The op code
to be sampled is selected by PortSamplesControl:OpCode.

0x4011 PortFlowCtlCounters:PortXmit-
FlowPkts

See Table 231 PortFlowCtlCounters on page 954.

0x4012 PortFlowCtlCounters:PortRcv-
FlowPkts

See Table 231 PortFlowCtlCounters on page 954

0x4n13 PortVLOpPackets:PortVLOp-
Packets[n]

See Table 232 PortVLOpPackets on page 955. The op code to
be sampled is selected by PortSamplesControl:OpCode

0x4n14 PortVLOpData:PortVLOpData[n] See Table 233 PortVLOpData on page 957. The op code to be
sampled is selected by PortSamplesControl:OpCode

0x4n15 PortVLXmitFlowCtlUpdateEr-
rors:PortVLXmitFlowCtlUpda-
teErrors[n]

See Table 234 PortVLXmitFlowCtlUpdateErrors on page 958.

0x4n16 PortVLXmitWaitCounters:PortV-
LXmitWait[n]

See Table 235 PortVLXmitWaitCounters on page 960

0x4n30 SwPortVLCongestion:SWPortV-
LCongestion[n]

See Table 236 SwPortVLCongestion on page 962

Vendor-Defined Quantities
Semantics for vendor-defined quantities are not part of this specification.

0xC000-0xFFFF Reserved Reserved for vendor-specific counters

Table 223 CounterSelect Values (Continued)

Sample Select Value Name Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 944 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.3.4 PORTSAMPLESRESULT

This mandatory attribute reports the results of a particular sample con-
trolled and initiated via the PortSamplesControl attribute.

Table 224 PortSamplesResult

Component Access Length
(bits)

Offset
(bits) Description

Tag RO 16 0 Read-only copy of PortSamplesControl:Tag.
The Tag mechanism provides a means for performance applications
to detect collisions when using the sampling mechanism. After suc-
cessfully initiating a sample run, an application should wait until the
sample should have completed, then repeat a Perfor-
manceGet(PortSamplesResult) until SampleStatus is zero. If after
any Get the Tag value in the result does not match the value set by
the application at the start of the run, another application has
already started a new sample. In this case the first application
should wait for a suitable time and retry its sample

Reserved RO 14 16 Reserved

SampleStatus RO 2 30 Read-only copy of PortSamplesControl:SampleStatus. Provided
here to minimize traffic while application is polling for sample com-
pletion

Counter0 RO 32 32 Mandatory counter. When PortSamplesControl:SampleStatus is
zero, contains the result of sampling the quantity selected by PortS-
amplesControl:CounterSelect0. Undefined when PortSamplesCon-
trol:SampleStatus is non-zero. The actual number of valid (least
significant) bits in the counter is defined by PortSamplesCon-
trol:CounterWidth

Counter1 RO 32 64 Optional counter. All zeroes if not implemented; otherwise similar to
Counter0. Contains the result of sampling the quantity selected by
PortSamplesControl:CounterSelect1

Counter2 RO 32 96 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect2

Counter3 RO 32 128 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect3

Counter4 RO 32 160 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect4

Counter5 RO 32 192 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect5

Counter6 RO 32 224 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect6

Counter7 RO 32 256 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect7

Counter8 RO 32 288 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect8

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 945 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.3.5 PORTCOUNTERS

C16-6: The PortCounters attribute of the Performance class is mandatory.

PortCounters provides basic performance and exception statistics for a
port selected by PortCounters:PortSelect.

C16-7: When initially powered-up or reset, the value of all counters on all
ports of a node shall be set to zero. During operation, instead of over-
flowing, they shall stop at all ones. At any time, writing (Set) zero into a
counter shall cause the counter to be reset to zero.

Note that writing (Set) anything other than zero into a counter results in
undefined behavior.

Note that although PortCounters is mandatory, it contains components
that are optional.

Counter9 RO 32 320 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect9

Counter10 RO 32 352 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect10

Counter11 RO 32 384 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect11

Counter12 RO 32 416 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect12

Counter13 RO 32 448 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect13

Counter14 RO 32 480 Similar to Counter1; contains the result of sampling the quantity
selected by PortSamplesControl:CounterSelect14

Table 224 PortSamplesResult (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 225 PortCounters

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 946 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortSelect RW 8 8 Selects the port that will be accessed. For a channel adapter or
router, PortSelect refers to an endport with the only valid value
being the port number on which the request was received. For a
switch, PortSelect refers to a switch port with valid values rang-
ing from 0 to the number of ports in the switch. However, 0 is
only valid for the enhanced switch management port; it is
ignored for the base switch management port.
If simultaneous gathering of data from all ports is supported (see
Table 221 Performance Management ClassPortInfo:Capability-
Mask on page 933), setting PortSelect to 0xFF will cause results
from all valid ports (as defined in the previous paragraph) to be
accumulated. PerformanceSet(PortCounters) with PortSelect
set to 0xFF shall alter the contents of the counters selected by
CounterSelect for all valid ports. Each component in the Port-
Counter Attribute in PerformanceGetResp(PortCounters) that is
returned in response to PerformanceGet(PortCounters) or Per-
formanceSet(PortCounters) with PortSelect set to 0xFF shall
contain the sum of counter values corresponding to that compo-
nent of all valid ports.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are affected by the
operation. When reading (Get), this is ignored.
Bit 0 - SymbolErrorCounter
Bit 1 - LinkErrorRecoveryCounter
Bit 2 - LinkDownedCounter
Bit 3 - PortRcvErrors
Bit 4 - PortRcvRemotePhysicalErrors
Bit 5 - PortRcvSwitchRelayErrors
Bit 6 - PortXmitDiscards
Bit 7 - PortXmitConstraintErrors
Bit 8 - PortRcvConstraintErrors
Bit 9 - LocalLinkIntegrityErrors
Bit 10 - ExcessiveBufferOverrunErrors
Bit 11 - VL15Dropped
Bit 12 - PortXmitData
Bit 13 - PortRcvData
Bit 14 - PortXmitPkts
Bit 15 - PortRcvPkts

SymbolErrorCounter RW 16 32 Total number of minor link errors detected on one or more phys-
ical lanes. Refer to the InfiniBand Architecture Specification, Vol-
ume 2, Link/Phy Interface.

LinkErrorRecovery-
Counter

RW 8 48 Total number of times the Port Training state machine has suc-
cessfully completed the link error recovery process. Refer to the
InfiniBand Architecture Specification, Volume 2, Link/Phy Inter-
face.

Table 225 PortCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 947 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LinkDownedCounter RW 8 56 Total number of times the Port Training state machine has failed
the link error recovery process and downed the link. Refer to the
InfiniBand Architecture Specification, Volume 2, Link/Phy Inter-
face.

PortRcvErrors RW 16 64 Total number of packets containing an error that were received
on the port. These errors include:
• Local physical errors (ICRC, VCRC, FCCRC, and all physical

errors that cause entry into the BAD PACKET or BAD PACKET
DISCARD states of the packet receiver state machine)

• Malformed data packet errors (LVer, length, VL)
• Malformed link packet errors (operand, length, VL)
• Packets discarded due to buffer overrun

PortRcvRemotePhysi-
calErrors

RW 16 80 Total number of packets marked with the EBP delimiter received
on the port.

PortRcvSwitchRelayEr-
rors

RW 16 96 Total number of packets received on the port that were dis-
carded because they could not be forwarded by the switch relay.
Reasons for this include:
• DLID mapping (see the description of PortDLIDMappingErrors

in Table 228 PortRcvErrorDetails on page 951)
• VL mapping
• Looping (output port = input port)

PortXmitDiscards RW 16 112 Total number of outbound packets discarded by the port
because the port is down or congested. Reasons for this
include:
• Output port is not in the active state
• Packet length exceeded NeighborMTU
• Switch Lifetime Limit exceeded
• Switch HOQ Lifetime Limit exceeded
This may also include packets discarded while in VLStalled
State.

PortXmitConstraintEr-
rors

RW 8 128 Total number of packets not transmitted from the switch physical
port for the following reasons:
• FilterRawOutbound is true and packet is raw
• PartitionEnforcementOutbound is true and packet fails partition

key check or IP version check

PortRcvConstraintEr-
rors

RW 8 136 Total number of packets received on the switch physical port that
are discarded for the following reasons:
• FilterRawInbound is true and packet is raw
• PartitionEnforcementInbound is true and packet fails partition

key check or IP version check

Reserved RO 8 144 Reserved

Table 225 PortCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 948 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LocalLinkIntegrityErrors RW 4 152 The number of times that the count of local physical errors
exceeded the threshold specified by LocalPhyErrors; see 7.12.1
Error Detection on page 219 and Table 145 PortInfo on page
822.

ExcessiveBufferOver-
runErrors

RW 4 156 The number of times that OverrunErrors consecutive flow con-
trol update periods occurred, each having at least one overrun
error; see 7.12.1 Error Detection on page 219 and Table 145
PortInfo on page 822.

Reserved RO 16 160 Reserved

VL15Dropped RW 16 176 Number of incoming VL15 packets dropped due to resource lim-
itations (e.g., lack of buffers) in the port

PortXmitData RW 32 192 Optional; shall be zero if not implemented. Total number of data
octets, divided by 4, transmitted on all VLs from the port. This
includes all octets between (and not including) the start of
packet delimiter and the VCRC, and may include packets con-
taining errors (see Figure 51 Packet Receiver State Machine on
page 174 and Figure 52 Data Packet Check machine on page
176). It excludes all link packets.
Implementers may choose to count data octets in groups larger
than four but are encouraged to choose the smallest group pos-
sible. Results are still reported as a multiple of four octets.

PortRcvData RW 32 224 Optional; shall be zero if not implemented. Total number of data
octets, divided by 4, received on all VLs at the port. This
includes all octets between (and not including) the start of
packet delimiter and the VCRC, and may include packets con-
taining errors (see Figure 51 Packet Receiver State Machine on
page 174 and Figure 52 Data Packet Check machine on page
176). It excludes all link packets.
When the received packet length exceeds the maximum allowed
packet length specified in C7-45:, the counter may include all
data octets exceeding this limit.
Implementers may choose to count data octets in groups larger
than four but are encouraged to choose the smallest group pos-
sible. Results are still reported as a multiple of four octets.

PortXmitPkts RW 32 256 Optional; shall be zero if not implemented. Total number of
packets transmitted on all VLs from the port. This may include
packets with errors (see Figure 51 Packet Receiver State
Machine on page 174 and Figure 52 Data Packet Check
machine on page 176), and excludes link packets.

PortRcvPkts RW 32 288 Optional; shall be zero if not implemented. Total number of
packets, including packets containing errors (see Figure 51
Packet Receiver State Machine on page 174 and Figure 52 Data
Packet Check machine on page 176), and excluding link pack-
ets, received from all VLs on the port.

Table 225 PortCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 949 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.3.6 TYPICAL PERFORMANCE ATTRIBUTE USE MODEL

This section describes how PerformanceGet() and PerformanceSet() can
be used to read and reset the performance counters.

PortSamplesControl and PortSamplesResult are used together to sample
one or more quantities over a specified period of time:

The application can first determine the node’s sampling capabilities via a
PerformanceGet(PortSamplesControl). This will return the number and
width of available counters, the quantities that can be sampled, and the
basic time interval (tick). From these the application can compute the
maximum sample interval that will not cause counter overflow.

C16-8: This Compliance Statement is obsolete and has been deleted.

To perform a sampling operation, the performance manager will typically
perform the following sequence:

• Select a random value for SampleStart. The SampleStart timer allows
a performance application to randomize the sample start time and in-
sure decoupling from node or network events. Values used will typi-
cally be 10’s of milliseconds.

• Select a random Tag value. This value is used to detect collisions
among multiple independent performance applications accessing the
same node

• Select a SampleInterval value, the quantities to be sampled, and the
counter that will be assigned to count each quantity.

• Do a PerformanceSet(PortSamplesControl). If the returned value of
Tag does not match the selected value, another application is using
the sampling mechanism. In this case the first application must wait
for a suitable time and retry the PerformanceSet().

• Once the sample has been successfully started, the application
should wait until the SampleStart and SampleInterval timers should
have expired, then repeat PerformanceGet(PortSamplesResult) until
SampleStatus is zero. If at any time the returned Tag value no longer
matches the application’s chosen value, regardless of SampleStatus,
it means another application has gained control of the sampling
mechanism. In this case the first application could restart the sam-
pling process.

If more than one set of sampling mechanisms is implemented, the addi-
tional ones are addressed using non-zero AttributeModifier values. The
previous use model applies to each pair of PortSamplesControl and Port-
SamplesResult, treating each as an independent entity.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 950 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4 OPTIONAL ATTRIBUTES

Performance Management defines the optional Attributes and Attribute-
Modifier use summarized in Table 226 Optional Performance Manage-
ment Attributes on page 950. They are described in detail in the sections
following the table. All quantities in these attributes can also be sampled
via the PortSamplesControl mechanism. The optional Attributes available
are reflected by the OptionMask in the PortSamplesControl attribute.

The behavior of all optional counters is as specified in C16-7: on page
945.

o16-2: This optional compliance statement is obsolete and has been de-
leted.

o16-2.1.1: If any components of an optional Performance Management
attribute is supported according to PortSamplesControl:OptionMask, then
that attribute shall be supported by a Performance Management Agent,
as indicated in Table 226 Optional Performance Management Attributes
on page 950 and Table 227 Optional Performance Management Attribute
/ Method Map on page 951.

Table 226 Optional Performance Management Attributes

Attribute Name Attribute
ID

Attribute-
Modifier Description

PortRcvErrorDetails 0x0015 0x00000000 Port Detailed Error Counters. See 16.1.4.1 Por-
tRcvErrorDetails on page 951.

PortXmitDiscardDetails 0x0016 0x00000000 Port Transmit Discard Counters. See 16.1.4.2
PortXmitDiscardDetails on page 953.

PortOpRcvCounters 0x0017 0x00000000 Port Receive Counters per Op Code. See 16.1.4.3
PortOpRcvCounters on page 953.

PortFlowCtlCounters 0x0018 0x00000000 Port Flow Control Counters. See 16.1.4.4 Port-
FlowCtlCounters on page 954.

PortVLOpPackets 0x0019 0x00000000 Port Packets Received per Op Code per VL. See
16.1.4.5 PortVLOpPackets on page 955.

PortVLOpData 0x001A 0x00000000 Port Data Received per Op Code per VL. See
16.1.4.6 PortVLOpData on page 957.

PortVLXmitFlowCtlUpdateErrors 0x001B 0x00000000 Port Flow Control update errors per VL. See 16.1.4.7
PortVLXmitFlowCtlUpdateErrors on page 958

PortVLXmitWaitCounters 0x001C 0x00000000 Port Ticks Waiting to Transmit Counters per VL. See
16.1.4.8 PortVLXmitWaitCounters on page 960.

PortCountersExtended 0x001D 0x00000000 Extended Port Basic Performance & Error Counters.
See 16.1.4.11 PortCountersExtended on page 965

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 951 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.1 PORTRCVERRORDETAILS

PortSamplesResultExtended 0x001E 0x00000000 Extended Port Performance Data Sampling Results.
See 16.1.4.10 PortSamplesResultExtended on page
963

SwPortVLCongestion 0x0030 0x00000000 Switch Port Congestion per VL. See 16.1.4.9
SwPortVLCongestion on page 962.

Table 226 Optional Performance Management Attributes (Continued)

Attribute Name Attribute
ID

Attribute-
Modifier Description

Table 227 Optional Performance Management Attribute /
Method Map

Attribute Name PerformanceGet() PerformanceSet()

PortRcvErrorDetails X X

PortXmitDiscardDetails X X

PortOpRcvCounters X X

PortFlowCtlCounters X X

PortVLOpPackets X X

PortVLOpData X X

PortVLXmitFlowCtlUpdateErrors X X

PortVLXmitWaitCounters X X

PortSamplesResultExtended X X

PortCountersExtended X X

SwPortVLCongestion X X

Table 228 PortRcvErrorDetails

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported. Statistics
are accumulated for all VLs on a port.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 952 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortLocalPhysicalErrors
Bit 1 - PortMalformedPacketErrors
Bit 2 - PortBufferOverrunErrors
Bit 3 - PortDLIDMappingErrors
Bit 4 - PortVLMappingErrors
Bit 5 - PortLoopingErrors
Bits 6 to 15 - Reserved

PortLocalPhysicalErrors RW 16 32 Total number of packets received on the port that contain local
physical errors (ICRC, VCRC, FCCRC, and all physical errors
that cause entry into the BAD PACKET or BAD PACKET DIS-
CARD states of the packet receiver state machine).

PortMalformedPacket-
Errors

RW 16 48 Total number of packets received on the port that contain mal-
formed packet errors
• Data packets: LVer, length, VL
• Link packets: operand, length, VL

PortBufferOverrunEr-
rors

RW 16 64 Total number of packets received on the port that were dis-
carded due to buffer overrun.

PortDLIDMappingErrors RW 16 80 Total number of packets received on the port that were dis-
carded because they could not be forwarded by the switch
relay due to DLID mapping errors. DLID mapping errors occur
when (a) DLID_Check=invalid as specified in Figure 52 Data
Packet Check machine on page 176; or (b) for any of the dis-
card reasons specified in C18-36:, C18-40:, C18-41: and C18-
51:. This applies to switches only.

PortVLMappingErrors RW 16 96 Packet discards due to VL mapping behavior are not consid-
ered errors, so the behavior of this counter is implementation-
dependent. However, it is recommended that this counter be
used to count the total number of packets received on the port
that were discarded because they could not be forwarded by
the switch relay due to VL mapping behavior 7.6.6 VL Map-
ping Within a Subnet on page 186

PortLoopingErrors RW 16 112 Total number of packets received on the port that were dis-
carded because they could not be forwarded by the switch
relay due to looping errors (output port = input port). This
applies to switches only.

Table 228 PortRcvErrorDetails (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 953 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.2 PORTXMITDISCARDDETAILS

16.1.4.3 PORTOPRCVCOUNTERS

Table 229 PortXmitDiscardDetails

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported. Statistics
are accumulated for all VLs on a port.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortInactiveDiscards
Bit 1 - PortNeighborMTUDiscards
Bit 2 - PortSwLifetimeLimitDiscards
Bit 3 - PortSwHOQLifetimeLimitDiscards
Bits 4 to 15 - Reserved

PortInactiveDiscards RW 16 32 Total number of outbound packets discarded by the port
because it is not in the active state.

PortNeighborMTUDis-
cards

RW 16 48 Total number of outbound packets discarded by the port
because packet length exceeded the PortInfo:NeighborMTU.

PortSwLifetimeLimitDis-
cards

RW 16 64 Total number of outbound packets discarded by the port
because the Switch Lifetime Limit was exceeded. Applies to
switches only.

PortSwHOQLifetime-
LimitDiscards

RW 16 80 Total number of outbound packets discarded by the port
because the switch HOQ Lifetime Limit was exceeded.
Applies to switches only.

Table 230 PortOpRcvCounters

Component Access Length
(bits)

Offset
(bits) Description

OpCode RW 8 0 Selects the op code (as found in BTH) for which the statistics
are reported. 0xFF means all op codes.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 954 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.4 PORTFLOWCTLCOUNTERS

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported. Statistics
are accumulated for all VLs on a port.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortOpRcvPkts
Bit 1 - PortOpRcvData
Bits 2 to 15 - Reserved

PortOpRcvPkts RW 32 32 Total number of packets received without error on the port
selected by PortSelect containing the opcode selected by
OpCode.

PortOpRcvData RW 32 64 Total number of data octets, divided by 4, received without
error on all VLs from the port selected by PortSelect containing
the opcode selected by OpCode. This includes all octets
between (and not including) the start of packet delimiter and
VCRC. It excludes all link packets.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported as a multiple of four
octets.

Table 230 PortOpRcvCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 231 PortFlowCtlCounters

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 955 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.5 PORTVLOPPACKETS

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortXmitFlowPkts
Bit 1 - PortRcvFlowPkts
Bits 2 to 15 - Reserved

PortXmitFlowPkts RW 32 32 Total number of flow control packets transmitted on the port
selected by PortSelect

PortRcvFlowPkts RW 32 64 Total number of flow control packets received on the port
selected by PortSelect

Table 231 PortFlowCtlCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 232 PortVLOpPackets

Component Access Length
(bits)

Offset
(bits) Description

OpCode RW 8 0 Selects the op code (as found in BTH) for which the statistics
are reported. 0xFF means all op codes.

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 956 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortVLOpPackets0
Bit 1 - PortVLOpPackets1
Bit 2 - PortVLOpPackets2
Bit 3 - PortVLOpPackets3
Bit 4 - PortVLOpPackets4
Bit 5 - PortVLOpPackets5
Bit 6 - PortVLOpPackets6
Bit 7 - PortVLOpPackets7
Bit 8 - PortVLOpPackets8
Bit 9 - PortVLOpPackets9
Bit 10 - PortVLOpPackets10
Bit 11 - PortVLOpPackets11
Bit 12 - PortVLOpPackets12
Bit 13 - PortVLOpPackets13
Bit 14 - PortVLOpPackets14
Bit 15 - PortVLOpPackets15

PortVLOpPackets0 RW 16 32 The total number of packets received without error on VL 0 of
the port selected by PortSelect containing the opcode selected
by OpCode

PortVLOpPackets1 RW 16 48 Similar count for VL1

PortVLOpPackets2 RW 16 64 Similar count for VL2

PortVLOpPackets3 RW 16 80 Similar count for VL3

PortVLOpPackets4 RW 16 96 Similar count for VL4

PortVLOpPackets5 RW 16 112 Similar count for VL5

PortVLOpPackets6 RW 16 128 Similar count for VL6

PortVLOpPackets7 RW 16 144 Similar count for VL7

PortVLOpPackets8 RW 16 160 Similar count for VL8

PortVLOpPackets9 RW 16 176 Similar count for VL9

PortVLOpPackets10 RW 16 192 Similar count for VL10

PortVLOpPackets11 RW 16 208 Similar count for VL11

PortVLOpPackets12 RW 16 224 Similar count for VL12

PortVLOpPackets13 RW 16 240 Similar count for VL13

PortVLOpPackets14 RW 16 256 Similar count for VL14

Table 232 PortVLOpPackets (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 957 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.6 PORTVLOPDATA

PortVLOpPackets15 RW 16 272 Similar count for VL15

Table 232 PortVLOpPackets (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 233 PortVLOpData

Component Access Length
(bits)

Offset
(bits) Description

OpCode RW 8 0 Selects the op code (as found in BTH) for which the statistics
are reported. 0xFF means all op codes.

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortVLOpData0
Bit 1 - PortVLOpData1
Bit 2 - PortVLOpData2
Bit 3 - PortVLOpData3
Bit 4 - PortVLOpData4
Bit 5 - PortVLOpData5
Bit 6 - PortVLOpData6
Bit 7 - PortVLOpData7
Bit 8 - PortVLOpData8
Bit 9 - PortVLOpData9
Bit 10 - PortVLOpData10
Bit 11 - PortVLOpData11
Bit 12 - PortVLOpData12
Bit 13 - PortVLOpData13
Bit 14 - PortVLOpData14
Bit 15 - PortVLOpData15

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 958 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.7 PORTVLXMITFLOWCTLUPDATEERRORS

PortVLOpData0 RW 32 32 Total number of data octets, divided by 4, received without
error on VL 0 from the port selected by PortSelect containing
the opcode selected by OpCode. This includes all octets
between (and not including) the start of packet and VCRC. It
excludes all link packets.
Implementers may choose to count data octets in groups
larger than four but are encouraged to choose the smallest
group possible. Results are still reported as a multiple of four
octets

PortVLOpData1 RW 32 64 Similar count for VL1

PortVLOpData2 RW 32 96 Similar count for VL2

PortVLOpData3 RW 32 128 Similar count for VL3

PortVLOpData4 RW 32 160 Similar count for VL4

PortVLOpData5 RW 32 192 Similar count for VL5

PortVLOpData6 RW 32 224 Similar count for VL6

PortVLOpData7 RW 32 256 Similar count for VL7

PortVLOpData8 RW 32 288 Similar count for VL8

PortVLOpData9 RW 32 320 Similar count for VL9

PortVLOpData10 RW 32 352 Similar count for VL10

PortVLOpData11 RW 32 384 Similar count for VL11

PortVLOpData12 RW 32 416 Similar count for VL12

PortVLOpData13 RW 32 448 Similar count for VL13

PortVLOpData14 RW 32 480 Similar count for VL14

PortVLOpData15 RW 32 512 Similar count for VL15

Table 233 PortVLOpData (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 234 PortVLXmitFlowCtlUpdateErrors

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 959 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortVLXmitFlowCtlUpdateErrors0
Bit 1 - PortVLXmitFlowCtlUpdateErrors1
Bit 2 - PortVLXmitFlowCtlUpdateErrors2
Bit 3 - PortVLXmitFlowCtlUpdateErrors3
Bit 4 - PortVLXmitFlowCtlUpdateErrors4
Bit 5 - PortVLXmitFlowCtlUpdateErrors5
Bit 6 - PortVLXmitFlowCtlUpdateErrors6
Bit 7 - PortVLXmitFlowCtlUpdateErrors7
Bit 8 - PortVLXmitFlowCtlUpdateErrors8
Bit 9 - PortVLXmitFlowCtlUpdateErrors9
Bit 10 - PortVLXmitFlowCtlUpdateErrors10
Bit 11 - PortVLXmitFlowCtlUpdateErrors11
Bit 12 - PortVLXmitFlowCtlUpdateErrors12
Bit 13 - PortVLXmitFlowCtlUpdateErrors13
Bit 14 - PortVLXmitFlowCtlUpdateErrors14
Bit 15 - PortVLXmitFlowCtlUpdateErrors15

PortVLXmitFlowCtl
UpdateErrors0

RW 2 32 Total number of flow control update errors on VL 0 on the port
selected by PortSelect

PortVLXmitFlowCtl
UpdateErrors1

RW 2 34 Similar count for VL1

PortVLXmitFlowCtl
UpdateErrors2

RW 2 36 Similar count for VL2

PortVLXmitFlowCtl
UpdateErrors3

RW 2 38 Similar count for VL3

PortVLXmitFlowCtl
UpdateErrors4

RW 2 40 Similar count for VL4

PortVLXmitFlowCtl
UpdateErrors5

RW 2 42 Similar count for VL5

PortVLXmitFlowCtl
UpdateErrors6

RW 2 44 Similar count for VL6

Table 234 PortVLXmitFlowCtlUpdateErrors (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 960 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.8 PORTVLXMITWAITCOUNTERS

PortVLXmitFlowCtl
UpdateErrors7

RW 2 46 Similar count for VL7

PortVLXmitFlowCtl
UpdateErrors8

RW 2 48 Similar count for VL8

PortVLXmitFlowCtl
UpdateErrors9

RW 2 50 Similar count for VL9

PortVLXmitFlowCtl
UpdateErrors10

RW 2 52 Similar count for VL10

PortVLXmitFlowCtl
UpdateErrors11

RW 2 54 Similar count for VL11

PortVLXmitFlowCtl
UpdateErrors12

RW 2 56 Similar count for VL12

PortVLXmitFlowCtl
UpdateErrors13

RW 2 58 Similar count for VL13

PortVLXmitFlowCtl
UpdateErrors14

RW 2 60 Similar count for VL14

PortVLXmitFlowCtl
UpdateErrors15

RW 2 62 Similar count for VL15

Table 234 PortVLXmitFlowCtlUpdateErrors (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 235 PortVLXmitWaitCounters

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 961 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - PortVLXmitWait0
Bit 1 - PortVLXmitWait1
Bit 2 - PortVLXmitWait2
Bit 3 - PortVLXmitWait3
Bit 4 - PortVLXmitWait4
Bit 5 - PortVLXmitWait5
Bit 6 - PortVLXmitWait6
Bit 7 - PortVLXmitWait7
Bit 8 - PortVLXmitWait8
Bit 9 - PortVLXmitWait9
Bit 10 - PortVLXmitWait10
Bit 11 - PortVLXmitWait11
Bit 12 - PortVLXmitWait12
Bit 13 - PortVLXmitWait13
Bit 14 - PortVLXmitWait14
Bit 15 - PortVLXmitWait15

PortVLXmitWait0 RW 16 32 Total number of ticks during which the port selected by PortSe-
lect had data to transmit on VL0 but no data was sent during
the entire tick either because of insufficient credits or because
of lack of arbitration.

PortVLXmitWait1 RW 16 48 Similar count for VL1

PortVLXmitWait2 RW 16 64 Similar count for VL2

PortVLXmitWait3 RW 16 80 Similar count for VL3

PortVLXmitWait4 RW 16 96 Similar count for VL4

PortVLXmitWait5 RW 16 112 Similar count for VL5

PortVLXmitWait6 RW 16 128 Similar count for VL6

PortVLXmitWait7 RW 16 144 Similar count for VL7

PortVLXmitWait8 RW 16 160 Similar count for VL8

PortVLXmitWait9 RW 16 176 Similar count for VL9

PortVLXmitWait10 RW 16 192 Similar count for VL10

PortVLXmitWait11 RW 16 208 Similar count for VL11

PortVLXmitWait12 RW 16 224 Similar count for VL12

PortVLXmitWait13 RW 16 240 Similar count for VL13

PortVLXmitWait14 RW 16 256 Similar count for VL14

Table 235 PortVLXmitWaitCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 962 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.9 SWPORTVLCONGESTION

o16-2.1.2: SwPortVLCongestion shall not be supported by nodes other
than switches.

PortVLXmitWait15 RW 16 272 Similar count for VL15

Table 235 PortVLXmitWaitCounters (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 236 SwPortVLCongestion

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl
on page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table
221 Performance Management ClassPortInfo:CapabilityMask
on page 933), setting PortSelect to 0xFF will cause data from
all valid ports to be accumulated.
When selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by
the values specified in their respective fields. When reading
(Get), this is ignored.
Bit 0 - SWPortVLCongestion0
Bit 1 - SWPortVLCongestion1
Bit 2 - SWPortVLCongestion2
Bit 3 - SWPortVLCongestion3
Bit 4 - SWPortVLCongestion4
Bit 5 - SWPortVLCongestion5
Bit 6 - SWPortVLCongestion6
Bit 7 - SWPortVLCongestion7
Bit 8 - SWPortVLCongestion8
Bit 9 - SWPortVLCongestion9
Bit 10 - SWPortVLCongestion10
Bit 11 - SWPortVLCongestion11
Bit 12 - SWPortVLCongestion12
Bit 13 - SWPortVLCongestion13
Bit 14 - SWPortVLCongestion14
Bit 15 - SWPortVLCongestion15

SWPortVLCongestion0 RW 16 32 Total number of packets to be transmitted on VL 0 of the out-
put port selected by PortSelect that were discarded because
of congestion. This includes the following reasons:
• Switch Lifetime Limit exceeded
• Switch HOQ Lifetime Limit exceeded

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 963 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.10 PORTSAMPLESRESULTEXTENDED

SWPortVLCongestion1 RW 16 48 Similar count for VL1.

SWPortVLCongestion2 RW 16 64 Similar count for VL2.

SWPortVLCongestion3 RW 16 80 Similar count for VL3.

SWPortVLCongestion4 RW 16 96 Similar count for VL4.

SWPortVLCongestion5 RW 16 112 Similar count for VL5.

SWPortVLCongestion6 RW 16 128 Similar count for VL6

SWPortVLCongestion7 RW 16 144 Similar count for VL7

SWPortVLCongestion8 RW 16 160 Similar count for VL8

SWPortVLCongestion9 RW 16 176 Similar count for VL9

SWPortVLCongestion10 RW 16 192 Similar count for VL10

SWPortVLCongestion11 RW 16 208 Similar count for VL11

SWPortVLCongestion12 RW 16 224 Similar count for VL12

SWPortVLCongestion13 RW 16 240 Similar count for VL13

SWPortVLCongestion14 RW 16 256 Similar count for VL14

SWPortVLCongestion15 RW 16 272 Similar count for VL15

Table 236 SwPortVLCongestion (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 237 PortSamplesResultExtended

Component Access Length
(bits)

Offset
(bits) Description

Tag RO 16 0 Semantics identical to PortSamplesResult component Tag on
page 944

Reserved RO 14 16 Reserved

SampleStatus RO 2 30 Semantics identical to PortSamplesResult component Sam-
pleStatus on page 944

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 964 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ExtendedWidth RO 2 32 Indicates the actual width in bits of the PortSamplesResultEx-
tended:Counter0 to 14, if supported. Ignored if IsExtended-
WidthSupported capability bit is 0.
• 00 = reserved
• 01 = 48 bits
• 10 = 64 bits
• 11 = reserved
Counters smaller than 64 bits shall be implemented as the
least significant bits of the corresponding 64-bit attribute com-
ponent, with the unimplemented upper bits of the component
returning zeroes for Get() and ignored for Set().

Reserved RO 32 32 Reserved

Counter0 RO 64 64 Semantics identical to PortSamplesResult component
Counter0 on page 944

Counter1 RO 64 128 Semantics identical to PortSamplesResult component
Counter1 on page 944

Counter2 RO 64 192 Semantics identical to PortSamplesResult component
Counter2 on page 944

Counter3 RO 64 256 Semantics identical to PortSamplesResult component
Counter3 on page 944

Counter4 RO 64 320 Semantics identical to PortSamplesResult component
Counter4 on page 944

Counter5 RO 64 384 Semantics identical to PortSamplesResult component
Counter5 on page 944

Counter6 RO 64 448 Semantics identical to PortSamplesResult component
Counter6 on page 944

Counter7 RO 64 512 Semantics identical to PortSamplesResult component
Counter7 on page 944

Counter8 RO 64 576 Semantics identical to PortSamplesResult component
Counter8 on page 944

Counter9 RO 64 640 Semantics identical to PortSamplesResult component
Counter9 on page 945

Counter10 RO 64 704 Semantics identical to PortSamplesResult component
Counter10 on page 945

Counter11 RO 64 768 Semantics identical to PortSamplesResult component
Counter11 on page 945

Counter12 RO 64 832 Semantics identical to PortSamplesResult component
Counter12 on page 945

Table 237 PortSamplesResultExtended (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 965 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.4.11 PORTCOUNTERSEXTENDED

Counter13 RO 64 896 Semantics identical to PortSamplesResult component
Counter13 on page 945

Counter14 RO 64 960 Semantics identical to PortSamplesResult component
Counter14 on page 945

Table 237 PortSamplesResultExtended (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 238 PortSamplesResultExtended

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Semantics identical to PortCounters component PortSelect on
page 946

CounterSelect RW 16 16 When writing (Set()), selects which counters are affected by
the operation. When reading (Get()), this is ignored.
• Bit 0 - PortXmitData
• Bit 1 - PortRcvData
• Bit 2 - PortXmitPkts
• Bit 3 - PortRcvPkts
• Bit 4 - PortUnicastXmitPkts
• Bit 5 - PortUnicastRcvPkts
• Bit 6 - PortMulticastXmitPkts
• Bit 7 - PortMulticastRcvPkts
• Bits 8-15 - Reserved

Reserved RO 32 32 Reserved

PortXmitData RW 64 64 Semantics identical to PortCounters component PortXmitData
on page 948, except that if this attribute is supported, this
component is not optional.

PortRcvData RW 64 128 Semantics identical to PortCounters component PortRcvData
on page 948, except that if this attribute is supported this com-
ponent is not optional.

PortXmitPkts RW 64 192 Semantics identical to PortCounters component PortXmitPkts
on page 948, except that if this attribute is supported this com-
ponent is not optional.

PortRcvPkts RW 64 256 Semantics identical to PortCounters component PortRcvPkts
on page 948, except that if this attribute is supported this com-
ponent is not optional.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 966 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.5 PERFORMANCE MANAGEMENT STATUS

This section provides a consolidated interpretation of a large number of
status-code-related compliance statements in Chapter 13: Management
Model on page 709, Chapter 14: Subnet Management on page 794, and
Chapter 16: General Services on page 930. It is provided here to only aid
interoperability, and is not part of the specification.

In the following sections, an error status definitoin is specified. This defi-
nition provides a minimal requirement to report SMP (or PM GMP) errors.
Note that adhering to this definition will satisfy all IB compliance rules. Any
additional error conditions and error handling that are beyond what are
specified in this section, without violating any IB compliance rules, are
considered as additional efforts and therefore optional to the implementa-
tion.

16.1.5.1 MANDATORY PM ATTRIBUTE STATUS

In this implementation, there is an implicit precedence among various
status settings. The higher the status value, the lower its precedence.
Note that this status precedence approach is only one possible implemen-
tation. Other implementations may exist. This implementation does not vi-
olate nor override any of the defined compliance rules. Other
implementations may return an error status without following this status

PortUnicastXmitPkts RW 64 320 Total number of unicast packets transmitted on all VLs from
the port. This may include unicast packets with errors (see Fig-
ure 51 Packet Receiver State Machine on page 174 and Fig-
ure 52 Data Packet Check machine on page 176), and
excludes link packets.

PortUnicastRcvPkts RW 64 384 Total number of unicast packets, including unicast packets
containing errors (see Figure 51 Packet Receiver State
Machine on page 174 and Figure 52 Data Packet Check
machine on page 176), and excluding link packets, received
from all VLs on the port.

PortMultiCastXmitPkts RW 64 448 Total number of multicast packets transmitted on all VLs from
the port. This may include multicast packets with errors (see
Figure 51 Packet Receiver State Machine on page 174 and
Figure 52 Data Packet Check machine on page 176).

PortMultiCastRcvPkts RW 64 512 Total number of multicast packets, including multicast packets
containing errors (see Figure 51 Packet Receiver State
Machine on page 174 and Figure 52 Data Packet Check
machine on page 176) received from all VLs on the port.

Table 238 PortSamplesResultExtended (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 967 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

precedence. If multiple errors were detected, any error status bit may be
returned in the GetResp().

Table 239 Mandatory PM Attribute Status

Precedence
(0x1 is highest) Status[4:2] Violations

1 0x1 BaseVersion, ClassVersion, or their combinations is not supported by the vendor.

2 0x2 A request packet has been received with the method neither is a PerformanceGet() nor
a PerformanceSet(). This packet may be discarded without a response or returned as
status 2 with the “R” bit of the method field set to one without regarding the overall
meaning of the method field or returned as status 2 with PerformanceGetResp().

3 0x3 It is not in any of the method/attribute combinations listed in Table 240 on page 967.

4 0x7 Containing at least one invalid component and/or AttributeModifier. See following sec-
tions for more details.

5 0x0 None of above violations were found.

Table 240 Valid Mandatory PM Method/Attribute Combinations

Attribute Name Methods

ClassPortInfo PerformanceGet()

PortSamplesControl PerformanceGet() or PerformanceSet()

PortSamplesResult PerformanceGet()

PortCounters PerformanceGet() or PerformanceSet

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 968 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.5.1.1 PM ATTRIBUTEMODIFIER ERRORS (STATUS[4:2] = 0X7)

16.1.5.1.2 PM ATTRIBUTE COMPONENT ERRORS (STATUS[4:2] = 0X7)

Table 241 PM AttributeModifier Errors

Attribute Name AttributeModifier Violations

ClassPortInfo AttributeModifier!= 0x0000_0000

PortSamplesControl SampleMechanisms < AttributeModifier < 0xFFFF_FFFE

PortSamplesResult SampleMechanisms < AttributeModifier < 0xFFFF_FFFE

PortCounters AttributeModifier!= 0x0000_0000

Table 242 PerformanceSet(ClassPortInfo) Component Errors

Violations

N/A

Table 243 PerformanceSet(PortSamplesControl) Component Errors

Attribute Component Violations

OpCodea Any of the reserved OpCode:
• OpCode = 0x00010101 to 0x00011111
• OpCode = 0x00101100 to 0x00111111
• OpCode = 0x01010110 to 0x01011111
• OpCode = 0x01100000 to 0x01100011
• OpCode = 0x01100110 to 0x01111111
• OpCode = 0x10000000 to 0x10111111

Any of the unsupported manufacturer specific OpCodes

PortSelect PortSelect = 0x00b

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFc

a. Only when sampling optional quantities that are OpCode specific.
b. Only if EnhancedPort0 = 0
c. Only if AllPortSelect = 0

Table 244 PerformanceSet(PortSamplesResult) Component Errors

Violations

N/A

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 969 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.5.2 OPTIONAL PM ATTRIBUTE STATUS

In this implementation, there is an implicit precedence among various
status settings. The higher the status value, the lower its precedence. This
status precedence implementation is only one possible implementation. It
does not violate nor override any of the defined compliance rules. Other
implementations may return an error status without following this status
precedence. If multiple errors were detected, any error status bit may be
returned in the GetResp().

Table 245 PerformanceSet(PortCounters) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 246 Optional PM Attribute Status

Precedence
(0x1 is highest)

Status[4:2] Violations

1 0x1 BaseVersion, ClassVersion, or their combinations is not supported by the vendor.

2 0x2 Not PerformanceGet() or PerformanceSet(). Base on the current specification, this error
cannot be reported and the packet will be discarded.

3 0x3 It is not in any of the method/attribute combinations listed in Table 247 on page 969.

4 0x7 Containing at least one invalid component and/or AttributeModifier. See following sections
for more details.

5 0x0 None of above violations were found.

Table 247 Valid Optional PM Method/Attribute Combinations

Attribute Name Methods

PortRcvErrorDetails PerformanceGet() or PerformanceSet()

PortXmitDiscardDetails PerformanceGet() or PerformanceSet()

PortOpRcvCounters PerformanceGet() or PerformanceSet()

PortFlowCtlCounters PerformanceGet() or PerformanceSet()

PortVLOpPackets PerformanceGet() or PerformanceSet()

PortVLOpData PerformanceGet() or PerformanceSet()

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 970 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.1.5.2.1 PM ATTRIBUTEMODIFIER ERRORS (STATUS[4:2] = 0X7)

16.1.5.2.2 PM ATTRIBUTE COMPONENT ERRORS (STATUS[4:2] = 0X7)

PortVLXmitFlowCtlUpdateErrors PerformanceGet() or PerformanceSet()

PortVLXmitWaitCounters PerformanceGet() or PerformanceSet()

SwPortVLCongestion PerformanceGet() or PerformanceSet()

Table 248 PM AttributeModifier Errors

Attribute Name AttributeModifier Violations

PortRcvErrorDetails AttributeModifier!= 0x0000_0000

PortXmitDiscardDetails AttributeModifier!= 0x0000_0000

PortOpRcvCounters AttributeModifier!= 0x0000_0000

PortFlowCtlCounters AttributeModifier!= 0x0000_0000

PortVLOpPackets AttributeModifier!= 0x0000_0000

PortVLOpData AttributeModifier!= 0x0000_0000

PortVLXmitFlowCtlUpdateErrors AttributeModifier!= 0x0000_0000

PortVLXmitWaitCounters AttributeModifier!= 0x0000_0000

SwPortVLCongestion AttributeModifier!= 0x0000_0000

Table 247 Valid Optional PM Method/Attribute Combinations

Attribute Name Methods

Table 249 PerformanceSet(PortRcvErrorDetails) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

CounterSelect Any bit in CounterSelect[15:6] is set to 1

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 971 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 250 PerformanceSet(PortXmitDiscardDetails) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

CounterSelect Any bit in CounterSelect[15:4] is set to 1

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 251 PerformanceSet(PortOpRcvCounters) Component Errors

Attribute Component Violations

OpCode Any of the reserved OpCode:
• OpCode = 0x00010101 to 0x00011111
• OpCode = 0x00101100 to 0x00111111
• OpCode = 0x01010110 to 0x01011111
• OpCode = 0x01100000 to 0x01100011
• OpCode = 0x01100110 to 0x01111111
• OpCode = 0x10000000 to 0x10111111

Any of the unsupported manufacturer specific OpCodes

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

CounterSelect Any bit in CounterSelect[15:2] is set to 1

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 252 PerformanceSet(PortFlowCtlCounters) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

CounterSelect Any bit in CounterSelect[15:2] is set to 1

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 972 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 253 PerformanceSet(PortVLOpPackets) Component Errors

Attribute Component Violations

OpCode Any of the reserved OpCode:
• OpCode = 0x00010101 to 0x00011111
• OpCode = 0x00101100 to 0x00111111
• OpCode = 0x01010110 to 0x01011111
• OpCode = 0x01100000 to 0x01100011
• OpCode = 0x01100110 to 0x01111111
• OpCode = 0x10000000 to 0x10111111

Any of the unsupported manufacturer specific OpCodes

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 254 PerformanceSet(PortVLOpData) Component Errors

Attribute Component Violations

OpCode Any of the reserved OpCode:
• OpCode = 0x00010101 to 0x00011111
• OpCode = 0x00101100 to 0x00111111
• OpCode = 0x01010110 to 0x01011111
• OpCode = 0x01100000 to 0x01100011
• OpCode = 0x01100110 to 0x01111111
• OpCode = 0x10000000 to 0x10111111

Any of the unsupported manufacturer specific OpCodes

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 255 PerformanceSet(PortVLXmitFlowCtlUpdateErrors) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 973 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2 BASEBOARD MANAGEMENT

C16-9: All nodes shall have a Baseboard Management Agent.

C16-9.1.1: The Baseboard Manager (BM) shall register its services with
the SA via SubnAdmSet(ServiceRecords) using the ServiceName “Base-
boardManager.IBTA”. See 15.2.5.14 ServiceRecord on page 895 and
Service Names in the Annex “Application Specific Identifiers.”

This section describes the Management Datagrams used to transport
Baseboard Management commands across the fabric. For more informa-
tion regarding Hardware Management of IB Modules, non-Modules (IB
devices whose packaging are different from an IB Module form factor),
and Chassis, see InfiniBand Architecture Specification, Volume 2,
Chapter “Hardware Management.” A simplified overview is presented
here.

The SM and SMA are shown in Figure 199 Baseboard Management Ar-
chitecture on page 974 strictly to indicate that Baseboard Management
and Subnet Management are independent, separate entities in the fabric
providing non-overlapping functionality.

The Baseboard Manager is a software entity that manages the hardware
via Baseboard Management messages. From the BM, these messages

b. Only if AllPortSelect = 0.

Table 256 PerformanceSet(PortVLXmitWaitCounters) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

Table 257 PerformanceSet(PortVLXmitFlowCtlUpdateErrors) Component Errors

Attribute Component Violations

PortSelect PortSelect = 0x00a

0xFF > PortSelect > NodeInfo:NumPorts

PortSelect = 0xFFb

a. Only if EnhancedPort0 = 0.
b. Only if AllPortSelect = 0.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 974 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

are tunneled (encapsulated in MADs) through the IBA fabric to the Base-
board Management Agent (BMA), which then recognizes the message
and forwards it to the Module Management Entity (MME). The MME pro-
cesses the embedded Baseboard Management commands. In some
cases, this results in the MME generating corresponding messages and
transactions on a present InfiniBand Management Link (IB-ML). IB-ML
messages may interface with a present Chassis Management Entity
(CME).

The BM may use Subnet Administration to retrieve information regarding
the nodes discovered in the IBA subnet, such as addresses, capabilities,
types.

Subnet Administration provides basic discovery information that is
common to all IBA endnodes, regardless of the type of Endnode in the
subnet as described above. It does not provide information beyond this,
such as VPD, chassis management data, and any other information under
Baseboard Management control. This information is “discovered” through
baseboard management.

A Baseboard Managed Unit can be either an IB-Module as defined in
Volume 2 of the InfiniBand Architecture Specification, a form factor other
than what is defined in Volume 2 (a non-Module), or a Managed Chassis.

Figure 199 Baseboard Management Architecture

InfiniBand Subnet

BM

Note: Drawing not to scale

TCA (if an Add-in
Board or I/O Unit)

Switch (if a Man-
aged Chassis)

Baseboard Managed
Unit, which can be:

• Add-in Board
• Managed Chassis
• Other I/O Unit

IB
-M

L

 MME Power Control
Temp Sensors

 ChassisInfo

 CME

 ModuleInfoIB-ML Agent

SM

BMA SMA
GSI (QP1) QP0

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 975 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Protocol-aware IB-Modules handle the send/receive of the Baseboard
Management MADs. The MADs are addressed using the LID of any end-
port of the IB device on the Module. A Managed Chassis may contain a
switch which handles the send/receive of the Baseboard Management
MADs. The MADs are addressed using the LID of the switch.

16.2.1 MAD FORMAT

C16-10: The datagrams in the Baseboard management class shall con-
form to the MAD format and use as specified in 13.4 Management Data-
grams on page 717 and further customized in Figure 200 Baseboard
Management MAD Format on page 975 and Table 258 Baseboard Man-
agement MAD Fields on page 975 below.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 B_Key

28

32 Reserved

...

60

64 Data

...

252

Figure 200 Baseboard Management MAD Format

Table 258 Baseboard Management MAD Fields

Field Name Length Description

Common MAD Header 24 bytes Common MAD as described in 13.4.2 Management Datagram Format on
page 718

B_Key 8 bytes BM specific key. See 16.2.4 B_Key General Use on page 982 for definition
and use.

Reserved 32 bytes Reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 976 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. No class-
specific bits are defined.

16.2.2 METHODS

The Baseboard Management class uses a subset of the common
methods described in 13.4.5 Management Class Methods on page 721.

C16-10.1.1: A Baseboard Management Agent shall support the methods
listed in Table 260 Baseboard Management Methods on page 976. All
method type values not listed in the Table are reserved.

Figure 201 BM Initiated IB-ML Command on page 977 is an example of a
transaction. Its semantics are described in the InfiniBand Architecture

Baseboard Management Data 192 bytes Attribute data as defined in the InfiniBand Architecture Specification, Vol-
ume 2, Management Command Section, which is refined by the Attribute ID
and the AttributeModifier. See Table 261 Baseboard Management Attributes
on page 978 for valid Attribute ID and Modifier values.

Table 258 Baseboard Management MAD Fields (Continued)

Field Name Length Description

Table 259 Baseboard Management Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Class-specific bits are reserved

Table 260 Baseboard Management Methods

Method Type Value Description

BMGet() 0x01 Request a get (read) of an attribute

BMSet() 0x02 Request a set (write) of an attribute

BMGetResp() 0x81 Response from a Get() or Set() request

BMSend() 0x03 Send Baseboard Management attribute (this can be the attribute for an
encapsulated Baseboard Management request [command] or response.)

BMTrap() 0x05 Notify an event occurred

BMTrapRepress() 0x07 Block repetition of notification

BMReport() 0x06 Forward an event previously subscribed for

BMReportResp() 0x86 Reply to a BMReport() method

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 977 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Specification, Volume 2, Chapter “Hardware Management,” Section
“Management Commands.”

Requests and response capabilities are symmetric; i.e., BMSend() may
be used to send a request from the MME as well as a response. Similarly,
the Baseboard Manager may use BMSend() to deliver a response. Figure
202 IB-ML Initiated Command on page 978 illustrates the path that would
be taken if a CME generated a request to the Baseboard Manager by de-
livering the request via a module’s IB-ML -to- IB functionality.

Figure 201 BM Initiated IB-ML Command

Datagram Transactions
BMABM

BMSend()
lsb of Attribute-
Modifier = 0
[request]
BMSend()
lsb of AttributeModi-
fier = 1 [response] (a
response is not
required for all com-
mands)

MME

IBA Fabric BMA-MME

Perform
Baseboard
Management
Command

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 978 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.3 ATTRIBUTES

C16-10.1.2: A Baseboard Management Agent shall support the attributes
listed in Table 261 Baseboard Management Attributes on page 978, Table
262 Baseboard Management Attribute / Method Map on page 979 and the
InfiniBand Architecture Specification, Volume 2, Chapter “Hardware Man-
agement.” All attribute IDs not listed in Table 261: Baseboard Manage-
ment Attributes are reserved.

Figure 202 IB-ML Initiated Command

Datagram Transactions

BMABM

BMSend()

BMSend()
(a response is not
required for all com-
mands)

MME

IBA Fabric IB-ML

IB-ML
Agent CME

Table 261 Baseboard Management Attributes

Attribute Name Attribute ID AttributeModifiera Description

ClassPortInfo 0x0001 0x00000000 General and port-specific infor-
mation for the BM class. See
16.2.3.1 ClassPortInfo on page
980.

Notice 0x0002 0x00000000 Information regarding a Trap.
See 16.2.3.2 Notice on page
980.

BKeyInfo 0x0010 0x00000000 B_Key information for the node.
See 16.2.3.3 BKeyInfo on page
982.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 979 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

WriteVPD 0x0020 0x00000000 / 0x00000001

See the InfiniBand Architecture
Specification, Volume 2, Chap-
ter “Hardware Management” for
all these attributes.

ReadVPD 0x0021 0x00000000 / 0x00000001

ResetIBML 0x0022 0x00000000 / 0x00000001

SetModulePMControl 0x0023 0x00000000 / 0x00000001

GetModulePMControl 0x0024 0x00000000 / 0x00000001

SetUnitPMControl 0x0025 0x00000000 / 0x00000001

GetUnitPMControl 0x0026 0x00000000 / 0x00000001

SetIOCPMControl 0x0027 0x00000000 / 0x00000001

GetIOCPMControl 0x0028 0x00000000 / 0x00000001

SetModuleState 0x0029 0x00000000 / 0x00000001

SetModuleAttention 0x002A 0x00000000 / 0x00000001

GetModuleStatus 0x002B 0x00000000 / 0x00000001

IB2IBML 0x002C 0x00000000 / 0x00000001

IB2CME 0x002D 0x00000000 / 0x00000001

IB2MME 0x002E 0x00000000 / 0x00000001

OEM 0x002F 0x00000000 / 0x00000001

a. Where two AttributeModifiers are listed, the least significant bit of the AttributeModifier is used to
differentiate BMSend() requests from responses. Refer to InfiniBand Architecture Specification, Volume 2,
Chapter “Hardware Management” for more details.

Table 261 Baseboard Management Attributes (Continued)

Attribute Name Attribute ID AttributeModifiera Description

Table 262 Baseboard Management Attribute / Method Map

Attribute Name BMGet() BMSet() BMSend() BMTrap()

ClassPortInfo X X

Notice X X X

BKeyInfo X X

WriteVPD X

ReadVPD X

ResetIBML X

SetModulePMControl X

GetModulePMControl X

SetUnitPMControl X

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 980 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. Class-specific bits of the Baseboard Management ClassPortInfo:Ca-
pabilityMask are defined in Table 263 Baseboard Management ClassPort-
Info:CapabilityMask on page 980.

16.2.3.2 NOTICE

The Notice attribute is described in 13.4.8.2 Notice on page 737.

GetUnitPMControl X

SetIOCPMControl X

GetIOCPMControl X

SetModuleState X

SetModuleAttention X

GetModuleStatus X

IB2IBML X

IB2CME X

IB2MME X

OEM X

Table 262 Baseboard Management Attribute / Method Map

Attribute Name BMGet() BMSet() BMSend() BMTrap()

Table 263 Baseboard Management ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8 IsIBMLSupported Direct Access to IB-ML is supported

9 IsBKeyNVRAM B_Key is in NVRAM

10-15 Reserved

Table 264 Baseboard Management Traps

Name Type Number DataDetails

BKeyViolation Security 259 Bad B_Key, <B_Key> from <LIDADDR>/<GIDADDR>/<QP> attempted
<METHOD> with <ATTRIBUTEID> and <ATTRIBUTEMODIFIER>

BMTraps Informational 260 <BMTrapDataLength> <BMTrapType> <BMTrapTypeModifier>
<BMTrapData>

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 981 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-3: The BKeyViolation trap uses the following layout for the DataDe-
tails component of the Notice attribute, see Table 265 Notice DataDetails
For Trap 259 on page 981. Fields shall be filled with the information cor-
responding to the description of a given trap.

o16-3.1.1: The BMTraps use the layout shown in Table 266 Notice Data-
Details For Trap 260 on page 981 for the DataDetails component of the
Notice attribute. Fields shall be filled with the information corresponding
to the description of a given trap.

Table 265 Notice DataDetails For Trap 259

Field Length(bits) Description

LIDADDR 16 Local Identifier

METHOD 8 Method

Reserved 8 Reserved

ATTRIBUTEID 16 Attribute ID

ATTRIBUTE MODIFIER 32 AttributeModifier

Reserved 8 Reserved

QP 24 Queue Pair

BKEY 64 B_Key

GIDADDR 128 Global Identifier.
If no GRH is present in the offending packet, this
field shall be filled with zeroes.

Padding 128 Shall be ignored on read. Content is unspecified.

Table 266 Notice DataDetails For Trap 260

Field Length(bits) Description

BMTrapDataLength 8 Number of TrapData bytes to included

BMTrapType 8 Indicates reason for trap
0x00= Generic MME
0x01 = OEM MME
0x02 = CME_RTR
0x03 = WRE
0x04 = Generic CME
0x05 = OEM CME
All others - reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 982 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.3.3 BKEYINFO

16.2.3.4 IB-ML ATTRIBUTES

See InfiniBand Architecture Specification, Volume 2, Chapter “Hardware
Management”, Section “Management Commands” for a description of the
BM class specific attributes and their format.

16.2.4 B_KEY GENERAL USE

The BM includes the Baseboard Management Key (B_Key) in the BM
MAD to obtain authorization. The B_Key is used to authenticate a trusted
source. This model assumes that the fabric has some level of physical se-
curity.

BMTrapTypeModifier 24 Varies based on TrapType:
• holds 3-byte OEM ID if Trap Type is OEM MME or OEM CME
• holds SlotSelector, 0x00, 0x00 if TrapType is CME_RTR
• holds 0x00, 0x00, 0x00 (reserved) if TrapType is Generic

MME, WRE, or Generic CME

BMTrapData 8*TrapDataLength Data bytes for TrapType of OEM MME or OEM CME.

Padding 392-(8*TrapDataL-
ength)

Shall be ignored on read. Content is unspecified.

Table 266 Notice DataDetails For Trap 260 (Continued)

Field Length(bits) Description

Table 267 BKeyInfo

Component Access Length
(bits)

Offset
(bits) Description

B_Key RW 64 0 The 8-byte Baseboard Management key used in all BM
MADs by all valid BMs. A value of 0 means no B_Key
check is ever done by the BMA.

B_KeyProtectBit RW 1 64 See 16.2.4.3 B_Key Operation on page 984 for details.

Reserved RW 15 65 Reserved

B_KeyLeasePeriod RW 16 80 Timer value used to indicate how long the B_Key ProtectBit
is to remain non zero after a BMSet(BKeyInfo) MAD that
failed a B_Key check is dropped. The value of the timer
indicates the number of seconds for the lease period. With
a 16 bit counter, the period can range from one second to
approximately 18 hours. 0 shall mean infinite. See 16.2.4.5
B_Key Recovery on page 984 for details.

B_KeyViolations RO 16 96 Number of MADs that have been received at this node
since power-on or reset that have been dropped due to a
failed B_Key check if such a counter is implemented. Oth-
erwise this shall be 0xFFFF.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 983 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.4.1 B_KEY ASSUMPTIONS

1) To use the correct key for each node, the BM or a higher-level B_Key
manager keeps track of the keys for the nodes that it is managing.

2) If a backup BM exists, it shares the B_Keys for ease of fail-over.

3) A BM may have exclusive access to a set of nodes, by using a B_Key
which is only known by that BM and those particular nodes. Since
nodes reply to Baseboard Manager’s requests using their own
B_Key, if a Baseboard Manager assigns more than one B_Key to de-
vices on its management domain, it needs to run on an HCA whose
BMA can respond to all such B_Keys.

4) The BM sets the B_Key, B_KeyProtectBit, and B_KeyLeasePeriod in
the BKeyInfo Attribute with one BMSet(BkeyInfo) MAD. A successful
completion of this assignment indicates to the BM that it has taken
ownership of the node.

16.2.4.2 B_KEY PROTECTION SCOPE

Each BMA in a node has one B_Key. Table 268 B_Key Protection Scope
on page 983 shows the scope protected by that B_Key. The semantics are
explicitly defined in InfiniBand Architecture Specification, Volume 2,
Chapter “Hardware Management.”

Table 268 B_Key Protection Scope

Source Targeted Entity Protection

BM Read and Writes to
• ClassPortInfo (e.g., BM LID in TrapLID)
• BKeyInfo (e.g., B_Key, B_KeyProtectBit)

yes

BM Attributes causing reads from and writes to IB-ML
• ModuleInfoa

• IB-module Specific Data
• ChassisInfob

• CMEb

• Other IB-ML devices

a. The IB-Module vendor protects the factory-programmed portion of ModuleInfo against
writes even if a proper B_Key is provided.
b. The Chassis vendor protects the factory-programmed portion of ChassisInfo against
writes even if a proper B_Key is provided. If further protection is desired, the CME or the
Chassis provides it.

yes

IB-ML Man-
aged Unit

Attributes causing reads from and writes to IB-ML
• IB-module VPD
• IB-module Specific Data
• ChassisInfob

• Other IB-ML devices

no

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 984 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.2.4.3 B_KEY OPERATION

C16-11: The BMA shall check the B_Key contained in incoming MADs.

The success and effect of the check depends on the value of the BKey-
Info:B_Key and BKeyInfo:B_KeyProtectBit of the BMA and on the method
and attribute contained in the incoming MAD.

C16-12: If B_Key check fails, the BMA shall:

1) Drop the MAD.

2) Increment a B_Key Violation counter if supported.

3) Send a BKeyViolation trap if traps are supported by the BMA.

4) Start a countdown timer with the B_Key lease period value.

16.2.4.4 B_KEY INITIALIZATION

C16-13: At power up or reset, the BKeyInfo:B_Key, BKey-
Info:B_KeyProtectBit and BKeyInfo:B_KeyLeasePeriod shall be set to
zero if NVRAM is not used; otherwise, they shall be set to the values
stored in NVRAM.

If the B_Key-related components are not stored in NVRAM, the BKey-
Info:B_Key, BKeyInfo:B_KeyProtectBit and BKeyInfo:B_KeyLeasePeriod
components may be set by the BM. Initialization of BKey-
Info:B_KeyLeasePeriod to a value of zero notwithstanding, whenever a
pot’s B_Key-related components are not stored in NVRAM, a BM may use
BMSet(BKeyInfo) to assign the subsequent BKeyInfo:B_Key, BKey-
Info:B_KeyProtectBit and BKeyInfo:B_KeyLeasePeriod.

16.2.4.5 B_KEY RECOVERY

The B_Key lease period timer starts when a B_Key check fails. At this
time, the node sends a trap to the BM (if traps are supported and if the BM
stored its information in the trap components of the ClassPortInfo at-
tribute). This trap serves as a request to the BM to refresh the lease period

Table 269 B_Key Check

BMA’s
B_Key

BMA’s B_Key
Protection Bit MAD’s method Success

zero any any yes

non-zero any BMSet(), BMSend() if MAD’s B_Key equals BMA’s B_Key

non-zero 0 BMGet() yes

non-zero 1 BMGet() yesa

a. Even though the check succeeds, the B_Key value in the BKeyInfo attribute shall be returned as zero.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 985 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

by issuing a BMSet(BKeyInfo). A successful BMSet(BKeyInfo) will stop
the timer and will rearm it.

If the BM that originally set the B_Key has gone away, then the lease pe-
riod expires—clearing the BKeyInfo:B_KeyProtectBit and allowing
anyone to read (and then set) the BkeyInfo:B_Key.

In the case where a node starts with NVRAM, BKeyInfo:B_Key and BKey-
Info:B_KeyProtectBit set and the TrapLID is zero (because no BM has
come around to set it), the node has no BM to send the trap to. In this
case, the node does not send the trap and the lease period timer will ex-
pire, causing eventual take over by a new BM.

With the BMGet(BKeyInfo), any BM can detect whether a BKey-
Info:B_Key is set (although hidden) based on the BKey-
Info:B_KeyProtectBit. If the BKeyInfo:B_KeyProtectBit is set, the
BKeyInfo:B_Key is set and hidden. Otherwise the returned BKey-
Info:B_Key is the real one even if it is zero.

16.2.4.6 LEVELS OF PROTECTION

There are four different protection levels based on the B_Key, depending
on the system requirements.

16.3 DEVICE MANAGEMENT

The Device Management Agent is optional.

Table 270 Protection Levels

B_Key B_KeyProtectBit B_KeyLeasePeriod Description

0 any any No protection provided. Any BM can issue sets and sends.

non-zero 0 n/a Protection provided, but allows BMs to read the BKeyInfo:B_Key
in the node.

non-zero 1 non-zero Protection provided and does not allow anyone to read the
B_Key in the node until the lease period has expired. The B_Key
lease period is a mechanism to allow the B_Key to be protected
only for a given amount of time.

non-zero 1 0 Protection provided and does not allow the B_Key in the node to
be read by other BMs.
It must be noted that if the lease period was set to 0 (infinite) and
the BM that set it dies, there is no possibility for other BMs to
ever read it. So if the B_Key is not provided by some unspecified
way to the other BMs, the BMA of this node will never be acces-
sible again.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 986 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-3.1.2: If there is a Device Manager, it shall register its services with
the SA via SubnAdmSet(ServiceRecord) using the ServiceName “Device-
Manager.IBTA.” See 15.2.5.14 ServiceRecord on page 895 and Service
Names in the Annex “Application Specific Identifiers.”

IO Devices and I/O controllers (IOC) are not directly connected to the IBA
fabric. An I/O Unit (IOU) containing one or more IOCs is attached to the
fabric via a TCA. The TCA is responsible for receiving packets from the
fabric and delivering complete, valid messages to IOCs, and vice-versa.
The TCA might use memory resources supplied by the IOC to assemble
the packet and notify the IOC when the complete packet is available for
consumption. IOC is then responsible for executing I/O requests such as
network sends and receives or disk reads and writes over a device spe-
cific interface such as Ethernet or SCSI.

This section does not address direct management of end devices such as
disk drives but focuses on the infrastructure, related methods, data for-
mats and attributes to support IOU/IOC management over the fabric. This
section defines mechanisms to send and receive device management
packets between two fabric attachment points such as a HCA and a TCA.
The mechanisms required to translate MADs into a format that the end de-
vices understand and how the data is delivered and retrieved from an end
device is device-specific and therefore is not addressed in this specifica-
tion.

The IBA is based on message passing. For IOU and IOC, the messages
fall into three classes: fabric configuration, unit management/configura-
tion, and I/O transaction:

• Fabric configuration messages that are processed by the Subnet
Management Agent (SMA) are defined in Chapter 14: Subnet Man-
agement on page 794.

• Messages specific to configuring and managing a device that are re-
ceived through the General Services Interface (GSI) are described in
this section.

• IO transaction messages are not defined in this document. I/O trans-
action messages include those messages used by an initiator to re-
quest I/O services from an IOC, messages containing user or
application data, and messages used by the IOC to provide a com-
pletion notification (ending status) to the requester. Also included in
this class are in-band configuration messages (parameters, etc.) di-
rected only to an IOC, and not to the larger IOU as a whole. These
messages travel as I/O requests but perform management functions
specific to the I/O controller.

Although this chapter tends to use language implying that an IOU “con-
tains” IOCs, there are no restrictions on how IOCs are connected to, or
served by, the TCA. Figure 203 Architectural Model for an I/O Unit on

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 987 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

page 987 provides the architectural and connection models for an IOU,
consisting of a TCA and one or more IOCs.

16.3.1 MAD FORMAT

o16-4: The datagrams in the Device Management class shall conform to
the MAD format and use as specified in 13.4 Management Datagrams on
page 717 and further customized in Figure 204 Device Management MAD
Format on page 987 and Table 271 Device Management MAD Fields on
page 987 below.

gure 203 Architectural Model for an I/O Unit

Fa
br

ic

I/O Port or Devices

I/O Unit

SM
I

G
SI

TCA
M

essage and
D

ata Services

I/O Controller

I/O Controller

I/O Controller

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Reserved

...

60

64 Data

...

252

Figure 204 Device Management MAD Format

Table 271 Device Management MAD Fields

Field Length Description

Common MAD
Header

24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on
page 718

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 988 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. Some
class-specific bits are defined.

16.3.2 METHODS

Among the services that a TCA provides to an initiating client is a mech-
anism to deliver detailed information about the I/O resources (e.g., IOCs)
supported by the IOU. This information transcends a simple count of the
number of IOCs supported to provide details of each IOC such as a GUID,
a vendor-unique ID, product revision levels, and other information that is
specific to a given IOC. The purpose of the detailed information is to let a
system configuration manager allocate the IOU’s resources to various cli-
ents located on the IBA fabric, and to provide a common way for host re-
source managers to determine the characteristics of IOUs and IOCs. This
allows the proper driver to be associated with each controller.

The profiles are requested and returned through the GSI, which is an un-
reliable datagram service. The actual access QP and DLID may be redi-
rected by the GSI. The IOUnitInfo attribute contains information on the
number of IOCs the unit can support (IOUnitInfo:MaxControllers). This
value is the length of the IOUnitInfo:ControllerList, which has an entry for
every possible controller “slot” (which may be physical or logical). Each
entry in the ControllerList component shows whether a controller is
present. For each controller, the IOControllerProfile attribute contains in-
formation such as the type of controller and the identity of the IOC’s
vendor. Each controller has a ServiceEntries attribute associated with it.
ServiceEntries is a table of ServiceIDs that the controller advertises to its

Reserved 40 bytes Reserved

DevMgt Data 192 bytes 192 bytes of Device Management payload. The structure and content depends
upon the Method, Attribute and AttributeModifier fields in the header.

Table 271 Device Management MAD Fields (Continued)

Field Length Description

Table 272 Device Management Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8 NoResponse IOC Not responding

9 NoServiceEntries Service Entries are not supported

10-14 - Reserved

15 GeneralFailure IOC General Failure

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 989 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

clients. The format of the IOUnitInfo, IOControllerProfile and ServiceEn-
tries structures are defined in 16.3.3 Attributes on page 989.

o16-4.1.1: If the Device Management Class is supported, the Device
Management Agent shall support the methods listed in Table 273: Device
Management Methods. All method type values not listed in the Table are
reserved.

16.3.3 ATTRIBUTES

This section specifies the format of the attributes used for managing the
IOU. Messages used as part of I/O transactions are not specified in this
document. The term “device” refers to actual devices sitting behind IOCs.
The way they are numbered is implementation-specific

o16-4.1.2: If the Device Management class is implemented, the Device
Management Agent shall support the attributes listed in Table 274 Device
Management Attributes on page 989 and Table 275 Device Management
Attribute / Method Map on page 991. All attribute IDs not listed in Table
274: Device Management Attributes are reserved.

Table 273 Device Management Methods

Method Type Value Description

DevMgtGet() 0x01 Request an IOU to return (read) Device Management class attributes such as profile
or a list of controllers currently installed.

DevMgtSet() 0x02 Request an IOU to set (write) an attribute. The object will
issue a DevMgtGetResp() as a response.

DevMgtGetResp() 0x81 IOU responds to an attribute Get or Set request.

DevMgtTrap() 0x05 Unsolicited datagram sent to the Device Management entity. Contains the Notice
Attribute as defined in 13.4.8.2 Notice on page 737 to identify the trap.

DevMgtTrapRepress() 0x07 Block repetition of notification.

DevMgtReport() 0x06 Forward an event previously subscribed for

DevMgtReportResp() 0x86 Reply to a DevMgtReport() method

Table 274 Device Management Attributes

Attribute Name Attribute
ID

Attribute-
Modifiera Description

ClassPortInfo 0x0001 0x0000_0000 See 16.3.3.1 ClassPortInfo on page 991.

Notice 0x0002 0x0000_0000 See 16.3.3.2 Notice on page 992.

IOUnitInfo 0x0010 0x0000_0000 List of all IOCs present in a given IOU. Each IOU may support up to
0xFF controllers. See 16.3.3.3 IOUnitInfo on page 992.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 990 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IOControllerProfile 0x0011 0x0000_0001-
0x0000_00FF

IOC Profile Information. AttributeModifier identifies the IOC. See
16.3.3.4 IOControllerProfile on page 993.

ServiceEntries 0x0012 0x0001_0000-
0x00FF_FFFF

List of supported services and their associated Service IDs. See 16.3.3.5
ServiceEntries on page 995. Each IOC has a table with at most 255 Ser-
viceEntries.
The AttributeModifier is structured as follows:
• the upper 16 bits identify the IOC
• the lower 16 bits specify a range of up to four Service Entries to be

retrieved. The lower 8 bits specify the beginning of the range and the
upper 8 bits specify the end of the range.

Reserved 0x0013-
0x001F

0x0000_0000-
0xFFFF_FFFF

Reserved

DiagnosticTimeout 0x0020 0x0000_0000 -
0xFFFF_FFFF

Response indicates maximum time for completion of diagnostic test. Tar-
get device is identified by the AttributeModifier. Tests not completing
within this period may indicate device failure. Specified in multiples of
milliseconds. See 16.3.3.6 DiagnosticTimeout on page 996.

PrepareToTest 0x0021 0x0000_0000 -
0xFFFF_FFFF

A Set with this Attribute instructs the device specified by the Attribute-
Modifier to prepare for diagnostic test.
A Get of this Attribute will result in the appropriate Response Status
being set as follows:
0x0000 = Ready for diagnostic test
0x0100 = Invalid AttributeModifier
0x0200 = Device not ready
0x0400 = Device not responding
0x0800 = Diagnostics not supported
0x1000 - 0x8000 = Reserved
See 16.3.3.7 PrepareToTest on page 996.

TestDeviceOnce 0x0022 0x0000_0000 -
0xFFFF_FFFF

A Set instructs the device specified by the AttributeModifier to initiate a
single diagnostic test and run it once.
Vendor-unique attributes (AttributeID values 0xFF00 - 0xFFFF) may be
defined to initiate specific test instructions.
See 16.3.3.8 TestDeviceOnce on page 996.

TestDeviceLoop 0x0023 0x0000_0000 -
0xFFFF_FFFF

A Set instructs the device specified by the AttributeModifier to initiate a
single diagnostic test and run it continuously in a loop.
Vendor-unique attributes (AttributeID values 0xFF00 - 0xFFFF) may be
defined to initiate specific test instructions.
See 16.3.3.9 TestDeviceLoop on page 996.

DiagCode 0x0024 0x0000_0000 -
0xFFFF_FFFF

Vendor-specific diagnostic information for the device specified by the
AttributeModifier. See 16.3.3.10 DiagCode on page 996.

Reserved 0x0025-
0xFEFF

0x0000_0000 -
0xFFFF_FFFF

Reserved

Table 274 Device Management Attributes (Continued)

Attribute Name Attribute
ID

Attribute-
Modifiera Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 991 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. No class-specific bits are defined.

Vendor specific 0xFF00-
0xFFFF

0x0000_0000 -
0xFFFF_FFFF

Vendor-unique attribute values may be defined to deliver specific test
instructions.

a. The AttributeModifier for a diagnostic attribute specifies the I/O component. An AttributeModifier of zero specifies the I/O unit
itself. If IOUnitInfo:DiagDeviceID is one, the least significant 8 bits of a non-zero AttributeModifier designates the IOC. Other bits of
the AttributeModifier (except the msb) are implementation specific and can be used to identify additional I/O components such as
secondary I/O ports. The recommended practice is that if the additional bits are zero, then the diagnostic attribute applies to the IOC
itself and non-zero values specify secondary I/O components.

Table 274 Device Management Attributes (Continued)

Attribute Name Attribute
ID

Attribute-
Modifiera Description

Table 275 Device Management Attribute / Method Map

Attribute Name DevMgtGet() DevMgtSet() DevMgtTrap()

ClassPortInfo X X

Notice X X X

IOUnitInfo X

IOControllerProfile X

ServiceEntries X

DiagnosticTimeout X

PrepareToTest X X

TestDeviceOnce X

TestDeviceLoop X

DiagCode X

Table 276 Device Management ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8-15 - Class-specific bits are reserved

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 992 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.3.2 NOTICE

The Notice attribute is described in 13.4.8.2 Notice on page 737. It is used
for one optional generic trap.

o16-5: Device Management Traps use the following layout for the Data-
Details component of the Notice attribute, see Table 278 Notice DataDe-
tails For Trap 514 on page 992. Fields shall be filled with the information
corresponding to the description of a given trap.

16.3.3.3 IOUNITINFO

Table 277 Device Management Traps

Name Type Number DataDetails

ReadyToTest Informational 514 Device <DEVICE> readiness is <STATUS>, where status is the same as would
have been returned by a Get(PrepareToTest) with device as the AttributeModi-
fier.

Table 278 Notice DataDetails For Trap 514

Field Length(bits) Description

STATUS 16 Readiness status

DEVICE 32 Device number

Padding 384 Shall be ignored on read. Content is unspecified.

Table 279 IOUnitInfo

Component Access Length
(bits)

Offset
(bits) Description

Change_ID RO 16 0 Incremented, with rollover, by any change to ControllerList.

Max Controllers RO 8 16 Number of slots in ControllerList.

Reserved RO 6 24 Reserved

DiagDeviceID RO 1 30 A zero indicates that the AttributeModifier in diagnostic attributes
is I/O unit vendor-specific. A one indicates that the AttributeModi-
fier’s least significant 8 bits identify the IOC Slot Number. This
when this bit is one, diagnostics are per IOC. When this bit is
zero, the I/O unit vendor defines how the AttributeModifier is
interpreted. This allows diagnostics to be executed on objects
behind the IOC.

Option ROM RO 1 31 Indicates presence of Option ROM. 1 = Present; 0 = Absent.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 993 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.3.4 IOCONTROLLERPROFILE

ControllerList RO 1024 32 A series of 4-bit nibbles with each representing a slot in the IOU.
Each 4-bit nibble can take the following values:
• 0x0 = IOC not installed
• 0x1 = IOC present
• 0x2-0xE = reserved
• 0xF = slot does not exist
Bits 7-4 of the first byte (lowest offset) represent slot 1, bits 3-0
represent slot 2, bits 7-4 of the second byte represent slot 3, bits
3-0 represent slot 4, and so on.

Table 279 IOUnitInfo (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 280 IOControllerProfile

Component Access Length
(bits)

Offset
(bits) Description

GUID RO 64 0 An EUI-64 GUID used to uniquely identify the control-
ler. This could be the same one as the Node/Port
GUID if there is only one controller.

VendorID RO 24 64 IO controller vendor ID, IEEE format

Reserved RO 8 88 Reserved for alignment

IocDeviceID RO 32 96 A number assigned by the vendor to identify the type
of controller. This can be used by an Operating Sys-
tem to select a device driver.

Device Version RO 16 128 A number assigned by the vendor to identify the
device version.

Reserved RO 16 144 Reserved for alignment.

Subsystem VendorID RO 24 160 ID of the vendor of the enclosure, if any, in which the
I/O controller resides in IEEE format; otherwise zero.

Reserved RO 8 184 Reserved for alignment.

SubsystemID RO 32 192 A number identifying the subsystem where the con-
troller resides.

IOClass RO 16 224 0x0000-0xFFFE = Reserved for I/O classes encom-
passed by the InfiniBand Architecture. Refer to
Annex “Application-Specific Identifiers.”
0xFFFF = Vendor-specific.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 994 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

IOSubclass RO 16 240 0x0000-0xFFFE = Reserved for I/O subclasses
encompassed by the InfiniBand Architecture. Refer to
Annex “Application-Specific Identifiers.”
0xFFFF = Vendor-specific.
This shall be set to 0xFFFF if the I/O Class compo-
nent is set to 0xFFFF.

Protocol RO 16 256 0x0000-0xFFFE = Reserved for I/O protocols encom-
passed by the InfiniBand Architecture. Refer to
Annex “Application-Specific Identifiers.”
0xFFFF = Vendor-specific.
This shall be set to 0xFFFF if the I/O Class compo-
nent is set to 0xFFFF.

Protocol Version RO 16 272 Protocol specific.

Reserved RO 16 288 Reserved

Reserved RO 16 304 Reserved

Send Message Queue Depth RO 16 320 Maximum depth of the Send Message Queue.

Reserved RO 8 336 Reserved for alignment

RDMA Read Queue Depth RO 8 344 Maximum depth of the per-channel RDMA Read
Queue.

Send Message Size RO 32 352 Maximum size of Send Messages in bytes.

RDMA Transfer Size RO 32 384 Maximum size of outbound RDMA transfers initiated
by the IOC - in bytes.

Controller Operations Capability
Mask

RO 8 416 Supported operation types of this I/O controller. A bit
set to 1 for affirmation of supported capability.
Bit: Name; Description
0: ST; Send Messages To IOCs
1: SF; Send Messages From IOCs
2: RT; RDMA Read Requests To IOCs
3: RF; RDMA Read Requests From IOCs
4: WT; RDMA Write Requests To IOCs
5: WF; RDMA Write Requests From IOCs
6: AT; Atomic Operations To IOCs
7: AF; Atomic Operations From IOCs

Reserved RO 8 424 Reserved

Service Entries RO 8 432 Number of entries in the ServiceEntries table.

Reserved RO 72 440 Reserved

ID String RO 512 512 UTF-8 encoded string for identifying the controller to
operator.

Table 280 IOControllerProfile (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 995 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An I/O Controller represents a QP consumer on the target side that pro-
vides a particular I/O function via an I/O protocol. The IOControllerProfile
attribute provides information that enables a host to identify the I/O func-
tion and load the appropriate I/O driver. The IOC function can be matched
with a proprietary driver by its vendor information components or with a
generic driver by its Class, Subclass, and protocol components (Refer to
Annex A1 “I/O Annex” for driver matching rules).

Each IOC lists one or more ServiceEntries, and each ServiceEntry identi-
fies an instance of I/O service that the IOC provides. Examples of why an
IOC might have multiple services entries are (1) when the IOC supports
multiple protocols; (2) when the IOC uses a different QP for each set of
I/O resources it provides; and (3) when the IOC supports different service
criteria. For example, an IOC that supports SCSI RDMA Protocol (SRP)
would provide a service entry for each SCSI target port and if the IOC sup-
ported another protocol (such as a proprietary I/O protocol) it would also
provide additional ServiceEntries for that protocol. Additionally, if that IOC
supports one or more management protocols (such as for a JBOD or
RAID configuration program) it might also have additional ServiceEntries
for them.

16.3.3.5 SERVICEENTRIES

Table 281 ServiceEntries

Component Access Length
(bits)

Offset
(bits) Description

ServiceName_1 RO 320 0 UTF-8 encoded, null-terminated name of the service.

ServiceID_1 RO 64 320 An identifier of the associated Service.

ServiceName_2 RO 320 384 UTF-8 encoded, null-terminated name of the service.

ServiceID_2 RO 64 704 An identifier of the associated Service.

ServiceName_3 RO 320 768 UTF-8 encoded, null-terminated name of the service.

ServiceID_3 RO 64 1088 An identifier of the associated Service.

ServiceName_4 RO 320 1152 UTF-8 encoded, null-terminated name of the service.

ServiceID_4 RO 64 1472 An identifier of the associated Service.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 996 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.3.6 DIAGNOSTICTIMEOUT

16.3.3.7 PREPARETOTEST

16.3.3.8 TESTDEVICEONCE

16.3.3.9 TESTDEVICELOOP

16.3.3.10 DIAGCODE

Table 282 DiagnosticTimeout

Component Access Length
(bits)

Offset
(bits) Description

MaxDiagTime RO 32 0 Maximum time to finish a diagnostic operation in milliseconds

Table 283 PrepareToTest

Component Access Length(bits) Offset (bits) Description

- - - This attribute does not have any components

Table 284 TestDeviceOnce

Component Access Length(bits) Offset (bits) Description

- - - This attribute does not have any components

Table 285 TestDeviceLoop

Component Access Length(bits) Offset (bits) Description

- - - This attribute does not have any components

Table 286 DiagCode

Component Access Length(bits) Offset (bits) Description

DiagCode RO 16 0 16-bit diagnostic code. A value of 0x0000 means
“device operational”; all other values are IOU vendor-
specific.

Vendor-specific

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 997 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.3.4 DEVICE DIAGNOSTIC FRAMEWORK

Device Diagnostics allows the identification of faults in devices behind the
target channel adapter. As such, it complements other sections of this
specification that describe how problems at the fabric and node level may
be identified and isolated.

The device diagnostic framework is intended to support tests within an ac-
tive fabric. It is versatile enough, however, to accommodate vendor-
unique approaches that may include retrieval of power-on data. It should
be noted that some, and perhaps most, devices may not permit simulta-
neous use of I/O transaction messages and diagnostics. Unless data is
flushed from internal buffers, for example, corruption or loss of user data
might occur. Further, it is expected that the diagnostics tests would require
setting the device to an initial, known state. For that reason, provision will
be made to put the device into a “ready” state prior to test, which will likely
cause I/O transactions to be held off. This may, in turn, cause established
connections to time out, and other management notices to be sent.

In general, device diagnostics should be used with great care, and with
full understanding of the potential impact to I/O transactions to the target
device. It is best used during periods of initial configuration, major main-
tenance, or as a tool of last resort.

16.3.4.1 BEHAVIORS

The Device Management class of MADs (see 16.3 Device Management
on page 985) is used for diagnostics. Within that class, standard methods
as defined in Table 273 Device Management Methods on page 989 are
utilized. Attributes specific to device diagnostics are defined by which
vendor-supplied tests may be invoked, and the results of completed tests
then determined. The AttributeModifier indicates the object under test. If
IOUnitInfo:DiagDeviceID is one, then a non-zero AttributeModifier (ig-
noring the MSB) indicates the IOC and a zero AttributeModifier (ignoring
the MSB) indicates the entire IOU. Results are reported in the DIAGCODE
attribute. The first 16 bits provide an overall status of the device under
test; a value of zero indicates that the device is operational, and all other
values are vendor-specific. The attribute data following the 16-bit DIAG-
CODE is vendor-specific.

The PrepareToTest attribute within the DevMgtSet() method places the
device into a test-ready state. The time required to complete this step is
not predictable, as it may involve flushing data from cache memory, rein-
itializing SCSI ports, etc. The device indicates its readiness for test by sig-
naling the IOU to send an Informational Trap.

Alternatively, a DevMgtGet() method on this attribute will return informa-
tion pertaining to the specific device's ability or readiness for test. This al-

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 998 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

lows the status to be polled on a periodic basis, or to determine that the
device does not support diagnostic tests.

Two modes are provided for initiating diagnostics: single test mode and
continuous test mode. In single test mode, a single test sequence is initi-
ated by setting an appropriate AttributeModifier for the TestDeviceOnce
attribute, with MSB=0. The DevMgt Agent rejects a DevMgtSet(TestDevi-
ceOnce) with AttributeModifier MSB=1. Once initiated, this vendor-de-
fined test will run to completion. Because tests will vary by device
technology and by vendor, the time-to-completion is inherently unpredict-
able. To detect errant devices which are unable to complete their diag-
nostic test, a DiagnosticTimeout attribute may be retrieved in advance of
test initiation, which indicates the maximum allowable period for comple-
tion. Results of the completed diagnostic test are obtained through the Di-
agCode attribute of the DevMgtGetResp() method.

The continuous test mode can assist in detecting problems that are tran-
sient in nature, be used to initiate endurance-related tests. The contin-
uous-test mode is initiated by setting an appropriate AttributeModifier for
the TestDeviceLoop attribute, with MSB=1. Results of the last completed
diagnostic test are obtained through the DiagCode attribute of the
DevMgtGetResp() method.

The DevMgt Agent aborts the continuous test mode when it receives a
DevMgtSet(TestDeviceLoop) with AttributeModifier MSB=0. In this case
the DiagCode is indeterminate. The DevMgt Agent terminates the contin-
uous test mode after it completes the current pass when it receives a
DevMgtSet(TestDeviceOnce) with AttributeModifier MSB=0. In this case
the DiagCode is valid.

Interpretation of results obtained through the DevMgtGetResp() method is
vendor-specific.

It is beyond the scope of this specification to define a set of white-box,
technology-specific diagnostic tests. Rather, the intent is to allow initiation
of a vendor-supplied test sequence, for which the expected outcome
would be either success or failure. The DiagCode format, however, allows
flexibility for the vendor to provide specific, coded information about the
test results.

16.4 SNMP TUNNELING

The SNMP Tunneling Agent is optional.

This section describes the Management Datagrams used to report native
SNMP tunneling over the IBA.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 999 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SNMP, or Simple Network Management Protocol, consists of a set of stan-
dards for network management, a protocol, and a database specification
to uniformly address managed information objects.

SNMP tunneling is a supported option to the InfiniBand architecture as a
Management Datagram service. Devices advertise support for the SNMP
tunneling service by use of the IsSNMPSupported Capability in PortInfo
Attribute. If the value is non-zero a given device may be queried via the
GSI for the QP and LID to access the SNMP service. Note that this capa-
bility allows for another port to supply SNMP tunneling services by proxy.

This section describes the required class-dependent behavior of the dat-
agrams in this class.

16.4.1 MAD FORMAT

o16-6: The datagrams in the SNMP tunneling class shall conform to the
MAD format and use as specified in 13.4 Management Datagrams on
page 717 and further customized in Figure 205 SNMP Tunneling MAD
Format on page 999 and Table 287 SNMP Tunneling MAD Fields on page
999 below.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Reserved

...

52

56 Raddress

60 Payload Length Segment Number Source LID

64 Data

...

252

Figure 205 SNMP Tunneling MAD Format

Table 287 SNMP Tunneling MAD Fields

Field Name Length Description

Common MAD
Header

24 bytes Common MAD Header as described in 13.4.2 Management Datagram For-
mat on page 718

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1000 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.4.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. No class-
specific bits are defined.

16.4.2 METHODS

This class utilizes the common methods described in 13.4.5 Management
Class Methods on page 721

o16-6.1.1: If the SNMP Tunneling Management Class is supported, the
SNMP Tunneling Agent shall support the methods listed in Table 289:
SNMP Tunneling Methods. All method type values not listed in the Table
are reserved.

Reserved 32 bytes Reserved

Raddress 4 bytes Opaque address field that is used by SNMP agent to forward SNMP pack-
ets using SNMP redirect features.

Payload Length 1 byte Number of valid data bytes in the SNMP segment being transferred.

Segment Number 1 byte Segment number of a segmented SNMP packet.

Source LID 2 bytes Local address of the SNMP packet sender.

Data 192 bytes Attribute data is mapped bit for bit from the format described in the follow-
ing sections to the start of this data field. If the attribute is smaller than the
data field, the content of the remainder of the data field is unspecified.

Table 287 SNMP Tunneling MAD Fields (Continued)

Field Name Length Description

Table 288 SNMP Tunneling Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Reserved (class-specific bits)

Table 289 SNMP Tunneling Methods

Method Type Value Description

SnmpGet() 0x01 Request a get (read) of an Attribute.

SnmpSet() 0x02 Request a set (write) of an Attribute.

SnmpGetResp() 0x81 Response from a Get() or Set() request.

SnmpSend() 0x03 Send an Attribute to a node.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1001 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.4.3 ATTRIBUTES

o16-6.1.2: If the SNMP Tunneling Management class is implemented, the
SNMP Tunneling Management Agent shall support the attributes listed in
Table 290 SNMP Tunneling Attributes on page 1001 and Table 291 SNMP
Tunneling Attribute / Method Map on page 1001. All attribute IDs not listed
in Table 290: SNMP Tunneling Attributes are reserved.

16.4.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. No class-specific bits are defined.

Table 290 SNMP Tunneling Attributes

Attribute Name Attribute
ID

Attribute
Modifier Description

ClassPortInfo 0x0001 0x0000_0000 See 16.4.3.1 ClassPortInfo on page 1001.

(none) 0x0010 any Use of this attribute is vendor-specific

PduInfo 0x0011

0x0000_0001 First SNMP segment

See 16.4.3.3 PduInfo
on page 1002

0x0000_0002 Intermediate SNMP segment

0x0000_0003 Last SNMP segment

0x0000_0004 First and Last SNMP segment

0x8000_0001 First redirected SNMP segment

0x8000_0002 Intermediate redirected SNMP segment

0x8000_0003 Last redirected SNMP segment

0x8000_0004 First and Last redirected SNMP segment

Table 291 SNMP Tunneling Attribute / Method Map

Attribute Name SnmpGet() SnmpSet() SnmpSend()

ClassPortInfo X

CommunityInfo X

PduInfo X

Table 292 SNMP Tunneling ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8-15 - Reserved (class-specific bits)

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1002 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.4.3.2 OBSOLETE SECTION

This section is obsolete and has been deleted

16.4.3.3 PDUINFO

16.4.4 OPERATIONS

A packet consists of one or more segments. If necessary, a packet will be
segmented at the source, transmitted, and reassembled at the target.
Using the SNMP datagram, the source specifies the SnmpSend method,
PduInfo Attribute, then sets the AttributeModifier, segment number (if the
packet is segmented), and the payload length fields to delimit and account
for segments.

o16-7: When SNMP packets shall be segmented into multiple MADs, the
data field of all but the last MAD transferred shall be completely filled (192
bytes of data).

o16-8: If any segment of a multiMAD transfer is not received within the
timeout as specified in 13.4.6.3 Timeout/Timer Usage on page 730, then
that entire MAD shall be discarded.

o16-9: The Transaction ID field of all the MADs of the SNMP packet shall
be the same, and shall conform to the uniqueness of Transaction IDs as
described in 13.4.6.4 TransactionID usage on page 731.

Because the destination is already known by the sender of the MAD
packet, there is no need to include it in the MAD packet. However, be-
cause the sender may be expecting a response from the agent receiving
this SNMP request, the original source LID is provided so the agent knows
where to send a reply.

The SNMP management class can transfer a packet of up to 49,152
bytes. This is enough to accommodate any incoming SNMP/UDP packet
and allow for flexibility if management packets arrive from a transport
other than TCP/UDP.

Table 293 PduInfo

Component Settability Length
(bits)

Offset
(bits) Description

PduData RO 1536 0 Data Segment of an SNMP message

Figure 206 This Figure is Obsolete and Has Been Deleted

This Figure is obsolete and has been deleted

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1003 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-10: When the pieces are reassembled, the SNMP Message shall be
extracted and passed up to the agent or manager for processing.

If a MAD is marked First and Last with the AttributeModifier, it is the only
segment in the packet. No segmentation has occurred so no reassembly
is required, and the SNMP packet is extracted and passed up to the next
layer.

If SNMP Redirect is specified in the AttributeModifier, the packet is meant
for a target managed by the proxy agent processing the packet. The proxy
agent will need to parse the packet to extract the Raddress value of the
final destination to reformat the PDU for further transport along the new
interconnect.

16.4.4.1 SNMP TARGETS FOR BEYOND THE INFINIBAND ENDNODE

To target a remote managed object not directly connected to the Infini-
Band fabric requires the use of an SNMP Proxy Agent. See Figure 207
SNMP Proxy Agents on page 1003. The basic function of a Proxy Agent
is to receive SNMP packets passed up from the InfiniBand Endnode
SNMP agent and forward them to that remote managed agent. These re-
mote agents are, as such, not directly connected to the InfiniBand fabric
and thus cannot be managed through it unless an intermediate device
acts on its behalf to receive and send over the unsupported interconnect.

Figure 207 SNMP Proxy Agents

Adaptor with
Management Station

SNMP Target Channel

MAC
ID 1

2

3

Managed
Objects

2

3

 SNMP Proxy Agent
(Host Channel Adaptor)

Managed
Objects

Legacy Subnet 1

Legacy Subnet 2

InfiniBand subnet MAC
ID 1

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1004 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-11: The InfiniBand architecture shall be able to accommodate such
legacy transports by redirecting SNMP packets destined for these man-
aged nodes.

SNMP targeting for beyond the InfiniBand Endnode (such as an Infini-
Band device attached to a TCA that supports SNMP) is accomplished by
an SNMP redirect. An SNMP packet destined for such a redirection will
contain one of the SNMP redirect features and specify the destination ad-
dress in the raddress field of the SNMP class datagram. This will allow the
Proxy SNMP Agent to reassemble the SNMP packet from its fragments (if
any) so it may re-encode the packet for the legacy transport over which it
travels to reach its final destination.

16.4.4.2 TRAP EVENT SUBSCRIPTION

A node may request SNMP traps from a given node be sent to it. This is
done by setting the ClassPortInfo Attribute with the LID and QP appropri-
ately. The SNMP agent will transmit the Trap PDU as a sequence of

Figure 208 SNMP PDU Segmentation

Original SNMP Packet

Reassembled SNMP Packet

Managed Object
Direct the reassembled packet through the

the legacy protocol’s transport mechanism.

InfiniBand
Transport

Legacy

Reassemble SNMP Packet

Adaptor with
SNMP Proxy Agent

Host Management Station

Possibly fragmented for transport through
fabric

Target Channel

Payload

Payload

Payload

Payload

Payload

Payload

Transport

Payload

Payload

Payload

Payload

Payload

Payload

specified subnet to the specified MAC ID using

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1005 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SNMP datagrams to the destination node. It is not using the method
Trap() but the method Send() with the Trap PDU as the SNMP Data.

16.5 VENDOR-SPECIFIC

The Vendor-specific Agent is optional.

Vendor-specific operations can be defined using the vendor-specific man-
agement classes.

Vendors are free to define new methods and attributes and their use, pro-
vided that they conform to the common MAD format and methods defined
herein, and do not conflict with the stated restrictions on method and at-
tribute utilization. Vendor-specific classes will never be used to define
management operations that are encompassed by the InfiniBand Archi-
tecture.

16.5.1 MAD FORMAT

o16-12: This optional compliance statement is obsolete and has been re-
placed by o16-12.1.1: and o16-12.1.2:.

The MADHeader:ClassVersion component for the Vendor class is subject
to vendor versioning.

o16-12.1.1: For Vendor-Specific classes 0x09-0x0F, the datagrams in
these Vendor-specific classes shall conform to the MAD format and use
as specified in 13.4 Management Datagrams on page 717 and further
customized in Figure 209 Vendor MAD Format (Classes 0x09-0x0F) on
page 1005 and Table 294 Vendor MAD Fields (Classes 0x09-0x0F) on
page 1005 below.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Data

...

252

Figure 209 Vendor MAD Format (Classes 0x09-0x0F)

Table 294 Vendor MAD Fields (Classes 0x09-0x0F)

Field Name Length Description

Common MAD Header 24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on
page 718

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1006 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-12.1.2: For Vendor-Specific classes 0x30-0x4F, the datagrams in
these Vendor-specific classes shall conform to the MAD format and use
as specified in 13.4 Management Datagrams on page 717 and further
customized in Figure 210 Vendor MAD Format (Classes 0x30-0x4F) on
page 1006 and Table 295 Vendor MAD Fields (Classes 0x30-0x4F) on
page 1006 below.

Data 232 bytes The interpretation of the data is vendor-class specific.

Table 294 Vendor MAD Fields (Classes 0x09-0x0F) (Continued)

Field Name Length Description

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 RMPP Header

28

32

36 Reserved OUI

40 Data

...

252

Figure 210 Vendor MAD Format (Classes 0x30-0x4F)

Table 295 Vendor MAD Fields (Classes 0x30-0x4F)

Field Name Length Description

Common MAD Header 24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format
on page 718

RMPP Header 12 byte RMPP Header as described in 13.6.2.1 RMPP Header on page 772

Reserved 1 byte Reserved

OUI 3 bytes IEEE assigned Vendor OUI

Data 228 bytes The interpretation of the data is vendor-class specific.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1007 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.5.2 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. Class-
specific bits are defined by the Vendor.

16.5.3 METHODS

Vendor classes support the common methods.

Vendor-specific methods can be added as desired by vendor, providing
there is no collision with reserved methods in 13.4.5 Management Class
Methods on page 721.

16.5.4 ATTRIBUTES

o16-13: This optional compliance statement is obsolete and has been de-
leted.

The Vendor classes may optionally support the attributes Notice and In-
formInfo. All other attributes are vendor-defined.

Table 296 Vendor Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Class-specific bits defined by Vendor

Table 297 Vendor Class Methods

Method Type Value Description

VendorGet() 0x01 Request an attribute to return (read) from a target.

VendorSet() 0x02 Request a target to set (write) an attribute. The object will issue a
VendorGetResp() as a response.

VendorGetResp() 0x81 Target responds to an attribute Get()/Set() request.

VendorSend() 0x03 Send a datagram. Does not require a response.

VendorTrap() 0x05 Unsolicited datagram sent to the vendor entity. Contains the Notice
Attribute as defined in 13.4.8.2 Notice on page 737 to identify the trap.

VendorTrapRepress() 0x07 Block repetition of notification.

Table 298 Vendor Class Attributes

Attribute Name Attribute ID Attribute-
Modifier Description

ClassPortInfo 0x0001 0x00000000 See 16.5.4.1 ClassPortInfo on page 1008

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1008 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.5.4.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. Class-specific bits are defined by Vendor.

16.6 APPLICATION-SPECIFIC

The Application-specific Agents are optional.

Application-specific operations can be defined using the application-spe-
cific management classes.

Applications are free to define new methods and attributes and their use,
provided that they conform to the common MAD format and methods de-
fined herein, and do not conflict with the stated restrictions on method and
attribute utilization. Application-specific classes may be used to define ap-
plication management operations that are encompassed by the InfiniBand
Architecture. Vendors should not use application-specific classes to de-
fine vendor-specific behavior; instead vendor-specific management
classes should be used.

16.6.1 MAD FORMAT

o16-14: The datagrams in these Application-specific classes shall con-
form to the MAD format and use as specified in 13.4 Management Data-
grams on page 717 and further customized in Figure 211 Application MAD

Vendor defined 0x0010 - 0xFFFF 0x00000000-
0xFFFFFFFF

Table 298 Vendor Class Attributes (Continued)

Attribute Name Attribute ID Attribute-
Modifier Description

Table 299 Vendor Attribute / Method Map

Attribute Name VendorGet() VendorSet() VendorSend() VendorTrap()

ClassPortInfo X X (if traps defined)

Vendor defined Vendor defined

Table 300 Vendor ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8-15 - Class-specific bits defined by Vendor

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1009 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Format on page 1009 and Table 301 Application MAD Fields on page
1009 below.

16.6.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. Class-
specific bits are defined by the Application.

16.6.2 METHODS

Application classes support the common methods.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Data

...

252

Figure 211 Application MAD Format

Table 301 Application MAD Fields

Field Name Length Description

Common MAD Header 24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on
page 718

Data 232 bytes Interpretation of the data is application-class specific

Table 302 Application Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Class-specific bits defined by Application

Table 303 Application Class Methods

Method Type Value Description

AppGet() 0x01 Request an attribute to return (read) from a target.

AppSet() 0x02 Request a target to set (write) an attribute. The object will
issue a AppGetResp() as a response.

AppGetResp() 0x81 Target responds to an attribute Get()/Set() request.

AppSend() 0x03 Send a datagram. Does not require a response.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1010 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Application-specific methods can be added as desired by application, pro-
viding there is no collision with reserved methods in 13.4.5 Management
Class Methods on page 721.

16.6.3 ATTRIBUTES

o16-15: This optional compliance statement is obsolete and has been de-
leted.

The Application classes may optionally support the attributes Notice and
InformInfo. All other attributes are application-defined.

16.6.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. Class-specific bits are defined by Application.

AppTrap() 0x05 Unsolicited datagram sent to the application entity. Contains the Notice
Attribute as defined in 13.4.8.2 Notice on page 737 to identify the trap.

AppTrapRepress() 0x07 Block repetition of notification.

Table 303 Application Class Methods (Continued)

Method Type Value Description

Table 304 Application Class Attributes

Attribute Name Attribute
ID

Attribute-
Modifier Description

ClassPortInfo 0x0001 0x00000000 See 16.6.3.1 ClassPortInfo on page 1010

Application
defined

0x0011 -
0xFFFF

0x00000000-
0xFFFFFFFF

Table 305 Application Attribute / Method Map

Attribute Name AppGet() AppSet() AppSend() AppTrap()

ClassPortInfo X X

Application defined Application defined

Table 306 Application ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734

8-15 - Class-specific bits defined by Application

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1011 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.7 COMMUNICATION MANAGEMENT

C16-14: This compliance statement is obsolete and has been deleted.

Communication Management is described in Chapter 12: Communication
Management on page 650. The Communication Management functions
required for nodes are described in that chapter. Proper use of the mes-
sages defined in this section is subject to the protocols and state ma-
chines defined in that chapter.

16.7.1 MAD FORMAT

C16-15: The datagrams in the Communication Management class shall
conform to the MAD format and use as specified in 13.4 Management Da-
tagrams on page 717 and further customized in Figure 212 Communica-
tion Management MAD Format on page 1011 and Table 307
Communication Management MAD Fields on page 1011 below.

C16-15.1.1: The MADHeader:ClassVersion component for the CM class
shall be 2 for this version of the specification.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0 Common MAD Header

...

20

24 Data

...

252

Figure 212 Communication Management MAD Format

Table 307 Communication Management MAD Fields

Field Name Length Description

Common MAD Header 24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on
page 718

Data 232 bytes Attribute data is mapped bit for bit from the format described in the following sec-
tions to the start of this data field. If the attribute is smaller than the data field, the
content of the remainder of the data field is unspecified.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1012 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

16.7.1.1 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. No class-
specific bits are defined.

16.7.2 METHODS

The Communication Management class supports the methods identified
in Table 309 Communication Management Methods on page 1012 below.

C16-15.1.2: The Communication Management Class shall support the
methods listed in Table 309: Communication Management Methods. All
method type values not listed in the Table are reserved.

16.7.3 ATTRIBUTES

The Attributes/AttributeModifiers specified in this section describe the
mappings of message parameters defined in Chapter 12: Communication
Management on page 650 into the standard MAD header/payload format.
The set of attributes supported by the Communication Management class
is listed Table 310 Communication Management Attributes on page 1013

C16-15.1.3: The Communication Manager shall support the attributes
and methods listed in Table 310 Communication Management Attributes
on page 1013 and Table 311 Communication Management Attribute /

Table 308 Communication Management Status Field

Bits Name Meaning

0-7 - Common bits as defined in 13.4.7 Status Field on page 731

8-15 - Reserved (class-specific bits)

Table 309 Communication Management Methods

Method Type Value Description

ComMgtGet() 0x01 Request a get (read) of an attribute

ComMgtSet() 0x02 Request a set (write) of an attribute.

ComMgtGetResp() 0x81 Response from a Get() or Set() request.

ComMgtSend() 0x03 Send a connection management message.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1013 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Method Map on page 1013. All attribute IDs not listed in Table 310: Com-
munication Management Attributes are reserved.

Table 311 Communication Management Attribute / Method Map on page
1013 indicates the methods with which each of the attributes is valid.

Table 310 Communication Management Attributes

Attribute Name Attribute
ID

Attribute-
Modifier Description

ClassPortInfo 0x0001 0x00000000 Refer to 13.4.8.1 ClassPortInfo on page 734

ConnectRequest 0x0010 0x00000000 Refer to 12.6.5 REQ - Request for Communication on page
659

MsgRcptAck 0x0011 0x00000000 Refer to 12.6.6 MRA - Message Receipt Acknowledgment
on page 661

ConnectReject 0x0012 0x00000000 Refer to 12.6.7 REJ - Reject on page 662

ConnectReply 0x0013 0x00000000 Refer to 12.6.8 REP - Reply to Request for Communication
on page 668

ReadyToUse 0x0014 0x00000000 Refer to 12.6.9 RTU - Ready To Use on page 669

DisconnectRequest 0x0015 0x00000000 Refer to 12.6.10 DREQ - Request for communication
Release (Disconnection REQuest) on page 669

DisconnectReply 0x0016 0x00000000 Refer to 12.6.11 DREP - Reply to Request for communica-
tion Release on page 670

ServiceIDResReq 0x0017 0x00000000 Refer to 12.11.1 SIDR_REQ - Service ID Resolution
Request on page 706

ServiceIDResReqResp 0x0018 0x00000000 Refer to 12.11.2 SIDR_REP - Service ID Resolution
Response on page 707

LoadAlternatePath 0x0019 0x00000000 Refer to 12.8.1 LAP - Load Alternate Path on page 681

AlternatePathResponse 0x001A 0x00000000 Refer to 12.8.2 APR - Alternate Path Response on page 682

Table 311 Communication Management Attribute / Method
Map

Attribute ComMgtGet() ComMgtSet() ComMgtSend()

ClassPortInfo X

ConnectRequest X

ConnectReply X

ReadyToUse X

MsgRcptAck X

ConnectReject X

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1014 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The normative definitions of the attribute components and the operational
requirements and constraints applicable thereto are defined in Chapter
12: Communication Management on page 650.

16.7.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. In addition, bits 8 through 12 of the CapabilityMask component are
defined:

DisconnectRequest X

DisconnectReply X

LoadAlternatePath X

AlternatePathResponse X

ServiceIDResReq X

ServiceIDResReqResp X

Table 311 Communication Management Attribute / Method
Map (Continued)

Attribute ComMgtGet() ComMgtSet() ComMgtSend()

Table 312 Communication Management ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 Class-
PortInfo on page 734

8 Reserved Reserved

9 IsReliableConnectionCapable The CM associated with this port supports the
establishment and release of connections
between Reliable Connected Queue Pairs. It
will accept and respond to all mandatory mes-
sages as defined in 12.6.1 Required Mes-
sages on page 655.

10 IsReliableDatagramCapable The CM associated with this port supports the
establishment and release of reliable data-
gram channels between EE Contexts. It will
accept and respond to all mandatory mes-
sages as defined in 12.6.1 Required Mes-
sages on page 655.

11 Undefined Undefined; any use of this field is vendor-
dependent.

InfiniBandTM Architecture Release 1.2 General Services October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1015 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

12 IsUnreliableConnectionCapable The CM associated with this port supports the
establishment and release of connections
between Unreliable Connected Queue Pairs.
It will accept and respond to all mandatory
messages as defined in 12.6.1 Required Mes-
sages on page 655.

13 IsSIDRCapable The CM associated with this port will respond
to incoming Service ID Resolution requests as
defined in 12.11 Service ID Resolution Proto-
col on page 705.

14-15 Reserved Reserved

Table 312 Communication Management ClassPortInfo:CapabilityMask (Continued)

Bits Name Meaning

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1016 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 17: CHANNEL ADAPTERS

17.1 OVERVIEW

This section specifies the minimum requirements for an IBA channel
adapter. Channel adapters (CA) are the source and terminus of IBA
packets that traverse the IBA switching fabric. Channel adapters are ei-
ther Host Channel Adapters (HCAs) or Target Channel Adapters (TCAs).
In a typical system, the HCAs are used by the host processors to connect
to the IBA fabric whereas the TCAs are used by an I/O adapter to connect
to the IBA fabric.

The key difference between a Host Channel Adapter and a Target
Channel Adapter is in the way the client (whether the client is hardware or
software) interfaces to the transport layer. Specifically, the HCA supports
the IBA Verbs layer whereas the TCA uses an implementation dependent
interface to the transport layer.

C17-1: An HCA shall support the IBA verbs layer interface.

Previous sections of the specification have described the various layers
comprising an IBA Channel Adapter (physical, link, network, and transport
layers). All channel adapters share a common architecture for the phys-
ical, link, network and transport layers. See Figure 213 below. From the
point of view of the physical communications link, an HCA and TCA are
identical.

PhysicalPhysical
Link Layer

Figure 213 IBA Architecture Layers

Implementation Specific ULP*

Transport Layer
Verbs Intfc. to Upper Levels

Transport Layer

Link Layer

Network Layer Network Layer

PhysicalPhysicalPhysical

D
ef

in
ed

 b
y

IB
A{ Link Layer

Intermediate Fabric Element,
e.g. a Switch or Router (in-
terface to management port
is not shown)

Host Channel
Adapter (HCA)

Target Channel
Adapter (TCA)

D
efined by IB

A

{

Link Layer

Network Layer

Physical
Link Layer

* ULP: Upper Layer Protocol

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1017 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This chapter lists the common functionality in all CAs as well as the differ-
ences between HCAs and TCAs. There are also differences in required
minimum functionality. These issues are addressed in the following sec-
tions.

17.2 COMMON FUNCTIONAL REQUIREMENTS

17.2.1 MULTIPLE PORTS PER CHANNEL ADAPTER

A Channel Adapter25 may have one or more ports. A CA’s port provides
the physical, link and network protocol layers of the IBA CA. A channel
adapter with multiple ports shares the transport layer functionality
amongst the ports. For example, a QP (a transport layer construct) can be
configured to work with any of the ports on the CA. The following figures
show the physical representation as well as the architectural layering.

It is desirable for a channel adapter to have multiple ports for several rea-
sons:

25. Unless specifically mentioned, the term Channel Adapter refers to both an
HCA and a TCA.

Process A Process B
Se

nd
Re

ce
ive

Se
nd

Re
ce

ive

QP20 QP21

Se
nd

Re
ce

ive

QP22

PORTPORT

 CHANNEL
ADAPTER

Figure 214 Multiport CA

 HOST PROCESSOR
OR TARGET ADAPTER

A two ported Channel
Adapter. The CA has
one block of QPs,
memory translation ta-
bles etc. that interact
with the IBA fabric
through the two ports.

Figure 215 Multiport CA Architectural Layers

Transport Layer Protocols

 Link

 Network

 Physical Physical
 Link
 Network

A two ported CA
showing a common
transport layer and
independent Net-
work, Link and Phys-
ical Layers for each
port.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1018 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Increased bandwidth from a single CA. e.g. an HCA with a
high performance host memory interface can support the band-
width of several IBA links. By adding relatively low cost IBA ports
the HCA can multiply its throughput with relatively little additional
cost. See Figure 217 on page 1019.

• Redundant paths for fault tolerant communications. In a sys-
tem with multiple paths between source and destination, a CA’s
multiple ports may be used to tolerate faults in the fabric’s switch-
es and links. See Figure 218 on page 1019 and Figure 219 on
page 1020.

• Support direct links to TCAs. in a low cost, switchless topology
the ports of an HCA might be directly wired to TCAs. See Figure
220 on page 1020.

17.2.1.1 TOPOLOGIES SUPPORTED WITH MULTI-PORTED CHANNEL ADAPTERS

The following diagrams show several basic ways a multi ported CA could
be attached to the rest of the system. These diagrams are by no means
the only topologies supported -- they are examples only. Note that multiple
ports on a CA may either connect to multiple subnets or to the same
subnet.

C17-2: A multiported CA shall be capable of connecting to one or more
subnets.

Figure 216 Multiported CAs Connected to Single Subnet

Each box representing a
CA is expected to have a
single block of QPs along
with the associated
memory translation tables,
QP state etc.

Port

CA

Port

Port

CA

Port

Port

CA

Port

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1019 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Port

CA

Port

Port

CA

Port

Port

CA

Port

Figure 217 Multiported CAs Connected to Multiple Subnets

In this topology not all
ports can reach all desti-
nation CAs. In this dia-
gram there are three
separate subnets.

Port

CA

Port

Port

CA

Port

Port

CA

Port

Figure 218 Fault Tolerant Connections to Independent Fabrics

Port

CA

Port

Port

CA

Port

Port

CA

Port

In both these topologies any single failure in the
switching fabric allows communication among all
CAs to continue.
Two cases are shown: symmetric fabrics and non
identical fabrics

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1020 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

17.2.1.2 ASSOCIATION OF QPS WITH PORTS

C17-3: While a CA may have many QPs and many ports, each QP shall
generate request packets, service returning response packets, and re-
spond to arriving request packets through exactly one port, at any point in
time.

To ensure packet ordering within a QP for connected or reliable transport
services, packets are required to take the same path between a source
and destination. This requires that all requests and responses use a con-
sistent port, base SLID, DLID, VL and SL. A connected or reliable trans-
port QP remains bound with one port until path migration for error
recovery or load balancing purposes occurs or the connection goes away.

PortC
A Port

Port

CA

Port

Port C
APort

Figure 219 Fault Tolerant Connection to a Single Fabrics

Port

CA

Port

In this topology any single
failure in the switching fabric
leaves communication among
all CAs intact.

To other TCAs or
Switches

TCA

Port

Port

HCA

Port

Figure 220 Multiported HCA with Direct Connections to TCAs

Port Port

TCA

Port

Port Port

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1021 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Aside from valid packets requesting path migration as described in Sec-
tion 17.2.8 Automatic Path Migration on page 1031, incoming request and
response packets arriving at a port other than the port currently bound to
the appropriate QP may be discarded.

For an HCA using the unreliable datagram transport service, the verbs
layer specifies the remote address with each outgoing work request.
Since the QP is only bound to one port, the client of the verbs layer must
be certain the destination is reachable from that port. In certain topologies
not all destinations are reachable from all ports (see Figure 217 on page
1019).

Incoming Unreliable Datagram packets may only target a QP if that QP is
bound to the port on which the datagram arrived.

The Reliable Datagram service uses an end-to-end context to ensure cor-
rect delivery for every channel adapter with which it communicates. The
EE context, like a Reliable Connection QP, is bound to one port (at least
until path migration is used to rebind the EE context with a new port). But
since a RD QP can communicate with multiple EE contexts, the RD QP
can in effect be transmitting and receiving packets from multiple ports.

17.2.1.3 PORT ATTRIBUTES AND FUNCTIONS

Certain attributes and functions are associated with each port. Typically
these belong to the physical, link, and network layers that are unique to
the port. The table below itemizes these as well as describes some trans-
port layer functionality unique to each port. Each attribute or function is in-
tended to be applied individually to each port.

Table 313 Port Attributes & Functions

Attribute/Function HCA TCA

Physical Interface The HCA and TCA shall support one or more of the
IBA defined physical interfaces. (See the IBA Speci-
fication, Volume 2)

Static Rate Control (limiting the BW to a particular
destination CA)

required on ports supporting bandwidths above 2.5
Gbps

Support for multipathing (see Section 7.11 Subnet
Multipathing on page 219)

required required

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1022 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C17-4: Static rate controls, as listed in Section 17.2.6 Static Rate Control
on page 1029, are required on each port that supports a data rate above
2.5 gbps.

C17-5: Each port shall validate the incoming P_Key in an IB Transport
packet with the P_Key bound to the destination QP (other than QP0 and
QP1).

C17-6: The CA shall maintain a P_Key table per port supporting at least
one and at most 65,535 P_Key entries.

C17-7: An HCA shall require no OS involvement to set the P_Key table;
the P_Key table shall be set directly by Subnet Manager MADs.

C17-7.a1: A CA may support up to 254 ports. For a CA supporting N
ports, the ports shall be numbered from 1 to N.

C17-8: Each port shall support at least one GID.

P_Key Checking on inbound Request and Inbound
Response Packets (see Section 10.9 Partitioning on
page 523)

Shall validate incoming packet’s P_Key with the
P_Key bound to the destination QPa.
A CA shall maintain a P_Key table (see Section
10.9.2 The Partition Key Table (P_Key Table) on
page 525) per port. Each table shall have at least
one P_Key entry.
HCA requires no OS involvement to set the P_Key
(i.e. P_Key is set directly by a Subnet Manager con-
trol packet.)

Validation of incoming packet’s DLID and, if the GRH
is present, DGID

required required

Support for QP0 and QP1 required on each port required on each port

Port Numbering Ports are numbered starting from one and if there
are multiple ports, they are numbered sequentially.
MADs use port number zero as a wild-card port
number that matches whatever port the packet
arrived at. See 14.2.5.6 PortInfo on page 821.

GID Support Each port has at least one GID. The maximum num-
ber of GIDs per port is implementation specific. See
the discussion on GIDs in Section 4.1 Terminology
And Concepts on page 142.

a. excluding Raw Datagram QPs (because raw datagrams don’t have a P_Key). Also PKey checking for QP0 and
QP1 are slightly different. See Section 10.9.8 Partition Enforcement on Management Queue Pairs on page 529
for more information.

Table 313 Port Attributes & Functions (Continued)

Attribute/Function HCA TCA

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1023 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

17.2.1.4 SWITCHING PACKETS THROUGH MULTIPLE PORTS

If a Channel Adapter has multiple ports, the CA does not route packets
from one port to the other. Such a packet forwarding function is defined as
a switch.

An implementation may choose to package a switch and multiple IBA
ports together, as shown in the figure below.

17.2.2 CHANNEL ADAPTER ATTRIBUTES

The previous section described attributes of a channel adapter’s ports.
This section describes attributes of the whole channel adapter.

This specification only sets the minimum functionality of an HCA or TCA.
For example, only two QPs are required (both for management). A prac-
tical HCA or TCA would undoubtedly support more QPs, but this section
only specifies architectural minimum requirements. The following summa-

Figure 221 Multiple Single Ported CAs with an Embedded
Switch

C
A

Port

C
A

Port

The overall box shows the
boundary of the combined
switch and Channel
Adapter. This boundary
could be a single IC or
board. The boundary also
represents the fault zone
for that device.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1024 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

rizes various required and optional Channel Adapters attributes (see also
section 11.2.1.2 Query HCA on page 551).

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1025 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 314 Channel Adapter Attributes

Attribute HCA TCA

Support for multiple ports. Optional Optional

Source/Sink packets with a LRH (for communica-
tion within the subnet)

Required for all QPs.

Source/Sink packets with a GRH (for communica-
tion across subnets)

Required for all QPs other than QP0.

Transport Services Supported HCAs shall be capable of support-
ing the Unreliable Datagram, Reli-
able Connection, and Unreliable
Connection transport service on
any QP supported by the HCA.

Aside from supporting Unreli-
able Datagram for the two
required management QPs,
support for any other transport
service (or QP) is optional.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1026 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Atomic Operations Supported Optional to generate requests or responses

Other Operations Supported If a transport service is supported,
then the CA must support all the
operations defined for that trans-
port service (excluding atomic
operations).

TCAs are not general purpose
and may customize the opera-
tions supported to suit their
function (e.g. a TCA with Reli-
able Connection Service may
generate RDMA requests but
not respond to incoming RDMA
requests)

Solicited Events (see Section 9.2.3 Solicited Event
(SE) - 1 bit on page 238 and Section 11.4.2.2
Request Completion Notification on page 627

Required to both generate solic-
ited events and to receive them.

Optional

MTU CAs shall support one of the following sets of MTUs (for all Trans-
port Service Classes):
• 256 Bytes
• 256, 512 Bytes
• 256, 512, 1024 Bytes
• 256, 512, 1024, 2048 Bytes
• 256, 512, 1024, 2048, 4096 Bytes

For UD and Raw the WQE deter-
mines the packet size. The maxi-
mum packet size is limited by
MTUCap and NeighborMTU.
For RD the EE context specifies
the MTU.
For RC and UC the QP specifies
the MTU.

Selection of MTU for TCAs is
implementation specific.

End-to-End Flow Control (reliable connection
transport service only)

HCA receive queues that are not
associated with an SRQ shall
generate E-to-E flow control cred-
its
• i.e. HCAs throttle inbound

requests to prevent inbound
Sends arriving at an empty
receive queue.

HCA receive queues that are
associated with an SRQ shall not
generate E-to-E flow control cred-
its
• i.e. HCAs shall not throttle

inbound requests
HCA send queue shall receive
and respond to inbound credits
• i.e. remote node may throttle the

HCA’s outbound requests.

TCA receive queues may gener-
ate E-to-E flow control credits.
• i.e. TCA need not throttle

inbound requests.
TCA send queue shall receive
and respond to inbound credits.
• i.e. remote node may throttle

the TCA’s outbound requests.

Table 314 Channel Adapter Attributes (Continued)

Attribute HCA TCA

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1027 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C17-9: All channel adapters shall be able to source and sink (to all QPs)
locally routed packets (i.e. no GRH).

C17-10: All channel adapters shall be able to source and sink (to all QPs
other than QP0) globally routed packets (i.e. packets with a GRH).

C17-11: HCAs shall be capable of supporting the Unreliable Datagram,
Reliable Connection, and Unreliable Connection transport service on any
QP supported by the HCA.

C17-12: If a transport service is supported by an HCA, then that HCA
must support all the operations defined for that transport service (ex-
cluding atomic operations).

C17-13: An HCA shall be able to generate and receive solicited event.

C17-14: CAs shall support one of the following sets of MTUs (for all Trans-
port Service Classes):
256 Bytes
256, 512 Bytes
256, 512, 1024 Bytes
256, 512, 1024, 2048 Bytes
256, 512, 1024, 2048, 4096 Bytes

Multicast Generating IBA Raw Multicast packets is optional.
Receiving IBA Raw Multicast packets is optional.
Generating IBA Unreliable Datagram Multicast packets is optionala.
Receiving IBA Unreliable Datagram Multicast packets is optional.

Automatic Path Migration It is optional to either generate or respond to an automatic path
migration request.

Memory Protection HCA’s provide memory protection
as described in Section 10.6
Memory Management on page
468.

Optional

Loopback Support Self addressed packetsb shall be
allowed and shall not go out onto
the wire. That is, self addressed
packets must work even if no
external switch is present

Optional

a. It is expected that any implementation of the Unreliable Datagram transport service will trivially support the generation
of multicast packets.
b. A self-addressed packet is a packet whose DLID and SLID (while not necessarily identical) address the same port of
the same CA. A self-addressed packet may or may not have the same source and destination QP. IB does not define a
specific “loopback” address.

Table 314 Channel Adapter Attributes (Continued)

Attribute HCA TCA

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1028 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C17-15: This compliance statement has been obsoleted and replaced by
C17-15.2.1:.

C17-15.2.1: HCA receive queues that are not associated with an SRQ,
shall generate E-to-E flow control credits. HCA receive queues that are
associated with an SRQ, shall not generate E-to-E flow control credits.

C17-16: HCA send queue shall receive and respond to inbound E-to-E
flow control credits.

o17-1: This compliance statement has been obsoleted and replaced by
o17-1.2.1:.

o17-1.2.1: TCA receive queues that are not associated with an SRQ may
generate E-to-E flow control credits. TCA receive queues that are associ-
ated with an SRQ, shall not generate E-to-E flow control credits.

C17-17: TCA send queue shall receive and respond to inbound E-to-E
flow control credits.

o17-2: A CA may be capable of generating multicast packets.

o17-3: A CA may be capable of receiving multicast packets.

o17-4: A CA may be capable of generating and responding to the Auto-
matic Path Migration protocol.

C17-18: HCAs shall allow packets with a destination address the same as
that of the port on which the packet is issued. Such a loopback packet
shall not go onto the wire.

17.2.3 DEADLOCK PREVENTION

Each CA shall not cause deadlock in the fabric. This condition is met by

• The CA will not continuously and permanently assert backpres-
sure (i.e. fail to grant link credits).

• The CA shall not assert backpressure on a port’s inbound link as
the result of receiving backpressure on that port’s outbound link.

C17-19: For deadlock prevention, the CA shall not continuously and per-
manently assert backpressure (i.e. fail to grant link credits).

C17-20: For deadlock prevention, the CA shall not assert backpressure
on a port’s inbound link as the result of receiving backpressure on that
port’s outbound link.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1029 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

17.2.4 CHECKING INCOMING PACKETS

All CA’s are required to validate each incoming packet before committing
the packet to the CA’s state.

C17-21: The CA shall check for link, network and transport layer errors in
all incoming packets.

17.2.5 NON-VOLATILE STATE

C17-22: All channel adapters shall maintain a EUI-64 port GUID and a
EUI-64 CA GUID (See Chapter 4: Addressing on page 141) in nonvolatile
memory such that the GUID is the same each time the CA is powered on.

C17-23: This compliance statement is obsolete and has been removed

Other uses of the nonvolatile memory are optional.

The type of non volatile memory in a CA is not specified and might be a
local disk drive or on-chip memory.

IBA does not require a CA to remember connection state information
across power cycles.

17.2.6 STATIC RATE CONTROL

A CA shall support static rate control (see section 9.11 Static Rate Control
on page 427) if its raw bandwidth is greater than 2.5 Gbps. The Inter-
packet Delay (IPD) values supported (see Table 63 on page 428) must
allow slowing the packet rate to all of the standard link rates. The table
below indicates the values of IPD that shall be supported

Table 315 Static Rate Control IPD Values

PortInfo:LinkWidthSupported PortInfo:LinkSpeedSupported Required IPDs Optional
IPDsa

1 1 0 -

1 3 0, 1 -

1 5 or 7 0, 1, 3 -

3 1 0, 3 1

3 3 0, 1, 3, 7 -

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1030 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

17.2.7 MANAGEMENT MESSAGES

Each port of every channel adapter shall support two QPs for manage-
ment commands:

• QP0, used by the Subnet Management Agent for sending and re-
ceiving Subnet Management Packets (SMPs).
• This QP uses the Unreliable Datagram transport service.
• SMP packets arriving before the current packet’s command

completes may be dropped (i.e. the minimum queue depth of
QP0 is one).

• QP1, used for the General Services Interface (GSI).
• This QP uses the Unreliable Datagram transport service.
• All traffic to and from this QP uses any VL other than VL15.
• GSI packets arriving before the current packet’s command

completes may be dropped (i.e. the minimum queue depth of
QP1 is one).

3 5 or 7 0, 1, 3, 7, 15 -

7 1 0, 1, 3, 7 -

7 3 0, 1, 3, 7, 15 -

7 5 or 7 0, 1, 2, 3, 7, 15, 31 -

11 1 0, 2, 3, 11 1, 5, 7

11 3 0, 1, 2, 3, 5, 7, 11,
15, 23

-

11 5 or 7 0, 1, 2, 3, 5, 7, 11,
15, 23, 31, 47

-

15 1 0, 1, 2, 3, 5, 7, 11 -

15 3 0, 1, 2, 3, 5, 7, 11,
15, 23

-

15 5 or 7 0, 1, 2, 3, 5, 7, 11,
15, 23, 31, 47

-

a. Support for these optional values is indicated by setting the
PortInfo:CapabilityMask:IsOptionalIPDSupported bit.

Note, the optional values are to grandfather implementations done prior to
the Architectural Release 1.2. New implementations should support these
optional IPD values.

Table 315 Static Rate Control IPD Values (Continued)

PortInfo:LinkWidthSupported PortInfo:LinkSpeedSupported Required IPDs Optional
IPDsa

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1031 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C17-24: Each port of every CA shall support QP0 for use by the SMA and
QP1 for use by the GSA.

All QPs for a given CA, except QP0 and QP1 have unique numbers. QP0
and QP1 are special in that each port has its own QP0 and QP1.

The rest of the (non RD) QPs on a CA may be bound with any one port.
The binding of a QP (other than QP0 or QP1) with a port is maintained
until such time that automatic path migration (see 17.2.8 Automatic Path
Migration on page 1031) or path migration requested by MADs associates
the QP with a different port.

The management QPs are special because they are used by the Subnet
Manager and other management applications. See Section 13.5.1 MAD
Interfaces on page 749.

Since each port may be on a different subnet it must communicate with a
different Subnet Manager and related management application, The
Subnet Manager and other nodes using the GSI use the well known QP
numbers (0 and 1) to establish communication.

17.2.7.1 SUBNET MANAGEMENT

All CAs shall respond to incoming Subnet Management Packets from the
Subnet Manager. CAs shall also generate the required traps defined as
part of the SMA.

The IBA does not require nor preclude a CA from being a Subnet Man-
ager. If a node does host a Subnet Manager, it must meet the require-
ments as specified in section 14.4 Subnet Manager on page 859.

17.2.7.2 GENERAL SERVICES

All CAs shall respond to mandatory GSI MADs defined in Chapter 16:
General Services on page 930. Any HCA or TCA may initiate MADs to an-
other CA.

17.2.8 AUTOMATIC PATH MIGRATION

The reliable or connected transport services (Reliable Connection, Reli-
able Datagram, and Unreliable Connection) use the same path for a given
connection (or in the case of RD for a given pair of end-to-end contexts).
This ensures data is delivered in the proper order. Path migration refers to
the requestor and responder agreeing to use a new path. The source and
destination QPs remain the same but the ports and path through the fabric
may change. Path migration may be used to recover from a bad path
(sometimes this is referred to as Failover) or for other reasons such as
load balancing.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1032 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Automatic path migration may be supported by HCAs and TCAs. If sup-
ported, Automatic path migration works for QPs using the RC, RD, and
UC transport services.

Automatic path migration provides a fast mechanism for path migration.
When a connection is established the two CA’s use Communication Man-
agement MADs to establish the primary and alternate path (See sections
10.4 Automatic Path Migration on page 461 and 12.8 Alternate Path Man-
agement on page 680. Automatic path migration is a mechanism whereby
either CA can signal the other to switch from the primary path to the alter-
nate path.

At connection establishment time the CA is set with the following informa-
tion to determine a path:

• DLID of the responding CA
• Destination GID of the responding CA
• SL
• source port (i.e. the base SLID and path bits for outbound request

and response packets)
At connection establishment the CAs may be given two sets of path infor-
mation, one for the primary path and another for the alternate path. The
alternate path may use the same or different source and destination ports
as that used by the primary path.

17.2.8.1 AUTOMATIC PATH MIGRATION PROTOCOL

The automatic path migration protocol uses a single bit in the BTH called
MigReq (Migrate Request) and a 3-state state machine associated with
each connected QP supporting automatic path migration. If automatic
path migration is not supported by either QP of the connection, the state

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1033 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

machines of the two QP’s remain in the MIGRATED state.See figure
below.

17.2.8.1.1 INITIALIZATION

At connection setup time, the primary and alternate path states are as-
signed to each CA.

The Automatic Path Migration State Machine is initialized to the MI-
GRATED state whether or not Automatic Path Migration is supported by
either QP of the connection.

17.2.8.1.2 MIGRATION REQUEST

Either CA may request an automatic path migration. Reasons for re-
questing automatic path migration are outside the scope of the IBA spec-
ification but may include load balancing or using an alternate path to
recover from excessive errors.

The CA requesting automatic path migration transitions its state machine
to the MIGRATED state. Once in the MIGRATED state the CA generates
all new packets (both request and response packets) using the path that
was previously initialized as the alternate path. The CA may refuse to ac-
cept incoming request or response packets arriving from the original path.

Figure 222 Automatic Path Migration State Machine (per QP)

Initial State

Local node has decided to request a
path migration. In an HCA, Path Migra-
tion may be requested by the verbs
client (using the ModifyQP/EE verb) or
by the verbs layer. In a TCA, requesting
Path Migration is implementation spe-
cific OR Inbound Packet MigReq =
TRUEARMED

Outbound Packet:
MigReq = FALSE

REARM

Outbound Packet:
MigReq = FALSE

MIGRATED

Outbound Packet:
MigReq = TRUE

A MAD has loaded (by receiving
a REQ or REP MAD) or reloaded
(by receiving a LAP or APR
MAD) alternate path information
and enabled transition to ReArm

Upon entry to the MI-
GRATED state, the vari-
ables used by the QP
logic for setting the out-
bound path and vali-
dating the inbound path
are loaded with the alter-
nate path state.

Otherwise Inbound Packet:
MigReq = False

Otherwise

Inbound Packet:
MigReq = True

A new alternate path
can be loaded while in
the Armed state.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1034 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Once in the MIGRATED state, all outbound packets (both requests and re-
sponses) on that QP have the MigReq (Migrate Request) bit in the BTH
set to TRUE.

17.2.8.1.3 MIGRATION RESPONSE

A CA whose QP is in the ARMED state that receives a packet (either re-
quest or response packet) with the MigReq bit set validates the incoming
packets path bits with the alternate path information (i.e. checks the SLID,
DLID, SGID, DGID against the alternate path state). If the validation
passes the QP transitions to the MIGRATED state.

Upon entry to the MIGRATED state, the primary path used by the QP logic
for setting the outbound path and validating the inbound path are loaded
with the alternate path state. At this point all request and response
packets from both CAs are using the alternate path.

17.2.8.1.4 RE-ENABLING MIGRATION

Migration is re-enabled via management intervention. First the alternate
path variables are reloaded with new alternate paths. Then, based on a
command from a management entity, the QP state is set to REARM. This
causes the MigReq bit in outbound packets to be set false. Upon receiving
an inbound packet with MigReq set false, the QP state is set to ARMED.
Migration at this point is now re-enabled.

17.3 HOST CHANNEL ADAPTER

A HCA is differentiated from a TCA in that it supports the architecturally
defined IBA Verbs Layer. As such, an HCA (and its vendor specific and
OS specific driver SW) shall support the functionality of the Verbs Layer
chapter.

17.3.1 LOOPBACK

An HCA shall be able to internally loopback a packet sent to itself. That is,
the verbs layer can specify a packet to be delivered to the same port (pos-
sibly a different QP though). The packet shall be delivered without the
packet appearing on the port’s physical link. This loopback shall be able
to function without requiring the presence of an external switch.

InfiniBand does not reserve a special LID value to indicate loopback. In-
stead, the DLID (and DGID if present) of a loopback packet should be the
LID (and GID) of the port on which the packet was emitted. For loopback
packets, a channel adapter implementation may ignore other path infor-
mation, such as MTU, that is not otherwise needed for the receive buffer
or for the completion queue as specified in section 11.4.2.1 Poll for Com-
pletion on page 623.

On an HCA with multiple ports, a packet may be sent onto the wire from
one port with the DLID in the packet targeting a different port. This is not

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1035 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

considered loopback and follows all the normal rules for sending packets.
An external switch is required for such a packet transfer, there is no re-
quirement that a packet be routed internally from one port to another.

Loopback packets for diagnostic purposes that traverse an external
switch are performed by using the directed routed subnet management
packets.

17.4 TARGET CHANNEL ADAPTER

A channel adapter that attaches an I/O node to the fabric is a Target
Channel Adapter (TCA). In most regards, a TCA is indistinguishable from
an HCA when viewed from the perspective of the IBA wire semantics.
However, there are certain characteristics and requirements that distin-
guish a TCA from an HCA. This section describes some of the differences
between a target channel adapter and a host channel adapter, specifies
functionality required of a TCA, and specifies minimum requirements on a
TCA.

This section also describes the role of the target channel adapter in sup-
porting its clients. Figure 223 illustrates the relationship of the target
channel adapter in an I/O node. The client of the target channel adapter’s
services is one or more I/O controllers.

Figure 223 Generic I/O Node Model

TCA

I/O Controller

I/O Controller

I/O Controller

I/O Node

o
oIB

A
 F

ab
ric

I/O Ports or Devices{

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1036 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

17.4.1 CONTRAST TO A HOST CHANNEL ADAPTER

Unlike a host node, the execution environment for an I/O node is not nec-
essarily associated with a general purpose processor. In fact, it can be en-
tirely in hardware without any software environment.

For a host channel adapter, IBA specifies the semantics of the client inter-
face characteristics (i.e., verbs) in order to support run time binding with
the host’s operating system and allow each component (HCA, OS, appli-
cation) to be architected and distributed independently. But a target
channel adapter can be bound to the I/O controller as part of the design
process and distributed together. Thus the architecture does not specify
any particular relationship between the target channel adapter and the I/O
controller. This freedom promotes diversity and the ability to employ any
queuing and notification mechanism that best serves the I/O function.

In the host environment, as illustrated, IBA service is separated into layers with the
HCA hardware and the HCA driver being referred to as the host channel adapter.
Thus the IBA services are not included in the requirements for the HCA. Instead, re-
quirements for IBA services are applied to the host platform in general and not the
HCA vendor.

Subnet

Subnet Device Connection

Message &
IBA Services

HCA Driver

HCA H/W

{

S/W

H/W

Figure 224 Host Environment - Split Responsibility

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1037 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A host channel adapter provides a generic service to its application “cli-
ents”. Therefore, IBA requires that an HCA provide full channel function-
ality. This is because the HCA vendor does not have prior knowledge of
what applications will run over its channels.

However, since a target channel adapter vendor may have prior knowl-
edge of the way the target channel adapter will be applied, the hardware
vendor can reasonably restrict a TCA’s capabilities to only what is neces-
sary for its clients.

17.4.1.1 MEMORY PROTECTION

IBA does not require that a TCA make any of its memory, or the memory
associated with its attached I/O controllers directly accessible to an an-
other channel adapter. That is, there is no requirement that a TCA be ca-
pable of accepting inbound Atomic or RDMA READ or WRITE requests.
If the TCA does expose its memory, or that of its attached I/O controllers,
the architecture does not require that the TCA provide any form of
memory protection, nor prescribe any particular mechanism for regis-
tering or protecting access to that memory other than the mechanism pro-
vided in the transport layer.

17.4.2 DEVICE ADMINISTRATION

Device administration packets allow an I/O node’s resources to be discov-
ered and managed. In particular they provide the ability for a host to dis-
cover and invoke I/O services provided by I/O nodes.

In the target environment, as illustrated, IBA services are not separated from TCA
channel functionality, and thus the target channel adapter includes the IBA services.
Thus the term target channel adapter is abstracted to mean all of the IBA mecha-
nisms in the I/O node (target). TCAs may be implemented using software and hard-
ware or hardware alone.

subnet

subnet Device Connection

Message &
IBA Services

IBA Mechanisms

{
{

S/W

H/W

All
H/W

Figure 225 Target Environment - TCA Responsibility

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1038 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A key distinction between a host and an I/O node lies in the method by
which the I/O node’s resources and capabilities are discovered, and the
method by which connections to the TCA, and hence to the I/O resources
on the node, are established. A complete set of messages is defined in
Section 16.3 Device Management on page 985 for the purpose of allowing
a consumer of the I/O node’s services to discover the range of services
offered by the I/O node.

Since a TCA is not required to support all IBA transport services, a partic-
ular TCA has associated with it a set of attributes defining its capabilities
and the services it supports. Normally, these attributes are discovered by
negotiation between peer channel adapters during the process of estab-
lishing a connection.

In the case of an I/O node which does not necessarily have the compute
power and resources to participate in a complex negotiation, IBA defines
a simple method by which a host or other intelligent I/O node can discover
the target’s attributes and establish connections accordingly.

Thus, IBA defines a rich set of I/O node attributes that can be read by an
intelligent channel adapter and used during connection establishment in
order to free the target from complex connection negotiation protocols.
The host discovers target attributes directly, thus avoiding negotiation
during connection establishment.

Each target may support the set of target/IO device attribute discovery
messages as defined in Section 16.3.3 Attributes on page 989.

IBA does not specify the semantics nor methods between a TCA and its
clients for conveying device information but it does specify the mecha-
nisms and encoding for conveying that information.

IBA does not specify the semantics nor queueing models for the I/O con-
troller to post messages, receive messages, and invoke RDMA Read,
Write, and Atomic operations between a TCA and its clients.

IBA is I/O protocol agnostic. That is, how an I/O controller chooses to
apply the services provided by the TCA is outside the scope of IBA as long
as the usage corresponds to the rules for class of service and quality of
service.

17.4.3 FABRIC LOOPBACK

A TCA does not have the same internal loopback requirement as does the
HCA. Being a special purpose device, how the TCA handles packets ad-
dressed to itself is an implementation specific decision.

InfiniBandTM Architecture Release 1.2 Channel Adapters October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1039 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Loopback for diagnostic purposes that traverses an external switch is per-
formed by using directed routed subnet management packets (just as
done by the HCA)

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1040 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 18: SWITCHES

18.1 OVERVIEW

This chapter specifies the requirements related to IBA switches.

Packets may be forwarded within a subnet (intra-subnet) and between
subnets (inter-subnet). IBA switches are the fundamental forwarding com-
ponent for intra-subnet routing (inter-subnet routing is provided by IBA
routers, described later in this specification). Switches interconnect links
by forwarding packets between the links.

Switches are transparent to the end stations and are not directly ad-
dressed (except for subnet management operations). To this end, every
destination port within the network is configured with one or more unique
Local Identifiers (LID’s). From the point of view of a switch, a LID repre-
sents a path from the input port through the switch. Switch elements are
configured with forwarding tables. Packets are addressed to their ultimate
destination on the subnet using a destination LID (DLID), not to inter-
vening switches. Individual packets are forwarded within a switch to an
outbound port or ports based on the packet’s DLID field and the Switch’s
forwarding table.

IBA switches are required to support unicast forwarding and may support
multicast forwarding. In addition, IBA switches support a form of source
routing, referred to as Directed Routing, for forwarding subnet manage-
ment packets. This enables the configuration of a subnet without valid for-
warding entries in the switches (e.g. a subnet power-up).

A Subnet Manager (SM) configures switches including loading their for-
warding tables. The entity that communicates with the SM for the purpose
of configuring the switch is referred to as the Subnet Management Agent
(SMA). Every switch is required to have a subnet management agent. In-
dividual switches within a power domain can be made observable to the
SM via multiple instantiation of SMAs. Likewise, an SMA can be con-
structed that configures multiple switches and exports the multiple
switches to the SM as a single switch; however, from the SM’s perspec-
tive, such a configuration is a single switch.

Switches must also support a Subnet Management Interface (SMI) as
specified in Chapter 14: Subnet Management on page 794 and a General
Services Interface (GSI) as specified by Chapter 16: General Services on
page 930. There are various mandatory and optional requirements of
these interfaces that are specified in the respective chapters.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1041 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18.1.1 SWITCH PORT 0
IBA switches, in addition to external (or physical or data) ports, numbered
1 up to 254, have a special port which is numbered port 0 and also some-
times referred to as the management port. It is a unique port type in Infini-
Band, being different from other IB ports (switch external ports, CA ports,
or router ports being the other port types). There are now two subtypes of
switch port 0 which are realizable by the IB architecture.

In addition to the base switch port 0, there is an optional enhanced switch
port 0. Enhanced switch port 0 provides an additional architectural alter-
native to adding a switch port and a CA, either integrated or as separate
components. Additionally, base switch port 0 is now more rigidly specified.

Switch port 0 is a virtual port as it is not required to be physically instanti-
ated. It is exempted from compliance with the physical layer requirements
specified in Chapter 6: Physical Layer Interface on page 163, but is re-
quired to be compliant with the link layer requirements specified in
Chapter 7: Link Layer on page 167. Port 0 adheres to all IBA switch port
requirements specified in Chapter 18: Switches on page 1040 with the ex-
ception that it may deviate from these requirements in any combination of
the following ways:

• Port 0 is not required to be physically instantiated.

• Port 0 is not required to implement the IB physical layer electrical, op-
tical, or mechanical requirements.

• Enhanced port 0 link speed will be set to the nearest InfiniBand
equivalent, e.g. A PCI link may have the Linkwidth set to 1x.

• Enhanced port 0 PortPhysicalState shall support Linkup only.

• Port 0 is not required to implement IB link level flow control.

Further requirements for Port 0:-

• Port 0 is either in enhanced or base mode, an enhanced port can’t be
reduced to a base port dynamically.

It also complies with the requirements of Chapter 9: Transport Layer on
page 230 related to unreliable datagram service.

Enhanced switch port 0 is indicated by the EnhancedPort0 component in
SwitchInfo SM attribute.

The direction of data flow to and from enhanced switch port 0, is viewed
in the switch frame of reference. Data received by enhanced port 0 is con-
trolled by the transmit components of PortInfo, and data transimitted from
enhanced port 0 is controlled by the receive components of PortInfo.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1042 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18.2 DETAILED FUNCTIONAL REQUIREMENTS

18.2.1 ATTRIBUTES

This section describes the major architecturally defined attributes of
switches that are left as implementation choices.

Unicast Forwarding Table:
C18-1: For the forwarding of unicast packets, a switch shall implement ei-
ther a linear forwarding table or a random forwarding table, but not both.

C18-2: A switch shall implement a unicast forwarding table with at least
one entry and no more than 49,152 entries.

Two forms of an unicast forwarding table are defined: linear and random.
All switches support one and only one of these forwarding table types. In
either case, the required size for the unicast forwarding table is not spec-
ified by IBA and may vary between implementations. However, a valid
range of table sizes is specified. Switches that implement the random
form may also choose to limit the number of entries that may be assigned
to a given port. This is further described in section 18.2.4.3 Packet Relay
on page 1048.

Multicast Support:
o18-1: The replication of multicast packets to multiple ports by switches is
optional.

o18-2: A switch that implements the switch multicast replication service
shall implement a multicast forwarding table with at least one entry and no
more than 16383 entries.

IBA defines a switch multicast service that provides for the replication of
packets by switches and their subsequent forwarding to multiple ports.
The implementation of this service is optional. If implemented, IBA does
not specify the size for the multicast forwarding table, and therefore the
number of multicast groups a switch is capable of supporting. Conse-
quently, the size of this table may vary by implementation. However, a
valid range of table sizes is specified. Additional multicast requirements
are specified in section 18.2.4.3.4 Optional Multicast Relay on page 1054.

Virtual lanes:
C18-3: Switches shall implement the subnet virtual lane (also referred to
as virtual lane 15).

o18-3: Switches may implement a single buffer resource shared by all
ports for the subnet management virtual lane.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1043 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

All switches implement the subnet management virtual lane (which is
numbered virtual lane 15). Additionally, switches implement one, two,
four, eight, or 15 data virtual lanes. These virtual lanes are numbered se-
quentially starting with zero. Unlike data virtual lanes, buffering for virtual
lane 15 may be shared by all ports and may be shared by packet reception
and transmission. This is described in 7.6 Virtual Lanes Mechanisms on
page 180.

SL to VL mapping:
o18-4: Switches that implement more than one data virtual lane shall im-
plement the SL to VL mapping function specified in this chapter.

o18-5: Switches that implement one data virtual lane may implement the
SL to VL mapping function specified in this chapter.

SL to VL mapping is required on switches that support more than one vir-
tual lane in addition to virtual lane 15. It is optional on switches that sup-
port only one virtual lane in addition to virtual lane 15. The specific
requirements of this table are described in section 7.6.6 VL Mapping
Within a Subnet on page 186.

P_Key Enforcement:
o18-6: Switches may implement the Inbound P_Key Enforcement Service
specified in this chapter.

o18-7: Switches may implement the Outbound P_Key Enforcement Ser-
vice specified in this chapter.

Switches may enforce partitions on ingress to and/or egress from the
switch. This mechanism is described in sections 18.2.4.2.1 Inbound
P_Key Enforcement on page 1046 and 18.2.4.4.1 Outbound P_Key En-
forcement on page 1054.

Maximum Transfer Unit (MTU) size:
C18-4: Switches shall be capable of forwarding LID routed packets of size
from the minimum valid packet up to 382 bytes on the management virtual
lane.

C18-5: Switches shall support one of the MTU sizes specified in Table 19
Packet Size on page 195 across all ports on the switch.

C18-6: This compliance statement is obsolete and has been replaced by
C18-6.1.1:.

C18-6.1.1: With the exception of packets arriving on the management vir-
tual lane, switches shall be capable of forwarding packets of size from the

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1044 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

minimum valid packet (Raw packets may be excluded) up to the sup-
ported MTU plus 126 bytes.

Table 19 Packet Size on page 195 specifies a choice of MTU that may be
supported by IBA devices. Switch implementations support one of the
specified MTU sizes for the entire switch. Switches are capable of for-
warding packets whose size varies up to the maximum size indicated in
the table for the implemented MTU size plus an additional 126 bytes.

Link Physicals:
IBA specifies various physical layer options. Switches may implement any
of these options on any port and there is no requirement that all ports of a
switch implement nor operate with the same physical options. Switches
conform to the detailed requirements for physical layer support as speci-
fied in Chapter 6: Physical Layer Interface on page 163.

18.2.2 INITIALIZATION

C18-7: Upon power-up, a switch shall be initialized to the following state:

• All initialization of attributes as required in Chapter 14: Subnet Man-
agement on page 794.

• Physical and link layers shall be reset.
• All virtual lane queues shall be cleared.
• P_Key enforcement, if implemented, shall be disabled for all ports.
• The NeighborMTU component of each PortInfo attribute shall be ini-

tialized to indicate 256 byte MTU as specified in 14.2.5.6 PortInfo on
page 821.

Note that a switch contains many tables, some of which are optional.
These include the forwarding table, the SL to VL mapping table, the mul-
ticast forwarding table, P_Key tables, etc. There is no requirement for a
switch to initialize any of these tables; the subnet manager is responsible
for appropriate initialization.

18.2.3 CONFIGURATION

Switches are configured via a subnet manager. Switches support the re-
quired subnet management operations and may support the optional
subnet management operations specified in Chapter 14: Subnet Manage-
ment on page 794.

18.2.4 PACKET RELAY REQUIREMENTS

The primary function of IBA switches is the relay of packets between links.
This section specifies the requirements for supporting this function. This
section assumes normal operation; required operation under error condi-
tions is specified in section 18.2.5 Error Handling on page 1056.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1045 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

To simplify the explanation of switch requirements, this section is divided
into several architectural functions. This division does not imply a partic-
ular implementation; it is done solely to enhance the organization of the
specification.

18.2.4.1 SWITCH PORTS

C18-8: Each port on an IBA Switch except port 0 shall comply with the
physical layer requirements specified in Chapter 6: Physical Layer Inter-
face on page 163.

C18-9: Each physically instantiated external port on an IBA Switch shall
comply with the link layer requirements specified in Chapter 7: Link Layer
on page 167 of this specification.

C18-10: Base switch port number 0 shall, at a minimum, support the for-
warding of packets to and from the switch’s Subnet Management Interface
and General Services Interface.

C18-10.a1: A switch may support up to 254 physical ports. For a switch
supporting N physical ports, the ports shall be numbered from 1 to N.

C18-11: Port number 0 shall comply with the requirements of Chapter 9:
Transport Layer on page 230 related to unreliable datagram service.

o18-8: Port 0 shall adhere to all IBA switch port requirements specified in
this chapter with the exception that it may deviate from these require-
ments in any combination of the following ways:

• Port 0 is not required to be physically instantiated.
• Port 0 is not required to implement the IB physical layer electrical, op-

tical, or mechanical requirements.
• Port 0 is not required to implement IB link level flow control.
C18-12: This compliance statement is obsolete.

C18-13: This compliance statement is obsolete.

C18-14: This compliance statement is obsolete.

Base switch port 0 is assigned a LID similar to that of channel adapters;
however, unlike channel adapters, this port does not support multipathing
and an LMC value cannot be assigned. The LID is assigned using the LID
component of the PortInfo attribute. Refer to 14.2.5.6 PortInfo on page
821 for details on these requirements.

C18-14.a1: Enhanced switch port 0 shall comply with TCA compliances
in chapter 17 with the exception of the following:

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1046 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Physical interfaces
• Port Numbering

18.2.4.2 RECEIVER QUEUING

The receiver queueing function receives packets from the link layer de-
fined in Chapter 7: Link Layer on page 167.

C18-15: The virtual lane into which an individual packet is queued shall
be the one corresponding to the VL field in the packet’s Local Route
Header.

C18-16: This compliance statement is obsolete.

o18-8.a1: If the FilterRawInbound component of the receiving port’s Port-
Info Attribute is set to one, then the switch shall discard all packets re-
ceived on that port in which the LNH field of the LRH contains binary 00
or binary 01 (i.e. raw packets).

C18-17: Switches shall not discard packets in lieu of implementation of
the link level flow control as specified in section 7.9 Flow Control on page
209.

18.2.4.2.1 INBOUND P_KEY ENFORCEMENT

The implementation of the inbound P_Key enforcement service in
switches is optional. This section specifies the requirements of the ser-
vice if implemented.

Inbound P_Key verification is enabled and disabled for each port individ-
ually based on the PatrtitionEnforcementInbound component of the Port-
Info attribute.

o18-9: If a switch provides the inbound P_Key enforcement service and
the PartitionEnforcementInbound component of the PortInfo Attribute is
set to zero, then the inbound P_key enforcement service shall be disabled
for packets received on the corresponding port.

o18-10: If a switch provides the inbound P_Key enforcement service, it
shall maintain a separate list of P_Keys associated with each port.

o18-11: If a switch provides both the inbound P_Key enforcement service
and the outbound P_Key enforcement service, then the list of P_Keys as-
sociated with each port shall be the same list for both the inbound P_Key
enforcement service and the outbound P_Key enforcement service.

o18-12: If a switch provides the inbound P_Key enforcement service, the
P_Key table associated with each port shall be capable of containing be-

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1047 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tween one and 65535 P_Keys, inclusive (the exact number is left as an
implementation parameter).

o18-13: If a switch provides the inbound P_Key enforcement service, the
P_Key table associated with each port shall be programmable using the
P_KeyTable attribute defined in 14.2.5.7 P_KeyTable on page 834.

o18-14: If a switch provides the inbound P_Key enforcement service and
if the PartitionEnfocementInbound component of the PortInfo Attribute is
set to one, then any packet received on a virtual lane other than 15 shall
either be discarded or truncated such that it contains no data past the BTH
if the value in the P_Key field in the BTH does not match one of the entries
in the receiving port's P_Key list and either of the following conditions are
true:

• LNH field in the LRH contains binary 11 and IPVer field in the GRH
contains 6.

• LNH field in the LRH contains binary 10.

For the purpose of inbound P_Key enforcement, a P_Key matches an
entry in the P_Key table if and only if it is not the invalid P_Key one of the
following conditions are true:

• The P_Key membership bit in the packet is full and there is an entry
in the P_Key table that equals all 16 bits of the P_Key

• The P_Key membership bit in the packet is limited and there is an en-
try in the P_Key table whose 15 bits exclusive of the membership bit
equal those bits in the P_Key.

o18-15: If a switch provides the inbound P_Key enforcement service and
if the PartitionEnfocementInbound component of the PortInfo Attribute is
set to one, then any packet received on a virtual lane other than 15 shall
either be discarded or truncated in length such that it contains no more
than 64 bytes if all of the following conditions are true:

• LNH field of the LRH contains binary 11.

• IPVer field of the GRH does not contain 6.

o18-16: If a switch provides the inbound P_Key enforcement service and
if the PartitionEnforcementInbound component of the PortInfo Attribute is
set to one, then any packet that is too short to contain a BTH and that the
LNH field contains binary 11 shall be discarded or shall be forwarded with
the EBP delimiter appended and with the inverse of the valid VCRC.

Raw packets, i.e. packets in which the LNH field of the LRH contains bi-
nary 00 or binary 01, are not subject to P_Key enforcement and are not
discarded nor truncated by this mechanism.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1048 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18.2.4.3 PACKET RELAY

Packet relay refers to the operation of transferring a packet from the virtual
lane on the inbound port to the virtual lane on one or more a outbound
ports.

C18-18: A switch shall relay each unicast packet from the data virtual
lane(s) in which it was received to the output port indicated by the unicast
forwarding table entry corresponding to the packet’s DLID field.

A switch performs this relay function regardless of the state of the desti-
nation port. In certain states, the destination port will discard the packet.
This is described in detail in 7.2 Link States on page 168.

C18-19: Each packet received on virtual lane 15 in switches that imple-
ment independent buffering for virtual lane 15 on each port shall be re-
layed to the virtual lane 15 on the output port indicated by the unicast
forwarding table entry corresponding to the packet’s DLID field.

C18-20: If a LID routed packet is relayed to the same port on which it was
received, it shall be discarded.

(Note: Directed route packets are permitted to be transmitted from the
port from which they were received. This does not violate the above re-
quirement since the packet is actually relayed from the received port to
port 0, the SMI; then it is received from port 0 and transmitted out the orig-
inal port).

C18-21: No packet contents shall be modified by the switch except as re-
quired by this specification.

This chapter specifies various conditions under which a packet may or
must be truncated in length. These conditions do not imply that the Pk-
tLen or PayLen fields may be modified.

C18-22: Packets received on ports other than port 0 with a DLID equal to
the permissive address shall be forwarded to port 0.

(Note: A switch performs this forwarding of packets received with the per-
missive DLID regardless of whether it implements a linear forwarding
table or a random forwarding table for unicast packets.)

o18-17: If base switch port 0, the SMI, or GSI of a switch does not contain
sufficient free buffering to receive the packet, the packet may be dis-
carded.

A special address, the permissive address (see 4.1 Terminology And Con-
cepts on page 142) is defined by IB to permit the subnet manager to com-

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1049 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

municate with the SMI without knowledge of the LID assigned to the SMI.
Packets with the permissive address received on ports other than 0 are
always forwarded to port 0.

C18-23: Packets with the permissive address received on port 0 (i.e. gen-
erated by the SMI) shall be forwarded to the port specified by the SMI.

The mechanism for the SMI to specify the port is not defined by IB and
may vary by implementation.

o18-18: Switches that support more than one virtual lane in addition to the
management virtual lane (virtual lane 15), shall set the value of the VL
field in the local route header as defined in section 7.6.6 VL Mapping
Within a Subnet on page 186.

o18-19: Switches that support one virtual lane in addition to the manage-
ment virtual lane (virtual lane 15), may implement VL Mapping as defined
in section 7.6.6 VL Mapping Within a Subnet on page 186.

o18-20: Switches that support more than one virtual lane in addition to the
management virtual lane (virtual lane 15), shall relay packets to the VL of
the output port as defined in section 7.6.6 VL Mapping Within a Subnet on
page 186 if the corresponding VL is implemented on the output port.

o18-21: Switches that support more than one virtual lane in addition to the
management virtual lane (virtual lane 15), shall discard packets if the
output VL as defined in section 7.6.6 VL Mapping Within a Subnet on page
186 is not implemented on the output port.

o18-22: Switches that support only one virtual lane in addition to the man-
agement virtual lane (virtual lane 15) shall not modify the VL field.

C18-24: Switches that support only one virtual lane in addition to the man-
agement virtual lane (virtual lane 15) shall relay packets to the VL of the
output port indicated by the VL field in the LRH.

For switches that support only one data virtual lane, the link layer will dis-
card all packets that do not contain either 0 or 15 in the VL field, therefore,
there is no need for the relay function to modify the VL field in this case.

C18-25: Except for virtual lane 15, if the virtual lane on the outbound port
does not contain sufficient space for the packet to be relayed, then the
packet shall remain in the virtual lane on the inbound port until sufficient
space is available or until the switch lifetime limit mechanism permits the
discard of the packet.

C18-26: If the relay function is unable to relay packet from an inbound port
to an outbound port due to lack of sufficient space in the outbound VL, the

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1050 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

relay function shall continue to relay packets from other virtual lanes des-
tined for virtual lanes on outbound ports with sufficient space.

o18-23: In switches that implement independent buffering on each port for
virtual lane 15, if when relaying virtual lane 15 packets the virtual lane on
the output port does not contain sufficient space for the packet to be re-
layed, then the packet may be discarded.

C18-27: Packets shall be transmitted on a given port and SL in the same
order as they were received from a given port except that ordering be-
tween unicast and multicast packets is not required.

o18-24: The relay function may, but is not required to, relay packets in the
inbound portion of virtual lanes that are behind packets that are blocked
due to insufficient space in the outbound portion of virtual lanes.

The method of arbitration when multiple inbound VLs have packets des-
tined for the same outbound VL is left to the implementor, but the arbitra-
tion should service all inbound ports fairly.

C18-28: The forwarding table shall be configured in one of two ways,
linear or random, as defined in section 18.2.4.3.1 Linear Forwarding Table
Requirements on page 1050 and 18.2.4.3.2 Random Forwarding Table
Requirements on page 1051.

C18-29: Switches shall conform to the requirements in section 18.2.4.3.3
Required Multicast Relay on page 1053.

o18-25: Switches may implement the requirements in section 18.2.4.3.4
Optional Multicast Relay on page 1054.

C18-30: A switch that does not implement the optional multicast relay
shall set the MulticastFDBCap component of the SwitchInfo attribute to
zero.

18.2.4.3.1 LINEAR FORWARDING TABLE REQUIREMENTS

This section describes the requirements related to the linear forwarding
table. The linear forwarding table provides a simple map from LID to des-
tination port. Conceptually, the table itself contains only destination ports;
the LID acts as an index into the table from which the packet’s destination
address is obtained.

C18-31: In switches that implement the linear forwarding table, the linear
forwarding table shall contain a port entry for each LID starting from zero
and incrementing by one up to the size of the forwarding table.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1051 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C18-32: In switches that support the linear forwarding table, the size of the
linear forwarding table shall be advertised in the LinearFDBCap compo-
nent of the SwitchInfo attribute.

C18-33: In switches that support the linear forwarding table, the Random-
FDBCap component of the SwitchInfo attribute shall be set to zero.

C18-34: In switches that implement the linear forwarding table, the linear
forwarding table shall be programmable using the LinearForwardingTable
attribute as described in 14.2.5.10 LinearForwardingTable on page 837.

Note that forwarding to switch port 0 (including the SMI/GSI) is enabled
by programming the corresponding entries in the forwarding table to port
0. Setting the LID component of the PortInfo attribute does not automat-
ically load this value in the forwarding table.

C18-35: A switch that implements a linear forwarding table shall support
the SM programmable LinearFDBTop component of the SwitchInfo at-
tribute as described in 14.2.5.4 SwitchInfo on page 819.

C18-36: Switches that implement linear forwarding tables shall discard all
unicast packets that meet any of the following conditions:

• the packet’s DLID value is greater than the value of LinearFDBTop
and is not the permissive address

• the packet’s DLID is outside the range supported by the linear for-
warding table and is not the permissive address

• the port number in the forwarding table corresponding to the packet’s
DLID is set to a port that does not exist.

18.2.4.3.2 RANDOM FORWARDING TABLE REQUIREMENTS

This section describes the requirements related to the random forwarding
table. Conceptually, the random forwarding table acts as a “content ad-
dressable memory”; it is loaded with both LIDs and destination ports. The
table is “addressed” by a packet’s LID and the corresponding destination
port is returned. A switch implementation can limit the number of LIDs that
correspond to a given port to as few as one. This enables the implemen-
tation of a “leaf” switch, i.e., a switch that supports only the connection of
CA’s to all ports but one. Such a switch requires a very small forwarding
table (one LID per port). Such limitations are neither mandated nor pro-
hibited by this specification.

C18-37: In switches that implement the random forwarding table, the
random forwarding table shall provide for the storage of a set of unicast
LID/LMC pairs and corresponding destination port entries.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1052 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C18-38: Switches that implement the random forwarding table shall main-
tain a DefaultPort value which shall be programmable via the DefaultPort
component of the SwitchInfo attribute (see 14.2.5.4 SwitchInfo on page
819 for additional detail).

C18-39: Packets that arrive on ports other than the port indicated by De-
faultPort with a unicast DLID field that does not match an entry in the
random forwarding table and is not equal to the permissive address shall
be forwarded to the port indicated by DefaultPort.

C18-40: If the DefaultPort value is a port that does not exist then packets
that would otherwise be forwarded to this port shall be discarded.

C18-41: Packets that arrive on the port indicated by DefaultPort with a uni-
cast DLID field that is not the permissive address and does not match an
entry in the random forwarding table shall be discarded.

Matching an entry in the table means that the packet’s DLID matches the
LID in the table excluding the LMC least significant bits.

C18-42: Switches that implement the random forwarding table shall ad-
vertise the size of the table, i.e. the number of LID/LMC pairs that it may
contain, in the RandomFDBCap component of the SwitchInfo attribute.

C18-43: Switches that implement the random forwarding table shall set
the LinearFDBCap component of the SwitchInfo attribute to zero.

o18-26: Switches that implement a random forwarding table may limit the
number of LID/LMC pairs that can be assigned to a given port.

C18-44: If a switch that implements the random forwarding table limits the
number of LID/LMC pairs that can be assigned to a given port, then it shall
set the LIDsPerPort component of the SwitchInfo component to the
number of LIDs that is supported per port.

C18-45: If a switch that implements the random forwarding table does not
impose such limitation on the number of LID/LMC pairs that can be as-
signed to a given port, it shall set the value of the LIDsPerPort component
the same as the RandomFDBCap component.

C18-46: In switches that support the random forwarding table, the random
forwarding table shall support exactly one LID/LMC entry.

(Note: The preceding compliance statement implies that if a LID/LMC pair
is loaded into multiple entries of the random forwarding table such that the
LID/LMC is not uniquely associated with a single output port, the output
port used for packets sent to this LID/LMC is not guaranteed.)

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1053 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note: Switches that impliment a Random Forwarding Table shall
discard all unicast packets for which the port number in the
forwarding table entry corresponding to the packet's DLID is set
to a port identifier that does not exist.

Note that forwarding to switch port 0 (including the SMI/GSI) is enabled
by programming an entry in the forwarding table to port 0. Setting the LID
component of the PortInfo attribute does not automatically load this value
in the table.

The LIDsPerPort component does not apply to port 0.

18.2.4.3.3 REQUIRED MULTICAST RELAY

C18-47: All switches shall maintain values for a default primary multicast
port and a default non-primary multicast port.

All switches maintain values for default primary multicast port and a de-
fault non-primary multicast port regardless of whether the switch supports
multicast forwarding and regardless of the type of unicast forwarding table
implemented.

C18-48: Switches shall allow the SM to set the values of the default pri-
mary multicast port and a default non-primary multicast port using the De-
faultMulticastPrimaryPort and DefaultMulticastNotPrimaryPort
components of the SwitchInfo attribute.

C18-49: All multicast packets that are received on ports other than the de-
fault multicast primary port shall be forwarded to the default multicast pri-
mary port if any of the following conditions are true:

• The switch does not implement a multicast forwarding table.

• The switch implements a multicast forwarding table and the multicast
DLID in the packet is outside the range of the multicast forwarding ta-
ble.

• The switch implements a multicast forwarding table and the entry in
the forwarding table corresponding to the packet’s DLID is zero.

C18-50: All multicast packets that are received on the default multicast
primary port shall be forwarded to the default multicast non-primary port if
any of the following conditions are true:

• The switch does not implement a multicast forwarding table.

• The switch implements a multicast forwarding table and the multicast
DLID in the packet is outside the range of the multicast forwarding ta-
ble.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1054 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The switch implements a multicast forwarding table and the entry in
the forwarding table corresponding to the packet’s DLID is zero.

C18-51: If either the default multicast primary port or default multicast
non-primary port is set to a port that does not exist then multicast packets
that would otherwise be forwarded to the corresponding port shall be dis-
carded.

18.2.4.3.4 OPTIONAL MULTICAST RELAY

This section describes the requirements for the optional replication of mul-
ticast packets.

o18-27: The replication of packets as part of multicast relay is optional.

o18-28: Switches that support multicast packet replication shall imple-
ment a multicast forwarding table that contains a port entry for each mul-
ticast LID starting from 0xc000 and sequentially incrementing to include
the total number of multicast entries supported.

o18-29: In switches that support multicast packet replication, the number
of multicast entries supported in the multicast forwarding table shall be at
least one and no greater than 16383.

o18-30: In switches that support multicast packet replication, the number
of multicast entries supported in the multicast forwarding table shall be ad-
vertised in the MulticastFDBCap component of the SwitchInfo attribute.

o18-31: In switches that support multicast packet replication, if the DLID
of a packet is a multicast LID, then the switch shall relay the packet to the
set of ports, excluding the port on which the packet was received, indi-
cated by the multicast forwarding table entry corresponding to the
packet's DLID field.

A switch performs this relay function regardless of the state of the desti-
nation port. In certain states, the destination port will discard the packet.
This is described in detail in 7.2 Link States on page 168.

o18-32: In switches that support multicast packet replication, the virtual
lane field shall be updated in each replicated packet in the same manner
as for unicast packets.

18.2.4.4 TRANSMITTER QUEUING

Relayed packets are queued in the outbound portion of virtual lanes.

18.2.4.4.1 OUTBOUND P_KEY ENFORCEMENT

The implementation of the outbound P_Key enforcement service in
switches is optional. This section specifies the requirements of the ser-
vice if implemented.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1055 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Outbound P_Key verification shall be enabled and disabled for each port
individually based on the PatrtitionEnforcementOutbound component of
the PortInfo attribute.

o18-33: If a switch provides the outbound P_Key enforcement service
and the PartitionEnfocementOutbound component of the PortInfo At-
tribute is set to zero, then the outbound P_key enforcement service shall
be disabled for packets received on the corresponding port.

o18-34: If a switch provides the outbound P_Key enforcement service, it
shall maintain a separate list of P_Keys associated with each port.

o18-35: If a switch provides both the inbound P_Key enforcement service
and the outbound P_Key enforcement service, then the list of P_Keys as-
sociated with each port shall be the same list for both the inbound P_Key
enforcement service and the outbound P_Key enforcement service.

o18-36: If a switch provides the outbound P_Key enforcement service,
the P_Key table associated with each port shall be capable of containing
between one and 65535 P_Keys, inclusive (the exact number is left as an
implementation parameter).

o18-37: If a switch provides the outbound P_Key enforcement service,
the P_Key table associated with each port shall be programmable using
the P_KeyTable attribute defined in 14.2.5.7 P_KeyTable on page 834.

o18-38: If a switch provides the outbound P_Key enforcement service
and if the PartitionEnfocementOutbound component of the PortInfo At-
tribute is set to one, then any packet to be transmitted on a virtual lane
other than 15 on that port shall either be discarded or truncated such that
it contains no data past the BTH if the value in the P_Key field in the BTH
does not match an entry in the transmitting port's P_Key list and either of
the following conditions are true:

• LNH field in the LRH contains binary 11 and IPVer field in the GRH
contains 6.

• LNH field in the LRH contains binary 10.
For the purpose of outbound P_Key enforcement, a P_Key matches an
entry in the P_Key table if and only if the P_Key is not the invalid P_Key
and one of the following conditions are true:

• The P_Key membership in the packet bit is limited and there is an en-
try in the P_Key table whose membership bit is full and whose re-
maining 15 bits equal those of the P_Key

• The P_Key membership bit in the packet is full and there is an entry
in the P_Key table whose 15 bits exclusive of the membership bit
equal those bits in the P_Key.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1056 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o18-39: If a switch provides the outbound P_Key enforcement service
and if the PartitionEnforcementOutbound component of the PortInfo At-
tribute is set to one, then any packet to be transmitted on a virtual lane
other than 15 of that port shall either be discarded or truncated in length
such that it contains no more than 64 bytes if all of the following conditions
are true:

• LNH field of the LRH contains binary 11.
• IPVer field of the GRH does not contain 6.
o18-40: If a switch provides the outbound P_Key enforcement service
and if the PartitionEnforcementOutbound component of the PortInfo At-
tribute is set to one, then any packet that is too short to contain a BTH and
that the LNH field contains binary 11 shall be discarded or shall be for-
warded with the EBP delimiter appended and with the inverse of the valid
VCRC.

Raw packets, i.e. packets in which the LNH field of the LRH contains bi-
nary 00 or binary 01, are not subject to P_Key enforcement and are not
discarded nor truncated by this mechanism

18.2.4.5 PACKET TRANSMISSION
C18-52: This compliance statement is obsolete.

o18-40.a1: If the FilterRawOutbound component of the transmitting port’s
PortInfo attribute is set to one, then the switch shall discard all packets to
be transmitted on that port in which the LNH field of the LRH contains bi-
nary 00 or binary 01 (i.e. raw packets).

C18-53: Each packet shall be transmitted with a valid VCRC field com-
puted as specified in section 7.8.2 Variant CRC (VCRC) - 2 Bytes on page
197, unless required otherwise in this chapter or in chapter Chapter 7:
Link Layer on page 167.

C18-54: Each packet shall be transmitted with an egp character ap-
pended unless required otherwise in this chapter.

C18-55: Switches shall support the requirements specified in 7.6.9 VL Ar-
bitration and Prioritization on page 188.

18.2.5 ERROR HANDLING

This section specifies required operation under error conditions. Like the
previous section, this section is divided into several architectural func-
tions. This division does not imply a particular implementation; it is done
solely to enhance the organization of the specification.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1057 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

18.2.5.1 SWITCH PORTS

C18-56: This compliance statement is obsolete.

C18-57: This compliance statement is obsolete.

There are no additional switch port error handling requirements.

18.2.5.2 RECEIVER QUEUING

There are no additional receiver queuing error handling requirements.

18.2.5.3 PACKET RELAY

There are no additional packet relay error handling requirements.

18.2.5.4 TRANSMITTER QUEUEING

The transmitter packet discard is based on, among other things, two time
values: Switch Lifetime Limit (SLL) and Head of Queue Lifetime Limit
(HLL).

SLL is defined as 4.096us * 2LV if 0 ≤ LV ≤ 19, +5% / -55%. LV is the Life-
TimeValue component of the SwitchInfo attribute. If LV > 19, then SLL is
to be interpreted as infinite.

HLL is defined as 4.096us * 2HL if 0 ≤ HL ≤ 19, +5% / -55%. HL is the HO-
QLife component of the PortInfo attribute. If HL > 19, then HLL is to be
interpreted as infinite.

C18-58: The transmitter queueing function shall discard any packet that
meets any of the following conditions:

• The packet has been at the head of the Virtual Lane (i.e. the position
to be transmitted next), and has not begun transmission within HLL.

• The packet is queued to a VL that is in the VL stalled state. If VL-
StallCount sequential packets are discarded from a given VL due to
exceeding the HLL requirement above, the VL shall enter the VL
stalled state. A VL shall leave the VL stalled state 8 * HLL after enter-
ing it. VLStallCount component is provided in the PortInfo attribute.

• The size of the packet as indicated by the PktLen field exceeds the
MTU supported by the neighbor device as indicated by the Neigh-
borMTU component of the PortInfo attribute.

C18-59: If a switch by virtue of its implementation cannot guarantee that
any packet entering it will be transmitted within 2.5 ms, measured first bit
in to first bit out and assuming flow control credit is continuously available,
then it shall discard any packet that has not begun transmission within
SLL measured from the time the first bit was received by the switch.

InfiniBandTM Architecture Release 1.2 Switches October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1058 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o18-41: If a switch by virtue of its implementation can guarantee that any
packet entering it will be transmitted within 2.5 ms, measured first bit in to
first bit out and assuming flow control credit is continuously available, then
it may discard any packet that has not begun transmission within SLL
measured from the time the first bit was received by the switch.

18.2.5.5 PACKET TRANSMISSION

C18-60: Each packet to be transmitted that is truncated in length as per-
mitted or specified by any condition in this chapter be corrupted as spec-
ified in 7.3 Packet Receiver States on page 172.

18.2.6 SUBNET MANAGEMENT AGENT REQUIREMENTS

C18-61: Switches shall support a Subnet Management Interface (SMI) as
specified in Chapter 14: Subnet Management on page 794.

C18-62: Switches shall support a General Services Interface (GSI) as
specified by Chapter 16: General Services on page 930.

There are various mandatory and optional requirements of these inter-
faces that are specified in the respective chapters.

C18-63: Switches shall implement P_Key checking on the GSI as speci-
fied in section 10.9.8 Partition Enforcement on Management Queue Pairs
on page 529.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1059 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 19: ROUTERS

19.1 OVERVIEW

IBA Routers are IBA packet relay devices, that operate at the network
layer of the IBA addressing hierarchy to interconnect multiple locally ad-
dressed subnets. As the top level in the hierarchy, IBA Routers rely on
global identifiers (GIDs).

Figure 226 Reference of Routers Connecting Subnets

IBA Router usage is meant to satisfy:

1) Scalability

2) Local address space reuse

3) Containment of failures and topology changes

4) Confinement of fabric management scope to subnets

Routers provide
connectivity
among subnets

IBA

IBA IBA

IBA IBA

IBA

Endnode
Endnode

Endnode

Endnode

Endnode

Endnode

Endnode

Subnet B

Subnet A

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1060 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In fulfilling these objectives, IBA Routers also allow the IBA semantics,
and QoS characteristics to be extended across IBA subnets.

IBA Routers are required to support unicast routing and may support mul-
ticast routing. The specification of the routing forwarding mechanisms in
this chapter is presently limited to unicast routing.

IBA Routers use destination based routing, where every destination port
within the global fabric is assigned one or more unique Global Identifiers
(GID). From the point of view of a Router, a GID represents either an end-
node port or another router’s port on a directly attached subnet. A GID
does not necessarily represent a path through the fabric, as the Router is
allowed to spread traffic over several paths based on other packet header
criteria.

A Router is visible to IBA nodes on the directly attached subnets, and it is
transparent to nodes on any remote subnet. The Subnet Manager ad-
dress resolution function makes local routers visible to endnodes; endn-
odes in turn use this information when addressing packets to a local router
LID on their way to a remote destination. Routers on the same subnet are
also visible to each other, both for the purpose of implementing a routing
protocol, and also when routing packets through other routers as the next
hop. Finally, routers on a subnet are also visible to Subnet Managers on
their respective directly attached subnets.

Each Router port must support a Subnet Management Interface (SMI)
(see 13.5.1.1 Processing Subnet Management Packets (SMPs) on page
751) and a General Services Interface (GSI) (see 13.5.1.2 Processing
General Services Management Packets (GMPs) on page 752). There are
various mandatory and optional requirements of this interface that are
specified in the management chapter. Subnet Managers assign LIDs to
IBA Router ports and provide a service to find a path to other endnodes
or routers. The Router Management section of the Management chapter
defines the attributes of the interactions between Subnet Managers and
Routers.

19.2 DETAILED FUNCTIONAL REQUIREMENTS

The present IBA Router specification does not cover the routing protocol
nor the messages exchanged between routers. Future revisions of this
chapter will complete such control functions.

19.2.1 ATTRIBUTES

IBA Routers reside at the boundaries between subnets, and are config-
ured separately per port by different Subnet Managers and at different
times. Subnet managers supply IBA Routers with LIDs/LMCs (for each

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1061 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

port separately), and additional path information like SL to VL mappings
and MTU values.

Unicast Routing Table:

C19-1: A router shall implement a unicast routing table with at least as
many entries as the number of router ports.

IBA Routers have routing tables for their active routes. These tables are
hierarchical and include explicit endnode routes (e.g. last hop to end-
node), prefix routes (aggregate route for entire subnet), and possibly de-
fault routes (routes for unknown prefixes). The size of the unicast routing
table is implementation dependent.

Virtual lanes:

C19-2: Routers shall implement the subnet management virtual lane (also
referred to as virtual lane 15).

C19-3: Router ports shall implement data virtual lanes as specified in 7.6
Virtual Lanes Mechanisms on page 180, in addition to the subnet man-
agement virtual lane, numbered virtual lane 15.

C19-4: Virtual lane 15 shall be implemented independently for each router
port.

C19-5: Routers shall not route any VL15 packets between router ports.

SL to VL mapping:

C19-6: Routers that implement more than one data virtual lane shall im-
plement the SL to VL mapping function specified in this chapter.

o19-1: Routers that implement one data virtual lane may implement the
SL to VL mapping function specified in this chapter.

Per port SL to VL mapping is required on Routers that support more than
one virtual lane in addition to virtual lane 15. It is optional on Routers that
support only one virtual lane in addition to virtual lane 15.

Tclass to SL mapping:

C19-7: Routers shall preserve the Tclass value when routing.

SL values may be replaced when routing into a different subnet. The
Tclass value is preserved, as it represents the Class of Service with end-
to-end IBA scope. The Tclass to SL mapping function is not defined by the
present specification revision.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1062 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

P_Key Enforcement:

o19-2: Routers may implement the Inbound P_Key Enforcement Service
specified in this chapter.

o19-3: Routers may implement the Outbound P_Key Enforcement Ser-
vice specified in this chapter.

Routers may enforce partitions on ingress to and/or egress from the
Router.

Maximum Transfer Unit (MTU) size:

C19-8: Each router port shall independently support one of the MTU sizes
specified in Table 19 Packet Size on page 195.

C19-9: Routers shall be capable of routing packets of size from the min-
imum valid packet size up to the supported MTU of the intervening ports
plus 126 bytes.

Table 19 Packet Size on page 195 specifies a choice of MTU that may be
supported by IBA devices. Router implementations independently support
one of the specified MTU sizes for each port. Packets exceeding the MTU
size of the participating links may be discarded or truncated. Each port
provides sufficient buffering for each data VL to advertise credit for at least
one packet with MTU payload.

Link Physicals:

 IBA specifies various physical layer options. Routers may implement any
of these options on any port and there is no requirement that all ports of a
Router implement nor operate with the same physical options. Routers
shall conform to the detailed requirements for physical layer support as
specified in Chapter 6: Physical Layer Interface on page 163.

End-to-end data integrity:

Although IBA routers modify some packet headers during routing, none of
these headers affects the value of the ICRC, and IBA Routers shall pre-
serve the original ICRC rather than recomputing its value locally.

19.2.2 INITIALIZATION

C19-10: Upon power-up, a router shall be initialized to the following state:

• All initialization defined in Chapter 13: Management Model on page
709 and applicable to routers.

• Physical and link layers reset.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1063 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• All virtual lane queues shall be cleared.
• Other routing table entries and all queues (and any other table type

structures) shall be cleared.

19.2.3 CONFIGURATION

Routing tables - Entries may be derived from any combination of exter-
nally configured routes and autonomously computed routes. In particular,
routers rely on the SM database for routes to endnodes on directly at-
tached subnets.

SL mapping tables - SL to VL mapping tables exist at every router port.

Tclass mapping - Any necessary configuration of the Tclass end-to-end
class of service role in determining the local SL value is configured into
the router.

19.2.4 PACKET RELAY MODEL

The logical abstraction for IBA packet routing is that of packet by packet
routing and is given by:

if

i) ((BASE DLID == router port BASE LID) AND
ii) (LRH:Next Header == GRH) AND
iii) (Destination GID <> router GID) AND
iv) (Destination GID matches entry in route table) AND
v) (VCRC OK) AND (Hop count > 1))

then {

i) Replace DLID with value from routing table
ii) Replace SLID with LID of output port
iii) Replace SL, considering Tclass (among other possible crite-

ria)
iv) Map SL to VL using per output port table
v) Decrement Hop count
vi) Recompute VCRC, preserve ICRC

}

Note: Routers may also check ICRC, or just rely on the end-to-protection
of endnodes checking ICRC.

The above abstraction, combined with the Network layer Addressing
model, dictates a longest match against the destination GID. Implementa-

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1064 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tions may exploit the addressing model to relax this function to a combi-
nation of a 64-bit longest match for prefix type entries, and either a 64-bit
or 128-bit fixed length match for explicit routes, depending on the unique-
ness scope of the lowest 64 bits of the GID.

19.2.4.1 PATH SELECTION

A Router may support multiple paths to a given DGID. These may include
paths via the same next-hop and/or different next-hops as well as different
paths within the subnet (LMC based) to a given GID.

An IBA Router may actively use multiple paths with equal or different
costs, as long as it does not affect ordering by separating packets of a
given session.To allow IBA Routers to have different degrees of sophisti-
cation in determining what packets may be separated, a session is used
in a deliberately vague way.

The baseline assumption is that endpoints will use identical GRH:Flow-
Label values for sequences of packets whose relative ordering is impor-
tant, therefore a possible session representation at the router would be
the (DGID, SGID, TClass, SL, FlowLabel) tuple. A router may use other
attributes to select a path but once selected that path will continue to be
used for subsequent packets unless a management event dictates a new
path.

19.2.4.2 ROUTER PORTS

A router with N physical ports, associates PORTINFO attributes to its
physical ports based on the Port Number Attribute Modifier value, ranging
between 1 and N.

C19-11: Each port on an IBA Router shall comply with the physical layer
requirements specified in Chapter 6: Physical Layer Interface on page
163.

C19-12: Each port on an IBA Router shall comply with the link layer re-
quirements specified in Chapter 7: Link Layer on page 167 of this specifi-
cation.

C19-13: Each port on an IBA Router shall implement the Subnet Manage-
ment PORTINFO Attribute specified in 14.2.5.6 PortInfo on page 821.

C19-14: Each port on an IBA Router shall have at least one GID assigned
to it.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1065 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

19.2.4.3 RECEIVER QUEUING

The receiver queueing function receives packets from the link layer de-
fined in Chapter 7: Link Layer on page 167.

C19-15: The virtual lane into which an individual packet is queued shall
be the virtual lane whose virtual lane number matches the VL field in the
packet’s Local Route Header.

C19-16: If the FilterRawInbound component of the receiving port’s Port-
Info attribute is set to one, then the Router shall discard all packets re-
ceived on that port in which the LNH field of the LRH contains a binary 00
or binary 01 (i.e. raw packets).

19.2.4.3.1 INBOUND P_KEY ENFORCEMENT

The implementation of the inbound P_Key enforcement in Routers is op-
tional. This section defines its requirements if implemented.

Inbound P_Key verification shall be enabled and disabled for each port in-
dividually based on the PartitionEnforcementInbound component of the
PortInfo attribute.

o19-4: If a router provides the inbound P_Key enforcement service and
the PartitionEnfocementInbound component of the PortInfo Attribute is
set to zero, then the inbound P_key enforcement service shall be disabled
for packets received on the corresponding port.

o19-5: If a router provides the inbound P_Key enforcement service, it
shall maintain a separate list of P_Keys associated with each port.

o19-6: If a router provides both the inbound P_Key enforcement service
and the outbound P_Key enforcement service, then the list of P_Keys as-
sociated with each port shall be the same list for both the inbound P_Key
enforcement service and the outbound P_Key enforcement service.

o19-7: If a router provides the inbound P_Key enforcement service, the
P_Key table associated with each port shall be capable of containing be-
tween 1 and 65535 P_Keys, inclusive (the exact number is left as an im-
plementation parameter).

o19-8: If a router provides the inbound P_Key enforcement service, the
P_Key table associated with each port shall be programmable using the
P_KeyTable attribute defined in 14.2.5.7 P_KeyTable on page 834.

o19-9: If a router provides the inbound P_Key enforcement service and
if the PartitionEnfocementInbound component of the PortInfo Attribute is
set to one, then any packet received on a virtual lane other than 15 shall
either be discarded or truncated such that it contains no data past the BTH

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1066 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

if the value in the P_Key field in the BTH is not contained in the receiving
port’s P_Key list and either of the following conditions are true:

• LNH field in the LRH contains binary 11 and IPVer field in the GRH
contains 6.

• LNH field in the LRH contains binary 10.
o19-10: If a router provides the inbound P_Key enforcement service and
if the PartitionEnfocementInbound component of the PortInfo Attribute is
set to one, then any packet received on a virtual lane other than 15 shall
either be discarded or truncated in length such that it contains no more
than 64 bytes if all of the following conditions are true:

• LNH field of the LRH contains binary 11.
• IPVer field of the GRH does not contain 6.

Raw packets are not subject to P_Key enforcement and shall not be dis-
carded nor truncated by this mechanism.

19.2.4.4 PACKET RELAY

Packet relay refers to the operation of transferring a packet from the virtual
lane on the inbound port to the virtual lane on a outbound port. The output
virtual lane selection is specified later in this section. The relay function is
performed regardless of the state of the destination port. In certain port
states the destination port will discard the packet.

C19-17: A router shall relay each unicast packet from the virtual lane zero
through fourteen (if implemented) in which it was received to the output
port indicated by the routing table entry corresponding to the packet’s
DGID field.

C19-18: Packets received on virtual lane 15 shall not be relayed to output
ports.

A packet may be relayed to the same port on which it was received, this
is necessary to support some routing scenarios like endnodes using one
out of several routers on the subnet as a default router.

o19-11: Routers that support more than one virtual lane, in addition to vir-
tual lane 15, shall set the value of the VL field in the local route header by
first considering the GRH Tclass field to derive a SL value for the subnet
attached to the output port and then using the SL to VL mapping scheme
as defined in section 7.6.6 VL Mapping Within a Subnet on page 186.

C19-19: Routers shall always recognize and map a Tclass value of 0 to a
best effort SL.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1067 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C19-20: Each packet relayed from an inbound port shall be placed on the
virtual lane of the outbound port specified by the SL to VL mapping. If the
new value of VL does not correspond to a configured VL on the outbound
port, the packet shall be discarded. Also, packets received with a VL not
configured for the port shall be discarded.

C19-21: If the virtual lane on the outbound port does not contain sufficient
space for the packet to be relayed, then the packet shall remain in the vir-
tual lane on the inbound port until sufficient space is available or until the
router lifetime limit mechanism permits the discard of the packet.

C19-22: If the relay function is unable to relay packet from an inbound port
to an outbound port due to lack of sufficient space in the outbound VL, the
relay function shall continue to relay packets from other virtual lanes des-
tined for virtual lanes on outbound ports with sufficient space.

C19-23: Packets shall be transmitted on a given port and SL in the same
order as they were received from a given port.

o19-12: The relay function may, but is not required to, relay packets in the
inbound portion of virtual lanes that are behind packets that are blocked
due to insufficient space in the outbound portion of virtual lanes.

The method of arbitration when multiple inbound VLs have packets des-
tined for the same outbound VL is left to the implementor, but the arbitra-
tion should service all inbound ports fairly.

C19-24: Routers shall not continuously assert backpressure (i.e. fail to
grant link credits). Regardless of what congestion policy an IBA router as-
sociates to its relay function, routers shall not cause deadlock in the fabric.

C19-25: Packets whose Hop count is less than 2 shall be discarded.

C19-26: The Hop count of every relayed packet is decremented by one.

19.2.4.5 TRANSMITTER QUEUING

Relayed packets shall be queued in the outbound portion of virtual lanes.

19.2.4.5.1 OUTBOUND P_KEY ENFORCEMENT

The implementation of the outbound P_Key enforcement service in
routers is optional. This section specifies the requirements of the service
if implemented.

Outbound P_Key verification shall be enabled and disabled for each port
individually based on the PatrtitionEnforcementOutbound component of
the PortInfo attribute.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1068 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o19-13: If a router provides the outbound P_Key enforcement service and
the PartitionEnfocementOutbound component of the PortInfo Attribute is
set to zero, then the outbound P_key enforcement service shall be dis-
abled for packets received on the corresponding port.

o19-14: If a router provides the outbound P_Key enforcement service, it
shall maintain a separate list of P_Keys associated with each port.

o19-15: If a router provides both the inbound P_Key enforcement service
and the outbound P_Key enforcement service, then the list of P_Keys as-
sociate with each port shall be the same list for both the inbound P_Key
enforcement service and the outbound P_Key enforcement service.

o19-16: If a router provides the outbound P_Key enforcement service, the
P_Key table associated with each port shall be capable of containing be-
tween 1 and 65535 P_Keys, inclusive (the exact number is left as an im-
plementation parameter).

o19-17: If a router provides the outbound P_Key enforcement service, the
P_Key table associated with each port shall be programmable using the
P_KeyTable attribute defined in 14.2.5.7 P_KeyTable on page 834.

o19-18: If a router provides the outbound P_Key enforcement service and
if the PartitionEnfocementOutbound component of the PortInfo Attribute
is set to one, then any packet to be transmitted on a virtual lane other than
15 on that port shall either be discarded or truncated such that it contains
no data past the BTH if the value in the P_Key field in the BTH is not con-
tained in the transmitting port’s P_Key list and either of the following con-
ditions are true:

• LNH field in the LRH contains binary 11 and IPVer field in the GRH
contains 6.

• LNH field in the LRH contains binary 10.

o19-19: If a router provides the outbound P_Key enforcement service and
if the PartitionEnfocementOutbound component of the PortInfo Attribute
is set to one, then any packet to be transmitted on a virtual lane other than
15 of that port shall either be discarded or truncated in length such that it
contains no more than 64 bytes if all of the following conditions are true:

• LNH field of the LRH contains binary 01 or binary 11.

• IPVer field of the GRH does not contain 6.

Raw packets, i.e. packets in which the LNH field of the LRH contains bi-
nary 00 or 01, are not subject to P_Key enforcement and are not dis-
carded nor truncated by this mechanism.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1069 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

19.2.4.6 PACKET TRANSMISSION

C19-27: If the FilterRawOutbound component of the transmitting port’s
PortInfo attribute is set to one, then the router shall discard all packets to
be transmitted on that port in which the LNH field of the LRH contains a
binary 00 or binary 01 (i.e. raw packets).

C19-28: Routers shall perform SL to VL mapping as defined in 7.6.6 VL
Mapping Within a Subnet on page 186. This mapping is based on the out-
bound SL to be used for the packet.

C19-29: Packet shall be transmitted with a valid VCRC field computed as
specified in section 7.8.2 Variant CRC (VCRC) - 2 Bytes on page 197, un-
less required otherwise in this chapter.

C19-30: Each packet shall be transmitted with an EGP character ap-
pended unless required otherwise in this chapter.

Routers shall support the requirements specified in 7.6.9 VL Arbitration
and Prioritization on page 188.

19.2.5 ERROR HANDLING

This section specifies required operation under error conditions for each
of the conceptual functions.

19.2.5.1 ROUTER PORTS ERRORS

C19-31: Each port on an IBA router shall comply with the physical layer
error requirements specified in Chapter 6: Physical Layer Interface on
page 163.

C19-32: Each port on an IBA router shall comply with the link layer error
requirements specified in Chapter 7: Link Layer on page 167 of this spec-
ification.

19.2.5.2 RECEIVER QUEUING ERRORS

The receiver queueing function may discard any packet that meets any of
the following conditions:

• There is insufficient space in the virtual lane to receive a packet of the
size indicated in the PktLen field in the local route header.

• The size of the packet indicated by the PktLen field in the local route
header indicates that the packet exceeds the MTU size supported by
the Router port.

The receiver queueing function may discard any packet if its transmission
has not been initiated and if the packet meets any of the following condi-
tions:

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1070 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• There is insufficient space in the virtual lane to receive the packet.
• The packet exceeds the MTU size supported by the output port.
• A VCRC error was detected on reception.
• The length of the received packet was different from that indicated by

LRH:PktLen.
• The packet has a framing error.
• The packet was received with an EBP delimiter appended.
• The length of the packet was too short to contain a LRH, GRH, and a

VCRC.
C19-33: Any packet that exceeds the MTU size supported by the output
port and that is not discarded shall be truncated to any size that meets the
MTU size limitation of the port.

19.2.5.3 PACKET RELAY ERRORS

C19-34: Packets with no GRH, or with a GRH version not supported by
the Router shall be discarded.

19.2.5.4 TRANSMITTER QUEUEING ERRORS

C19-35: Routers shall implement the Packet Lifetime limits and Head of
Queue Lifetime Limit mechanisms defined for IBA Switches in 18.2.5.4
Transmitter Queueing on page 1057.

The Packet Lifetime limit is determined from the LifeTimeValue compo-
nent of the RouterInfo attribute using the same formula as the Switch Life-
time Limit. The Head of Queue Lifetime Limit is determined from the
HOQLife component of the PortInfo attribute using the same formula as
its switch counterpart.

The above mentioned limits on packet lifetime inside IBA routers and
switches are meant to help drain packets from the IBA fabric before they
can present a hazard to the IBA transport layer finite sequence number
space. These limits are not defined as congestion management mecha-
nisms, and should not be reached in normal circumstances, even in con-
gestion scenarios.

19.2.5.5 PACKET TRANSMISSION ERRORS

C19-36: Each packet to be transmitted that was received with an error in-
dicated by the link layer shall be transmitted with an EBP character ap-
pended and the VCRC field shall contain the one’s complement of the
valid VCRC.

InfiniBandTM Architecture Release 1.2 Routers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1071 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o19-20: Each packet to be transmitted that was received with an error in-
dicated by the link layer may be truncated in length.

C19-37: Each packet to be transmitted that is truncated in length as per-
mitted or specified by any condition in this chapter be corrupted as spec-
ified in 7.3 Packet Receiver States on page 172.

19.2.6 SUBNET MANAGEMENT AGENT REQUIREMENTS

C19-38: Each router port shall implement a Subnet Management Inter-
face (SMI) as specified in [Chapter 14: Subnet Management on page 794.

C19-39: Routers shall support a General Services Interface (GSI) as
specified in Chapter 16: General Services on page 930.

The General Services Interface is used, for example, for GID to LID ad-
dress resolution.

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1072 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 20: VOLUME 1 COMPLIANCE SUMMARY

20.1 COMPLIANCE DEFINITION

This chapter specifies the Compliance Categories that are approved for
labeling various products that contain InfiniBand content. This will allow
vendors to label their products and claim InfiniBand compliance without
creating confusion in the marketplace. This chapter addresses compli-
ance to the feature set defined by Volume 1 of the InfiniBand Specifica-
tion.

20.1.1 PRODUCT APPLICATION

Each product that has InfiniBand content may claim InfiniBand Compli-
ance to one or more of the Categories defined in the Compliance Summa-
ries of the InfiniBand Specification. A product shall not simply claim
“InfiniBand Compliant”.

Each claim of compliance shall be a list of one or more valid InfiniBand
Compliance Categories from Volume 1 or Volume 2. It’s appropriate for
some products to include Compliance Categories from both Volumes 1
and 2.

The valid Volume 1 Compliance Categories are defined below.

Those for Volume 2 are defined in InfiniBand Architecture Specification,
Volume 2 Chapter “Volume 2 Compliance Summary”.

20.2 VOLUME 1 COMPLIANCE CATEGORIES

Volume 1 Compliance Categories refer to the functionality of each entity
defined in Volume 1. Table 316 on page 1073 lists all valid Volume 1 Com-
pliance Categories along with their full names.

Because optional functionality may be associated with a given Compli-
ance Category, zero or more Compliance Qualifiers may be associated
with that Category. Table 316 lists all valid Qualifiers under each Category.
Qualifiers shown in bold italics indicate functionality that is actually non-
optional for that specific category, but those Qualifiers may still appear in
some of the Compliance Statements listed under that Category.

Table 317 on page 1074 lists Volume 1’s complete set of Qualifiers along
with their full names. Section 20.2.1 discusses Qualifiers in more depth.

Each Category has a dedicated section in this chapter that contains,
among other things, a complete reference list of Volume 1 compliance

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1073 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

statements that directly apply to that category. Table 316 provides a refer-
ence to each section, including a hypertext link with on-line versions of the
spec.

20.2.1 VOLUME 1 COMPLIANCE QUALIFIERS

Compliance Qualifiers indicate which compliance statements apply only if
a product supports an optional feature or specified combination of optional
features.

Some compliance statements apply to multiple Compliance Categories,
and thus appear in the Compliance Statement List under each applicable
Category. Some of these “shared” compliance statements include Quali-
fiers associated with functionality that is optional in some Categories and
mandatory in others. In each Category where the functionality is manda-
tory, the associated Qualifier is shown in bold italics for that Category’s
“Valid Qualifier’s” entry in Table 316.

Table 316 Volume 1 Compliance Categories

Category Full Name Valid Qualifiers Reference

HCA-CI Host Channel Adapter -
Channel Interface

VLs, RC, UC, RD, RawD, APM, UDMcast, RawDMcast, RDMA,
Atomics, P_Key traps, P_Key counters, Notice, Trap, BMM,
BQM, SRQ, LIF, BL, ZBVA, SDP, VE, OptPC

Section 20.3
on page 1077

TCA Target Channel Adapter VLs, RC, UC, RD, RawD, APM, UDMcast, RawDMcast, RDMA,
Atomics, P_Key traps, P_Key counters, Notice, Trap, OptPC

Section 20.4
on page 1093

SW Switch VLs, UDMcast, P_Key SRE, P_Key SRE_In, P_Key SRE_Out,
Notice, Trap, P_Key SEPT, OptPC

Section 20.5
on page 1102

RTR Router VLs, RawD, UDMcast, RawDMcast, P_Key SRE, Notice, Trap,
RMPP, OptPC

Section 20.6
on page 1106

SM Subnet Manager Trap, DRN, SysG, ReIn Section 20.7
on page 1110

SA Subnet Administration UDMcast, Trap, SAOPT, RMPP, MPath Section 20.8
on page 1112

CM Communication Manager APM Section 20.9
on page 1114

PFM Performance Manager Trap, Notice Section 20.10
on page 1114

VM Vendor-Defined Manager Trap, Notice, RMPP Section 20.11
on page 1115

OMA Optional Management Agent Trap, Notice, AMA, DMA, SNMP, VMA Section 20.12
on page 1116

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1074 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

20.2.1.1 CLAIMING SUPPORT FOR OPTIONAL FEATURES

C20-1: If a product claims to support a given optional feature, the product
must comply with all compliance statements that apply to that optional
feature.

For example, an HCA-CI that claims to support Reliable Datagram Ser-
vice must comply with all statements under the HCA-CI Compliance
Statement List that apply, given the RD Qualifier.

A product shall not include in its list of supported optional features any
features that are in fact mandatory for the Category the product claims
compliance to. Qualifiers for these mandatory features are shown in bold
italics in Table 316. For example, Reliable Connection Service is manda-
tory for HCA-CI, so RC must not be included in an HCA-CI’s list of sup-
ported optional features even though the product must still meet all RC
requirements.

A product may claim support for multiple optional features, in which case
the product must comply with all compliance statements that apply to the
particular set of optional features claimed by the product, noting that some
compliance statements apply only for specific combinations of qualifiers.

Table 317 lists and describes the Volume 1 Compliance Qualifiers that a
product can claim compliance to. To abbreviate the optional support, one
or more Qualifiers can be listed after the Category in braces. For example,
a Target Channel Adapter that supports Reliable Datagram Service and
also Automatic Path Migration can be abbreviated with TCA{RD,APM}

Table 317 Volume 1 Compliance Qualifiers

Qualifier Description

AMA Application-specific Management Agent

APM Automatic Path Migration

Atomics Atomic Operations

BL Block List PBL

BMM Base Memory Management Extensions

BQM Base Queue Management Extensions

DM Device Manager

DMA Device Management Agent

DRN Directed Route Notices

LIF Local Invalidate Fencing

MPath Multipath requests

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1075 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If an optional compliance statement does not contain a valid qualifier, refer
to the text of the optional compliance statement to determine its applica-
bility. The text of a compliance statement always takes precedence over
the compliance qualifier.

Notice Standard Format & Queue for Data About Events

OptPC Optional Performance Counters

P_Key counters Counters for P_Key Violations

P_Key SEPT P_Key Switch External Port Trap

P_Key SRE P_Key Enforcement by Switches or Routers

P_Key SRE_In Inbound P_Key Enforcement by Switches or Routers

P_Key SRE_Out Outbound P_Key Enforcement by Switches or Routers

P_Key traps Trap Generation for P_Key Violations

RawD Raw Datagram Service

RawDMcast Raw Datagram Multicast

RC Reliable Connection Service

RD Reliable Datagram Service

RDMA Remote Direct Memory Access

ReIn Reinitialization

RMPP Reliable Multi-Packet Protocol

SAOPT Subnet Administration Bulk Update Facilities

SDP Sockets Direct Protocol

SNMP SNMP Tunneling Agent

SRQ Shared Receive Queue

SysG System GUID

Trap Asynchronous Event Notification

UC Unreliable Connection Service

UDMcast Unreliable Datagram Multicast

VE Any of the Verb Extensions

VLs Port Supporting More than One Data VL

VMA Vendor-specific Management Agent

ZBVA Zero Based VA

Table 317 Volume 1 Compliance Qualifiers (Continued)

Qualifier Description

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1076 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

20.2.1.2 COMPLIANCE STATEMENTS WITH MULTIPLE QUALIFIERS

Some compliance statements contain combinations of Qualifiers, and
apply only if the specified combination is true. For example, a compliance
statement beginning with “RD and Atomics:” applies only if both RD and
Atomics are supported. If a compliance statement begins with “RD or
Atomics:”, the statement shall apply if either RD or Atomics is supported.

20.2.2 COMPLIANCE STATEMENT LISTS

Within each Compliance Category section is a list of the compliance state-
ments that apply to that particular category. Here is a sample list entry:

o9-16: RD: PSN Insertion for Reliable Svc Pkts. Page 231
20.2.2.1 HYPERTEXT LINKS

Online versions of this specification have hypertext links present before
each of the lines in the Compliance Statement lists. These links are indi-
cated by the “ ” at the beginning of the line and will lead to the actual
statement in the body of the specification that contains the details for each
of the compliance entries.

Each Compliance Statement List entry also contains the page number for
use with hard-copy versions of the specification.

20.2.2.2 COMPLIANCE STATEMENT LABELS

All formal compliance statements throughout the specification are labeled
so they can be uniquely identified. Each label begins with either a “C” or
an “o”, indicating whether the compliance statement applies in all cases
with respect to its category or whether the compliance statement is quali-
fied with respect to optional features. The “o” is uncapitalized to make it
more easily distinguishable from the “C” in Compliance Statement Lists.

The next portion of the label is the number of the chapter in which the
formal compliance statement appears. The final portion of the label is a
compliance statement number, which starts with “1” in each chapter. “C”
and “o” compliance statements are numbered independently.

20.2.2.3 COMPLIANCE STATEMENT TITLES

Each line within a Compliance Statement List contains a brief title for the
respective compliance statement. Because of the limited space and lack
of context, each title is only intended to convey the topic of the compliance
statement, and not necessarily convey its actual requirements.

Compliance statements that apply only to optional functionality is indi-
cated by the presence of one or more Qualifiers at the beginning of the
title, followed by a colon. For example, the above sample Compliance
Statement Title contains the “RD” qualifier.

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1077 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

20.2.3 COMMON REQUIREMENTS

Some Compliance Categories share common requirements, such as
those that apply to all ports. To avoid unnecessary duplication, certain
common requirement sets have been collected and referenced by the ap-
propriate Compliance Categories instead of replicating those lists of re-
quirements under each separate Category.

20.3 HCA-CI COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of HCA-CI, a product shall meet all require-
ments specified in this section, except for those statements preceded by
Qualifiers that the product does not support. In addition, a compliant HCA-
CI shall meet all Section 20.13 Common Port Requirements on page
1117 and all Section 20.14 Common MAD Requirements on page 1119.

Some compliance statements in the HCA-CI Category contain require-
ments that apply to both mandatory and optional features. For instance,
some compliance statements mention both QPs and EE Contexts, though
EE Contexts are relevant only if RD Service is supported. In such cases,
the requirements on an optional feature apply only if the product claims to
support the optional feature.

C4-1: EUI-64 Assignment . Page 142
C4-2: EUI-64 Assignment - At Least One per Port Page 143
C4-3: GID Usage and Properties . Page 143
C4-4: Addressing Rules . Page 147
C4-5: LID (Local Identifier) Usage and Properties Page 147
o5-1: RD: Reliable Datagram ETH Format . Page 156
o5-2: RDMA: RDMA ETH Format . Page 157
o5-3: Atomics: Atomic Extended Transport Hdr Format Page 158
o5-4: Atomics: Atomic ACK ETH Format . Page 159
o5-5: RawD: Raw Packet Header Rules . Page 161
o5-6: RawD: EtherType Usage in RWH . Page 161
o5-7: RawD: Raw Packet Length Rule . Page 161
o5-8: RawD: Raw Packet Header Format . Page 161
C7-7: Packet Discard Required if Link Checks Fail Page 173
C7-21: VL15 Buffer(s) required For each Port Page 183
o7-5: SL-to-VL Mapping Table Size. Page 186
o7-14: RawDMcast: Raw Multicast Operational Rules Page 217
C7-66: Link Layer DLID Check - Use Base LID Only Page 219
C8-1: Rules for Including a GRH in Packets Page 226
o8-1: Optional Use of GRH in Packets . Page 227
C9-2: Transport - Opcode, Header, and Payload Table Page 234
o9-0.2.1: BMM: Required opcodes for Remote Invalidate Page 235
C9-3: Solicited Event Bit Invokes CQ Event Handler. Page 238
C9-4: Solicited Event Bit - Excluded from Hdr Validation. Page 238
C9-5: BTH TVer Field Value. Page 239
C9-6: BTH - Reserve 8 Field Value . Page 239
C9-7: BTH - Reserve 7 Field Value . Page 239
o9-2: RD: RDETH - Reserve Field Value . Page 240
C9-8: DETH - Reserve Field Value . Page 240

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1078 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-9: RETH - DMA Length Field Value Limits Page 242
C9-10: SEND Operation Size Limits . Page 245
C9-11: Segmentation and Reassembly of RC and UC Page 246
o9-4: RD: Segmentation and Reassembly . Page 246
C9-12: SEND Operation - UD Allows only Single Packets Page 246
C9-13: Multi-Packet Messages - Do Not Interleave. Page 248
C9-14: SEND Request - Required IBA Headers Page 248
C9-15: SEND Response - Required IBA Headers. Page 248
o9-5.2.1: BMM: header validation order for remote invalidate. Page 250
o9-5.2.2: BMM: R_Key validation for Remote Invalidate. Page 251
C9-15.a1: RD: Resync data payload length shall be zero. Page 252
C9-16: RDMA WRITE - DMA Length Limits. Page 252
C9-17: RDMA WRITE Segmenting/Reassembly Page 253
C9-18: Multi-packet RDMA WRITE Rule . Page 255
C9-19: RDMA WRITE Request - Req’d Headers Page 255
C9-20: RDMA WRITE Resp. - Req’d Headers Page 256
C9-21: RDMA READ Response Segments/Reassembly. Page 256
C9-22: RDMA READ DMA Length Limits . Page 256
C9-23: RDMA READ Request - Req’d Headers Page 259
C9-24: RDMA READ Response - Req’d Headers Page 259
o9-15: Atomics: ATOMIC Op Request - Req’d Headers Page 262
o9-16: Atomics: ATOMIC Op Response - Req’d Headers. Page 262
o9-17: Atomics: ATOMIC Op - QP Atomicity Rule. Page 262
o9-18: Atomics: ATOMIC Op - Enhanced Atomicity Rule Page 263
C9-25: Transmission of Requests - Ordering Rule Page 268
C9-26: Transmission of Message - Data Payload Order Page 268
C9-27: Acknowledge Packets - Strong Ordering Page 268
o9-19: RD: Acknowledge Packets - Strong Ordering Page 268
C9-28: Responder - Order of Request Execution Page 268
C9-29: Receipt of Requests - Order of Completion Page 269
C9-30: Requester - Order of WQE Completion Page 269
C9-31: Requester - WQE Fence Attribute Behavior Page 269
C9-32: WQE Order of Completion vs. Execution. Page 269
o9-20: RDMA: Responder RDMA WRITE Buffer Rule Page 269
o9-21: RDMA: Responder RDMA READ Buffer Rule Page 269
o9-21.a1: SEND: Don’t depend on responder buffer until complete Page 269
C9-33: Receive Queue - Buffer Content Validity Page 269
C9-34: Transport Layer - Packet Header Validation Page 270
C9-35: Transport Layer - IBA Packts - Header Validation Page 270
C9-37: BTH Validation - Dest QP and QP State Page 272
o9-22: RD: BTH Validation - Dest QP and State vs. EEC Page 272
o9-23: UDMcast: Well-known Destination QP Value. Page 272
C9-38: BTH Validation - Request Checked vs. QP Page 272
C9-39: BTH Validation - Silent Drop Rule . Page 273
C9-40: Obsolete. Page 273
o9-23.2.1: RD: BTH Validation - Behavior . Page 273
C9-41: Transport Layer - BTH P_Key - QP0 Rule Page 274
C9-42: Transport Layer - BTH P_Key - QP1 Rule Page 274
C9-43: Transport Layer - Required P_Key Validation Page 274
o9-24: RD: Transport Layer - Required P_Key Validation. Page 274
C9-43.1.1: GRH - Validate the presence of the GRH for UD services Page 275
C9-43.1.2: Validate the presence of the GRH . Page 275
C9-44: GRH - NxtHdr Field - Validation . Page 275
C9-45: GRH - IPVers Field - Validation . Page 275
C9-46: GRH - Dest QP UD, SGID/DGID non-Validation Page 275
C9-47: obsolete . Page 276

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1079 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-47.1.1: GRH - SGID/DGID Field - Validation . Page 276
C9-47.2.1: Silently drop RD packets if CA does not support RD Page 277
o9-25: RD: RDETH - EE Context Field Value - Validation. Page 277
o9-26: RD: RDETH - EE Context - Validation Behavior Page 277
C9-48: DETH - Q_Key Field Value - Ignored for QP0 Page 277
C9-49: DETH - Q_Key Field Value - QP1Rule. Page 278
C9-50: DETH - Q_Key Field Value - Validation Page 278
C9-51: Transport Layer - ACK depends on Valid Keys Page 278
C9-52: Transport - LRH - SLID/DLID Field Validation Page 278
C9-53: Transport - LRH - DLID Field Validation. Page 278
C9-54: Transport - LRH - SLID Field Validation Page 279
C9-55: Transport - LRH Validation - Permissive LID Rule Page 279
C9-56: Transport Layer - SLID Invalid if Multicast Page 279
C9-57: Transport Layer - LID Validation - UC/RC Serv. Page 279
o9-28: RD: Transport Layer - LID Validation . Page 279
C9-58: Packet Validation - IBA Unreliable Multicast Page 280
C9-59: Packet Validation - IBA Unreliable Multicast - QP Page 280
C9-60: Requesters - WQE Completion Responsibility. Page 281
C9-61: Send Queue PSNs - Allowed Outstanding Qty Page 285
C9-62: PSN Insertion for Reliable Service Packets Page 286
o9-29: RD: PSN Insertion for Reliable Svc Pkts Page 286
C9-63: Responder - Behavior - RC Service. Page 288
o9-30: RD: Responder - Behavior - RD Service Page 288
C9-64: BTH - PSN Field Value for RC Service Page 289
o9-31: RD: BTH - PSN Field Value for RD Service Page 289
C9-65: BTH - Initial PSN for RC Service. Page 289
o9-32: RD: BTH - Initial PSN for RD Service Page 289
C9-66: Requester - PSN Value - RC Service. Page 290
o9-33: RD: Requester - PSN Value - RD Service Page 290
o9-34: RD: Validation of EEC RDD Against Send Queue Page 291
o9-35: RD: EEC vs QP - RDD Mismatch Behavior Page 291
o9-35.a1: RD: Generating PSNs for Resync requests Page 291
o9-35.a2: RD: Source and destination QPns in a Resync request Page 292
C9-67: Requester - BTH OpCode Field Value Rules Page 293
C9-68: Requester - BTH OpCode Field Value Table Page 293
C9-69: Requester - Packet PayLen - First/Middle Page 293
C9-70: Requester - Packet PayLen - Only. Page 293
C9-71: Requester - Packet PayLen - Last . Page 293
C9-72: Requester - RETH DMALen Field - Limits Page 293
C9-73: HCA Responder - Validation of Inbound RC Requests Page 294
o9-37: RD: Responder - Validation of Inbound RD Req. Page 294
o9-38: RD: EEC vs Receive Queue - RDD Check Page 294
o9-38.a1: RD: Validating an inbound RD request. Page 294
o9-38.a2: RD: responder actions for Resync request - behavior Page 297
C9-74: Responder - Validation of Inbound RC Req. PSN Page 297
o9-39: RD: Responder - Valid. of Inbound RD Req. PSN Page 297
C9-75: Responder - ePSN Calculation Rule . Page 298
o9-40: RD: Responder - ePSN Calculation Rule. Page 298
C9-76: Responder - ePSN Update - Rec. Queue State. Page 298
o9-42: RD: Responder - ePSN Update - Rec. Queue. Page 298
C9-77: Responder - New Request - RC Exec/Response Page 299
o9-43: RD: Responder - New Req. - Exec/Response Page 299
C9-78: Responder - Valid Duplicate Req Behavior Page 299
o9-44: RD: Responder - Valid Duplicate Req Behavior. Page 299
C9-79: Resp. - Inbound PSN Outside of Valid Region. Page 300
o9-45: RD: Resp. - Inbound PSN Outside Valid Region Page 300

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1080 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-80: Resp. - Behavior after NAK Sequence Error Page 301
o9-46: RD: Resp. - Behavior after NAK Sequence Error. Page 301
C9-81: Responder - Validation of OpCode Seq. Page 302
o9-48: RD: Responder - Validation of OpCode Seq. Page 302
o9-49: RD: Responder - New Request Rule . Page 302
C9-82: Responder - BTH OpCode Field - Validation Page 302
C9-83: Resp. - Request of Unsupported Fcn - Behavior Page 303
o9-50: RD: Resp. - Request of Unsupported Fcn Page 303
C9-84: Resp. - Reserved OpCode Error - Behavior Page 303
o9-51: RD: Resp. - Reserved OpCode Error - Behavior Page 303
C9-85: Resp. - Incorrect Pad Count Error - Behavior Page 303
o9-52: RD: Resp. - Incorrect Pad Count Error - Behavior Page 303
C9-86: Resp. - Insufficient Res. Error - Behavior. Page 304
o9-53: RD: Resp. - Insufficient Res. Error - Behavior Page 304
C9-87: Resp. - NAK Response - Completion Rule Page 304
o9-54: RD: Resp. - NAK Response - Completion Rule Page 304
C9-88: Resp - R_Key Unchecked - Zero-len. RDMA. Page 305
o9-55: RD: Resp - R_Key Unchecked - Zero-len. RDMA Page 305
C9-89: R_Key Violation Behavior. Page 305
C9-90: R_Key Violation Behavior - Completion Rule. Page 305
C9-91: LRH - PktLen Validation - WQE buffer Page 305
C9-92: LRH PktLen Validation - OpCode Check v. MTU Page 305
C9-93: LRH PktLen Validation - Invalid Request Resp. Page 306
C9-94: DMA Length Field Validation - Behavior. Page 306
C9-95: PSN Field Value - SEND/RDMA WRITE Resp. Page 307
C9-96: PSN Field Value - RDMA READ Resp. Page 307
o9-58: Atomics: PSN Field Value - ATOMIC Op Resp. Page 308
C9-97: AETH MSN Field Value - RDMA READ Resp.. Page 309
C9-98: AETH Header - RDMA READ Resp. Page 310
C9-99: BTH OpCode Field Value - RDMA READ Resp. Page 310
C9-100: RDMA READ Response - Error Behavior Page 310
C9-101: Request Processing - Order after RDMA READ Page 311
C9-102: Response is Required . Page 312
C9-103: Update of ePSN - Error Behavior. Page 312
C9-104: Response to ATOMIC or RDMA READ Request Page 313
C9-105: Duplicate SEND or RDMA WRITE Behavior Page 314
C9-106: Duplicate SEND/RDMA WRITE - Error Behavior. Page 315
C9-107: Recreate READ Response Data . Page 316
C9-108: Recreate READ Request Resp. - Error Behavior Page 316
C9-109: Recreate READ Request Resp. - Errors - Abort Page 316
C9-110: Recreate READ Response Req. - Order Page 317
o9-66: Atomics: Duplicate ATOMIC Op Req. Behavior Page 318
o9-67: Atomics: Duplicate ATOMIC Op Req. Error Page 319
o9-68: Atomics: Duplicate ATOMIC Req. - Local Error Page 319
C9-111: NAK PSN Field Value - Except for RDMA READ. Page 319
C9-112: NAK PSN Field Value - RDMA READ Page 319
C9-113: RNR NAK - PSN Field Value . Page 319
C9-113.a1: NAK packets must have an acknowledge opcode. Page 319
C9-114: Wait for first valid ePSN after Sequence Error Page 319
C9-115: Response to Duplicate Requests - except NAK. Page 320
C9-116: BTH AckReq Field - Behavior . Page 320
C9-117: PSN Field Value - RDMA READ Response Page 322
C9-118: AETH requirement . Page 322
C9-119: AETH Syndrome - Defined Values. Page 324
o9-71: RD: AETH Syndrome - Defined Values Page 324
C9-119.a1: msb of the AETH Syndrome field shall be set to zero Page 324

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1081 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-72: RD: AETH Syndrome credit count field for RD Page 324
C9-120: Request - Malformed ACK Message Rule Page 325
C9-121: Responder - PSN Field Value - Sequence Error Page 326
C9-122: NAK Sequence Error - Subsequent Behavior Page 326
C9-123: PSN Field Value - Duplicate Request - Behavior Page 326
C9-124: BTH Field Value - NAK Remote Access Error Page 326
o9-73: Atomics: BTH Field Value - NAK Remote Access Page 327
C9-125: BTH Field Value - NAK Invalid Request Page 327
C9-126: BTH Field Value - NAK Remote Operational Err Page 327
o9-74: RD: EEC Field Value - P_Key mismatch Page 328
C9-127: Dest QP Field Value - NAK Invalid RD Request Page 328
C9-128: Requester - PSN Uniqueness - RNR NAK. Page 329
C9-129: AETH Field Value - RNR NAK Timer - RC Page 329
o9-76: RD: AETH Field Value - RNR NAK Timer Page 329
C9-130: Requester/Responder - RNR NAK behavior. Page 329
o9-76.a1: RD: Requester/Responder - RNR NAK Behavior Page 329
C9-131: Obsolete. Page 329
C9-132: RNR NAK Retry - Counting and Behavior Page 330
o9-77: RD: RNR NAK Retry - Counting and Behavior Page 330
C9-133: Packet Header Validation - Transport Page 331
C9-134: ACK PSN Field Value - Order Detection Page 331
o9-78: RD: ACK PSN Field Value - Order Detection Page 332
C9-135: ACK Syndrome Field Value - Error Behavior Page 332
o9-79: RD: ACK Syndrome Field Value - Error Behavior Page 332
o9-79.a1: RD: validating the destination QP for response packets Page 332
C9-135.a1: obsolete . Page 332
C9-136: Ghost ACKs - Req’d Behavior . Page 334
o9-80: RD: Ghost ACKs - Req’d Behavior . Page 334
C9-137: Repeated NAK Seq. Errors - Behavior. Page 336
o9-80.a1: RD: Repeated NAK-Seq. Errors - Behavior Page 336
o9-82: APM: Path Migration on repeated NAK-Sequence errors Page 336
C9-138: Requester - Duplicate ACK Behavior. Page 337
o9-83: RD: Requester - Duplicate ACK Behavior Page 338
C9-139: ACK/NAK Timer - Outstanding SEND Req. Page 338
o9-85: RD: ACK/NAK Timer - Outstanding SEND Req. Page 339
C9-140: Timeout Interval - Local ACK Timeout Basis Page 340
C9-141: QP Timeouts for Reliable Connection Service Page 340
C9-141: Timeout Rule - Based on Timeout Interval Page 340
C9-142: Retry Counter - Outstanding Request Timeout Page 340
C9-143: Retry Counter - Decremented to Zero - Behavior Page 340
o9-86: APM: Retry Counter - Decr. to Zero - Behavior Page 340
o9-88: RD: Timeout Rules for Outstanding Requests Page 341
C9-144: End-to-End Flow Control Credit - Dupl. ACKs Page 341
C9-145: Duplicate ACKs - Behavior. Page 341
C9-146: Reliable Connection and Reliable Service Page 342
C9-147: AETH MSN Field Value - RC Service. Page 342
C9-148: Responder - MSN Calculation . Page 344
C9-149: AETH MSN Field Value . Page 346
C9-150: Obsolete. Page 348
C9-150.2.1:Receive Queue - End-to-End Flow Control Credit Page 348
C9-151: End-to-End Flow Control - Send Queue Behavior Page 348
C9-152: AETH - MSN Field Value - Unsolicited ACK. Page 349
C9-153: End-to-End Flow Control Rules . Page 349
o9-95.2.2: SRQ: AETH credit field value . Page 349
C9-155: End-to-End Credit - Usage. Page 349
C9-156: End-to-End Flow Control - Lack of Initial Credit Page 350

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1082 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-157: Obsolete. Page 353
C9-157.2.1: End-to-End Flow Control Credit - Calc/Update Page 353
C9-158: Obsolete. Page 353
C9-158.2.1: End-to-End Flow Control Credit - AETH Encoding Page 353
C9-159: Requester - Send Queue Behavior - Credit Limit. Page 354
C9-160: Requester Behavior - Transaction Ordering Rules Page 354
C9-161: End-to-End Flow Control - Encoded Count Page 355
C9-162: Requester Behavior - Send Queue - WQE Limit Page 357
C9-163: SEND Request - Limited WQE Case - 1 Pkt Page 357
o9-99: RDMA WRITE - Request Xmt - AckReq bit Page 358
C9-164: Requester - Ability to Receive Unsolicited ACK. Page 358
o9-100: RD: QP Availability, Capabilities. Page 360
o9-101: RD: EEC Support and Capabilities. Page 360
o9-102: RD: RD Message Completion - Single Msg EEC. Page 360
o9-103: RD: RD Message Completion - Single Msg QP. Page 360
o9-104: RD: OpCode, ETH, Transport Validation, etc. Page 360
o9-105: RD: Error Detection and Handling . Page 361
o9-106: RD: Communication Management Support Page 361
o9-107: RD: EE Context - Ability to Avoid Shutdown Page 361
o9-108: RD: SEND/READ/WRITE Support . Page 361
o9-109: RD: EEC Management Support . Page 361
o9-110: RD: RDD Domain Support . Page 361
o9-111: RD: NAK-RNR Behavior for Over-run Condition Page 367
o9-112: RD: Out of Order Receive Queue Completion Page 367
o9-113: RD: Send Queue - WQE Completion Order. Page 367
o9-114: RD: Upper Layers - Tolerate of Out of Order Pkts Page 368
o9-114.a1: RD: Use of Resync for QP errors. Page 373
o9-114.a2: RD: Resync Requester response requirements. Page 373
o9-114.a3: RD: AETH MSN Field Value. Page 373
o9-114.a4: RD: Responder - MSN Calculation . Page 373
C9-165: Transport - Packet Header Validation Page 376
C9-166: UC Service - PSN Examination . Page 376
C9-167: UC Service - OpCode Examination . Page 376
C9-168: BTH OpCode Validation - Support for Request Page 376
C9-169: Inbound Request - Resources to Receive Page 376
C9-170: RETH R_Key Validation - Behavior . Page 376
C9-171: Inbound Request Packet - Validation - UC & UD Page 377
C9-172: BTH PSN Field Value - Current PSN . Page 379
C9-173: BTH PSN Field Value - First Request Packet Page 379
C9-174: PSN Update/Modify - Transport Control. Page 380
C9-175: BTH PSN Field Value - Calculation . Page 380
C9-176: Packet OpCode - First/Middle/Last/Only - UC Page 381
C9-177: Packet Payload Len - First or Middle OpCode, UC Page 381
C9-178: Packet Payload Length - Only OpCode - UC. Page 381
C9-179: Packet Payload Length - Last OpCode - UC Page 381
C9-180: Message Completion Rule - SEND/WRITE Page 382
C9-181: Expected PSN Value - UC . Page 382
C9-182: Expected PSN Update/Modify . Page 383
C9-183: Inbound Request Packet - Ordering - Detection Page 383
C9-184: Inbound Request Packet - New ePSN Page 383
C9-185: BTH PSN Inbound Pkt - Compare to ePSN - UC. Page 384
o9-131: Notification to Client, One or More Lost Messages Page 384
C9-186: Message Drop/Restart Rule. Page 384
C9-187: Inbround Request - OpCode Check - UC Page 384
C9-188: Invalid OpCode Behavior - UC. Page 385
C9-189: Invalid OpCode Behavior - New Message - UC. Page 386

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1083 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-190: Unreliable Connection - Valid Function Check Page 386
C9-191: Invalid UC Request - Behavior. Page 386
C9-192: RETH R_Key Check - non-zero DMA Length Page 386
C9-192.2.1:RETH R_Key Check - non-zero DMA Length Page 387
C9-193: RETH R_Key Field Value - zero-length WRITE Page 387
C9-194: LRH PktLen Check - Sufficient Receive Buffer Page 387
C9-195: LRH PayLen Check - BTH OpCode First/Middle Page 388
C9-196: LRH PayLen Check - BTH OpCode Only Page 388
C9-197: LRH PayLen Check - BTH OpCode Only Page 388
C9-198: obsolete . Page 388
C9-199: Pad Count Check - BTH OpCode First/Middle. Page 388
C9-200: Message Size Limit - Unreliable Datagram Page 390
C9-201: Basic Services - Unreliable Datagram Reqmts Page 390
C9-202: Unreliable Datagram Error Handling . Page 390
C9-203: PSN Generation and Message Completion - UD. Page 392
C9-204: PSN Calculation - Unreliable Datagram. Page 392
o9-144: Responder - PSN Treatment - UD . Page 392
C9-205: Responder Length Validation - UD. Page 393
C9-206: BTH OpCode Field Value - Validation - UD Page 393
C9-207: Inbound SEND Request - Queue Entry - UD Page 393
C9-208: Packet Headers - Raw vs. IPv6 NxtHdr Page 394
o9-145: RawD: Packet Payload and LRH PktLend Pad Page 395
o9-146: RawD: Association of QPs with a Raw Service Page 395
o9-147: RawD: QPs Supporting Raw Service. Page 395
o9-148: RawD: Maximum Raw Datagram Pkt Payload. Page 395
C9-209: Requester - Locally Det. Xmt Error - RC/UC/UD Page 398
o9-150: RD: Requester, Transmit - Locally Detected Error Page 398
C9-210: Requester - Excessive Retry Detection - RC Page 398
o9-151: RD: Requester - Excessive Retry Detection Page 398
o9-152: APM: Migration Attempt Allowed following Errors Page 399
C9-211: Requester - Error Behavior and Fault Class Table. Page 400
C9-211.1.1:Requester - Error Behavior and Fault Class Table. Page 400
C9-212: Requester - Class A Error Behavior - RC Page 403
o9-153: RD: Requester - Class A Error Behavior Page 403
C9-213: Requester - Class A Errors - Client Rule - RC Page 404
o9-154: RD: Requester - Class A Errors - Client Rule Page 404
C9-214: Requester - Class B Error - Behavior. Page 404
o9-154.a1: RD: Response to a Requestor Class B Error Page 404
C9-215: Requester - Class B Error - Discard ACKs Page 405
C9-216: Requester - Class C Error Behavior. Page 406
o9-155: RD: Requester - Class C Error Behavior Page 406
o9-156: RD: Requester - Class D Error - Behavior Page 406
C9-217: Requester - Class E Error - Behavior - RC Page 407
o9-157: RD: Requester - Class E Error - Behavior Page 407
C9-218: Requester - Class F Error - Behavior. Page 408
C9-219: Obsolete. Page 408
C9-219.1.1:Responder - Error Behavior and Fault Class Table Page 408
C9-220: Responder - Class A Error - Behavior Page 412
o9-157.2.1:SRQ: Responder Class A fault behavior Page 413
o9-157.2.2:SRQ: responder Class A fault behavior Page 413
o9-157.2.3:SRQ: Responder Class A fault behavior Page 414
C9-221: Responder - Class B Error - Behavior - RC Page 414
o9-158: RD: Responder - Class B Error - Behavior Page 414
C9-222: Obsolete. Page 414
C9-222.1.1:Responder - Class C Error - Behavior Page 414
C9-223: Obsolete. Page 415

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1084 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-223.1.1:Responder - Class D Error - Behavior Page 415
C9-224: Responder - Class D1 Error - Behavior Page 416
o9-161: RD: Responder - Class E Error - Behavior Page 416
o9-161.2.1:SRQ: Responder Class E error behavior for SRQs. Page 417
o9-162: RD: Responder - Class F Error - Behavior. Page 418
o9-162.1.1:RD: Responder - Class F Error - Behavior. Page 418
C9-225: Responder - Class G Error - Behavior Page 418
o9-162.2.1:BMM: R_Key violations on a SEND with Invalidate Page 419
o9-163: Static Rate Control - Required Support Criterion Page 427
o9-164: Static Rate Control - Programmed Injection Rate Page 427
C10-1: GID Table reqs for HCA Source Ports Page 432
C10-2: Requirements for first entry in GID table Page 432
C10-3: Address Vectors and Source Port LID Path Bits Page 432
C10-4: Destination addresses for RC & UC QPs. Page 433
o10-1: RD: destination address reqs wrt EECs. Page 433
o10-2: RawD: destination address reqs wrt WRs Page 433
o10-2.1.1: AH port number checking reqs. Page 433
C10-5: Destination addrs, Addr_Handles for UD QPs Page 433
C10-6: Sending messages that target sending HCA port Page 434
C10-7: QP & PD associations . Page 435
o10-2.2.1: SRQ: SRQ & PD Association. Page 435
C10-8: Region/Window/Addr_Handle & PD associations Page 435
C10-9.2.1: PD check between QP & Region/Window Page 435
o10-2.2.2: SRQ: PD check between SRQ & Region/Window Page 435
C10-10: PD check between UD QP & Addr_Handle Page 436
C10-11.2.1:PD deallocation while PD still associated Page 436
C10-11.2.2:SRQ: PD deallocation while PD still associated. Page 436
o10-2.2.3: CI: Destroy while UD QP is attached to Multicast group Page 438
o10-2.2.4: BMM: Destroy QP fails if Type 2A MW still bound Page 439
o10-2.2.5: BMM: Destroy QP allowed if Type 2B MW still bound Page 439
C10-12: Processing below verbs disturbing WQEs/CQEs. Page 439
C10-13: Access to SMI/GSI by privileged Consumers Page 439
C10-14: Q_Key checking on UD QPs . Page 440
o10-3: RD: Q_Key checking & NAK reqs . Page 440
C10-15: Q_Key selection on UD/RD outbound packets Page 440
C10-16: CQ basic requirements. Page 440
C10-17: CQ behavior on overflow . Page 441
C10-18: Destroying a CQ while CQ still associated. Page 441
o10-4: RD: EEC basic requirements . Page 441
o10-5: RD: multiple EECs between HCA port pairs Page 442
o10-6: RD: RD QP and RDD associations . Page 443
o10-7: RD: EEC and RDD associations . Page 443
o10-8: RD: RDD check between RD QPs & EECs Page 443
o10-9: RD: minimum number of RDDs . Page 443
o10-10: RD: deallocating RDD while RDD still associated Page 444
o10-10.2.1:SRQ: Modifying max number of SRQ WRs Page 446
o10-10.2.2:SRQ: SRQ Resize Immediate Error Exceptions Page 446
o10-10.2.3:SRQ: Destroy fails if QPs still associated Page 447
o10-10.2.4:SRQ: Destroy allowed if WRs still outstanding. Page 447
o10-10.2.5:SRQ: Destroy frees SRQ resources . Page 447
o10-10.2.6:BMM: Reset transition fails if Type 2A MWs still bound Page 453
o10-10.2.7:BMM: Reset transition when Type 2B MWs still bound Page 453
C10-19: Req’d States & Transitions for QPs . Page 453
o10-11: RD: Req’d States & Transitions for EECs Page 453
C10-20: Initial State for newly created QP/EE . Page 453
C10-21: Default attributes for QP/EE and when to set Page 454

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1085 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-12: RD: SQ WRs referencing EEC in Reset State Page 454
o10-13: RD: incoming msgs targeting EEC in Reset State Page 454
C10-22: WR submitted to QP in Reset State . Page 454
C10-23: Incoming messages targeting QP in Reset State. Page 454
o10-14: RD: incoming msgs targeting EEC in Init State Page 455
o10-15: RD: SQ WRs referencing EEC in Init State Page 455
C10-24: RQ WRs submitted to QP in Init State Page 455
C10-25: SQ WRs submitted to QP in Init State Page 455
C10-26: Incoming msgs targeting QP in Init State Page 455
C10-27: RQ WRs posted to QP in RTR State . Page 455
C10-28: Incoming msgs targeting QP in RTR State. Page 455
o10-16: RD: incoming msgs targeting EEC in RTR State Page 455
o10-17: RD: SQ WRs referencing EEC in RTR State Page 456
C10-29: SQ WR posted to QP in RTR State . Page 456
C10-30: WRs posted to QP in RTS State . Page 456
C10-31: WRs processed by QP in RTS State . Page 456
C10-32: Incoming msgs targeting QP in RTS State. Page 457
o10-18: RD: incoming/outgoing msgs w/ EEC in RTS Page 457
C10-33: WR posting to QP in SQD State. Page 457
C10-34: Incoming msgs targeting QP in SQD State Page 457
o10-19: RD: incoming msgs targeting EEC in SQD State Page 457
C10-35: Reqs for QP/EE transitioning to SQD State Page 457
C10-36: AAEvent generation after transition to SQD State Page 457
o10-19.a1: RC: Physical Port Change Support . Page 457
o10-19.a2: RD: Physical Port Change Support . Page 458
o10-20: RD: SQ WRs referencing EEC in SQD State. Page 458
C10-37: SQ WRs posted to QP in SQD State . Page 458
C10-39: WC for SQ WR that caused transition to SQEr Page 459
C10-40: SQ WRs subsequent to one causing SQEr Page 459
C10-41: WC for WR that caused transition to Error State Page 460
o10-21: RD: SQ WR referencing EEC in Error State Page 461
o10-22: APM: req’d path migration States & Transitions. Page 462
o10-23: APM and RD: req’d path mig States & Transitions. Page 462
o10-24: APM: reqs for Migrated to Rearm transition. Page 462
o10-25: APM: reqs for Armed to Migrated transition Page 462
o10-26: APM: initial path migration State . Page 463
o10-27: APM: behavior for Armed to Migrated transition Page 464
o10-28: APM: handling valid incoming migration requests Page 464
o10-29: APM: handling invalid incoming mig requests Page 464
o10-31: APM: reqs for transition from Migrated to Rearm. Page 465
o10-32: APM: req’d behavior following transition to Rearm Page 465
o10-33: UDMcast: minimum number of mcast groups Page 466
o10-34: UDMcast: reqs for QP to receive mcast msgs Page 466
o10-35: UDMcast: reqs if incoming Dest QPN not valid Page 468
C10-43: Preparing/specifying mcast group dest address Page 468
o10-36: UDMcast: reqs for UD Multicast loopback Page 468
C10-44.2.1:Accesses to unregistered memory locations Page 469
o10-36.2.1:BMM: Memory Management Operation Errors Page 469
C10-45: Registrations succeed or fail in atomic fashion Page 470
C10-45.2.1:Virtual Addresses allowed on MR and MW Page 471
o10-36.2.2:ZBVA: Allowed use of Zero Based VA Page 471
o10-36.2.3:BMM: Non-Shared MR usage . Page 474
o10-36.2.4:BMM: Shared MR usage . Page 474
o10-36.2.5:BMM: Shared MR not allowed in Fast Register Page 474
C10-46: Req’d memory access rights . Page 474
o10-37: Atomics: support for Remote Atomic access right Page 474

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1086 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-47: Local Read memory access right is automatic. Page 474
o10-37.2.1:BMM: L_Key format . Page 475
o10-37.2.2:BMM: L_Key ownership semantics . Page 475
o10-37.2.3:BMM: R_Key format. Page 477
o10-37.2.4:BMM: R_Key creation semantics . Page 477
o10-37.2.5:BMM: Fast Register error cases . Page 478
o10-37.2.6:BMM: Fast Register ordering . Page 478
C10-49: Registration of overlapping memory areas Page 479
o10-37.2.7:BMM: QP use of Reserved L_Key and Fast Register Page 481
o10-37.2.8:BMM: Disallowed use of Reserved L_Key Page 481
C10-50: Registering arbitrarily aligned buffers. Page 482
C10-51: Registering arbitrary length buffers . Page 482
C10-52.2.1:Reqs for pinning Memory Region pages Page 482
C10-53.2.1:Physical buffer alignment & length reqs. Page 484
o10-37.2.9:BL: Byte alignment and size of Blocks Page 484
o10-37.2.10:BMM: Return size of reserved PBL . Page 484
o10-37.2.11:BMM: Reserved L_Key access semantic Page 485
C10-54.2.1:General reqs wrt local accesses to Regions Page 485
o10-37.2.12:SRQ: PD Semantics. Page 485
C10-54.1.1:Zero-length Data Segments checks. Page 485
C10-54.1.2:Zero-length message protection checks Page 485
C10-55: Local access rights checking against Region. Page 485
C10-56: General reqs wrt remote accesses to Regions Page 486
C10-57: Remote access rights checking against Region. Page 486
o10-37.2.13:BMM: Invalidation semantics . Page 487
o10-37.2.14:BMM: Fail upon attempting access of MR in Inv state Page 487
o10-37.2.15:BMM: Shared MRs cannot be invalidated Page 487
o10-37.2.16:BMM: Shared MRs cannot be remotely invalidated Page 487
o10-37.2.17:BMM: Invalidate fails if MWs still bound to MR Page 487
o10-37.2.18:BMM: Access to MR in invalidate state fails. Page 487
o10-37.2.19:BMM: Local Invalidate Ordering . Page 488
o10-37.2.20:LIF: Ordering rule for Fenced Local Invalidate Page 488
o10-37.2.21:BMM: Send with invalidate ordering. Page 488
o10-37.2.22:BMM: Must support Relaxed Invalidation Ordering Page 489
o10-37.2.23:LIF: Local Invalidate Fence Ordering rules Page 489
o10-37.2.24:BMM: R_Key check fail on Send w/ Inv Page 489
C10-58: Deregistration of overlapping Memory Regions Page 489
C10-59: Deregistration while access in progress. Page 489
C10-60: Accesses after deregisteration completes Page 489
C10-61: Granularity of remote access control to Windows Page 492
C10-62: Access rights checks for Bind Window. Page 492
C10-66.2.1:Type-1 MW are mandatory . Page 495
C10-66.2.2:Previous R_Key after a Bind Window completes. Page 495
C10-66.2.3:Execution of SQ WRs subsequent to a Bind Page 496
o10-37.2.25:BMM: Type 1 MW ordering rules.. Page 496
C10-66.2.4:Zero-length Bind semantics . Page 497
C10-66.2.5:Reqs for Windows bound to same Region. Page 497
o10-37.2.27:BMM: Type 1 MW cannot be invalidated Page 497
o10-37.2.28:BMM: Must support Type 2 MW. Page 497
o10-37.2.29:BMM: Type 2A MW semantics . Page 497
o10-37.2.30:BMM: Type 2B MW semantics . Page 498
o10-37.2.31:BMM: HCA supports Type 2A or 2B, not both Page 498
o10-37.2.32:BMM: Type 2 MW R_Key format . Page 498
o10-37.2.33:BMM: R_Key value used on Post Send Bind MW Page 499
o10-37.2.34:BMM: Type 1 not allowed in Post Send Page 499
o10-37.2.35:BMM: Type 2 not allowed in Bind Verb. Page 499

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1087 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-37.2.36:BMM: Type 2 MW ordering rules.. Page 499
o10-37.2.37:BMM: Must support Relaxed Invalidation Ordering Page 500
o10-37.2.38:LIF: Local Invalidate Fence bit . Page 500
o10-37.2.39:BMM: R_Key check semantics. Page 500
o10-37.2.40:BMM: zero length invalidate of Type 2 MW fail Page 500
o10-37.2.41:BMM: Reqs for Windows bound to same Region. Page 500
C10-67: Window changes while access in progress Page 502
C10-68: Previous binding after a Bind completes Page 502
C10-69: Window deallocation while access in progress Page 502
C10-70: Accesses after Window deallocation completes Page 502
C10-71: Reqs if CI allows orphaned Windows. Page 502
C10-72: Bind-time PD check between QP & Window Page 503
C10-73: Bind-time check that Region allows Binds Page 503
C10-74: Bind-time check of Region write permissions Page 503
C10-75: Bind-time check of Region addr bounds & PD. Page 503
C10-76.2.1:PD check between QP & Region/Window Page 503
o10-37.2.42:BMM: PD check for Type 2A MW. Page 503
o10-37.2.43:BMM: PD check for Type 2B MW. Page 503
C10-77: Window access-time checks of bounds & rights Page 503
C10-79.2.1:Window access-time checks for each page. Page 504
C10-79.2.2:Special access-time checks if orphaned Window Page 504
o10-37.2.44:BMM: R_Key checks for Type 2 MW Page 504
C10-80: Service Types supporting Send and Receive Page 505
C10-81: RQ WR consumption with incoming Send msg Page 505
C10-82: Service Types req’d to support SAR . Page 505
o10-38: RD: SAR support . Page 505
o10-38.2.1:BMM: Send with Invalidate for RC QPs Page 505
C10-83: RDMA Read support on RC. Page 506
C10-84: RDMA Write support on RC and UC . Page 506
o10-39: RD: RDMA Read & RDMA Write support. Page 506
C10-85: RQ WR with incoming RDMA Read. Page 506
C10-86: RQ WR with incoming RDMA Write . Page 506
C10-87: RQ WR with incoming RDMA Write; more cases. Page 506
C10-88: Target QP check with incoming RDMA Page 506
o10-40: Atomics: required Atomic operations . Page 507
o10-41: Atomics: Endian byte ordering accommodation. Page 507
o10-42: Atomics: Fetch&Add requirements. Page 507
o10-43: Atomics: if remote addr not 64-bit aligned Page 507
o10-44: Atomics: support on RC . Page 507
o10-45: Atomics and RD: Atomic support on RD Page 507
o10-46: Atomics: Service Types not supported. Page 507
o10-47: Atomics: op result returned in Data Segment. Page 507
o10-48: Atomics: atomicity of requests through same HCA Page 508
o10-49: Atomics: atomicity of requests across system Page 508
C10-89: Service Types supporting Bind Memory Window. Page 508
o10-50: RD: Bind Memory Window support . Page 508
C10-90: Signaled and unsignaled completion support Page 510
C10-91: Reqs for generating CQE when a WR completes Page 510
C10-92: Conditions for not generating CQE for SQ WR Page 510
C10-93: If max msg payload size exceeded for RC or UC Page 510
C10-93.1.1:UD msg exceeding MTU not emitted . Page 511
o10-51: RD: If max msg payload size exceeded for RD Page 511
C10-94: Scatter list support for Receives & RDMA Reads Page 511
C10-95: Gather list support for Sends & RDMA Writes Page 511
C10-96: Rules for SQ WR processing . Page 511
C10-97.2.1:Rules for RQ WR processing. Page 512

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1088 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o10-51.2.1:SRQ: Rules for SRQ WR processing. Page 512
o10-51.2.2:SRQ: WRs posted to SRQ, not RQ . Page 513
C10-98.2.1:WRs to single queue initiated in order Page 514
C10-99.2.1:RQ WR completion order rule . Page 514
o10-52: RD: SQ WRs complete in order . Page 515
o10-53: RD: rule for RQ WRs completing in order Page 515
o10-53.2.1:SRQ: WQE consumption by incoming Sends Page 515
o10-53.2.2:SRQ: SRQ Semantics . Page 515
C10-100: Fence Indicator effect on SQ WRs. Page 516
o10-53.2.3:BMM: Invalidate ordering . Page 517
o10-53.2.4:LIF: Fence Indicator effect on Local Invalidate WR Page 517
C10-101.2.1:Table of ordering rules for WRs on same SQ Page 517
C10-102: WQ WCs placed on associated CQ . Page 519
C10-103: Given WC not retrieved more than once Page 519
C10-104: WR with signaled completion generates WC Page 519
C10-105: SQ WR completing in error generates WC Page 519
C10-106.2.1:RQ WR completion generates WC . Page 520
o10-53.2.5:SRQ: SRQ WR completion generates WC Page 520
o10-53.2.6:SRQ: SRQ WRs returned thru associated CQ. Page 520
C10-107: WR buffer access once associated WC retrieved Page 520
o10-54: RD: WR freed resource count returned with WC Page 520
C10-108: Buffer access rule for Unsignaled WRs Page 521
C10-109.2.1:Single CQ Event Handler per HCA . Page 522
o10-54.2.1:BQM: Multiple Event Handlers . Page 522
C10-110.2.1:CQ Event Handler replacement . Page 522
o10-54.2.2:BQM: replacement of a CQ Event Handler Page 522
C10-111: Outstanding Completion Event notify requests Page 523
C10-112: Rule for Completion Event generation Page 523
C10-113: Rule for when not to generate Completion Event Page 523
C10-114: Completion Event indicates responsible CQ Page 523
C10-116: Invalid P_Key definition & use in table entry Page 524
C10-119: Received packet discarded if P_Key mismatch Page 525
C10-120: Each port contains P_Key table . Page 525
C10-121: P_Key Table size reqs . Page 525
C10-122: Mechanisms to change P_Key Table contents. Page 525
C10-123: P_Key Table initialization wrt non-volatile storage Page 526
C10-124: P_Key checking for incoming packets Page 526
C10-125: P_Key and P_Key Table associations with QPs Page 527
C10-126: P_Key for packets from a QP’s SQ; exceptions. Page 527
C10-127: Incoming packet P_Key checking against QP Page 528
o10-58: RD: P_Key & P_Key Table association with EEC Page 528
o10-59: RD: P_Key attachment & checking wrt EEC Page 528
C10-128: Response to SMP requesting P_Key change Page 528
C10-129: Timing req for using updated P_Key Table values Page 528
C10-131: No P_Key checking on packets sent to SMI Page 529
C10-132: Special P_Key checking for packets sent to GSI Page 529
C10-133: P_Key for packets sent from GSI . Page 529
C10-135: Immediate error return of control timing Page 530
C10-136: WR with immediate error not posted to WQ. Page 531
C10-137: WC for WR completed in error . Page 531
C10-138: Async errors before/after event handler regist Page 531
C10-139: Async error handler registration & replacement. Page 531
C10-141: RC immediate error effect on QP processing. Page 532
C10-142: RC SQ completion error effect on SQ & WR Page 532
C10-143: RC RQ completion error effect on QP & WRs Page 532
C10-144: RC AAError effect on QP & WRs . Page 532

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1089 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C10-145: Tables - Compl error handling for RC SQs/RQs Page 532
o10-60: RD: immediate error effect on QP/EE processing Page 534
o10-61: RD: SQ completion error effect on SQ & WR. Page 534
o10-62: RD: RQ compl error effect on curr/subseq WRs Page 534
o10-63: RD: completion error effect on EEC State Page 534
o10-65: RD: AAError effect on QP and EEC. Page 534
o10-66: RD: Tables - compl error handling for RD SQ/RQ Page 535
C10-146: UC immediate error effect on QP processing. Page 537
C10-147: UC completion error effect on SQ & WR Page 537
C10-148: UC RQ completion error effect on QP & WRs Page 537
C10-149: Tables - compl error handling for UC SQ/RQ. Page 537
C10-150: UC AAError effect on QP & WRs . Page 538
C10-151: UD immediate error effect on QP & WR. Page 538
C10-152: UD SQ completion error effect on SQ & WR Page 538
C10-153: UD RQ completion error effect on QP & WRs Page 539
C10-154: Tables - completion error handling on UD SQ/RQ Page 539
C10-155: UD AAError effect on QP & WRs . Page 539
C10-156: RawD immediate error effect on QP & WR Page 540
C10-157: RawD SQ completion error effect on SQ & WR. Page 540
C10-158: RawD RQ completion error effect on QP & WRs. Page 540
C10-159: Tables - compl error handling for RawD SQ/RQ Page 540
C10-160: RawD AAError effect on QP & WRs. Page 541
C10-160.2.1:CI: Requestor Error Behavior Conformance Page 541
C10-160.2.2:CI: Responder Error Behavior Conformance Page 544
o11-0.2.1: VE: Semantics for support for a verb extension. Page 547
C11-1: Table indicating mandatory verbs. Page 547
C11-2: Table indicating verbs req’d for optional features. Page 547
C11-3: Verb functionality not indicated as being optional Page 547
C11-4: Verb functionality associated w/ optional features Page 547
C11-5: HCA handles for different HCAs are unique. Page 550
C11-6: If Open HCA called for already opened HCA. Page 550
o11-0.2.2: SRQ: Create SRQ required initial attributes. Page 563
C11-7: Create QP required initial attributes . Page 566
o11-0.2.3: SRQ: UD and RC QPs allowed to associate with SRQ Page 566
C11-8: Modify QP’s general behavior . Page 568
C11-9: Modify QP’s behavior if invalid request Page 568
C11-10: Table - QP State Transition Properties Page 569
C11-11: Destroy QP deallocates associated resources Page 579
C11-12: Destroy QP’s effect on WRs & incoming ops Page 579
C11-13: Get Special QP supports QP0 & QP1 Page 580
o11-1: RawD: Get Special QP supports RawD QPs Page 580
C11-14: Get Special QP reqs wrt SMI & GSI QP handles Page 580
o11-2: RawD: Query HCA returns # suppt’d RawD QPs Page 580
C11-15: Special rule for CQs associated with SMI/GSI Page 580
C11-16: Resize CQ requirements . Page 583
C11-17: Destroy CQ behavior if any WQs still associated. Page 584
o11-3: RD: Modify EEC Attributes general behavor Page 585
o11-4: RD: Table - EEC State Transition Properties Page 586
o11-5: RD: Destroy EEC’s effect on WRs . Page 592
C11-18: Rereg MR behavior if "Operation denied" Page 600
C11-19: Rereg MR behavior if invalid handle . Page 600
C11-20: Rereg MR behavior if other errors . Page 600
C11-21: Rereg MR behavior if access in progress Page 600
C11-22: Reregister Physical MR Verb Compliance Page 603
o11-5.2.1: Post Send list requirement for return of control timing Page 612
C11-24: WR access or modification after posting Page 613

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1090 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o11-5.2.2: BMM: QP not enabled for Fast Reg or Rsv L_Key Page 613
C11-25.2.1:Post Send Table - req’d ops for service types Page 613
C11-25.2.2:Atomic ordering . Page 613
C11-26.2.1:Post Send table - req’d input modifiers for ops Page 614
C11-27: Post Rcv req for return of control timing. Page 622
C11-27.2.1:Post Receive list req for return of control timing Page 622
o11-5.2.3: SRQ: Post Receive req for return of control timing Page 622
C11-28.2.1:Poll for Comp table - completion err types for SQs Page 624
C11-29.2.1:Poll for Comp table - completion err types for RQs Page 625
C11-30: Rqst Comp Notif req’d Completion Event Types Page 628
C11-30.1.1:Solicited Completion Event callback invocation Page 628
C11-30.1.2:Completion Event invocation rules. Page 628
C11-31: Rqst Comp Notif changing to "next" completion. Page 629
C11-32: Req Comp Notif not changing from "next" comp Page 629
C11-33: Set Async EH req’d use of new event handler. Page 631
C11-34: Affilliated Async Error effect on QP/EE State Page 637
C11-35: Affilliated Async Event effect on QP/EE State Page 637
C11-36: Communication Established AAEvent generation Page 638
o11-5.1.1: Communication Established AAEvent generation Page 638
o11-5.2.4: SRQ: SRQ Limit Reached Affiliated Async Event Page 638
o11-5.2.5: SRQ: Last WQE Reached Affiliated Async Event Page 638
o11-5.2.6: SRQ: No Last WQE Reached after Catastrophic Error Page 639
C11-37: AAError - CQ Error generation condition & timing Page 639
C11-38: AAError - CQ Error generation timing for overrun Page 639
C11-39: AAError - Catastrophic error condition & timing Page 639
C11-40: AAError - Catastrophic error condition & timing Page 639
C11-40.1.1:Invalid Request Local Work Queue Error condition Page 639
C11-40.1.2:Local Access Violation Work Queue Error condition Page 640
o11-5.a1: RD: AAError - Catastrophic EEC error condition Page 640
o11-6: APM: AAError - APM error condition . Page 640
o11-6.2.1: SRQ: SRQ Catastrophic Error . Page 640
o11-6.2.2: SRQ: QP Catastrophic Affiliated Async Error. Page 640
o11-6.1.1: Port Active Event generation . Page 641
C11-41: UAError - Catastrophic Error conditions. Page 641
C11-42: UAError - Port Error condition . Page 641
C12-1: CM protocol support req’d with RC, UC, and RD. Page 656
o12-12: Conditions when SIDR_REQ msg support req’d Page 657
C13-1.1.1: SMA required on CAs, switches, routers. Page 717
C13-28: ClassPortInfo Required for each Agent Page 734
C13-29: ClassPortInfo Required For Each Agent Port Page 734
C13-30.1.2:Agent must do Trap or Notice Queue if Notices. Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-32: Trap: No Traps Without TrapDLID Target. Page 742
o13-2.a1: Trap: parameters from ClassPortInfo and PortInfo Page 742
o13-3: Trap: Maximum Rate of Generation . Page 742
o13-4: Trap: Use of Notice Attribute . Page 742
o13-5: Trap: Transaction ID setting . Page 742
o13-6: Trap: Response to TrapRepress . Page 743
o13-7: Trap: TrapRepress Dropped if No Matching Trap Page 743
o13-8: Notice: Notice Queue is FIFO . Page 743
o13-9: Notice: NoticeCount semantics . Page 743
o13-10: Obsolete. Page 744
o13-10.1.1:Notice: Returning a Notice from Notice Queue Page 744

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1091 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o13-11: Notice: Response to Set(Notice) . Page 744
C13-33: SM MADs (SMPs) appear on QP0. Page 750
C13-34: GSA MADs Directed to QP1 . Page 750
C13-36: SMPs Not Dispatched to SMA Appear on QP0 Page 751
C13-37: SMP Processing Above/Below the Verb Layer Page 751
o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788
C14-8: Directed Route SMPs Processed by the SMI. Page 802
C14-12: Obsolete. Page 804
C14-13.1.1:Required SMA methods. Page 806
C14-14: Obsolete. Page 806
C14-15: M_Key not Checked When PortInfo:M_Key = 0. Page 806
C14-16: M_Key checks when PortInfo:M_Key is not zero. Page 807
C14-17: Lease Period Timer Countdown. Page 808
C14-18: PortInfo:M_KeyViolations Counting . Page 808
C14-19: Lease Period Counting Halts on valid M_Key Page 808
C14-20: M_KeyProtectBits When Lease Period Expires Page 808
C14-21: M_KeyLeasePeriod 0 = Lease Never Expires Page 808
C14-22: M_Key, ProtectBits, & LeasePeriod Set Together Page 809
C14-23: Init of M_Key, ProtectBits & LeasePeriod. Page 809
C14-24: Obsolete. Page 809
C14-24.1.1:SMA Required Attributes . Page 809
C14-24.1.2:DRN: Ignore DataDetails if not supported Page 813
C14-24.1.3:DRN: DataDetails if supported. Page 813
C14-25: PortInfo Set when M_Key is 0 . Page 853
C14-26: PortInfo Set when M_Key is not 0 . Page 853
C14-27: Req to Change RO Components Ignored Page 853
C14-28: SubnGetResp Generation when M_Key is 0 Page 853
C14-29: SubnGetResp Generation when M_Key non0 Page 853
C14-30: SubnGetResp Content . Page 854
C14-31: SubnGetResponse TransactionID . Page 854
C14-32: Obsolete. Page 854
o14-1: Trap: SubnTrap M_Key field. Page 854
o14-2: Trap: Trap Generation Interval . Page 854
o14-3: Obsolete. Page 854
o14-3.2.1: Trap: Only Sent When Portstate is Active Page 854
o14-3.a1: Trap: SMA sets trap source LID . Page 855
o14-3.a2: Trap: TrapRepress Gen when M_Key is 0 Page 855
o14-3.a3: Trap: TrapRepress Gen when M_Key non0. Page 855
o14-3.a4: Trap: No TrapRepress response . Page 855
o14-4: Obsolete. Page 855
o14-5: Obsolete. Page 855
o14-5.1.1: Trap: Trap 128 on Port State Change Page 855
o14-6: Obsolete. Page 855
o14-6.1.1: Notice: Logged on Port State Change Page 855
o14-6.1.2: P_Key SEPT: Mismatches monitored. Page 856
o14-6.1.3: P_Key SEPT and Trap: Send trap 259 Page 856
o14-6.1.4: P_Key SEPT and Notice: Notice 259 logged Page 856
C14-33: P_Key and Q_Key Mismatches Monitored Page 856
C14-34: P_Key or Q_Key Violation Count Reporting. Page 856

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1092 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o14-7: Trap: P_Key, Q_Key Violation =Trap 257, 258. Page 857
o14-8: Notice: Must Log P_Key & Q_Key Violations. Page 857
o14-9: Trap: trap 256 On M_Key Mismatch . Page 857
o14-10: Notice: M_Key mismatch is logged . Page 857
o14-11: Trap: trap 129, 130, or 131 When Link Problems Page 857
o14-12: Notice: Must Log Link Problems . Page 858
o14-12.1.1:Trap and CMN: trap 144 when cap. mask changes Page 858
o14-12.1.2:Notice and CMN: log when cap. mask changes Page 858
o14-12.1.3:Trap and SysG: trap if SystemImageGUID changes Page 858
o14-12.1.4:Notice and SysG: log if SystemImageGUID changes Page 859
C16-1: PM Agent is mandatory on all nodes. Page 930
C16-2: PM MAD format . Page 931
C16-2.1.1: PMA required methods . Page 932
C16-2.1.2: Performance Management Agents Mandatory Attributes Page 932
C16-3: PortSamplesControl, PortSamplesResult Req’d Page 934
C16-4: Obsolete. Page 934
C16-4.1.1: Each sampler must have >=1 & <=15 counters Page 934
C16-5: PMA Mandatory quantities: all ports, all nodes. Page 940
o16-1: OptPC: Optional Performance Counters: Attributes. Page 940
C16-6: PortCounters Attribute is Mandatory. Page 945
C16-7: Counters power-up 0 and stick at all 1s. Page 945
o16-2: Obsolete. Page 950
o16-2.1.1: OptPC: Optional Performance Management Attributes Page 950
o16-2.1.2: OptPC: SwPortVLCongestion only on switches. Page 962
C16-9: BMA Mandatory on all nodes. . Page 973
C16-10: BM datagram format. Page 975
C16-10.1.1:BMA required methods . Page 976
C16-10.1.2:Baseboard Management Agent attributes and Method Page 978
o16-3: Trap or Notice: BKeyViolation DataDetails. Page 981
o16-3.1.1: Trap or Notice: BMTrap DataDetails . Page 981
C16-11: BMA checks B_Key . Page 984
C16-12: BMA Action when B_Key check Fails Page 984
C16-13: B_Key, B_Key Protection, B_Key lease at reset Page 984
C17-1: Verbs Layer (Channel Interface) is Mandatory. Page 1016
C17-2: Multiport CAs Shall Support Multiple Subnets Page 1018
C17-3: Association of QPs with Ports . Page 1020
C17-4: Static Rate Control - Ports above 2.5 Gbps Page 1022
C17-5: CA Ports Must Validate P_Keys on Packets Page 1022
C17-6: P_Key Table Size per Port . Page 1022
C17-7: Setting P_Key Table - No OS Involvement Page 1022
C17-7.a1: CA Port numbering. Page 1022
C17-8: Each Port Must Support at least One GID Page 1022
C17-9: All QPs Shall Source and Sink Local Packets Page 1027
C17-10: Except QP0, All QPs Shall Handle GRH Packets Page 1027
C17-11: UD, RC and UC Transport Required on All QPs Page 1027
C17-12: Transport Services - Support Rules . Page 1027
C17-13: Solicited Event Rule . Page 1027
C17-14: MTU Support - Valid Sets. Page 1027
C17-15: Receive Queues - E-to-E Flow Control Credit Page 1028
C17-15.2.1:Receive Queues - E-to-E Flow Control Credit Page 1028
C17-16: Send Queues - E-to-E Flow Control Credit Page 1028
o17-2: UDMcast: Generation. Page 1028
o17-3: UDMcast: Receiving. Page 1028
o17-4: APM: Respond to, Generate Auto Path Migrate Page 1028
C17-18: Loopback Allowed, but Can’t Go on the Wire Page 1028
C17-19: Backpressure Rule to avoid Deadlock Page 1028

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1093 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C17-20: Backpressure Inbound/Outbound - Deadlock Page 1028
C17-21: Inbound Pkts - Link/Network/Transport Check. Page 1029
C17-22: EUI-64 GUID In Non-Volatile Memory Page 1029
C17-23: Obsolete. Page 1029
C17-24: QP0 and QP1 Support Req’d for Every Port Page 1031
CA4-24: Obsolete. Page 1209

20.4 TCA COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of TCA, a product shall meet all requirements
specified in this section, except for those statements preceded by Quali-
fiers that the product does not support. In addition, a compliant TCA shall
meet all Section 20.13 Common Port Requirements on page 1117 and all
Section 20.14 Common MAD Requirements on page 1119.

C4-1: EUI-64 Assignment . Page 142
C4-2: EUI-64 Assignment - At Least One per Port Page 143
C4-3: GID Usage and Properties . Page 143
C4-4: Addressing Rules . Page 147
C4-5: LID (Local Identifier) Usage and Properties Page 147
o5-1: RD: Reliable Datagram ETH Format . Page 156
o5-2: RDMA: RDMA ETH Format . Page 157
o5-3: Atomics: Atomic Extended Transport Hdr Format Page 158
o5-4: Atomics: Atomic ACK ETH Format . Page 159
o5-5: RawD: Raw Packet Header Rules . Page 161
o5-6: RawD: EtherType Usage in RWH . Page 161
o5-7: RawD: Raw Packet Length Rule . Page 161
o5-8: RawD: Raw Packet Header Format . Page 161
C7-7: Packet Discard Required if Link Checks Fail Page 173
C7-21: VL15 Buffer(s) required For each Port Page 183
o7-5: SL-to-VL Mapping Table Size. Page 186
o7-14: RawDMcast: Raw Multicast Operational Rules Page 217
C7-66: Link Layer DLID Check - Use Base LID Only Page 219
C8-1: Rules for Including a GRH in Packets Page 226
o8-1: Optional Use of GRH in Packets . Page 227
C9-2: Transport - Opcode, Header, and Payload Table Page 234
o9-0.2.1: BMM: Required opcodes for Remote Invalidate Page 235
o9-1: Solicited Event Bit may Invoke CQ Event Handler. Page 238
C9-4: Solicited Event Bit - Excluded from Hdr Validation. Page 238
C9-5: BTH TVer Field Value. Page 239
C9-6: BTH - Reserve 8 Field Value . Page 239
C9-7: BTH - Reserve 7 Field Value . Page 239
o9-2: RD: RDETH - Reserve Field Value . Page 240
C9-8: DETH - Reserve Field Value . Page 240
o9-3: RDMA: RETH - DMA Length Field Value Limits. Page 242
C9-10: SEND Operation Size Limits . Page 245
o9-5: Segmentation and Reassembly of RC, UC, RD. Page 246
C9-12: SEND Operation - UD Allows only Single Packets Page 246
C9-13: Multi-Packet Messages - Do Not Interleave. Page 248
C9-14: SEND Request - Required IBA Headers Page 248
C9-15: SEND Response - Required IBA Headers. Page 248
o9-5.2.1: BMM: header validation order for remote invalidate. Page 250
o9-5.2.2: BMM: R_Key validation for Remote Invalidate. Page 251
C9-15.a1: RD: Resync data payload length shall be zero. Page 252

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1094 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-6: RDMA: RDMA WRITE - DMA Length Limits Page 252
o9-7: RDMA: RDMA WRITE Segmenting/Reassembly Page 253
o9-8: RDMA: Multi-packet RDMA WRITE Rule. Page 255
o9-9: RDMA: RDMA WRITE Request - Req’d Headers Page 255
o9-10: RDMA: RDMA WRITE Resp. - Req’d Headers Page 256
o9-11: RDMA: RDMA READ Segments/Reassembly Page 256
o9-12: RDMA: RDMA READ DMA Length Limits Page 256
o9-13: RDMA: RDMA READ Request - Req’d Headers Page 259
o9-14: RDMA: RDMA READ Response - Reqd Headers Page 259
o9-15: Atomics: ATOMIC Op Request - Req’d Headers Page 262
o9-16: Atomics: ATOMIC Op Response - Req’d Headers. Page 262
o9-17: Atomics: ATOMIC Op - QP Atomicity Rule. Page 262
o9-18: Atomics: ATOMIC Op - Enhanced Atomicity Rule Page 263
C9-25: Transmission of Requests - Ordering Rule Page 268
C9-26: Transmission of Message - Data Payload Order Page 268
o9-19: RC: Acknowledge Packets - Strong Ordering Page 268
o9-19: RD: Acknowledge Packets - Strong Ordering Page 268
C9-28: Responder - Order of Request Execution Page 268
C9-29: Receipt of Requests - Order of Completion Page 269
C9-30: Requester - Order of WQE Completion Page 269
C9-31: Requester - WQE Fence Attribute Behavior Page 269
C9-32: WQE Order of Completion vs. Execution. Page 269
o9-20: RDMA: Responder RDMA WRITE Buffer Rule Page 269
o9-21: RDMA: Responder RDMA READ Buffer Rule Page 269
o9-21.a1: SEND: Don’t depend on responder buffer until complete Page 269
C9-33: Receive Queue - Buffer Content Validity Page 269
C9-34: Transport Layer - Packet Header Validation Page 270
C9-35: Transport Layer - IBA Packts - Header Validation Page 270
C9-37: BTH Validation - Dest QP and QP State Page 272
o9-22: RD: BTH Validation - Dest QP and State vs. EEC Page 272
o9-23: UDMcast: Well-known Destination QP Value. Page 272
C9-38: BTH Validation - Request Checked vs. QP Page 272
C9-39: BTH Validation - Silent Drop Rule . Page 273
C9-40: Obsolete. Page 273
o9-23.2.1: RD: BTH Validation - Behavior . Page 273
C9-41: Transport Layer - BTH P_Key - QP0 Rule Page 274
C9-42: Transport Layer - BTH P_Key - QP1 Rule Page 274
C9-43: Transport Layer - Required P_Key Validation Page 274
o9-24: RD: Transport Layer - Required P_Key Validation. Page 274
C9-43.1.1: GRH - Validate the presence of the GRH for UD services Page 275
C9-43.1.2: Validate the presence of the GRH . Page 275
C9-44: GRH - NxtHdr Field - Validation . Page 275
C9-45: GRH - IPVers Field - Validation . Page 275
C9-46: GRH - Dest QP UD, SGID/DGID non-Validation Page 275
C9-47: obsolete . Page 276
C9-47.1.1: GRH - SGID/DGID Field - Validation . Page 276
C9-47.2.1: Silently drop RD packets if CA does not support RD Page 277
o9-25: RD: RDETH - EE Context Field Value - Validation. Page 277
o9-26: RD: RDETH - EE Context - Validation Behavior Page 277
C9-48: DETH - Q_Key Field Value - Ignored for QP0 Page 277
C9-49: DETH - Q_Key Field Value - QP1Rule. Page 278
C9-50: DETH - Q_Key Field Value - Validation Page 278
C9-51: Transport Layer - ACK depends on Valid Keys Page 278
C9-52: Transport - LRH - SLID/DLID Field Validation Page 278
C9-53: Transport - LRH - DLID Field Validation. Page 278
C9-54: Transport - LRH - SLID Field Validation Page 279

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1095 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-55: Transport - LRH Validation - Permissive LID Rule Page 279
C9-56: Transport Layer - SLID Invalid if Multicast Page 279
o9-27: RC or UC: Transport Layer - LID Validation Page 279
o9-28: RD: Transport Layer - LID Validation . Page 279
C9-58: Packet Validation - IBA Unreliable Multicast Page 280
C9-59: Packet Validation - IBA Unreliable Multicast - QP Page 280
C9-60: Requesters - WQE Completion Responsibility. Page 281
C9-61: Send Queue PSNs - Allowed Outstanding Qty Page 285
o9-29: RC: PSN Insertion for Reliable Svc Pkts Page 286
o9-29: RD: PSN Insertion for Reliable Svc Pkts Page 286
o9-30: RC: Responder - Behavior - RC Service Page 288
o9-30: RD: Responder - Behavior - RD Service Page 288
o9-31: RD: BTH - PSN Field Value for RD Service Page 289
o9-31: RC: BTH - PSN Field Value for Reliable Svc Page 289
o9-32: RC or RD: BTH - Initial PSN for Reliable Service Page 289
o9-33: RD: Requester - PSN Value - RD Service Page 290
o9-33: RC: Requester - PSN Value - Reliable Svc Page 290
o9-34: RD: Validation of EEC RDD Against Send Queue Page 291
o9-35: RD: EEC vs QP - RDD Mismatch Behavior Page 291
o9-35.a1: RD: Generating PSNs for Resync requests Page 291
o9-35.a2: RD: Source and destination QPns in a Resync request Page 292
C9-67: Requester - BTH OpCode Field Value Rules Page 293
C9-68: Requester - BTH OpCode Field Value Table Page 293
C9-69: Requester - Packet PayLen - First/Middle Page 293
C9-70: Requester - Packet PayLen - Only. Page 293
C9-71: Requester - Packet PayLen - Last . Page 293
o9-36: RDMA: Requester - RETH DMALen Field - Limits. Page 293
o9-36.a1: RC: TCA Responder - validation of in bound RC Request . . . Page 294
o9-37: RD: Responder - Validation of Inbound RD Req. Page 294
o9-38.a1: RD: Validating an inbound RD request. Page 294
o9-38.a2: RD: responder actions for Resync request - behavior Page 297
o9-39: RD: Responder - Valid. of Inbound RD Req. PSN Page 297
o9-39: RC: Responder - Inbound Request PSN Chk Page 297
o9-40: RD: Responder - ePSN Calculation Rule. Page 298
o9-40: RC: Responder - ePSN Calculation Rule. Page 298
o9-41: RC: Responder - ePSN Update - Rec. Queue. Page 298
o9-42: RD: Responder - ePSN Update - Rec. Queue. Page 298
o9-43: RC: Responder - New Request - Exec/Response Page 299
o9-43: RD: Responder - New Req. - Exec/Response Page 299
o9-44: RC: Responder - Valid Duplicate Req Behavior. Page 299
o9-44: RD: Responder - Valid Duplicate Req Behavior. Page 299
o9-45: RC: Resp. - Inbound PSN Outside Valid Region Page 300
o9-45: RD: Resp. - Inbound PSN Outside Valid Region Page 300
o9-46: RC: Resp. - Behavior after NAK Sequence Error. Page 301
o9-46: RD: Resp. - Behavior after NAK Sequence Error. Page 301
o9-47: RC: Responder - Validation of OpCode Seq. Page 302
o9-48: RD: Responder - Validation of OpCode Seq. Page 302
o9-49: RD: Responder - New Request Rule . Page 302
C9-82: Responder - BTH OpCode Field - Validation Page 302
o9-50: RC: Resp. - Request of Unsupported Fcn Page 303
o9-50: RD: Resp. - Request of Unsupported Fcn Page 303
o9-51: RC: Resp. - Reserved OpCode Error - Behavior Page 303
o9-51: RD: Resp. - Reserved OpCode Error - Behavior Page 303
o9-52: RC: Resp. - Incorrect Pad Count Error - Behavior Page 303
o9-52: RD: Resp. - Incorrect Pad Count Error - Behavior Page 303
o9-53: RC: Resp. - Insufficient Res. Error - Behavior Page 304

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1096 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-53: RD: Resp. - Insufficient Res. Error - Behavior Page 304
o9-54: RC: Resp. - NAK Response - Completion Rule Page 304
o9-54: RD: Resp. - NAK Response - Completion Rule Page 304
o9-55: RC and RDMA: Resp - R_Key Unchecked Page 305
o9-55: RD and RDMA: Resp - R_Key Unchecked Page 305
C9-89: R_Key Violation Behavior. Page 305
C9-90: R_Key Violation Behavior - Completion Rule. Page 305
C9-91: LRH - PktLen Validation - WQE buffer Page 305
C9-92: LRH PktLen Validation - OpCode Check v. MTU Page 305
C9-93: LRH PktLen Validation - Invalid Request Resp. Page 306
o9-56: RDMA: DMA Length Field Validation - Behavior Page 306
C9-95: PSN Field Value - SEND/RDMA WRITE Resp. Page 307
o9-57: RDMA: PSN Field Value - RDMA READ Resp. Page 307
o9-58: Atomics: PSN Field Value - ATOMIC Op Resp. Page 308
o9-59: RDMA: AETH MSN Field - RDMA READ Resp. Page 309
o9-60: RDMA: AETH Header - RDMA READ Resp. Page 310
o9-61: RDMA: BTH OpCode Field - RDMA READ Resp. Page 310
o9-62: RDMA: RDMA READ Response - Error Behavior Page 310
o9-63: RDMA: Request Process - Order - RDMA READ Page 311
C9-102: Response is Required . Page 312
C9-103: Update of ePSN - Error Behavior. Page 312
C9-104: Response to ATOMIC or RDMA READ Request Page 313
C9-105: Duplicate SEND Behavior . Page 314
o9-64: RDMA: Duplicate RDMA WRITE Behavior Page 315
C9-106: Duplicate SEND/RDMA WRITE - Error Behavior. Page 315
o9-65: RDMA: RDMA READ Responses - Duplicates Page 317
o9-66: Atomics: Duplicate ATOMIC Op Req. Behavior Page 318
o9-67: Atomics: Duplicate ATOMIC Op Req. Error Page 319
o9-68: Atomics: Duplicate ATOMIC Req. - Local Error Page 319
C9-111: NAK PSN Field Value - Except for RDMA READ. Page 319
C9-112: NAK PSN Field Value - RDMA READ Page 319
C9-113: RNR NAK - PSN Field Value . Page 319
C9-113.a1: NAK packets must have an acknowledge opcode. Page 319
C9-114: Wait for first valid ePSN after Sequence Error Page 319
C9-115: Response to Duplicate Requests - except NAK. Page 320
C9-116: BTH AckReq Field - Behavior . Page 320
o9-69: RDMA: PSN Field Value - RDMA READ Resp. Page 322
o9-70: RDMA: AETH Requirement . Page 323
o9-71: RD: AETH Syndrome - Defined Values Page 324
o9-71: RC: AETH Syndrome - Defined Values Page 324
o9-71.a1: RC or RD: msb of the AETH Syndrome field set to zero Page 324
o9-72: RD: AETH Syndrome credit count field for RD Page 324
C9-120: Request - Malformed ACK Message Rule Page 325
C9-121: Responder - PSN Field Value - Sequence Error Page 326
C9-122: NAK Sequence Error - Subsequent Behavior Page 326
C9-123: PSN Field Value - Duplicate Request - Behavior Page 326
o9-73: RDMA: BTH Field Value - NAK Remote Access Page 327
o9-73: Atomics: BTH Field Value - NAK Remote Access Page 327
C9-125: BTH Field Value - NAK Invalid Request Page 327
C9-126: BTH Field Value - NAK Remote Operational Err Page 327
o9-74: RD: EEC Field Value - P_Key mismatch Page 328
C9-127: Dest QP Field Value - NAK Invalid RD Request Page 328
o9-75: RC: Requester - PSN Uniqueness - RNR NAK Page 329
o9-76: RD: AETH Field Value - RNR NAK Timer Page 329
o9-76: RC: AETH Field Value - RNR NAK Timer Page 329
o9-76.a2: RC or RD: behavior after receiving an RNR NAK Page 329

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1097 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-77: RD: RNR NAK Retry - Counting and Behavior Page 330
o9-77: RC: RNR NAK Retry - Counting and Behavior Page 330
C9-133: Packet Header Validation - Transport Page 331
o9-78: RC: ACK PSN Field Value - Order Detection Page 332
o9-78: RD: ACK PSN Field Value - Order Detection Page 332
o9-79: RC: ACK Syndrome Field Value - Error Behavior Page 332
o9-79: RD: ACK Syndrome Field Value - Error Behavior Page 332
o9-79.a1: RD: validating the destination QP for response packets Page 332
C9-135.a1: obsolete . Page 332
o9-80: RC: Ghost ACKs - Req’d Behavior . Page 334
o9-80: RD: Ghost ACKs - Req’d Behavior . Page 334
o9-81: RC or RD: Repeated NAK Seq. Errors - Behavior Page 336
o9-82: APM: Path Migration on repeated NAK-Sequence errors Page 336
o9-83: RC: Requester - Duplicate ACK Behavior Page 338
o9-83: RD: Requester - Duplicate ACK Behavior Page 338
o9-84: RC: ACK/NAK Timer - Outstanding SEND Req. Page 339
o9-85: RD: ACK/NAK Timer - Outstanding SEND Req. Page 339
o9-87: RC: Timeout Rules for Outstanding Requests Page 341
o9-88: RD: Timeout Rules for Outstanding Requests Page 341
o9-89: RC: End-to-End Flow Control Credit - Dupl. ACKs Page 341
o9-90: RC: Duplicate ACKs - Behavior . Page 341
o9-91: RC: obsolete . Page 342
o9-92: RC: AETH MSN Field Value - RC Service Page 343
o9-93: RC: Responder - MSN Calculation . Page 344
o9-94: RC: AETH MSN Field Value. Page 347
o9-95: Obsolete. Page 348
o9-95.2.1: SRQ: No E-E flow control credits for SRQ RQs Page 348
C9-151: End-to-End Flow Control - Send Queue Behavior Page 348
C9-152: AETH - MSN Field Value - Unsolicited ACK. Page 349
C9-153: End-to-End Flow Control Rules . Page 349
C9-154: End-to-End Flow Control - Syndrome for Disable Page 349
o9-95.2.2: SRQ: AETH credit field value . Page 349
C9-155: End-to-End Credit - Usage. Page 349
C9-156: End-to-End Flow Control - Lack of Initial Credit Page 350
o9-96: RC: End-to-End Flow Control Credit Calc/Update Page 353
o9-97: RC: End-to-End Flow Control Credit - AETH Page 353
C9-159: Requester - Send Queue Behavior - Credit Limit. Page 354
C9-160: Requester Behavior - Transaction Ordering Rules Page 354
C9-161: End-to-End Flow Control - Encoded Count Page 355
C9-162: Requester Behavior - Send Queue - WQE Limit Page 357
o9-98: RC: SEND Request - Limited WQE Case - 1 Pkt Page 357
o9-99: RDMA WRITE - Request Xmt - AckReq bit Page 358
C9-164: Requester - Ability to Receive Unsolicited ACK. Page 358
o9-100: RD: QP Availability, Capabilities. Page 360
o9-101: RD: EEC Support and Capabilities. Page 360
o9-102: RD: RD Message Completion - Single Msg EEC. Page 360
o9-103: RD: RD Message Completion - Single Msg QP. Page 360
o9-104: RD: OpCode, ETH, Transport Validation, etc. Page 360
o9-105: RD: Error Detection and Handling . Page 361
o9-106: RD: Communication Management Support Page 361
o9-107: RD: EE Context - Ability to Avoid Shutdown Page 361
o9-111: RD: NAK-RNR Behavior for Over-run Condition Page 367
o9-112: RD: Out of Order Receive Queue Completion Page 367
o9-113: RD: Send Queue - WQE Completion Order. Page 367
o9-114: RD: Upper Layers - Tolerate of Out of Order Pkts Page 368
o9-114.a1: RD: Use of Resync for QP errors. Page 373

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1098 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-114.a2: RD: Resync Requester response requirements. Page 373
o9-114.a3: RD: AETH MSN Field Value. Page 373
C9-165: Transport - Packet Header Validation Page 376
o9-115: UC: PSN Examination for Packet Validation Page 376
o9-116: UC: OpCode Examination . Page 376
C9-168: BTH OpCode Validation - Support for Request Page 376
C9-169: Inbound Request - Resources to Receive Page 376
o9-117: UC and RDMA: R_Key Validation - Behavior. Page 377
C9-171: Inbound Request Packet - Validation - UD. Page 377
o9-118: UC: Inbound Request Packet - Validation Page 377
o9-119: UC: BTH PSN Field Value - Current PSN Page 379
o9-120: UC: BTH PSN Field Value - First Request Packet Page 380
o9-121: UC: PSN Update/Modify - Transport Control Page 380
o9-122: UC: BTH PSN Field Value - Calculation. Page 380
o9-123: UC: Packet OpCode - First/Middle/Last/Only. Page 381
o9-124: UC: Packet Payload Length - OpCode Page 382
o9-125: UC: Message Completion Rule - SEND/WRITE Page 382
o9-126: UC: Expected PSN Value. Page 382
o9-127: UC: Expected PSN Update/Modify . Page 383
o9-128: UC: Inbound Request Pkt - Ordering - Detection. Page 383
o9-129: UC: Inbound Request Packet - New ePSN Page 383
o9-130: UC: BTH PSN Inbound Pkt - Compare to ePSN Page 384
o9-131: Notification to Client, One or More Lost Messages Page 384
o9-132: UC: Message Drop/Restart Rule . Page 384
o9-133: UC: Inbround Request - OpCode Check Page 385
o9-134: UC: Invalid OpCode Behavior . Page 385
o9-135: UC: Invalid OpCode Behavior - New Message Page 386
C9-190: Unreliable Connection - Valid Function Check Page 386
C9-191: Invalid UC Request - Behavior. Page 386
o9-136: UC and RDMA: RETH R_Key Validation Page 387
o9-137: UC and RDMA: RETH R_Key - zero-len WRITE Page 387
o9-138: UC: LRH PktLen Check - Sufficient Recv Buffer Page 387
o9-139: UC: LRH PayLen Check- OpCode First/Middle Page 388
o9-140: UC: LRH PayLen Check- OpCode Only Page 388
o9-141: UC: LRH PayLen Check- OpCode Last Page 388
o9-142: UC and RDMA: obsolete . Page 388
o9-143: UC: Pad Count Check - OpCode First/Middle Page 388
C9-200: Message Size Limit - Unreliable Datagram Page 390
C9-201: Basic Services - Unreliable Datagram Reqmts Page 390
C9-202: Unreliable Datagram Error Handling . Page 390
C9-203: PSN Generation and Message Completion - UD. Page 392
C9-204: PSN Calculation - Unreliable Datagram. Page 392
o9-144: Responder - PSN Treatment - UD . Page 392
C9-205: Responder Length Validation - UD. Page 393
C9-206: BTH OpCode Field Value - Validation - UD Page 393
C9-207: Inbound SEND Request - Queue Entry - UD Page 393
C9-208: Packet Headers - Raw vs. IPv6 NxtHdr Page 394
o9-145: RawD: Packet Payload and LRH PktLend Pad Page 395
o9-146: RawD: Association of QPs with a Raw Service Page 395
o9-147: RawD: QPs Supporting Raw Service. Page 395
o9-148: RawD: Maximum Raw Datagram Pkt Payload. Page 395
C9-209: Requester - Locally Det. Xmt Error - UD Page 398
o9-149: RC or UC: Requester - Locally Det. Xmt Error. Page 398
o9-150: RD: Requester, Transmit - Locally Detected Error Page 398
o9-151: RD: Requester - Excessive Retry Detection Page 398
o9-151: RC: Requester - Excessive Retry Detection Page 398

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1099 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o9-152: APM: Migration Attempt Allowed following Errors Page 399
C9-211: Requester - Error Behavior and Fault Class Table. Page 400
C9-211.1.1:Requester - Error Behavior and Fault Class Table. Page 400
o9-153: RC: Requester - Class A Error Behavior Page 403
o9-153: RD: Requester - Class A Error Behavior Page 403
o9-154: RC: Requester - Class A Errors - Client Rule Page 404
o9-154: RD: Requester - Class A Errors - Client Rule Page 404
C9-214: Requester - Class B Error - Behavior. Page 404
o9-154.a1: RD: Response to a Requestor Class B Error Page 404
C9-215: Requester - Class B Error - Discard ACKs Page 405
C9-216: Requester - Class C Error Behavior. Page 406
o9-155: RD: Requester - Class C Error Behavior Page 406
o9-156: RD: Requester - Class D Error - Behavior Page 406
o9-157: RC: Requester - Class E Error - Behavior Page 407
o9-157: RD: Requester - Class E Error - Behavior Page 407
C9-218: Requester - Class F Error - Behavior. Page 408
C9-219: Obsolete. Page 408
C9-219.1.1:Responder - Error Behavior and Fault Class Table Page 408
C9-220: Responder - Class A Error - Behavior Page 412
o9-157.2.1:SRQ: Responder Class A fault behavior Page 413
o9-157.2.2:SRQ: responder Class A fault behavior Page 413
o9-157.2.3:SRQ: Responder Class A fault behavior Page 414
o9-158: RC: Responder - Class B Error - Behavior Page 414
o9-158: RD: Responder - Class B Error - Behavior Page 414
o9-159: Obsolete. Page 415
o9-159.1.1:RC: Responder - Class C Error - Behavior Page 415
C9-223: Obsolete. Page 415
C9-223.1.1:Responder - Class D Error - Behavior Page 415
o9-160: UC: Responder - Class D1 Error - Behavior Page 416
o9-161: RD: Responder - Class E Error - Behavior Page 416
o9-161.2.1:SRQ: Responder Class E error behavior for SRQs. Page 417
o9-162: RD: Responder - Class F Error - Behavior. Page 418
o9-162.1.1:RD: Responder - Class F Error - Behavior. Page 418
C9-225: Responder - Class G Error - Behavior Page 418
o9-162.2.1:BMM: R_Key violations on a SEND with Invalidate Page 419
o9-163: Static Rate Control - Required Support Criterion Page 427
o9-164: Static Rate Control - Programmed Injection Rate Page 427
C10-119: Received packet discarded if P_Key mismatch Page 525
C10-121: P_Key Table size reqs . Page 525
C10-123: P_Key Table initialization wrt non-volatile storage Page 526
C10-124: P_Key checking for incoming packets Page 526
C10-130: Partitioning reqs same as for CI; exception Page 529
C10-131: No P_Key checking on packets sent to SMI Page 529
C10-132: Special P_Key checking for packets sent to GSI Page 529
C10-133: P_Key for packets sent from GSI . Page 529
C12-1: CM protocol support req’d with RC, UC, and RD. Page 656
o12-12: Conditions when SIDR_REQ msg support req’d Page 657
C13-1.1.1: SMA required on CAs, switches, routers. Page 717
C13-28: ClassPortInfo Required for each Agent Page 734
C13-29: ClassPortInfo Required For Each Agent Port Page 734
C13-30.1.2:Agent must do Trap or Notice Queue if Notices. Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-32: Trap: No Traps Without TrapDLID Target. Page 742

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1100 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o13-2.a1: Trap: parameters from ClassPortInfo and PortInfo Page 742
o13-3: Trap: Maximum Rate of Generation . Page 742
o13-4: Trap: Use of Notice Attribute . Page 742
o13-5: Trap: Transaction ID setting . Page 742
o13-6: Trap: Response to TrapRepress . Page 743
o13-7: Trap: TrapRepress Dropped if No Matching Trap Page 743
o13-8: Notice: Notice Queue is FIFO . Page 743
o13-9: Notice: NoticeCount semantics . Page 743
o13-10: Obsolete. Page 744
o13-10.1.1:Notice: Returning a Notice from Notice Queue Page 744
o13-11: Notice: Response to Set(Notice) . Page 744
C13-33: SM MADs (SMPs) appear on QP0. Page 750
C13-34: GSA MADs Directed to QP1 . Page 750
C13-37: SMP Processing Above/Below the Verb Layer Page 751
o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788
C14-8: Directed Route SMPs Processed by the SMI. Page 802
C14-12: Obsolete. Page 804
C14-13.1.1:Required SMA methods. Page 806
C14-14: Obsolete. Page 806
C14-15: M_Key not Checked When PortInfo:M_Key = 0. Page 806
C14-16: M_Key checks when PortInfo:M_Key is not zero. Page 807
C14-17: Lease Period Timer Countdown. Page 808
C14-18: PortInfo:M_KeyViolations Counting . Page 808
C14-19: Lease Period Counting Halts on valid M_Key Page 808
C14-20: M_KeyProtectBits When Lease Period Expires Page 808
C14-21: M_KeyLeasePeriod 0 = Lease Never Expires Page 808
C14-22: M_Key, ProtectBits, & LeasePeriod Set Together Page 809
C14-23: Init of M_Key, ProtectBits & LeasePeriod. Page 809
C14-24: Obsolete. Page 809
C14-24.1.1:SMA Required Attributes . Page 809
C14-24.1.2:DRN: Ignore DataDetails if not supported Page 813
C14-24.1.3:DRN: DataDetails if supported. Page 813
C14-25: PortInfo Set when M_Key is 0 . Page 853
C14-26: PortInfo Set when M_Key is not 0 . Page 853
C14-27: Req to Change RO Components Ignored Page 853
C14-28: SubnGetResp Generation when M_Key is 0 Page 853
C14-29: SubnGetResp Generation when M_Key non0 Page 853
C14-30: SubnGetResp Content . Page 854
C14-31: SubnGetResponse TransactionID . Page 854
C14-32: Obsolete. Page 854
o14-1: Trap: SubnTrap M_Key field. Page 854
o14-2: Trap: Trap Generation Interval . Page 854
o14-3: Obsolete. Page 854
o14-3.2.1: Trap: Only Sent When Portstate is Active Page 854
o14-3.a1: Trap: SMA sets trap source LID . Page 855
o14-3.a2: Trap: TrapRepress Gen when M_Key is 0 Page 855
o14-3.a3: Trap: TrapRepress Gen when M_Key non0. Page 855
o14-3.a4: Trap: No TrapRepress response . Page 855
o14-4: Obsolete. Page 855

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1101 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o14-5: Obsolete. Page 855
o14-5.1.1: Trap: Trap 128 on Port State Change Page 855
o14-6: Obsolete. Page 855
o14-6.1.1: Notice: Logged on Port State Change Page 855
o14-6.1.2: P_Key SEPT: Mismatches monitored. Page 856
o14-6.1.3: P_Key SEPT and Trap: Send trap 259 Page 856
o14-6.1.4: P_Key SEPT and Notice: Notice 259 logged Page 856
C14-33: P_Key and Q_Key Mismatches Monitored Page 856
C14-34: P_Key or Q_Key Violation Count Reporting. Page 856
o14-7: Trap: P_Key, Q_Key Violation =Trap 257, 258. Page 857
o14-8: Notice: Must Log P_Key & Q_Key Violations. Page 857
o14-9: Trap: trap 256 On M_Key Mismatch . Page 857
o14-10: Notice: M_Key mismatch is logged . Page 857
o14-11: Trap: trap 129, 130, or 131 When Link Problems Page 857
o14-12: Notice: Must Log Link Problems . Page 858
o14-12.1.1:Trap and CMN: trap 144 when cap. mask changes Page 858
o14-12.1.2:Notice and CMN: log when cap. mask changes Page 858
o14-12.1.3:Trap and SysG: trap if SystemImageGUID changes Page 858
o14-12.1.4:Notice and SysG: log if SystemImageGUID changes Page 859
C16-1: PM Agent is mandatory on all nodes. Page 930
C16-2: PM MAD format . Page 931
C16-2.1.1: PMA required methods . Page 932
C16-2.1.2: Performance Management Agents Mandatory Attributes Page 932
C16-3: PortSamplesControl, PortSamplesResult Req’d Page 934
C16-4: Obsolete. Page 934
C16-4.1.1: Each sampler must have >=1 & <=15 counters Page 934
C16-5: PMA Mandatory quantities: all ports, all nodes. Page 940
o16-1: OptPC: Optional Performance Counters: Attributes. Page 940
C16-6: PortCounters Attribute is Mandatory. Page 945
C16-7: Counters power-up 0 and stick at all 1s. Page 945
o16-2: Obsolete. Page 950
o16-2.1.1: OptPC: Optional Performance Management Attributes Page 950
o16-2.1.2: OptPC: SwPortVLCongestion only on switches. Page 962
C16-9: BMA Mandatory on all nodes. . Page 973
C16-10: BM datagram format. Page 975
C16-10.1.1:BMA required methods . Page 976
C16-10.1.2:Baseboard Management Agent attributes and Method Page 978
o16-3: Trap or Notice: BKeyViolation DataDetails. Page 981
o16-3.1.1: Trap or Notice: BMTrap DataDetails . Page 981
C16-11: BMA checks B_Key . Page 984
C16-12: BMA Action when B_Key check Fails Page 984
C16-13: B_Key, B_Key Protection, B_Key lease at reset Page 984
C17-2: Multiport CAs Shall Support Multiple Subnets Page 1018
C17-3: Association of QPs with Ports . Page 1020
C17-4: Static Rate Control - Ports above 2.5 Gbps Page 1022
C17-5: CA Ports Must Validate P_Keys on Packets Page 1022
C17-6: P_Key Table Size per Port . Page 1022
C17-8: Each Port Must Support at least One GID Page 1022
C17-9: All QPs Shall Source and Sink Local Packets Page 1027
C17-10: Except QP0, All QPs Shall Handle GRH Packets Page 1027
C17-14: MTU Support - Valid Sets. Page 1027
o17-1: Receive Queues - E-to-E Flow Control Credit Page 1028
o17-1.2.1: Receive Queues - E-to-E Flow Control Credit Page 1028
C17-17: Send Queue - E-to-E Flow Control Credit Page 1028
o17-2: UDMcast: Generation. Page 1028
o17-3: UDMcast: Receiving. Page 1028

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1102 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o17-4: APM: Respond to, Generate Auto Path Migrate Page 1028
C17-19: Backpressure Rule to avoid Deadlock Page 1028
C17-20: Backpressure Inbound/Outbound - Deadlock Page 1028
C17-21: Inbound Pkts - Link/Network/Transport Check. Page 1029
C17-22: EUI-64 GUID In Non-Volatile Memory Page 1029
C17-23: Obsolete. Page 1029
C17-24: QP0 and QP1 Support Req’d for Every Port Page 1031

20.5 SWITCH COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Switch, a product shall meet all requirements
specified in this section, except for those statements preceded by Quali-
fiers that the product does not support. In addition, a compliant Switch
shall meet all Section 20.13 Common Port Requirements on page 1117
and all Section 20.14 Common MAD Requirements on page 1119.

C4-1: EUI-64 Assignment . Page 142
C4-3: GID Usage and Properties . Page 143
C4-4: Addressing Rules . Page 147
C4-5: LID (Local Identifier) Usage and Properties Page 147
C7-1.a1: Forwarding of data packets during armed to active transiton. . Page 169
C7-5: How to Corrupt a Packet . Page 173
o7-1: Truncation is Allowed when Corrupting a Packet. Page 173
C7-6: Packet Truncation Rule . Page 173
C7-9: Packet Check Rule for Management Packets Page 175
C7-22: VL15 Buffer(s) required For Each Switch. Page 183
C7-24: Inbound VL15 Packets Stay in VL15 Going Out. Page 183
C7-33: SL on Packets Must be Invariant in a Subnet Page 185
o7-6: VLs: SL-to-VL Mapping Rules . Page 187
o7-7: Obsolete. Page 187
o8-1: Optional Use of GRH in Packets . Page 227
C10-118: P_Key value not modified in forwarded packet Page 525
C10-120: SMA port contains P_Key table . Page 525
C10-134: General partitioning requirements for GSI QP Page 529
C13-1.1.1: SMA required on CAs, switches, routers. Page 717
C13-28: ClassPortInfo Required for each Agent Page 734
C13-29: ClassPortInfo Required For Each Agent Port Page 734
C13-30.1.2:Agent must do Trap or Notice Queue if Notices. Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-32: Trap: No Traps Without TrapDLID Target. Page 742
o13-2.a1: Trap: parameters from ClassPortInfo and PortInfo Page 742
o13-3: Trap: Maximum Rate of Generation . Page 742
o13-4: Trap: Use of Notice Attribute . Page 742
o13-5: Trap: Transaction ID setting . Page 742
o13-6: Trap: Response to TrapRepress . Page 743
o13-7: Trap: TrapRepress Dropped if No Matching Trap Page 743
o13-8: Notice: Notice Queue is FIFO . Page 743
o13-9: Notice: NoticeCount semantics . Page 743
o13-10: Obsolete. Page 744
o13-10.1.1:Notice: Returning a Notice from Notice Queue Page 744
o13-11: Notice: Response to Set(Notice) . Page 744

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1103 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-33: SM MADs (SMPs) appear on QP0. Page 750
C13-34: GSA MADs Directed to QP1 . Page 750
C13-37: SMP Processing Above/Below the Verb Layer Page 751
o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788
C14-8: Directed Route SMPs Processed by the SMI. Page 802
C14-12: Obsolete. Page 804
C14-13.1.1:Required SMA methods. Page 806
C14-14: Obsolete. Page 806
C14-15: M_Key not Checked When PortInfo:M_Key = 0. Page 806
C14-16: M_Key checks when PortInfo:M_Key is not zero. Page 807
C14-17: Lease Period Timer Countdown. Page 808
C14-18: PortInfo:M_KeyViolations Counting . Page 808
C14-19: Lease Period Counting Halts on valid M_Key Page 808
C14-20: M_KeyProtectBits When Lease Period Expires Page 808
C14-21: M_KeyLeasePeriod 0 = Lease Never Expires Page 808
C14-22: M_Key, ProtectBits, & LeasePeriod Set Together Page 809
C14-23: Init of M_Key, ProtectBits & LeasePeriod. Page 809
C14-24: Obsolete. Page 809
C14-24.1.1:SMA Required Attributes . Page 809
C14-24.1.2:DRN: Ignore DataDetails if not supported Page 813
C14-24.1.3:DRN: DataDetails if supported. Page 813
C14-25: PortInfo Set when M_Key is 0 . Page 853
C14-26: PortInfo Set when M_Key is not 0 . Page 853
C14-27: Req to Change RO Components Ignored Page 853
C14-28: SubnGetResp Generation when M_Key is 0 Page 853
C14-29: SubnGetResp Generation when M_Key non0 Page 853
C14-30: SubnGetResp Content . Page 854
C14-31: SubnGetResponse TransactionID . Page 854
C14-32: Obsolete. Page 854
o14-1: Trap: SubnTrap M_Key field. Page 854
o14-2: Trap: Trap Generation Interval . Page 854
o14-3: Obsolete. Page 854
o14-3.2.1: Trap: Only Sent When Portstate is Active Page 854
o14-3.a1: Trap: SMA sets trap source LID . Page 855
o14-3.a2: Trap: TrapRepress Gen when M_Key is 0 Page 855
o14-3.a3: Trap: TrapRepress Gen when M_Key non0. Page 855
o14-3.a4: Trap: No TrapRepress response . Page 855
o14-4: Obsolete. Page 855
o14-5: Obsolete. Page 855
o14-5.1.1: Trap: Trap 128 on Port State Change Page 855
o14-6: Obsolete. Page 855
o14-6.1.1: Notice: Logged on Port State Change Page 855
o14-6.1.2: P_Key SEPT: Mismatches monitored. Page 856
o14-6.1.3: P_Key SEPT and Trap: Send trap 259 Page 856
o14-6.1.4: P_Key SEPT and Notice: Notice 259 logged Page 856
C14-33: P_Key and Q_Key Mismatches Monitored Page 856
C14-34: P_Key or Q_Key Violation Count Reporting. Page 856
o14-7: Trap: P_Key, Q_Key Violation =Trap 257, 258. Page 857
o14-8: Notice: Must Log P_Key & Q_Key Violations. Page 857

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1104 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o14-9: Trap: trap 256 On M_Key Mismatch . Page 857
o14-10: Notice: M_Key mismatch is logged . Page 857
o14-11: Trap: trap 129, 130, or 131 When Link Problems Page 857
o14-12: Notice: Must Log Link Problems . Page 858
o14-12.1.1:Trap and CMN: trap 144 when cap. mask changes Page 858
o14-12.1.2:Notice and CMN: log when cap. mask changes Page 858
o14-12.1.3:Trap and SysG: trap if SystemImageGUID changes Page 858
o14-12.1.4:Notice and SysG: log if SystemImageGUID changes Page 859
C16-1: PM Agent is mandatory on all nodes. Page 930
C16-2: PM MAD format . Page 931
C16-2.1.1: PMA required methods . Page 932
C16-2.1.2: Performance Management Agents Mandatory Attributes Page 932
C16-3: PortSamplesControl, PortSamplesResult Req’d Page 934
C16-4: Obsolete. Page 934
C16-4.1.1: Each sampler must have >=1 & <=15 counters Page 934
C16-5: PMA Mandatory quantities: all ports, all nodes. Page 940
o16-1: OptPC: Optional Performance Counters: Attributes. Page 940
C16-6: PortCounters Attribute is Mandatory. Page 945
C16-7: Counters power-up 0 and stick at all 1s. Page 945
o16-2: Obsolete. Page 950
o16-2.1.1: OptPC: Optional Performance Management Attributes Page 950
o16-2.1.2: OptPC: SwPortVLCongestion only on switches. Page 962
C16-9: BMA Mandatory on all nodes. . Page 973
C16-10: BM datagram format. Page 975
C16-10.1.1:BMA required methods . Page 976
C16-10.1.2:Baseboard Management Agent attributes and Method Page 978
o16-3: Trap or Notice: BKeyViolation DataDetails. Page 981
o16-3.1.1: Trap or Notice: BMTrap DataDetails . Page 981
C16-11: BMA checks B_Key . Page 984
C16-12: BMA Action when B_Key check Fails Page 984
C16-13: B_Key, B_Key Protection, B_Key lease at reset Page 984
C18-1: Forwarding Table - Linear or Random, Not Both Page 1042
C18-2: Unicast Forwarding Table - Size Limits Page 1042
o18-1: UDMcast: Packet Replication by Switch Page 1042
o18-2: UDMcast: Multicast Forwarding Table - Size Page 1042
C18-3: VL15 is Required . Page 1042
o18-3: VL15 Buffer Resource May Be Shared Page 1042
o18-4: VLs: SLtoVL Mapping Function . Page 1043
o18-5: SL to VL Mapping - Single Data VL . Page 1043
o18-6: P_Key SRE_In: Inbound P_Key Enforcement Page 1043
o18-7: P_Key SRE_Out: Outbound P_Key Enforcement Page 1043
C18-4: Size Requirement for Forwarding VL15 Packets Page 1043
C18-5: Legal MTU Configurations - Across All Ports Page 1043
C18-6: Size Requirement for Forwarding Data Packets Page 1043
C18-6.1.1: Size Requirement for Forwarding Data Packets Page 1043
C18-7: Switch Initialization Rules. Page 1044
C18-8: Physical Layer Compliance (Excludes Port 0) Page 1045
C18-9: Link Layer Compliance. Page 1045
C18-10: Packet Relay - Port 0 Rule . Page 1045
C18-11: Port 0 Behavior - Transport Requirements. Page 1045
o18-8: Port 0 Behavior - Differences from Other Ports Page 1045
C18-12: Obsolete. Page 1045
C18-13: Obsolete. Page 1045
C18-14: Obsolete. Page 1045
C18-14.a1: Enhanced Switch Port 0 - Shall Comply With TCA Page 1045
C18-15: Receiver Queueing - Packet VL Field Rule Page 1046

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1105 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C18-16: Receiver Queueing - Inbound Raw Packet Filter Page 1046
o18-8.a1: Receiver Queueing - Inbound Raw Packet Filter Page 1046
C18-17: Link Layer Flow Control - No Excuse for Discard Page 1046
o18-9: P_Key SRE_In: Inbound Enforcement Disabled Page 1046
o18-10: P_Key SRE_In: Inbound P_Key List is Per Port Page 1046
o18-11: P_Key SRE_In: P_Key Port’s List Same for In/Out Page 1046
o18-12: P_Key SRE_In: Inbound P_Key Table Size Per Port Page 1046
o18-13: P_Key SRE_In: Inbound P_Key List - Programmable Page 1047
o18-14: P_Key SRE_In: Inbound Enforcement - IBA Packets Page 1047
o18-15: P_Key SRE_In: Inbound Enforcement - Raw Pkts. Page 1047
o18-16: P_Key SRE_In: Inbound Enforcmt - IBA Pkt Discard Page 1047
C18-18: Data Packet Relay Rule . Page 1048
C18-19: VL15 Packet Relay Rule . Page 1048
C18-20: Packet Relay - Same Port Rules . Page 1048
C18-21: Modification of Data Within Packet Disallowed Page 1048
C18-22: Forwarding Rule - Permissive Address in DLID. Page 1048
o18-17: Port 0/SMI/GSI - Packet Discard Rule Page 1048
C18-23: Packet Transmission - From Port 0 to Other Ports Page 1049
o18-18: VLs: SL to VL Mapping - Change VL Field in LRH Page 1049
o18-19: SL to VL Mapping - Single Data VL . Page 1049
o18-20: VLs: SL to VL Mapping - Outbound VL Rule Page 1049
o18-21: VLs: SL to VL Mapping - Discard Rule. Page 1049
o18-22: Single Data VL - Packet Relay - VL Field Rule Page 1049
C18-24: Single Data VL - Packet Relay - Outbound VL. Page 1049
C18-25: non-VL15 Packets - Receive Queue . Page 1049
C18-26: Packet Relay - Port Behavior if a VL Stalls Page 1049
o18-23: VL 15 Packets - Packet Relay - Discard Rule Page 1050
C18-27: Packet Transmission - In Order Delivery Rules Page 1050
o18-24: Forwarding to Get Around Blocked VLs. Page 1050
C18-28: Forwarding Table - Legal Configurations Page 1050
C18-29: Multicast Relay - Required Behavior . Page 1050
o18-25: UDMcast: Multicast Relay - Packet Replication Page 1050
C18-30: MulticastFDBCap Rule for Non-UDMcast Switch Page 1050
C18-31: Linear Forwarding - Table Properties . Page 1050
C18-32: Linear Forwarding - Advertised Table Size Page 1051
C18-33: Linear Forwarding - Advertised Random Capability. Page 1051
C18-34: Linear Forwarding Table - Programming Page 1051
C18-35: Linear Forwarding Table - LinearFDBTop Value. Page 1051
C18-36: Linear Forwarding - Unicast Discard Rules Page 1051
C18-37: Random Forwarding Table - Properties Page 1051
C18-38: Random Forwarding Table - DefaultPort Page 1052
C18-39: Random Forward Table - Forward to DefaultPort Page 1052
C18-40: Random Forward Table - Discard Rule Page 1052
C18-41: Random Forward Table - Added Discard Rule. Page 1052
C18-42: Random Forward Table - Advertised Size Page 1052
C18-43: Random Forward Table - LinearFDBCap Value. Page 1052
o18-26: Random Forward Table - Per Port Limit Option Page 1052
C18-44: Random Fwd Table - Advertised Per Port Limit Page 1052
C18-45: Random Fwd Table - LIDsPerPort Value Page 1052
C18-46: Random Forwarding Table - LID/LMC Support Page 1052
C18-47: Primary and Non-Primary Port Value Rules Page 1053
C18-48: Primary/Non-Primary Port Value - Programming Page 1053
C18-49: Required Multicast - Fwd to Primary Mcast Port Page 1053
C18-50: Required Mcast - Fwd to Non-Primary Mcast Port. Page 1053
C18-51: Required Multicast - Discard Rule . Page 1054
o18-27: UDMcast: Packet Replication. Page 1054

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1106 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o18-28: UDMcast: Multicast Forwarding Table and LIDs Page 1054
o18-29: UDMcast: Multicast Forwarding Table Size Page 1054
o18-30: UDMcast: Advertising Multicast Fwd Table Size Page 1054
o18-31: UDMcast: Multicast Packet Replication/Relay Page 1054
o18-32: UDMcast: Outbound VL Field Value. Page 1054
o18-33: P_Key SRE_Out: Outbound Enforcement Disabled Page 1055
o18-34: P_Key SRE_Out: Outbound P_Key List is Per Port Page 1055
o18-35: P_Key SRE_Out: P_Key Port’s List Same for In/Out. Page 1055
o18-36: P_Key SRE_Out: Outbound P_Key Table Size Page 1055
o18-37: P_Key SRE_Out: Outboud P_Key List - Programmable Page 1055
o18-38: P_Key SRE_Out: Outbound Enforcement - IBA Pkts Page 1055
o18-39: P_Key SRE_Out: Outbound Enforcement - Raw Pkts Page 1056
o18-40: P_Key SRE_Out: Outbound Enf. - IBA Pkt Discard. Page 1056
o18-40.a1: Transmission - Outbound Raw Packet Filter Page 1056
C18-53: Transmission - Valid VCRC Required Page 1056
C18-54: Transmission - Valid egp Character . Page 1056
C18-55: Transmission - VL Arbitration Required Page 1056
C18-56: Obsolete. Page 1057
C18-57: Obsolete. Page 1057
C18-58: Transmit Queueing - Discard Rules . Page 1057
C18-59: Transmit Queueing - Switch Lifetime Limit. Page 1057
o18-41: Transmit Queueing - Discard Rule in Fast Switch Page 1058
C18-60: Packet Transmit - Truncation and Marking Bad Page 1058
C18-61: Subnet Managment Interface is Required Page 1058
C18-62: General Services Interface is Required Page 1058
C18-63: General Service Interface - GSI P_Key Reqmts Page 1058

20.6 ROUTER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Router, a product shall meet all requirements
specified in this section, except for those statements preceded by Quali-
fiers that the product does not support. In addition, a compliant Router
shall meet all Section 20.13 Common Port Requirements on page 1117
and all Section 20.14 Common MAD Requirements on page 1119.

C4-1: EUI-64 Assignment . Page 142
C4-2: EUI-64 Assignment - At Least One per Port Page 143
C4-3: GID Usage and Properties . Page 143
C4-4: Addressing Rules . Page 147
C4-5: LID (Local Identifier) Usage and Properties Page 147
o5-5: RawD: Raw Packet Header Rules . Page 161
o5-6: RawD: EtherType Usage in RWH . Page 161
o5-7: RawD: Raw Packet Length Rule . Page 161
o5-8: RawD: Raw Packet Header Format . Page 161
C7-5: How to Corrupt a Packet . Page 173
o7-1: Truncation is Allowed when Corrupting a Packet. Page 173
C7-6: Packet Truncation Rule . Page 173
C7-9: Packet Check Rule for Management Packets Page 175
C7-21: VL15 Buffer(s) required For each Port Page 183
C7-26: Do Not Forward VL15 Packets. Page 183
o7-5: SL-to-VL Mapping Table Size. Page 186
o7-14: RawDMcast: Raw Multicast Operational Rules Page 217
o8-1: Optional Use of GRH in Packets . Page 227
C8-12: GRH Modification - IPVer Rule. Page 228

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1107 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C8-13: GRH Modification - TClass Rule . Page 228
o8-2: GRH Modification - FlowLabel Rule . Page 228
C8-14: GRH Modification - PayLen Rule . Page 228
C8-15: GRH Modification - NxtHdr Rule . Page 229
C8-16: GRH Modification - HopLmt Rule. Page 229
C8-17: GRH Modification - SGID Rule. Page 229
C8-18: GRH Modification - DGID Rule . Page 229
C10-118: P_Key value not modified in routed packet Page 525
C13-1.1.1: SMA required on CAs, switches, routers. Page 717
C13-28: ClassPortInfo Required for each Agent Page 734
C13-29: ClassPortInfo Required For Each Agent Port Page 734
C13-30.1.2:Agent must do Trap or Notice Queue if Notices. Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-32: Trap: No Traps Without TrapDLID Target. Page 742
o13-2.a1: Trap: parameters from ClassPortInfo and PortInfo Page 742
o13-3: Trap: Maximum Rate of Generation . Page 742
o13-4: Trap: Use of Notice Attribute . Page 742
o13-5: Trap: Transaction ID setting . Page 742
o13-6: Trap: Response to TrapRepress . Page 743
o13-7: Trap: TrapRepress Dropped if No Matching Trap Page 743
o13-8: Notice: Notice Queue is FIFO . Page 743
o13-9: Notice: NoticeCount semantics . Page 743
o13-10: Obsolete. Page 744
o13-10.1.1:Notice: Returning a Notice from Notice Queue Page 744
o13-11: Notice: Response to Set(Notice) . Page 744
C13-33: SM MADs (SMPs) appear on QP0. Page 750
C13-34: GSA MADs Directed to QP1 . Page 750
C13-35: SMPs Don’t Exit a Subnet . Page 751
C13-37: SMP Processing Above/Below the Verb Layer Page 751
o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788
C14-8: Directed Route SMPs Processed by the SMI. Page 802
C14-12: Obsolete. Page 804
C14-13.1.1:Required SMA methods. Page 806
C14-14: Obsolete. Page 806
C14-15: M_Key not Checked When PortInfo:M_Key = 0. Page 806
C14-16: M_Key checks when PortInfo:M_Key is not zero. Page 807
C14-17: Lease Period Timer Countdown. Page 808
C14-18: PortInfo:M_KeyViolations Counting . Page 808
C14-19: Lease Period Counting Halts on valid M_Key Page 808
C14-20: M_KeyProtectBits When Lease Period Expires Page 808
C14-21: M_KeyLeasePeriod 0 = Lease Never Expires Page 808
C14-22: M_Key, ProtectBits, & LeasePeriod Set Together Page 809
C14-23: Init of M_Key, ProtectBits & LeasePeriod. Page 809
C14-24: Obsolete. Page 809
C14-24.1.1:SMA Required Attributes . Page 809
C14-24.1.2:DRN: Ignore DataDetails if not supported Page 813

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1108 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-24.1.3:DRN: DataDetails if supported. Page 813
C14-25: PortInfo Set when M_Key is 0 . Page 853
C14-26: PortInfo Set when M_Key is not 0 . Page 853
C14-27: Req to Change RO Components Ignored Page 853
C14-28: SubnGetResp Generation when M_Key is 0 Page 853
C14-29: SubnGetResp Generation when M_Key non0 Page 853
C14-30: SubnGetResp Content . Page 854
C14-31: SubnGetResponse TransactionID . Page 854
C14-32: Obsolete. Page 854
o14-1: Trap: SubnTrap M_Key field. Page 854
o14-2: Trap: Trap Generation Interval . Page 854
o14-3: Obsolete. Page 854
o14-3.2.1: Trap: Only Sent When Portstate is Active Page 854
o14-3.a1: Trap: SMA sets trap source LID . Page 855
o14-3.a2: Trap: TrapRepress Gen when M_Key is 0 Page 855
o14-3.a3: Trap: TrapRepress Gen when M_Key non0. Page 855
o14-3.a4: Trap: No TrapRepress response . Page 855
o14-4: Obsolete. Page 855
o14-5: Obsolete. Page 855
o14-5.1.1: Trap: Trap 128 on Port State Change Page 855
o14-6: Obsolete. Page 855
o14-6.1.1: Notice: Logged on Port State Change Page 855
o14-6.1.2: P_Key SEPT: Mismatches monitored. Page 856
o14-6.1.3: P_Key SEPT and Trap: Send trap 259 Page 856
o14-6.1.4: P_Key SEPT and Notice: Notice 259 logged Page 856
C14-33: P_Key and Q_Key Mismatches Monitored Page 856
C14-34: P_Key or Q_Key Violation Count Reporting. Page 856
o14-7: Trap: P_Key, Q_Key Violation =Trap 257, 258. Page 857
o14-8: Notice: Must Log P_Key & Q_Key Violations. Page 857
o14-9: Trap: trap 256 On M_Key Mismatch . Page 857
o14-10: Notice: M_Key mismatch is logged . Page 857
o14-11: Trap: trap 129, 130, or 131 When Link Problems Page 857
o14-12: Notice: Must Log Link Problems . Page 858
o14-12.1.1:Trap and CMN: trap 144 when cap. mask changes Page 858
o14-12.1.2:Notice and CMN: log when cap. mask changes Page 858
o14-12.1.3:Trap and SysG: trap if SystemImageGUID changes Page 858
o14-12.1.4:Notice and SysG: log if SystemImageGUID changes Page 859
C16-1: PM Agent is mandatory on all nodes. Page 930
C16-2: PM MAD format . Page 931
C16-2.1.1: PMA required methods . Page 932
C16-2.1.2: Performance Management Agents Mandatory Attributes Page 932
C16-3: PortSamplesControl, PortSamplesResult Req’d Page 934
C16-4: Obsolete. Page 934
C16-4.1.1: Each sampler must have >=1 & <=15 counters Page 934
C16-5: PMA Mandatory quantities: all ports, all nodes. Page 940
o16-1: OptPC: Optional Performance Counters: Attributes. Page 940
C16-6: PortCounters Attribute is Mandatory. Page 945
C16-7: Counters power-up 0 and stick at all 1s. Page 945
o16-2: Obsolete. Page 950
o16-2.1.1: OptPC: Optional Performance Management Attributes Page 950
o16-2.1.2: OptPC: SwPortVLCongestion only on switches. Page 962
C16-9: BMA Mandatory on all nodes. . Page 973
C16-10: BM datagram format. Page 975
C16-10.1.1:BMA required methods . Page 976
C16-10.1.2:Baseboard Management Agent attributes and Method Page 978
o16-3: Trap or Notice: BKeyViolation DataDetails. Page 981

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1109 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-3.1.1: Trap or Notice: BMTrap DataDetails . Page 981
C16-11: BMA checks B_Key . Page 984
C16-12: BMA Action when B_Key check Fails Page 984
C16-13: B_Key, B_Key Protection, B_Key lease at reset Page 984
C19-1: Router Unicast Routing Table - Minimum Size. Page 1061
C19-2: VL15 Required . Page 1061
C19-3: Virtual Lanes - Allowed Configurations Page 1061
C19-4: Each Port Shall have Independent VL15 Page 1061
C19-5: VL15 Packets Can’t Be Routed Between Ports Page 1061
C19-6: SL to VL Mapping Req’d for > One Data VL Page 1061
o19-1: SL to VL Mapping Optional for a Single Data VL Page 1061
C19-7: Preserve TClass when Routing . Page 1061
o19-2: P_Key SRE: Inbound Enforcement . Page 1062
o19-3: P_Key SRE: Outbound Enforcement . Page 1062
C19-8: Allowed MTU Configurations . Page 1062
C19-9: Packet Size - MTU + 128 Bytes . Page 1062
C19-10: Power-up Initialization . Page 1062
C19-11: Per-Port Physical Layer Requirements Page 1064
C19-12: Per-Port Link Layer Requirements . Page 1064
C19-13: PortInfo Attribute for Each Router Port Page 1064
C19-14: Each Port Shall Have at Least One GID Page 1064
C19-15: Use Packet VL to Determine Inbound VL Queue. Page 1065
C19-16: Inbound Raw Packet Filtering . Page 1065
o19-4: P_Key SRE: Inbound Enforcement Rule Page 1065
o19-5: P_Key SRE: Inbound P_Key List is Per-Port Page 1065
o19-6: P_Key SRE: Same List at Port for In/Out. Page 1065
o19-7: P_Key SRE: Maximum Size of List per Port Page 1065
o19-8: P_Key SRE: Inbound List is Programmable Page 1065
o19-9: P_Key SRE: Inbound Pkt Discard except VL15. Page 1065
o19-10: P_Key SRE: Inbound Vers. Check except VL15 Page 1066
C19-17: Packet Relay Based on DGID . Page 1066
C19-18: Packet Relay Disallowed for VL15 Packets Page 1066
o19-11: VLs: Rules for Outbound VL Field Value Page 1066
C19-19: Tclass Mapping to SL - Best Effort . Page 1066
C19-20: SL to VL Mapping and Discard Rules Page 1067
C19-21: Outbound Data - Wait for Credit Available Page 1067
C19-22: Packet Relay Rules - Credit Availability Page 1067
C19-23: Packet Ordering Rules . Page 1067
o19-12: Packet Relay - Credit Availability Work-Around Page 1067
C19-24: Backpressure - Must not Cause Deadlock. Page 1067
C19-25: Discard Rule Based on Hop Count . Page 1067
C19-26: Hop Count Decremented for Each Relay. Page 1067
o19-13: P_Key SRE: Outbound Packet Checking Page 1068
o19-14: P_Key SRE: Outbound List is Per Port Page 1068
o19-15: P_Key SRE: Inbound/Outbound P_Key Lists. Page 1068
o19-16: P_Key SRE: Outbound Per Port List Size Limit Page 1068
o19-17: P_Key SRE: Outbound List Per Port . Page 1068
o19-18: P_Key SRE: Discard/Truncate Pkt Rule - IBA Page 1068
o19-19: P_Key SRE: Discard/Truncate Rule - Raw Plts Page 1068
C19-27: Outbound Transmission of Raw Packets Page 1069
C19-28: SLtoVL Mapping Function . Page 1069
C19-29: VCRC Required . Page 1069
C19-30: EGP Symbol. Page 1069
C19-31: Physical Layer Compliance . Page 1069
C19-32: Link Layer Compliance. Page 1069
C19-33: Packet Size vs. MTU - Truncation Rule Page 1070

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1110 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C19-34: GRH is Required in Received Packets. Page 1070
C19-35: Packet Lifetime and Head of Queue Lifetime. Page 1070
C19-36: Packet Transmission Error - Corrupting Packets Page 1070
o19-20: Transmission Errors - Truncation Option Page 1071
C19-37: Transmission Error - Packet Corruption Page 1071
C19-38: SMI Requirement . Page 1071
C19-39: GSI Requirement . Page 1071

20.7 SUBNET MANAGER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Subnet Manager, a product shall meet all re-
quirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support. In addition, a
compliant Subnet Manager shall meet all Section 20.14 Common MAD
Requirements on page 1119.

C10-115: Default P_Key value is 0xFFFF . Page 524
C10-117: Use of default and invalid P_Key values Page 525
C13-1: Subnet Must Have at Least One SM . Page 716
C13-27.1.1:Standard common AttributeIDs and Attributes. Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete. Page 741
o13-5.1.1: Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding Page 745
o13-12: Obsolete. Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions . Page 745
o13-13: Obsolete. Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection. Page 745
o13-14: Obsolete. Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. . Page 746
o13-15: Obsolete. Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure Page 746
o13-16: Obsolete. Page 747
o13-17: Obsolete. Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails. Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-33: SM MADs (SMPs) are sent from Port 0 Page 750
C13-34: GSA MADs Directed to QP1 . Page 750
C13-45.1.1:Validation of SMPs. Page 755
C13-45.1.2:SM uses only QP0 and VL15. Page 757
C14-13: Returning Directed Route SMP Handling. Page 804
C14-13.1.1:Required methods . Page 806
C14-14: Subnet Management Required Methods Page 806
C14-15: M_Key not Checked When PortInfo:M_Key = 0. Page 806
C14-16: M_Key checks when PortInfo:M_Key is not zero. Page 807
C14-19: Lease Period Counter Halts on valid M_Key Page 808
C14-20: ProtectBits Setting When Lease Period Expires Page 808
C14-21: LeasePeriod of 0 means Lease Never Expires Page 808
C14-22: One Set() Sets M_Key, ProtectBits, & LeasePeriod Page 809

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1111 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-23: Initialization of M_Key, ProtectBits & LeasePeriod. Page 809
C14-24.1.1:SM Required Attributes . Page 809
C14-24.1.2:DRN: Ignore DataDetails if not supported Page 813
C14-24.1.3:DRN: DataDetails if supported. Page 813
C14-24.2.1:PortInfo data when PortState=Down . Page 821
C14-35: SM always associated with one port, one subnet. Page 859
C14-35.1.1:IsSM indicates presence of an SM . Page 859
C14-36: SM Shall Comply with Initialization State Machine. Page 859
C14-37: Obsolete. Page 860
C14-37.1.1:Priority, GUID, SM_Key Configurable Out Of Band Page 860
C14-37.1.2:SMInfo:Priority kept in nonvolatile memory Page 860
C14-38: SM response to SubnGet/Set(SMInfo). Page 860
C14-38.1.1:Action on invalid state transition . Page 862
C14-39: SM Enters DISCOVERING at Startup Page 862
C14-40: DISCOVERING state Use Of SubnGet(*) Page 862
C14-41: Obsolete. Page 862
C14-41.1.1:Go To Standby When Find Higher Priority SM. Page 862
C14-42: Obsolete. Page 863
C14-42.1.1:Become Master When No Higher Priority SM Page 863
C14-43: Master SM Musts Provide Paths to Itself Page 863
C14-44: Punt Init When M_Key Prohibits Access Page 863
C14-45: SM in Standby Does Not Configure Subnet Page 863
C14-46: Standby SMs Must poll the Master SM Page 863
C14-47: Standby SM enters Discovery if Master Fails. Page 863
C14-48: Standby to Discovery on DISCOVER. Page 864
C14-49: Standby to Not-Active on DISABLE . Page 864
C14-50: Standby Action on HANDOVER Control Packet Page 864
C14-51: SMState Set NOT-ACTIVE in NOT-ACTIVE State Page 865
C14-52: SM Does not Send Set/Get in NOT-ACTIVE State Page 865
C14-53: SM Response to Set/Get in NOT-ACTIVE State. Page 865
C14-54: Obsolete. Page 865
C14-54.1.1:Not-Active Response to STANDBY Control Packet. Page 865
C14-55: Only the Master SM shall configure subnet nodes. Page 865
C14-56: Master SM Shall Sweep Subnet . Page 865
C14-57: Minimum SM Sweep Rate . Page 865
C14-58: Master SM ActCount Incrementing . Page 865
C14-59: Master SM Action on Topology Change. Page 865
C14-60: Obsolete. Page 866
C14-60.2.1:Discovery Halts on Finding a Lower-Priotity Master Page 866
C14-61: Obsolete. Page 866
C14-61.1.1:SM shall coplete discovery . Page 866
C14-61.2.1:SM does not relinquish to bad SM_Key. Page 867
C14-61.2.2:Don’t change subnet without handover.. Page 867
C14-61.2.3:Response to HANDOVER. . Page 867
C14-62: Obsolete. Page 868
C14-62.1.1:Master SM shall Initialize Many Things Page 868
C14-62.1.2:No deadlock in routing . Page 871
C14-62.1.3:No deadlock with any SL/DLID pair . Page 871
C14-62.1.4:Reversible paths required . Page 871
o14-12.1.5:ReIn: SM action if port does not do Reinitialization Page 873
o14-12.1.6:ReIn: SM setting of PortInfo:InitTypeReply Page 873
o14-12.1.7:ReIn: SM action when cannot preserve content Page 874
o14-12.1.8:ReIn: No PreservePresence without other actions Page 874
o14-12.1.9:ReIn: No trap 65/64 if PreservePresence Page 874
C14-63: SM Action on Seeing Portstate at Initialize Page 877
C14-64: Items Master SM Must Check in Sweep Page 878

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1112 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C14-65: SM Shall Not Check M_Key in a SubnGetResp(*). Page 878
C14-66: Reply to SubnSet/Get(SMInfo) When :M_Key = 0 Page 878
C14-67: Reply to SubnSet/Get(SMInfo) When M_Key non0 Page 878
C14-68: Master SM Doesn’t Check M_Key in SubnTrap() Page 879
C14-69: Out-of-Band Disable Mechamism . Page 879
C14-70: SM Behavior When Disabled . Page 879
C14-71: SM Behavior When Not Disabled. Page 879
C14-72: Disabled Can Change At Any Time . Page 879
C14-72.1.1:Report with trap code 64 for node now reachable Page 880
C14-72.1.2:Report with trap code 65 for node not reachable. Page 880
o14-12.1.10:UDMcast: SubnAdmReport(66) on group create Page 880
o14-12.1.11:UDMcast: SubnAdmReport(67) on group delete Page 881
o14-12.2.1:Rereg: Port shall reregister when requested Page 881
o14-12.2.2:Rereg: Use of ClientReregister bit. . Page 881

20.8 SUBNET ADMINISTRATION COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Subnet Administration, a product shall meet
all requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support. In addition, com-
pliant Subnet Administration shall meet all Section 20.14 Common MAD
Requirements on page 1119.

C13-27.1.1:Standard common AttributeIDs and Attributes. Page 733
C13-30: ClassPortInfo Required for SA . Page 734
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete. Page 741
o13-5.1.1: Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding Page 745
o13-12: Obsolete. Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions . Page 745
o13-13: Obsolete. Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection. Page 745
o13-14: Obsolete. Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. . Page 746
o13-15: Obsolete. Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure Page 746
o13-16: Obsolete. Page 747
o13-17: Obsolete. Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails. Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750
C15-0.1.1: SA Must Exist . Page 882
C15-0.1.2: Information Provided by SA . Page 882
C15-0.1.3: SA Must Live and Die with its SM . Page 883
C15-0.1.4: SA MADs Follow GSI & MAD Rules . Page 883
C15-0.1.5: SA datagram format and field definitions Page 883
C15-0.1.6: SA MADHeader:ClassVersion = 2 . Page 883
C15-0.1.7: SA obeys its ClassPortInfo:CapabilityMask bits. Page 885
C15-0.1.8: SA required methods . Page 885

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1113 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C15-0.1.9: SA shall provide data for all subnet elements Page 887
C15-0.1.10:SA Query LID Aliasing . Page 888
C15-0.1.11:SA Query Response Base LID use . Page 888
C15-0.1.12:SA Required Attributes . Page 888
C15-0.1.13:ServiceP_Key must be OK for ServiceGID port. Page 896
C15-0.1.14:ServiceName - ServiceKey association Page 896
C15-0.1.15:ServiceRecord access key-controlled Page 897
C15-0.1.16:ServiceLease must be counted down Page 898
C15-0.1.17:ServiceLease end means delete ServiceRecord Page 898
o15-0.1.1: UDMcast: Set() creates routing . Page 910
o15-0.1.2: Obsolete. Page 910
o15-0.2.1: UDMcast: Reqs for group mod. Page 910
o15-0.1.3: UDMcast: bad modify/delete gives error Page 910
o15-0.1.4: UDMcast: Requirements to create new group Page 912
o15-0.2.2: UDMcast: Multicast group creation . Page 912
o15-0.1.5: UDMcast: created MGID format. Page 912
o15-0.1.6: Obsolete. Page 912
o15-0.2.3: UDMcast: requirements for group creation Page 912
o15-0.1.7: UDMcast: invalid GID error . Page 913
o15-0.1.8: UDMcast: unrealizable group error . Page 913
o15-0.1.9: UDMcast: error creating without fullmember Page 913
o15-0.1.10:Obsolete. Page 913
o15-0.2.4: UDMcast: joining a MCast group . Page 913
o15-0.1.11:UDMcast: updating joinstate on join. Page 914
o15-0.1.12:UDMcast: updating joinstate on send only join Page 914
o15-0.1.13:UDMcast: error on bad join request . Page 914
o15-0.1.14:UDMcast: leaving MCast group . Page 914
o15-0.1.15:UDMcast: updating joinstate on group leave Page 915
o15-0.1.16:Obsolete. Page 915
o15-0.2.5: UDMcast: query for all groups . Page 915
o15-0.1.17:Obsolete. Page 917
o15-0.2.6: MPath: IDComponents not IBA identifiers Page 917
o15-0.1.18:Obsolete. Page 919
o15-0.2.7: MPath: MultiPathRecord query required Page 919
C15-0.1.18:SA use of single-sided RMPP transfer. Page 920
C15-0.1.19:SA use of double-sided RMPP transfer Page 920
C15-0.1.20:SA RMPP specifies exact PayloadLength Page 920
C15-0.1.21:Access Restrictions for Path Records Page 921
C15-0.1.22:Access Restrictions for Other Attributes Page 922
C15-0.1.23:Obsolete. Page 922
C15-0.2.2: Other SA access restricitons . Page 922
C15-0.1.24:How to find the SA . Page 923
C15-0.1.25:SA redirection or other information to find Page 923
C15-0.1.26:SA Event forwarding Conforms to General Model Page 923
C15-0.1.27:Component Mask Bit Assignments . Page 924
C15-0.1.28:Obsolete. Page 924
C15-0.2.3: ComponentMask matching rules . Page 924
C15-0.1.29:SA may refuse a request, with status Page 926
C15-0.1.30:SubnAdmGet() returns data. Page 926
C15-0.1.31:SubnAdmGet() returns status . Page 927
C15-0.1.32:SubnAdmSet() Can Add an attribute . Page 927
C15-0.1.33:Invalid SubnAdmSet() returns status . Page 927
o15-0.1.19:Obsolete. Page 928
o15-0.2.8: MPath: Query must reject invalid requests. Page 928
o15-0.1.20:MPath: TraceRecord query must be supported Page 928

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1114 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

20.9 COMMUNICATION MANAGER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Communication Manager, a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support. In addi-
tion, a compliant Communication Manager shall meet all Section 20.14
Common MAD Requirements on page 1119.

Though a number of optional CM-specific features exist, no CM-unique
qualifiers have been defined since the optional CM-specific features are
fully described within the CM Chapter, and most of the chapter’s optional
compliance statements would require unique qualifiers.

C12-2: Required CM adherence to CM protocol Page 656
C12-3: CM message content requirements . Page 656
C12-4: REJ message support required . Page 656
C12-5: Req’d behavior upon receipt of MRA message Page 656
o12-1: Reqs if supports sending REQ message Page 656
o12-2: Reqs if supports sending MRA message Page 656
o12-3: Reqs if supports sending REP message Page 656
o12-4: Reqs if supports sending RTU message Page 656
o12-5: Reqs if supports sending DREQ message Page 656
o12-6: Reqs if supports sending DREP message Page 656
o12-7: Req’d snd/rcv msgs if initiates connect requests Page 656
o12-8: Req’d snd/rcv msgs if accepts connect requests Page 656
o12-9: DREP handling is required if sends DREQ msg Page 656
o12-10: Reqs if supports sending SIDR_REQ message Page 657
o12-11: Reqs if supports sending SIDR_REP message Page 657
o12-13: APM: Conditions when receiving LAP required Page 657
o12-14: APM: Conditions when sending LAP required Page 657
C12-5.1.1: CM MAD Status Values . Page 658
C12-5.1.2: CM MAD TransactionID value . Page 658
C12-5.1.3: Response generation rules . Page 658
C16-14: Obsolete. Page 1011
C16-15: Datagram format . Page 1011
C16-15.1.1:MADHeader:ClassVersion = 2 . Page 1011
C16-15.1.2:Required methods . Page 1012
C16-15.1.3:Required attributes and methods. Page 1012

20.10 PERFORMANCE MANAGER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Performance Manager, a product shall meet
all requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support. In addition, a com-
pliant Performance Manager shall meet all Section 20.14 Common MAD
Requirements on page 1119.

C13-27.1.1:Standard common AttributeIDs and Attributes. Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete. Page 741
o13-5.1.1: Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding Page 745

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1115 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o13-12: Obsolete. Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions . Page 745
o13-13: Obsolete. Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection. Page 745
o13-14: Obsolete. Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. . Page 746
o13-15: Obsolete. Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure Page 746
o13-16: Obsolete. Page 747
o13-17: Obsolete. Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails. Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750
C16-2: PM MADs Follow Common MAD Format & Usage Page 931
C16-8: Obsolete. Page 949

20.11 VENDOR-DEFINED MANAGER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Vendor-Defined Manager, a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support. In addi-
tion, a compliant Vendor-Defined Manager shall meet all Section 20.14
Common MAD Requirements on page 1119.

C13-27.1.1:Standard common AttributeIDs and Attributes. Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-31: Obsolete. Page 741
o13-5.1.1: Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding Page 745
o13-12: Obsolete. Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions . Page 745
o13-13: Obsolete. Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection. Page 745
o13-14: Obsolete. Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. . Page 746
o13-15: Obsolete. Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure Page 746
o13-16: Obsolete. Page 747
o13-17: Obsolete. Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails. Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1116 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788

20.12 OPTIONAL MANAGEMENT AGENT COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Volume 1 specification to
the Compliance Category of Optional Management Agent, a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support. In addi-
tion, a compliant Optional Management Agent shall meet all Section
20.14 Common MAD Requirements on page 1119.

C13-28: ClassPortInfo Required for each Agent Page 734
C13-29: ClassPortInfo Required For Each Agent Port Page 734
C13-30.1.2:Agent must do Trap or Notice Queue if Notices. Page 737
o13-1: Obsolete. Page 737
o13-1.1.1: Trap or Notice:Notice Attribute Format. Page 737
o13-2: Obsolete. Page 739
o13-2.1.1: Trap or Notice: InformInfo format . Page 739
C13-32: Trap: No Traps Without TrapDLID Target. Page 742
o13-2.a1: Trap: parameters from ClassPortInfo and PortInfo Page 742
o13-3: Trap: Maximum Rate of Generation . Page 742
o13-4: Trap: Use of Notice Attribute . Page 742
o13-5: Trap: Transaction ID setting . Page 742
o13-6: Trap: Response to TrapRepress . Page 743
o13-7: Trap: TrapRepress Dropped if No Matching Trap Page 743
o13-8: Notice: Notice Queue is FIFO . Page 743
o13-9: Notice: NoticeCount semantics . Page 743
o13-10: Obsolete. Page 744
o13-10.1.1:Notice: Returning a Notice from Notice Queue Page 744
o13-11: Notice: Response to Set(Notice) . Page 744
C13-34: GSA MADs Directed to QP1 . Page 750
o13-21.1.1:RMPP: Required packet formats . Page 772
o13-21.1.2:RMPP: RMPP header . Page 772
o13-21.1.3:RMPP: RMPPFlags.Active=0 ignores rest of header. Page 772
o13-21.1.4:RMPP: version = 1 . Page 772
o13-21.1.5:RMPP: status codes. Page 773
o13-21.1.6:RMPP: dispatcher behavior . Page 783
o13-21.1.7:RMPP: Receiver behavior . Page 786
o13-21.1.8:RMPP: Sender behavior . Page 788
o16-4: DMA: Device Management datagram format Page 987
o16-4.1.1: DMA: Required methods . Page 989
o16-4.1.2: DMA: required attributes . Page 989
o16-5: DMA and Trap or Notice: DM Trap DataDetails Page 992
o16-6: SNMP: datagram format. Page 999
o16-6.1.1: SNMP: required methods. Page 1000
o16-6.1.2: SNMP: required attributes . Page 1001
o16-7: SNMP: Multipacket SNMP MADs Filled Page 1002

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1117 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

o16-8: SNMP: Multipacket SNMP Timeout Action Page 1002
o16-9: SNMP: Multipacket SNMP Transaction ID Page 1002
o16-10: SNMP: SNMP Information Passthrough Page 1003
o16-11: SNMP: SNMP Tunnelling Must Exist . Page 1004
o16-12: Obsolete. Page 1005
o16-12.1.1:VMA: Vendor class datagram format 1. Page 1005
o16-12.1.2:VMA: Vendor class datagram format 2. Page 1006
o16-13: Obsolete. Page 1007
o16-14: AMA: Application-specific mgt datagram format Page 1008
o16-15: Obsolete. Page 1010

20.13 COMMON PORT REQUIREMENTS

Multiple Compliance Categories share common Port Requirements. To
avoid unnecessary duplication, Port Requirements are collected here and
referenced by the appropriate Compliance Categories.

C5-1: Packet Structure and Packet Header Location Page 151
C5-2: LRH Packet Header Format. Page 154
C5-3: GRH Packet Format. Page 154
C5-4: BTH Packet Format . Page 155
C5-5: Datagram Extended Transport Header Format Page 157
C5-6: ACK Extended Transport Header Format Page 159
C5-7: Payload Size Limited to MTU bytes . Page 160
C5-8: Last or Only Packet of a Message . Page 160
C5-9: Pad Field Usage in IBA Transport Packets Page 160
C7-1: Port Link State Machine and Terms . Page 168
C7-1.1.1: Port Link State Machine and Terms . Page 168
C7-2: Allowed Management Command Port States Page 169
C7-3: Allowed Mgmt Command Port State Transitions Page 169
C7-4.1.1: Packet Receiver State Machine . Page 172
C7-8: Obsolete. Page 175
C7-8.1.1: Data Packet Check State Machine. Page 175
C7-10: Packet Check State Machine - Discard Failures Page 175
C7-11: Data Packet Checks - Corrupt/Discard Rules Page 175
C7-12: Link Packet Check State Machine . Page 178
C7-13: Virtual Lanes - Rules for Protol-Aware IBA Ports. Page 180
o7-2: VLs: Flow Control - IBA Port Rules . Page 180
C7-14: Virtual Lane Field Use - IBA Protocol-Aware Port Page 181
C7-15: Virtual Lane Numbering and Legal Configurations. Page 182
C7-16: Virtual Lanes - VL0 and VL15 are mandatory Page 182
o7-3: VLs: Rules for VL Configurations . Page 182
C7-17: Data VLs Start from 0 and Go Up Sequentially Page 182
C7-18: VL15 is not Subject to Flow Control . Page 182
C7-19: Discard VL15 if Receive Buffer is Full Page 182
C7-20: Protocol-Aware Ports - VL15 Packet Support Page 183
C7-23: VL15 Packets Preempt Other Outbound Packets Page 183
C7-25: VL15 Packets - SL Usage Rules . Page 183
C7-26: No GRH Allowed on VL15 Packets . Page 183
C7-27: VL15 Packets - Payload Maximum . Page 183
C7-28: Per Port Buffering Resources. Page 183
C7-29: Use Flow Control Packets to Advertise Credit Page 183
C7-30: Link Packet Send and Receive . Page 184
C7-31: Minimum Buffer Resources per VL . Page 185
C7-32: VL on Incoming Packet Specifies Receive Buffer Page 185
o7-4: VLs: SL-to-VL Mapping and VL Arbitration Rules Page 185

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1118 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C7-34: SL Sourcing Rule for Single-VL Ports Page 185
o7-8: VLs: SL-to-VL Mapping and Behavior Page 187
o7-9: VLs: SLtoVLMappingTable and Port Behavior Page 188
C7-35: VL Arbitration - Packet Ordering Requirements Page 188
o7-10: VL Arbitration Rules - Single Data VL Page 189
o7-11: VLs: VL Arbitration Rules - Multiple Data VLs Page 189
o7-12: VLs: More VL Arbitr. Rules - Multiple Data VLs Page 189
C7-36: LRH Header Format. Page 193
C7-37: LRH VL Field Value . Page 193
C7-38: LRH LVer Field Value . Page 193
C7-39: LRH Reserve Field Value. Page 194
C7-40: LRH Link Next Header (LNH) Field Value Page 194
C7-41: LRH Reserve Field Value. Page 194
C7-42: LRH Packet Length Field Value . Page 194
C7-43: LRH Minimum Packet Length - IBA Transport Page 195
C7-44: LRH Min. Packet Length - non-IBA Transport Page 195
C7-45: LRH Maximum Value for Packet Length Field Page 195
C7-46: LRH SLID Field Value . Page 195
C7-47: ICRC Field - Required for IBA Transport Packets Page 196
C7-48: ICRC Field Value . Page 196
C7-49: VCRC Field - Required for All Data Packets Page 197
C7-50: VCRC Field Value . Page 197
C7-51: LPCRC Field - Required in All Link Packets Page 198
C7-52: LPCRC Field Value . Page 198
C7-53: Flow Control Packet Rules. Page 210
C7-54: Flow Contol Packet Format . Page 210
C7-55: Flow Control Init Operand . Page 211
C7-56: Flow Control - Normal Operand . Page 211
C7-57: Flow Control Packets - Reserved Op Field Values Page 211
C7-58: Flow Control - FCTBS - Initialization . Page 211
C7-59: Flow Control - FCTBS - Initialize PortState Page 211
C7-60: Flow Control - ABR counter - Initialization Page 211
C7-61: Flow Control - ABR - Update Mechanism Page 212
C7-62: Flow Control - ABR - Update/Discard Rule Page 212
C7-63: Flow Control - FCCL - Calculation Method Page 212
C7-64: Data Packet Transmission - Credit Rules Page 213
C7-65: Flow Control - VL15 Packets are Not Subject Page 213
o7-13: Obsolete. Page 214
o7-13.1.1: UDMcast: Multicast Operational Rules Page 214
C7-67: Link Layer - Classification of Errors on Receive Page 220
C7-68: Link Layer - Precedence of Error Counters Page 220
C7-69: Obsolete. Page 220
C7-69.1.1: Link Layer - Link Integrity and Overrun Errors Page 220
C7-70: Link Layer - Detection of Flow Control Errors Page 221
C7-71: Link Layer - Retraining Rules. Page 221
C8-2: GRH Rule for IPVer Value . Page 227
C8-3: GRH Rule for TClass Value . Page 227
C8-4: GRH Rule for Unused FlowLabel Value. Page 227
C8-5: GRH Rule for FlowLabel Value If Used Page 227
C8-6: GRH Rule for PayLen Value. Page 227
C8-7: GRH Rule for NxtHdr Value - IBA Transport Page 227
C8-8: GRH Rule for NxtHdr Value - Raw Transport Page 228
C8-9: GRH Rule for HopLmt Value . Page 228
C8-10: GRH Rule for SGID Value . Page 228
C8-11: GRH Rule for DGID Value . Page 228
C8-19: GRH Verification/Discard Rules . Page 229

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1119 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C9-1: BTH - Required for Packets Using IBA Transport Page 234
C9-36: Transport Layer - BTH TVer Field - Validation Page 272
o9-165: Static Rate Control - Interpacket Delay Page 428
C9-226: Static Rate Control - Unsupp. Value(s) - Behavior Page 429
o10-55: P_Key traps: general requirements . Page 526
o10-56: P_Key traps: new violation before trap sent. Page 527
o10-57: P_Key counters: general requirements Page 527

20.14 COMMON MAD REQUIREMENTS

Multiple Compliance Categories share common Management Datagram
Requirements. To avoid unnecessary duplication, Management Data-
gram Requirements are collected here and referenced by the appropriate
Compliance Categories.

C13-2: MAD Conventions and Data Placement. Page 717
C13-3: MAD Length . Page 718
C13-4: MAD Base Format . Page 718
C13-5: MADHeader:MgmtHeader Values . Page 720
C13-6: MAD Method Names and Method Values Page 722
C13-7: Assigned Method Values Otherwise Unused Page 722
C13-8: Class Specific Methods Request/Response Page 722
C13-8.1.1: MAD retry interval . Page 723
C13-9: Responders Shall Not Coalesce Responses. Page 724
C13-10: Obsolete. Page 724
C13-10.1.1:GetResp() Required for Every Valid Get() Page 724
C13-11: Obsolete. Page 724
C13-11.1.1:GetResp() Required for Every Valid Set() Page 725
C13-12: Obsolete. Page 725
C13-12.1.1:GetResp() semantics . Page 725
C13-12.1.2:ReportResp() required . Page 727
C13-13: Obsolete. Page 728
C13-13.1.1:Default RespTimeValue is 4.3 sec. . Page 728
C13-14: Appropriate RespTimeValue (General) Page 728
C13-15: RespTimeValue for other cases . Page 729
C13-15.1.1:RespTimeValue for Report/ReptResp Page 730
C13-16: RespTimeValue for Request/Response Seq’s Page 730
C13-17: Obsolete. Page 730
C13-18: Obsolete. Page 731
C13-18.1.1:Choosing MADHeader:TransactionID Page 731
C13-19: Obsolete. Page 731
C13-19.1.1:TID, SGID, MgmtClass to Associate Messages Page 731
C13-20: TransactionID for Request Sequences Page 731
C13-21: TransactionID for Responses. Page 731
C13-22: TransactionID for Response Sequences Page 731
C13-23: TransactionID for Message Sequences Page 731
C13-24: Common Status Field Bit Values for Responses Page 732
C13-25: Obsolete. Page 732
C13-26: Unused Attribute Modifier is Set to 0 . Page 733
C13-27: Same Attribute Format for Get, Set, GetResp Page 733
C13-38: GMPs Done Below Verbs Invisible to Verbs Page 752
C13-39: Obsolete. Page 752
C13-39.1.1:GMPs Above Verbs Appear on QP1 . Page 752
C13-40: GMPs Always Validated As If on QP1 Page 753
C13-41: GMPs Dispatched to Agents . Page 754
C13-42: GMP Redirection from QP1 . Page 754

InfiniBandTM Architecture Release 1.2 Volume 1 Compliance Summary October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1120 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C13-42.1.1:GMP Redirection from QP not 1 . Page 754
C13-43: GMP Redirection-Required Status . Page 754
C13-43.1.1:Redirection is sticky . Page 754
C13-44: GRH in Redirection Only If In ClassPortInfo Page 755
C13-45: Obsolete. Page 755
C13-45.1.1:SMP Validation. Page 755
o13-18: SMP GetResponse() Status Values . Page 756
C13-46: Processing of Directed Route SMPs . Page 757
C13-47: GMP Validation. Page 757
o13-19: GMP GetResponse() Status Values . Page 757
C13-48: No QP1 When No GSM Above Verbs Page 758
o13-20: Obsolete. Page 758
C13-48.1.1:Validation of Redirected GMPs . Page 758
C13-49: Obsolete. Page 759
C13-49.1.1:Validation of all MADs . Page 759
C13-50: Action When GMPs Fail Validation. Page 759
o13-21: GetResponse() Status on Failed Validation Page 759
C13-50.1.1:Sender must use a reversible path . Page 769
C13-51: Obsolete. Page 769
C13-51.1.1:Response Packet Construction, no GRH. Page 770
C13-52: Obsolete. Page 770
C13-52.1.1:Response Packet Construction With GRH Page 770
C14-1: SMP Required MgmtClass Values . Page 795
C14-2: SMPs Conform to General MAD Format, Use Page 795
C14-3: LID Routed SMP Required Format . Page 795
C14-4: Directed Routed SMP Required Format Page 796
C14-5: Only an SM Shall Originate a Directed route SMP. Page 800
C14-5.a1: SM initializes LIDs for LID/Directed Routes Page 800
C14-6: Directed Route SMP Field Initialization Page 800
C14-7: Directed Route SMP UD Field Initialization Page 801
C14-9: Outgoing Directed Route SMP Handling Page 802
C14-10: Directed Route SMP Field Initialization Page 803
C14-11: Directed Route Response Header Initialization Page 804

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1121 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A1: I/O INFRASTRUCTURE

A1.1 INTRODUCTION

A1.1.1 PURPOSE

This document is a supplement to Volume 1 of the InfiniBand Architecture,
herein referred to as the base document.

It is an informative annex and does not contain any compliance require-
ments. This annex describes the InfiniBand I/O framework and recom-
mends various policies for discovering, managing, and using I/o devices
attached via the IB fabric.

A1.1.2 GLOSSARY

This annex uses the following terms in addition to the terms defined in the
base document Glossary (Chapter 2).

Compatibility String An ASCII string used to match an I/O controller with a compatible I/O De-
vice Driver.

I/O Device Driver Code, typically in a host, that is used to control an I/O device. I/O device
drivers allow programs in the host to control I/O devices in a device inde-
pendent way. An I/O device driver may be a generic driver designed for a
standard I/O Protocol regardless of the device vendor, or it may be a
vendor-specific driver, for a particular vendor's device or set of devices.

I/O Initiator An I/O client that sends I/O commands to an I/O device.

I/O Protocol The set of rules governing the content and exchange of I/O related infor-
mation passed between host platforms and I/O controllers.

SCSI RDMA Protocol A Storage Protocol defined by T10 that maps SCSI onto transport proto-
cols (such as IBA) that support remote DMA. It specifically provides an
annex that maps SCSI onto IBA.

Service Connection All the channels that a single initiator establishes with a particular I/O con-
troller.

SRP SCSI RDMA Protocol

Storage Protocol An I/O Protocol specifically for storage devices.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1122 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A1.2 PRINCIPLES OF I/O
A1.2.1 I/O OPERATION OVERVIEW

The IBA fabric provides a scalable interconnect that supports numerous
I/O devices. As an I/O network, IBA supports many different configura-
tions such as direct connected I/O (an I/O unit directly connected to a
host’s HCA port without a switch), single system (a single host, a switch,
and a number of I/O units) as in Figure 227, multiple systems (multiple
hosts with I/O units dedicated to each one) as in Figure 228 and other con-
figurations (where I/O devices may be shared among multiple hosts).

Figure 227 Single System & Direct Attached I/O
I/O units might contain one or more constructs referred to as I/O control-
lers. Each I/O controller may choose to support only a single initiator (e.g.,
a host) or might support multiple initiators (either sequentially or concur-
rently). Each I/O controller may be simple (i.e., provide a single QP for
each initiator) or complex and use multiple channels with each initiator.
The term service connection refers to all the channels that a single initiator
establishes with an I/O controller. When an I/O controller cannot support
an additional initiator, the IOU’s CM rejects CM:REQ messages with an
appropriate reject code (e.g., No QP Available, No Resources Available,
Invalid ServiceID, and Consumer Reject).

An I/O unit is composed of a channel adapter (HCA or TCA) and a number
of I/O controllers. A platform that is a host might also provide I/O capabil-
ities in which case that host is also considered an I/O unit. A managed I/O

I/O
 U

ni
t

CA

oooI/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
 U

ni
t

CA
I/O

 U
ni

tCA

SCSI

Fibre Channel
hub & FC
devices

Ethernet

Video

Graphics

Host Platform
CPU CPU

Mem HCA
CPUo o o

Switch I/O Unit
CA

Direct Attach

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1123 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

unit is an I/O unit that supports Device Management; the mechanism an
I/O unit uses to deliver information about the I/O unit’s I/O resources.
Class version 1 of device management is specified in the base document
section 16.3 “Device Management”. Class version 2 is specified in Annex
A8: Device Management.

I/O operation is independent of subnet complexity. The host enumerates
I/O controllers within a managed I/O unit by querying the I/O unit. A host
may discover I/O units in its partitions by querying Subnet Administration
(SA) and/or the Configuration Manager (CFM). A CFM, if it exists, pro-
vides information about I/O controllers to particular hosts. The host may
query the CFM to retrieve a list of its I/O controllers. The host can register
with the CFM to be notified about new arrivals and removals. The CFM is
defined in the “Configuration Management” annex. Specific use of I/O
controllers for booting is captured in the Booting Annex and is outside the
scope of this annex.

The host may retrieve information about each I/O controller in a managed
I/O unit using DevMgtGet MADs. Using controller and protocol information
from the DevMgtGet()s, the host is able to match an I/O device driver to

I/O
Chassis

I/O
 U

ni
t

CA

oooI/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
Chassis

I/O
 U

ni
t

CA

oooI/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
 U

ni
t

CA

I/O
 U

ni
t

CA

Host Platform
CPU CPU

Mem HCA
CPUo o o

Host Platform
CPU CPU

Mem HCA
CPUo o o

HCA

RAID Subsystem
SCSI

SCSI

SCSI

SCSI

SCSI
CA

Mem

Processor

SCSI

Fibre Channel
hub & FC
devices

Ethernet

Video

Graphics

Host Platform
CPU CPU

Mem HCA

CPUo o o

HCA

Switch

Switch Switch

Router Other IB
Subnets WANs
LANs Hosts

Fabric

Storage
Subsystem

Controller

SwitchSwitch

CA

SwitchSwitch

Figure 228 Multiple Systems

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1124 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

that controller. The host then invokes the I/O device driver which estab-
lishes necessary connections with the I/O controller and enumerates I/O
ports and/or devices behind the I/O controller. At this point, operation is
strictly in the hands of the I/O device driver and outside the scope of the
IB specification.

A1.2.2 MANAGED I/O UNITS

IB Device Management class specifies methods and attributes used for
managing IB devices that provide I/O. IB devices managed by these de-
vice management methods and attributes are referred to as managed I/O
units.

The architectural model of a managed I/O unit is illustrated in Figure 229.

The Device Management Class specifies messages that can be used for
determining the number of I/O controllers for a managed I/O unit and the
existence of an optional ROM repository. Using these methods and at-
tributes, a host can determine the protocols and services supported by
each I/O controller, as well as other capabilities of the I/O controllers. See
chapter 16 and Annex A8: for additional information.

A1.2.3 ROM REPOSITORY

The ROM repository, illustrated in Figure 229, provides a means for man-
aged I/O units to supply I/O device drivers for controlling IOCs during
booting. The ROM repository may also contain other information such as

Figure 229 Architectural Model for a Managed I/O Unit

Fa
br

ic

IO Ports or Devices

Managed IO Unit
SM

I
G

SI

CA

M
essage and

D
ata S

ervices*

IO Controller

IO Controller

IO Controller

ROM
Repository

D
evM

gt
A

gent

* such as QPs and verbs

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1125 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

downloaded microcode or data related to initializing and using IOCs. For
additional information, see Boot Management Annex.

A1.2.4 I/O DEVICE DRIVERS

I/O Device Drivers are code images which drive I/O controllers. An I/O de-
vice driver may be vendor-specific for a particular vendor’s I/O controller
or set of similar I/O controllers, or it may be a standard I/O device driver
designed for a standard I/O protocol regardless of the I/O controller
vendor.

This section describes the recommended practice for a device manager
to match an I/O controller with an appropriate I/O device driver. This is the
practice mandated for matching boot drivers in the ROM repository (see
Booting Annex).

Each I/O device driver image, regardless of whether or not it is stored in
a ROM repository, is associated with a set of character strings which iden-
tify the I/O protocols and/or vendor products which the I/O device driver
supports. These character strings are called “compatibility strings.” An I/O
device driver image may be associated with one or more compatibility
strings, depending on the number of protocols and/or vendor products
which it supports. These compatibility strings allow the I/O device driver to
be matched with I/O controllers with which it can be used.

A1.2.4.1 MATCHING AN I/O CONTROLLER WITH AN I/O DEVICE DRIVER
The process of matching an I/O device driver with an I/O controller in-
volves creating a set of compatibility strings for the I/O controller, and
comparing the compatibility strings generated for the I/O controller to the
compatibility strings associated with each I/O device driver. If one of the
compatibility strings associated with the I/O device driver matches one of
the compatibility strings of the I/O controller, then the driver may be used
with the I/O controller.

A1.2.4.1.1 CREATING COMPATIBILITY STRINGS FOR AN I/O CONTROLLER

In order to generate the compatibility strings for an IOC, a host sends
DevMgtGet()s to the managed I/O unit containing the IOC requesting IO-
ControllerProfile and other pertinent attributes. The attributes contain a
set of components identifying the IOC and its vendor (VendorID, IocDevi-
ceID, Device Version, Subsystem VendorID, SubsystemID), and a set of
components identifying the protocols supported by the IOC (I/O Class, I/O
Subclass, Protocol, and Protocol Version). These components are in bi-
nary format. See A3.3 “I/O Controller Identification” on page 1189 for ad-
ditional details regarding the component values corresponding to various
protocols.

The host converts the binary value of each component into its ASCII rep-
resentation with a leading designator. For example, if the IOControllerPro-

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1126 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

file Device Version component was 0xabcd, which is a 16-bit quantity,
then the ASCII string into which it is converted is ’vabcd’, which is a 40-bit
quantity. Table 318 specifies how the DevMgt attribute components are
converted into an ASCII string.

The host generates the following six compatibility strings by concate-
nating the ASCII strings from Table 318 into the compatibility strings of
Table 319.

Table 318 ASCII String Representations of DevMgt
Components

Component Name Component
Length

ASCII String
Representation
of Componenta

a. x = hexadecimal character in lower case ASCII (0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f)

ASCII String
Length

V - VendorID: 24 bits Vxxxxxx 56 bits

P - IocDeviceID (product): 32 bits Pxxxxxxxx 72 bits

v - Device Version 16 bits vxxxx 40 bits

S - Subsystem VendorID: 24 bits Sxxxxxx 56 bits

s - Subsystem ID: 32 bits sxxxxxxxx 72 bits

C - Class: 16 bits Cxxxx 40 bits

c - SubClass: 16 bits cxxxx 40 bits

p - Protocol: 16 bits pxxxx 40 bits

r - Protocol version: 16 bits rxxxx 40 bits

Table 319 Compatibility Strings

Compatibility String
String
Length
(Bytes)

Ve
nd

or
/P

ro
du

ct
St

rin
gs

1 VxxxxxxPxxxxxxxxSxxxxxxsxxxxxxxxvxxxx 37

2 VxxxxxxPxxxxxxxxSxxxxxxsxxxxxxxx 32

3 VxxxxxxPxxxxxxxxvxxxx 21

4 VxxxxxxPxxxxxxxx 16

C
la

ss

St
rin

gs 5 Cxxxxcxxxxpxxxxrxxxx 20

6 Cxxxxcxxxxpxxxx 15

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1127 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A1.2.4.1.2 COMPARING COMPATIBILITY STRINGS

The compatibility strings shown in Table 319 serve as product or protocol
designators. Since I/O device drivers are written for particular products,
family of products, or specific protocols, each compatibility string repre-
sents the potential name of a compatible I/O device driver. Thus, they are
convenient strings used to unambiguously reference a driver. Each driver
can thus be represented by one or more I/O device driver names of the
format shown in Table 319 (i.e., one name per product, product family, or
protocol that the driver can control). The driver writer selects the I/O de-
vice driver name (or names) to express how closely an implementation of
an I/O device driver matches a particular product or protocol.

In order to match an I/O device driver with an IOC, the host generates the
first string in Table 319 and compares it against the list of I/O device driver
names for each I/O device driver. If it finds an exact match between the
generated string describing the IOC and an entry in the list of I/O device
driver names, then the host selects that driver. If no match is found, the
host repeats the process by generating and comparing the second string
(and then each of the following strings) until a it finds a match. If no match
is found between any of the generated strings and any I/O device driver
names, there is no matching driver.

Note that strings in Table 319 on page 1126 are listed from most specific
to least specific. The order assumes that an IOC which works with a ge-
neric “class” driver (which matches the 5th or 6th compatibility string), will
work better with a product-and-version-specific driver matching the first
string, if it is present.

The order of search is specifically called out so that the driver matching
algorithm will produce deterministic results and select more specific
drivers over more generic drivers. This allows I/O device driver writers and
hardware vendors to know which drivers will supersede which other
drivers in the various different host environments.

A1.2.4.2 USING AN I/O CONTROLLER

Each IOU contains one or more IOCs and each IOC contains one or more
I/O objects.The following is a walk-through of the process that a host
might perform in order to use an IO object.

To communicate with IOC, the host needs to determine the address (LID
and/or GID) of the I/O unit containing the IOC and it needs to know the I/O
controller GUID. This information can be obtained in a number of ways. In
a fully managed subnet, the host can query the CFM to learn of its I/O ob-
jects, otherwise the host needs to remember its I/O objects or “walk the
bus” and discover its I/O objects (see A1.3.1 “I/O Device Resolution” on
page 1130 for additional information regarding the determination of I/O
objects and I/O unit address.)

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1128 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If the host knows the I/O controller GUID and needs to locate the IOU, the
steps differ depending on whether the IOU’s Device Management agent
supports Class Version 1 or 2.

• For class version 1, the host sends a DevMgtGet(IOUnitInfo) to
each IOU in order to obtain a list of I/O slots in the I/O unit. For
each slot containing an IOC, the host sends a DevMgtGet(IOCon-
trollerProfile) to determine whether the IOC in the requested slot
has the proper I/O Controller GUID.

When a slot containing the IOC with the desired GUID is found, the
host uses information in the IOControllerProfile attribute to match
the IOC with an I/O device driver. (See A1.2.4.1 “Matching an I/O
Controller with an I/O Device Driver” on page 1125.)

At this point the host has found the IOC and matched it with an ap-
propriate I/O device driver. The I/O device driver needs to estab-
lish I/O service with the IOC. This entails the host setting up one
or more connections with the IOC for exchanging control and data.
However, an IOC might support multiple I/O protocols. The pro-
cess is to query the IOU via a DevMgtGet(ServiceEneties) and
match the service name of the particular I/O protocol to get the
ServiceID (used by the CM to connect to a QP). The IOC lists pro-
tocols in its service entries list by their Service Name. Thus, the
ServiceEntries attribute translates the Service Name to a service
ID.

Each I/O protocol has its own service name and the I/O device
driver uses that service name to derive the service ID, which it
subsequently uses in a CM:REQ message. At the target, the Ser-
vice ID distinguishes both the IOC and the protocol.

Thus, after the appropriate I/O device driver is found, the host
sends a DevMgtGet(ServiceEntries) request to the IOC in that slot
to obtain a list of ServiceNames and their corresponding Service
IDs. The I/O device driver then establishes one or more connec-
tions with the IOC using the ServiceID(s) corresponding to the
ServiceName(s) specified by the I/O device driver. (Note that the
ServiceNames for an I/O device driver is designed into the I/O de-
vice driver.)

• For class version 2, the host simply sends a DevMgtGet(Service-
Record) query to each IOU specifying the particular IOC and ser-
vice object. And then sends DevMgtGet(IOControllerProfile) and
DevMgtGet(ProtorcolRecord) queries to the IOU that responds
with the ServiceRecord to get information to match the IOC with
an I/O device driver. (See A1.2.4.1 “Matching an I/O Controller
with an I/O Device Driver” on page 1125). The ServiceID in the
ServiceRecord provides the driver with the information it needs to
establish connections with the service object.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1129 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For additional details on the device management methods mentioned
above, see chapter 16, section 3, Device Management, Annex A7: Con-
figuration Management, and Annex A8: Device Management. For addi-
tional details on establishing connections, see chapter 12.

A1.2.5 I/O ATTACHMENT

A1.2.5.1 DIRECT ATTACHMENT

Direct I/O attachment is the attachment of a host IB port to an I/O unit
without a switch. In this case, the host provides subnet management
(SM). Because the subnet is extremely simple (2 CAs and no switch), the
role of the SM is significantly reduced, and optional management capabil-
ities are not expected to be provided.

For a node to support Direct Attached I/O it needs to supply a subnet man-
ager.

A1.2.5.2 FABRIC ATTACHMENT

Fabric complexities range from configurations consisting of a single host,
single switch, and multiple I/O units, to configurations consisting of mul-
tiple hosts, multiple switches, and multiple I/O units. The I/O units may be
either shared by multiple hosts or dedicated to a single host.

As subnets increase in size, it becomes increasingly important for IB de-
vices to support baseboard management functions such as power man-
agement. It also becomes more useful for the subnet to provide a
Configuration Manager (CFM), Boot Information Service (BIS), and Boot
Manager. See related annexes.

A1.2.5.3 POWER MANAGEMENT

Volume 2 and Baseboard Management class provides for power manage-
ment of nodes attached to the IB fabric including the ability to power down
and wake up nodes. I/O operation described herein assumes that power
management is transparent to I/O operation and assumes that the I/O
units are alive and active.

However, the impact of power management might be noticeable. This is
especially true when an I/O unit has been put into a power off state. As-
suming that the power manager automatically detects a host’s attempt to
establish communications with a powered down I/O unit, and immediately
powers the I/O unit on, there might be significant delay before the I/O unit
is capable of responding to DevMgt and CM MADs.

This delay is not IBA related, but rather a function of platform implemen-
tation. Both hosts and I/O units should consider this delay in their designs.

The host should take into consideration that there may be a delay from the
time that it starts to send MADs to an I/O unit until the I/O unit is capable

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1130 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of responding. This delay could include the time for the power manager to
respond and the time for the I/O unit to initialize. Currently this time is not
bounded, but is expected to be in the order of seconds. For example, the
Boot Management class (see Booting Annex) provides a time-out value
that the boot manager configures so a booting platform knows the min-
imum amount of time it needs to wait from the first time it attempts to ac-
cess an I/O unit before it can claim the I/O unit does not exist.

It is recommended that I/O units that take significant time to initialize, es-
pecially those supporting power management and wake-on-fabric, be
able to respond with DevMgtGetResp(PortClassInfo) as soon as possible.

A1.3 I/O MANAGEMENT

This section provides an overview on how I/O devices are located and ac-
cessed.

A1.3.1 I/O DEVICE RESOLUTION
I/O device resolution is the process of determining the set of nodes which
contain I/O devices. There are several resolution methods:

• Persistent Information: The host persistently stores information
regarding the node containing the I/O device. See Section
A1.3.1.2 for additional information.

• Configuration Manager (CFM): The host sends a query to the
CFM to get a list of I/O objects assigned to the host. See Annex
A7: Configuration Management.

• Subnet Administrator (SA): The host sends a SubnAdminGet-
Table(PortInfo) query to the SA in order to obtain the PortInfo at-
tributes of all accessible ports. (See base document chapter 15.)
The host filters the list of PortInfo attributes received from the SA
to select the ports which have the PortInfo:CapabilityMask:IsDe-
viceManagementSupported bit set to one. Each port supporting
Device Management is then queried to determine if it contains
one or more IOCs.

• Boot Manager: A boot manager programs a booting node with
the identity of the IOU/IOC/ and I/O object that the host uses to
boot. See Annex A5: Booting Annex.

• Boot Information Server (BIS): A booting node queries the BIS
for the identity of the IOU, IOC, and I/O object that the host uses
to boot. See Annex A6: Boot Information Service.

A1.3.1.1 RESOLVING A PATH

During the resolution process, the host determines either the Node GUID,
Port GUID, or port GID of the target I/O unit. In order to communicate with
that node, however, the host requires a DLID, possibly a DGID, and other

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1131 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

information about the path to the node. The steps in obtaining this infor-
mation is listed below.

1) If the host knows the Node GUID, it can issue a SubnAdmGet-
Table(NodeRecord) query to the SA specifying the NodeGUID of the
IOU. This request produces a list of NodeInfo attributes, one for each
port on the IOU. (See chapter 15 for additional information.)

2) Select one of the NodeInfo attributes obtained in step 1, and con-
struct a GID by pre-pending the local subnet prefix to the Port GUID
component from the NodeInfo attribute.

3) Once the host obtains a Port GID, it can send a SubnAdmGet-
Table(PathRecord) query to the SA with the DGID component set to
the Port GUID obtained above. Typically, the PathRecord request
contains an SGID of the host platform, the DGID equal to the port-
GID, and wildcards the SLID to account for a non-zero LMC. The SM
returns all paths from the host’s port to the I/O unit’s port and pro-
vides the host with the information (DLID, SL, MTU, etc.) necessary
to send packets to the I/O unit.

A1.3.1.2 PERSISTENT INFORMATION

After a node has selected an IOC, it may need to save information about
the IOC persistently so that the IOC may be accessed in the future. When
this is necessary, the minimum set of information about the IOC which
must be persistently stored includes the following:

• Node GUID - the Node GUID of the IOU containing the IOC.

• IOC GUID - the GUID of the IOC.

• Additional Information - protocol-specific information about I/O
devices.

See A1.3.1.1 “Resolving A Path” on page 1130 and A1.2.4.2 “Using an I/O
Controller” on page 1127 for additional information regarding how the
above persistent information is used to access the I/O device.

A1.3.1.3 CONFIGURATION CHANGES

Depending on the upper level protocol, and the way it identifies its target,
maintenance scenarios involving the replacement of a failed device may
cause the protocol to loose addressability of its target. For instance, if the
host’s protocol uses the persistent identifiers defined in Section A1.3.1.2
to identify its target, and either the I/O unit or I/O controller must be re-
placed due to failure, it will be impossible for the protocol to obtain a path
using their GUIDs because the new unit (or I/O controller) will have a dif-
ferent GUID. Similarly, if a pair of I/O Units or I/O Controllers are swapped,
the protocol might mistakenly swap the service objects behind those IOUs
or IOCs. This may or may not be the intended result.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1132 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For most upper level protocols, such as SRP, this should not be a
problem, since they use other methods of identifying their targets.

In general, if the upper level protocol uses persistent identifiers to locate
its target, the recommended solution is simply to change the identifier in
the protocol configuration definition file. This will eliminate any ambiguities
and assure that the configuration definition file is consistent with the
fabric.

If a protocol using persistent identifiers requires the ability to gracefully
handle replacement scenarios, the following subsections provide some
guidance. None of these strategies are mandatory. None of these strate-
gies are mandatory. In addition, if the protocol does not update its config-
uration definition file with the new identifier upon detecting such a change,
the protocol will be forced to go through this rediscovery processing each
time the system is re-booted.

The following subsections also provide insight for how a configuration
manager can deal with an I/O unit or I/O controller being replaced or
swapped.

A1.3.1.3.1 IDENTIFIERS SUPPORTING CONFIGURATION CHANGES

In order to gracefully handle replacement scenarios, storage of the fol-
lowing identifiers is recommended:

• ChassisGUID: global ID of the chassis containing the node
(See Volume 2, section 13.7.7, ChassisInfo Record:Chassis-
GUID.)

• Module GUID: global ID of module containing the node
(See Volume 2, section 13.7.6, ModuleInfo Record:ModuleGUID.)

• SlotNumber: the IB Module slot to which the IB module contain-
ing the node is attached
(See Volume 2, section 13.7.7, ChassisInfo Record:SlotNumber.)

• NodeString: locally administered node name
(See Chapter 14, section 14.2.5.2, NodeDescription.)

• I/O Controller Slot Number: position of IOC in the ControllerList
component of the IOUnitInfo attribute of the Device Management
agent. (See Chapter 16, section 16.3.3.3, IOUnitInfo and
A8.3.3.5: IOUnitInfo.)

A1.3.1.3.2 NODE REPLACEMENT

When the host can not locate an I/O unit with a desired Node GUID, it
might mean that a channel adapter, module, and/or chassis has been re-
placed. When this occurs, the host might be able to determine the Node
GUID of a possible replacement. Node replacement strategy is a an im-

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1133 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

plementation policy set by each OS vendor. Some of the possibilities
might include:

• Make no attempt to associate a new I/O unit with a missing one.
• Select a node with the same ModuleGUID. Such a node can be

found by searching the subnet for any node with the same Mod-
uleGUID. This covers the case in which the desired channel
adapter has been replaced within the same module. Note that if
the module contains multiple channel adapters, there is a risk that
an incorrect channel adapter will be selected.

• Select a node with the same NodeDescription:NodeString com-
ponent. This can be done by querying the subnet administrator
for a list of nodes with the same NodeDescription:Nodestring
component as the missing I/O unit. Note that if the subnet was
configured with multiple I/O units containing the same Node-
String, then there is a risk that an incorrect I/O unit will be select-
ed.

• Select a node with the same ChassisGUID and SlotNumber.
Such a node can be found by searching the subnet for any node
(with the same ChassisGUID and SlotNumber). This covers the
case in which the module containing the I/O unit was replaced.
Note that if the module contains multiple I/O units, there is a risk
that an incorrect I/O unit will be selected. There is also a risk that
the desired module was replaced with a totally unrelated module.

In addition to the above possibilities, it may be appropriate to search for
an IOU containing an IOC with the same IOCGUID. This covers the case
in which the desired IOC has been moved.

In any of the above cases there is a risk that either the desired I/O device
will not be found, or an inappropriate I/O device will be found. Therefore,
operator confirmation is recommended before proceeding with the device
access.

A1.3.1.3.3 IOC REPLACEMENT

The recommendation to I/O unit vendors producing I/O units with remov-
able I/O controllers is that the I/O controller slot number specified in the
IOUnitInfo and IOControllerProfile attributes be associated with its phys-
ical location. This allows an operator to replace an IOC and have the new
IOC be located at the same I/O slot number as the old IOC. If the old IOC
GUID is not found, then the IOC user (e.g., the OS device manager) can
look for the new IOC at the same I/O slot. Note that DevMgt class version
2 supports multiple IOCs per I/O module. Thus, there my be more than
one IOC with the same I/O slot number, and therefore there is a risk that
an incorrect I/O controller could be selected.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1134 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A1.3.2 RETRY-BACKOFF POLICY

The I/O resolution process involves accessing a number of different ser-
vices using unreliable datagrams, and there are a number of reasons why
a request might be lost including random bit errors, congestion, and de-
vice or service not ready. In the case of random bit errors, retrying imme-
diately has a high probability of success, however in most situations
involving congestion and busy devices, immediate retries are not helpful
and may create or add to congestion. Therefore, a host needs a simple
algorithm for increasing back-off intervals each time the host encounters
a situation where it needs to retry an operation.

When an operation is to be retried, the sender first waits the expected
maximum response time for the response. (See Chapter 13, section
13.4.6.3.) If no response is received within the expected maximum re-
sponse time, the sender retries the operation immediately.

If no response is received for this second attempt, the next retry is per-
formed at a randomly selected back-off time between 1 and 100 msec.

If this retry also fails and if subsequent retries are to be performed, the
sender doubles the back-off time used for the previous retry before re-
trying again.

If the back-off time exceeds 30 seconds, the sender randomly selects an-
other back-off time between 1 and 100 msec and repeats the process.

A1.4 IMPACT OF PARTITIONS ON I/O

When there is only a single partition (e.g., the default partition), life is
simple and the host does not have to make any decisions regarding par-
titions. This section discusses various concerns centering around the use
of multiple partitions and their impact on I/O. See Chapter 10 section 10.9
“Partitioning” for a description of partitioning. Partitions are enforced on a
per port basis.

The Subnet Manager assigns every port to at least one partition and pos-
sibly many partitions. The purpose of each partition varies. Any partition
that allows a host to communicate with an I/O Unit is considered an I/O
partition. Furthermore, I/O related services such as CFM, BIS, and Boot
Manager are also bound by partitioning rules. The Subnet Manager does
not provide the host with information concerning the purpose of its parti-
tions. Thus, a host does not know which partitions are I/O partitions.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1135 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 230 I/O Partitions

An administrator sets up I/O Partitions to enable and enforce access be-
tween specified ports (e.g., a host and its I/O units). The sharing pattern
of each partition might be a dedicated partition or a common partition as
illustrated in Figure 230. Typically the administrator provides at least one
I/O partition per host dedicated to that host and assigns I/O units to that
partition as illustrated by Partition X and Partition Y.

However, I/O units that need to be accessed by multiple hosts, such as
I/O Unit C in Figure 230, need to be a member of each I/O partition that it
serves. This means, that an I/O unit accessed by many hosts needs a
large P_Key Table. An alternative to requiring I/O units with large P_Key
Tables is for the administrator to also provide a common I/O partition for
each group of I/O units shared by the same set of hosts, as illustrated by
partition Z. In order to maintain separation between hosts in the common
I/O partition, the subnet manager configures each host with limited parti-
tion membership for that partition while the I/O Units have full membership
(see Chapter 10 section 10.9 “Partitioning” subsection titled “Limited and
Full Membership”). The point is that hosts might have multiple I/O parti-
tions, one for each relative group of I/O units.

A host containing an I/O related service such as a CFM, BIS, or Boot Man-
ager has to have a partition in common with each host it serves. However,

Partition Y
(Dedicated to Host-B)

Partition X
(Dedicated to Host-A)

Host A Host B

I/O Unit
A2

I/O Unit
A1

I/O Unit
A3

I/O Unit
C

I/O Unit
B1

I/O Unit
B2

I/O Unit
B3

P_Key(x)

P_Key(x) P_Key(x) P_Key(x)

P_Key(y)

P_Key(y) P_Key(y) P_Key(y)P_Key(y)
P_Key(x)

Host CHost A Host B

I/O Unit(s)

P_Key(z) P_Key(z) P_Key(z)

P_Key(z)

Partition Z
(Common I/O Partition)

Limited Limited Limited

Full

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1136 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

it is inappropriate to add the host containing the I/O service to an I/O par-
tition if that host is not allowed access to the I/O units. For this case the
service would use a non-I/O partition, such as a management partition.
The default partition26 is suitable for the case where these services co-
exist with the Subnet Manager. Otherwise, the service and the hosts it
serves might be assigned to a common management partition (similar to
the common I/O partition described above).

The conclusion is that both hosts and I/O units can be assigned to multiple
I/O partitions, as well as other partitions. However, the impact of parti-
tioning is not as severe as one might expect. The following sections de-
scribe various ways that host and I/O units can deal with multiple
partitions.

A1.4.1 I/O UNITS AND PARTITIONS

I/O units are typically targets, that is, hosts make connections to I/O units.
The CM:REQ attribute contains a “Partition Key” field that specifies the
P_Key for the connection. Thus, an I/O unit simply validates CommMgt
MADs based on whether the specified partition is in the port’s P_Key table
or not. Only when an I/O unit is to be the initiator of a connection (in this
case it is behaving as a host), will it have the same issues as a host. In
other words, if the IOU is behaving as a host, the guidance given to hosts
in the rest of this section applies to the I/O unit.

A1.4.2 HOSTS AND I/O PARTITIONS

If a host uses the management facilities appropriately, partitions can be
semi-transparent to hosts, meaning that the host does not need to treat
each partition separately. That is, a host does not have to scan for I/O
Units on a partition-by-partition basis -- because discovery mechanisms
are outside of partitions. However, I/O access mechanisms are governed
by partitioning. Thus, when communicating with I/O units and I/O services,
the host does have to use the proper partition, which might be a different
partition for each one.

It is the Subnet Administration (SubnAdm) query methods that permits the
host to discover I/O devices across all partitions. For example, the host
can send a single SubnAdm query to the Subnet Administration agent
(SA) such that the SA returns responses for all I/O units that are in a par-
tition for which the host is a member.

A host does need to treat each port independently of the other. If multiple
ports attach to the same subnet, then each port is potentially a different
path to the same I/O resources. If the ports are on different subnets, then
the query subsystem returns information pertinent to that subnet.

26. The default partition purpose, as defined in Chapter 14 and 15 (sections
section 14.4 and 15.4), is to permit all nodes to communicate with the SA.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1137 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the process of managing its I/O, there are a number times that a host
queries the SA for information. Typically, this involves two SubnAdm
methods and several SubnAdm attributes. The methods are SubnAd-
mGet and SubnAdmGetTable. The attributes are ServiceRecord, No-
deRecord, PortInfoRecord, and PathRecord.

The solution is to query the SA and use the Component Mask to indicate
that the partition is a wildcard. Since the SA only returns information as-
sociated with partitions that are valid for the host (i.e only information
about nodes with which the host can communicate), the result is that the
SA responds with information for all of the host’s partitions and each
record returned indicates the partition that the host needs to use.

See Chapter 15 section titled “Administration of Query Subsystem” for de-
tails on “querying by ComponentMask”. The following are examples of
how the host can apply this concept.

A1.4.2.1 QUERY FOR PATH

The host can generate a single SubnAdmGetTable(PathRecord) query
and get a list of paths to all other ports that are members of the host’s par-
titions, except for paths where both ports have limited partition member-
ship. This is documented in Chapter 15 section titled “PathRecord” and
referred to as “bus walk” because it provides a list of all other nodes the
host can access (I/O units and other hosts). From this list, the host can se-
lect the paths to its I/O units and the nodes supplying other services such
as CFM and BIS.

Each record returned in the response identifies one path to a target port
and provides a P_Key that the host can use to communicate with that port.
Thus, the partition structure (i.e., whether the host or the I/O Unit is the full
member and whether or not there are multiple hosts) is irrelevant to the
host.

A1.4.2.2 QUERY FOR SERVICE

To get the list of all nodes providing a particular service, such as BIS or
CFM, the host can query the SA with a SubnAdmGetTable(Service-
Record) specifying a ComponentMask of 0x0000-0000-0000-0020 (bit 6
of ComponentMask = ServiceName component) and specifying the de-
sired service name in the ServiceRecord Attribute. For example, if the
host asks for the “BIS.IBTA” service name, then it receives a list of all reg-
istered Boot Information Servers that it can reach through that port.

A1.4.2.3 QUERY FOR LIST OF I/O UNITS

A host can derive a list of all managed I/O units on all of its I/O partitions
by sending SubnAdmGetTable(PortInfoRecord) query for all records. The
SA only returns records for which ports the host can access. The host then

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1138 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

filters those records for ports with the IsDeviceManagementSupported bit
of the CapabilityMask component set.

One alternative is to send each port identified by the path query (see
A1.4.2.1 “Query for Path” on page 1137) a DevMgtGet(ClassPortInfo) to
determine if it is an IB managed I/O unit.

A1.5 STORAGE I/O
A1.5.1 IB STORAGE CONCEPTS

Storage is an I/O application where a storage initiator accesses a storage
target (e.g., storage subsystem, storage adapter, or a storage device) via
the IB fabric. This section addresses the considerations where the storage
target takes the form of an I/O controller and the storage initiator (client of
the storage controller) is instantiated as an IBA host or booting platform.
There are several considerations in mapping a storage protocol onto IBA.
That is, each protocol must specify values for protocol specific compo-
nents in various management attributes.

An IBA storage controller should be sensitive to the richness of IBA’s scal-
able interconnect options. The controller may be deployed in direct attach,
single host system, or multiple host system networks. Deployment of a
storage controller in the latter may require host sharing capabilities in the
controller.

Storage protocol is the set of rules governing the content and exchange
of storage related information passed between host platforms and I/O
controllers of the InfiniBand Architecture.

IBTA does not specify any one given storage protocol. External standards
organizations define storage protocol mappings over IBA.

This section identifies the requirements of implementing specific storage
protocols on IBA. It is expected that as storage protocols are mapped onto
IBA by their respective standards bodies this section will grow to comple-
ment them.

A1.5.2 PROTOCOL SPECIFIC FIELDS

Certain components in IBA management attributes are defined to have
protocol specific values. These components assist in the identification of
the protocol supported by a given IOC, associate an IOC with a specific
I/O device driver, or may aid in the usage of a protocol in a boot environ-
ment.

Values for the following components need to be defined by the organiza-
tion specifying the protocol.

InfiniBandTM Architecture Release 1.2 I/O Infrastructure October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1139 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• IO Class
• IO Subclass
• Protocol
• Protocol Version
• ServiceName

Other management classes also have protocol specific components. This
includes:

• AdditionalInfo component of BIS and Boot Management Locator
Records (see Booting Annex)

A1.5.3 STORAGE PROTOCOLS

This section lists relevant storage protocols capable of operation over the
IB fabric. These protocols have defined values for the IB components
listed in section A1.5.2 “Protocol Specific Fields” on page 1138

• SCSI is a dominant block oriented storage protocol. SCSI RDMA
Protocol (SRP) is a SCSI protocol capable of realizing the perfor-
mance benefits of IBA’s RDMA semantics. Refer to T10/1415D,
SCSI RDMA Protocol (SRP) standard for details.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1140 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A2: CONSOLE SERVICE PROTOCOL

A2.1 INTRODUCTION

This annex is a supplement to Volume 1 of the InfiniBand Architecture
specification, herein referred to as the base document. This annex spec-
ifies the IB Console Service Protocol.

A2.1.1 GLOSSARY

The following are additional terms not found in the Volume 1 Glossary
(Chapter 2).

Console Display Object A display terminal or window for displaying output from, and providing
input to, a Console User.

Console Device A Console Display Object.

Console IOC An I/O controller that supports the Console Service Protocol and provides
one or more Console Display Objects.

Console Server An IOC or Host process that provides access to one or more Console Dis-
play Objects.

Console Server Process A process on a host that supports the Console Service Protocol and pro-
vides one or more Console Display Objects.

Console User One of a number of processes on a host that use the console service to
input and output streams of console data. An example of a console user
is a booting environment that uses the console service to display error
messages on a console display.

CSP Console Service Protocol

CSP Client An entity that communicates with a CSP server (via the Console Service
Protocol) to present virtual consoles to a set of console users.

CSP Connection A connection that carries CSP messages.

CSP IOC A Console IOC implementing the Console Service Protocol.

CSP Server A Console Server implementing the Console Service Protocol.

CSP Session A relationship between a Console User and a Console Display Object
where data generated by the user is delivered to the display object and
visa versa.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1141 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.1.2 COMPLIANCE
This annex specifies two new Compliance Categories (see Volume 1
Chapter 20 for explanation of compliance categories and qualifiers).
These new categories are CSP Client and CSP Server.

There are two Compliance Qualifiers for CSP Server. They are CSP-IOC
and CSP-Process.

Section A2.4 “Compliance Summary” on page 1171 provides a summary
of compliance statements.

A2.1.3 OVERVIEW

Firmware and software on IBA hosts and IO Units often require console-
based interaction with system administrators. Examples include the
ROM-based boot environment, downloaded bootcode, OS loaders and IO
controller firmware. This annex describes the IB Console Service Protocol
(hereafter, CSP) that provides the IB console service. A variety of console
strategies are possible; IBA supports the following.

• One or more console display objects (e.g. windows) behind a CSP
server process on a host, where the CSP Server Process supports
CSP.

• One or more console devices (e.g. terminals) behind a CSP IOC in
an IOU, where the IOC supports the CSP.

• A vendor-specific console abstraction supported by one or more de-
vices behind an IOC that supports a proprietary protocol. The IOU ex-
ports a downloadable expansion ROM image, which implements the
vendor-specific console-device interface.

This section describes the IB Console abstraction and CSP, the wire pro-
tocol followed by IB console IOCs and IB console server processes.
Booting with proprietary protocols is the subject of the Booting Annex; the
vendor-specific console abstraction is outside the scope of IBA.

All multi-byte console protocol message fields use big endian byte or-
dering as described in section 1.5.1.

The difference between CSP IOCs and CSP server processes is the way
by which the CSP client locates them. Locating the CSP IOC and the CSP
server process is described in Section A2.2.1 on page 1144 and Section
A2.2.2 on page 1145 and they are collectively referred to as CSP servers.

A2.1.4 GOALS

• Permit multiple console users within a host to use a single CSP con-
nection, where each user has its own dedicated console display ob-
ject.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1142 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Support terminal emulation by a host process without the need for
the host to dynamically create IOC GUIDs.

• Provide the conventional console-device abstraction of a pair of input
and output devices.

• Provide for simple unformatted text input and output, as well as stan-
dard methods of inputting control characters and outputting simple
formatted text.

• Expose a persistent device path for a console input/output device to
firmware so it may be cached in nonvolatile memory and/or handed
off from one console user to another.

• Allow for intelligence in a console device.

A2.2 THE IB CONSOLE ABSTRACTION

Figure 231 illustrates the overall architecture and operation of CSP. Typ-
ical users of IB console service (console users) are host-based execution
threads, such as boot firmware, OS loader, system setup and diagnostic
utilities, and loaded boot images.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1143 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-1: A CSP client shall assign a unique console user ID to each of its
console users.

At each CSP server, there are one or more console display objects repre-
senting presentation interfaces.

CA2-2: A CSP server shall assign a unique device number to each con-
sole display object.

A CSP client establishes a CSP connection with a host or IOU CSP server
by following the IBA CM protocol for establishing an RC channel.

CA2-3: A CSP server shall support RC service connections using only
Send/Receive operations (i.e., does not use RDMA).

Console
Users

CSP Clients Console
Display
Objects

Console Service
Session
Console Service
Connection

Figure 231 Schematic of IBA Console Abstraction

CSP
Servers
(IOCs or
processes)

CSP sessions being
multiplexed over a CSP
connection

at Hosts/IOUs

QP
QP

QP
QP

QP

QP

DeviceNum a1

DeviceNum a2

DeviceNum b1

DeviceNum b2

ConsoleUserId m1

ConsoleUserId n1

ConsoleUserId s1

ConsoleUserId s2

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1144 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-4: Every CSP message shall be sent with the SE bit in the BTH
header set.

Whenever a CSP connection is needed, the CSP client shall be the one
to initiate connection establishment.

A CSP session exists between a console user and a console display ob-
ject. Multiple sessions may be multiplexed over a single CSP connection.
Each console display object is associated with at most one console ses-
sion.

The CSP client abstracts the console service as a CSP session to each of
its console users. When multiple sessions are multiplexed over one CSP
connection, it is the CSP client that demultiplexes between different con-
sole users sharing the connection.

Likewise, at the CSP server end, the server demultiplexes the traffic from
a single CSP client with multiple sessions to different console display ob-
jects.

CA2-5: At any given time, a CSP server shall open at most one CSP ses-
sion per console display object.

CSP sessions exists on top of a reliable connection service. A CSP ses-
sion can survive the loss of a CSP connection caused, for instance, by the
Boot environment to OS transition on a host or by a console-directed
warm reboot. Session handles can be passed between console users
during boot transitions, or saved by a dying console user and later recov-
ered in order to resume a CSP session past a warm reboot. These prop-
erties of console service sessions are considered crucial to maintaining
continuity in administrative interactions.

A2.2.1 CONSOLE IO CONTROLLERS

oA2-1: The CSP Server abstraction may be implemented by an I/O con-
troller in a managed I/O unit, provided the IOC satisfies the following prop-
erties - refer to the I/O Annex and base document section 16.3 "Device
Management".

• The IOC’s Class, Subclass, Protocol, and Version values for its
DevMgt IOControllerProfile attribute are as follows:
• Class: 0x40FF
• Subclass: 0xFFFF
• Protocol: 0x0001
• Version = 0x0001

• DevMgt ServiceEntries:ServiceName = “Console.IBTA”

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1145 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The service ID to be used by a CSP client in a console service
connection request sent to such an IOC (hereafter, CSP IOC) can
be found in DevMgt ServiceEntries:ServiceID for the Service En-
try for that particular IOC with the matching ServiceName.

An IOU may contain multiple CSP IOCs, each offering console service be-
hind a different service ID. Thus, a CSP IOC does not use the well-known
Console ServiceID.

A CSP IOC supports CSP, as described below, for the enumeration,
naming and control of console display objects.

A CSP IOC is not required to support multiple concurrent console service
connections.

oA2-2: This compliance statement is obsolete.

The persistent identifier of a CSP IOC includes its IOC GUID and the
Node or Port GUID of the channel adapter through which the IOC’s ser-
vices are accessed. If a CSP client wants to connect to the same display
object, it must also retain the DeviceNum. A CSP client may retain these
items of information in its persistent boot bindings.

A2.2.2 CONSOLE SERVER PROCESSES

The CSP Server abstraction may also be implemented by a host-based
service offered by a CSP server process behind an HCA.

oA2-3: A CSP server process shall register its service with the SA by cre-
ating one or more ServiceRecords as follows. The ServiceName field
shall contain the string “Console.IBTA”. No service-specific or service-ge-
neric flags shall be set. The ServiceGID field shall contain the port GID of
the CSP server process. The ServiceID shall be the well-known Console
ServiceID 0x00000002. All other components are implementation spe-
cific.

Since CSP server processes can be started dynamically at any IBA host,
console service should be considered both mobile and dynamic. The per-
sistent identifier of a CSP server process contains just its port GUID and
the well-known Console ServiceID. A CSP client may retain such informa-
tion in its persistent boot bindings.

A2.3 CONSOLE SERVICE PROTOCOL

CSP is the message-level protocol used for establishing, maintaining, and
communicating inside CSP sessions. The CSP Client uses CSP mes-
sages to establish a session between a console user and a console dis-
play object, modify the state of that session, and send and receive data
streams over that session.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1146 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

There are various ways for a CSP Client to discover the GID and Service
ID of a CSP server (see Application Specific Identifiers Annex, Booting
Annex, and Boot Information Service Annex). It uses this information to
establish a reliable connection with the CSP Server.

CA2-6: CSP clients and CSP servers shall support CSP messages over
IB RC transport service.

Once the CSP client establishes the connection, the general steps are:

• CSP Client sends ConsoleDeviceProfileRequest to learn console
capabilities and establish buffer sizes. The CSP Server responds
with the profile information

• For each Console User, the CSP Client sends a SessionInitRe-
quest to establish (or reestablish) a session between a Console
User and an Console Display Object. The CSP Server responds
with an ACK (or NAK).

• The CSP Client sends Console Out data from the Console User
and CSP Server sends Console In data from the Console Display
object. The data is not interpreted by the CSP client or CSP Serv-
er, it is just passed to the Console Display Object and Console
User.

• Either end can terminate a session. The CSP Client by sending a
SessionEndRequest and the CSP Server by sending a Session-
Terminated message.

• The CSP Client can also suspend sessions. Sessions that are
suspended when the connection terminates are preserved.

• The CSP Client resumes a suspended session by sending a Ses-
sionResumemessage

The protocol takes place within the context of a CSP connection. A CSP
session set up using CSP can be handed off from one console user to an-
other without impacting the continuity of administrative interaction. Fur-
thermore, a CSP session can be suspended before a host is rebooted,
and later resumed after a new CSP connection has been established, al-
lowing an administrator to continue monitoring a system through a warm
reset with minimal loss of continuity.

Console I/O traffic from multiple sessions is multiplexed over a single con-
sole service connection. CSP session control messages are multiplexed
with the console I/O traffic messages over that connection.

CSP session control messages are usually request-response messages.
Requests originate from a CSP client and sent to a CSP server. Re-
sponses travel in the opposite direction. In most cases responses are
generated as a result of a request message. Exceptions to this rule are

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1147 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the SessionTerminated message (see Section 2.3.8 on page 1169) and
Console I/O messages (see Section 2.3.5, “Normal Operation,” on
page 1159).

CA2-7: The CSP server shall send response messages for corresponding
request messages on the same CSP connection on which the request
message arrived.

Table 320 lists the CSP messages, indicates in which states those mes-
sages are valid, and indicates who can send the message. Figure 232 in-
dicates the various session states, the messages or events that cause a
state transition, and the messages that the CSP server sends in response
to state transitions.

Table 320 Console Protocol Messages

Message Name Op
Code

Session
State Direction Message Description

ConsoleDataOut 0 Active From
Client

Output from console user to display object

ConsoleDataIn 1 Active To
Client

Input from display object to console user

ConsoleDeviceProfileRequest 2 n/a From
Client

Request a Console Device Profile from
the CSP server

ConsoleDeviceProfileReply 3 n/a To
Client

Response to ConsoleDeviceProfileRe-
quest

ConsoleDeviceProfileReject 4 n/a To
Client

Response to ConsoleDeviceProfileRe-
quest

SessionInitRequest 5 Idle From
Client

Establish a new session over a CSP con-
nection

SessionInitAck 6 Transition to
Active

To
Client

Response to SessionInitRequest mes-
sage (session granted)

SessionInitNAK 7 any To
Client

Response to SessionInitRequest mes-
sage (request denied)

SessionSuspendRequest 8 Active From
Client

Suspend Request

SessionSuspendNAK 9 any To
Client

Suspend Reject

SessionSuspendAck 10 Transition to
Suspend

To
Client

Suspend Accept

SessionResumeRequest 11 Suspend From
Client

CSP SessionResumerequest

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1148 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-8: A CSP Client shall not send a message that has a direction as
specified in Table 320 of “To Client”.

CA2-9: A CSP Server shall not send a message that has a direction as
specified in Table 320 of “From Client”.

Figure 232 CSP Server Session State Diagram

SessionResumeAck 12 Transition to
Active

To
Client

CSP SessionResumerequest accepted

SessionResumeNAK 13 any To Client CSP SessionResumerequest declined

SessionEndRequest 14 Active or
Suspend

From
Client

Request to terminate CSP session

SessionTerminated 15 Transition to
Idle

To Client Accept SessionEndRequest request or ini-
tiate termination

PingRequest 16 Active Either Request the other side to respond with a
PingResponse within the PingResponse-
Time negotiated when the session was
started.

PingResponse 17 Active Either Response to PingRequest

ErrorReport 18 any Either Reports protocol error causes

Table 320 Console Protocol Messages (Continued)

Message Name Op
Code

Session
State Direction Message Description

Idle Active Suspended

Receive Session Init
Request Msg

Send Session Init
Ack Msg

Receive Suspend
Request Msg

Send Suspend Ack

Receive Resume
Request Msg

Send Resume Ack Msg

Receive Session End
Request Msg

Send Session Terminated

Connection lost

Receive Session End Request Msg

Send Session Terminated Msg

Send Session Terminated Msg

Undefined Event

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1149 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 233 CSP Client Session State Diagram

Table 321 specifies actions that the CSP client and CSP server take if they
receive an invalid message.

CA2-10: The CSP client and CSP server shall respond to protocol errors
as per Table 321

Idle Active Suspended

Receive Session
Init Ack Msg

Receive Suspend Ack Msg

Receive Resume Ack
Msg

Receive Session
Terminated Msg

Connection lost

Receive Session Terminated Msg

Receive
Resume
NAK Msg

DeviceProfileRequest

DeviceProfileReply

SessionInitRequest

SessionInitAck

ConsoleDataOut

ConsoleDataIn

CSP CSP ConsoleConsole
User Client Server Display

Object

Figure 234 Protocol Flow Diagram

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1150 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Neither the CSP client nor the CSP server check the content of the Data
components in ConsoleDataIn and ConsoleDataOut messages. How
Console Users and Console Display Objects respond to errors in the data
stream are outside the scope of the Console Service Protocol.

A2.3.1 ERROR REPORTING

The CSP client or CSP server send an ErrorReport when it detects an in-
valid component value in a message that prevents it from properly pro-
cessing the received message as per Table 321

There is no response to an ErrorReport message. Receiving an error re-
port indicates a protocol error. The overall effect could be that either end
might terminate the session or the connection.

Table 321 Console Protocol Error Actions

Error Session
State Direction Reaction

Inappropriate or Invalid OpCode any either Reject message via an ErrorReport message

Invalid Session
(Device Number + ConsoleUserId)

any To Server Respond with SessionTerminated message

Invalid Session
(Device Number + ConsoleUserId)

any To Client Discard message - May optionally send SessionEndRequest
message

Specified Device Number not available any To Server • Reject a ConsoleDeviceProfileRequest message via a
ConsoleDeviceProfileReject message,

• reject a SessionInitRequest message via a SessionInitNAK
message,

• reject any other message via a SessionTerminated mes-
sage

Invalid ErrorReport Message any either Discard message - do no respond

Any other invalid component value any either Reject message via an ErrorReport message

Message too short any either Reject message via an ErrorReport message

Message too long any either Reject message via an ErrorReport message

Table 322 ErrorReport

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpCode 0 4 0xFFFFFFFF: ErrorReport message

DeviceNum 4 4 DeviceNum value from offending message

ConsoleUserId 8 4 ConsoleUserId value from offending message

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1151 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.3.2 CONSOLE DEVICE ENUMERATION

IB console capabilities are enumerated in a ConsoleDeviceProfile struc-
ture (see Table 323 on page 1151). It provides sufficient information for
configuring the console-specific parameters of standard booting environ-
ments (e.g., Intel Corporation’s Extended Firmware Interface (EFI) and
the IEEE 1275-1994 Open Firmware standard).

The Console Device Profile carries a number of Console Capability
records (one for each capability type). The CSP Server provides this in-
formation to the CSP Client in the ConsoleDeviceProfileReply message.
The only standard capability type is “Terminal Type”, but the protocol al-
lows for proprietary capabilities. The CSP Client selects the appropriate
capability by providing a Console Capability Record in SessionInitRe-
quest and SessionResumeRequest messages (CapabilitiesUsed compo-
nent).

OpCode 12 4 CSPOpCode from offending message.

RejectCode 16 2 • 0x0001 = Invalid component value (ComponentOffset indicates component
with bad value)

• 0x0002 = Message too short (ComponentOffset indicates expected length in
bytes)

• 0x0003 = Message too long (ComponentOffset indicates expected length in
bytes)

• 0xFFFF = any other protocol error
all other values reserved

reserved1 18 2 reserved

ComponentOffset 20 4 Location of the offending component in the offending message expressed as
the offset in number of bytes from the CSPOpCode (i.e., a value of zero indi-
cates the CSPOpcode, a value of 4 indicates the DeviceNum component, etc.)

Table 322 ErrorReport (Continued)

Component Name Offset
(bytes)

Length
(bytes) Component Description

Table 323 ConsoleDeviceProfile

Component Name Offset
(bytes)

Length
(bytes) Component Description

MaxUsers 0 2 The maximum number of sessions allowed per console service connection

CapabilityCount 2 2 The number of capability listings (max. 255)

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1152 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-11: ContentFormat bit 0 (ASCII Input and output) shall always be set
in Console Capability Records.

CA2-12: If the ContentFormat bit 1 (UTF-8) of a Console Capability
Record is set to 1 by a CSP Server, then it shall support ISO 10646 de-
fined UTF-8 data streams.

CapabilityList 4 n x 12 12 bytes per capability record, as specified in Table 324, where n is the value of
CapabilityCount

Table 323 ConsoleDeviceProfile (Continued)

Component Name Offset
(bytes)

Length
 Component Description

Table 324 ConsoleCapabilityRecord

Component Name Offset
(bytes)

Length
(bytes) Component Description

CapabilityType 0 4 0: Undefined,
1: Proprietary (not applicable to console server processes),
2: Terminal type
All other values: reserved

ContentFormat 4 8 Not relevant for CapabilityType = Undefined.

For CapabilityType = Proprietary, interpretation of this field is specific to Sub-
system VendorID and SubsystemID fields of the CSP IOC’s ControllerProfile.

For CapabilityType = Terminal type, a bitmask describing the content formats
supported by the console device, as follows.
Byte:Bit position, Corresponding content format
0:0, ASCII input and output (always set in ConsoleDeviceProfileReply mes-
sages (Table 326 on page 1155); required capability). ISO 646 defines the
character set and control character interpretation for the ASCII character set.
0:1, UTF-8, ISO 10646, input and output
0:2, HTTP over CSP Session (HTTP/1.1 GET and POST messages only; see
Section 2.3.5.3 on page 1160.)
all other bits: reserved

In ConsoleDeviceProfileReply messages (Table 326 on page 1155), multiple
bits of this field may be set in order to communicate the full list of content for-
mats supported by the CSP server. In SessionInitRequest messages
(Table 328 on page 1157), however, no more than one bit may be set because
it specifies the format selected by the CSP client for use during that session.
(see CA2-29: on page 1158)

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1153 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-13: If the ContentFormat bit 2 (HTTP) of a Console Capability
Record is set to 1 by a CSP Server, then it shall support HTTP/1.1 GET
and POST messages.

CA2-14: Fields that are reserved shall be set to zero in messages being
sent and ignored in received messages.

CA2-15: Bits that are reserved shall be set to zero in messages being sent
and ignored in received messages.

CA2-16: Values that are reserved shall not be used in messages being
sent and treated as unknown in received messages. Receiving a reserved
value is not necessarily an error, but may be treated as an error.

A2.3.3 CAPABILITY QUERY

A CSP client conducts capability negotiation with a CSP server on behalf
of a console user. The first step is to query the CSP Server for the capa-
bility of it’s console display objects using the ConsoleDeviceProfileRe-
quest message. The CSP server shall use the ConsoleUserId (see
Table 326 on page 1155) in generating its response. It should be noted
that no device numbers are granted or reserved by the CSP server as a
result of capability query. This set of messages are also used to establish
buffer sizes and negotiate version level.

CA2-17: A CSP server shall support receiving a ConsoleDeviceProfileRe-
quest message (described in Table 325 on page 1154) over a CSP con-
nection at any time during the connection’s lifetime.

CA2-18: A CSP server shall reply to a ConsoleDeviceProfileRequest
message with a ConsoleDeviceProfileReply message (described in
Table 326 on page 1155) containing the requested ConsoleDeviceProfile
(described in Table 323 on page 1151 and Table 324 on page 1152).

It is not required that the same values be returned in response to repeated
ConsoleDeviceProfileRequest messages.

These communications take place within the context of a CSP connection,
but outside any CSP session context.

Traffic is asynchronous in both directions and thus both ends need to have
receive buffers posted at all times. The client and server specify buffer
size in the ConsoleDeviceProfileRequest and Reply.

CA2-19: Neither the client nor the server shall reduce its buffer size while
there are active console sessions.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1154 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-20: If the CSP server supports the version in the request, it shall re-
turn ConsoleDeviceProfileReply with that version number.

CA2-21: If the CSP server supports a lower version than in the request, it
shall return ConsoleDeviceProfileReply with the highest version that it
supports.

CA2-22: If the CSP server supports only higher versions than requested,
it shall return ConsoleDeviceProfileReject with the lowest version it sup-
ports.

CA2-23: If the CSP server supports versions below the requested ver-
sion, but not the version requested, it shall return ConsoleDeviceProfil-
eReplyReject with the highest version it supports below the version
requested.

CA2-24: The CSP client shall either use the version returned, submit an-
other ConsoleDeviceProfileRequest, or shall terminate the connection

Table 325 ConsoleDeviceProfileRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpCode 0 4 0x00000002: Request a Console Device Profile from a CSP server

DeviceNum 4 4 0: send capabilities available for a new session over this CSP connection
Non-zero: used in conjunction with ConsoleUserId and CSP client information
to determine the capabilities available for reconnecting to the display object
identified by DeviceNum

ConsoleUserId 8 4 Unique identifier of the console user at the CSP client

Version 12 2 The highest version number of CSP messages supported by the CSP client
sending this request.
Byte 0: Major version
Byte 1: Minor version
This document specifies version 0x0100.

reserved 14 2 reserved

ClientBufferSize 16 4 Specifies the maximum number of bytes of a message that the CSP server can
send to the CSP client. The minimum value shall be 256.

PingResponseTime 20 2 Maximum number of 10 milliseconds time periods this CSP client will take to
respond to a PingRequest message with a PingResponse.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1155 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DeviceProfileRequest

Reject

DeviceProfileRequest

DeviceProfileReply

CSP CSP
Client Server

Figure 235 Version Negotiation Diagram

SessionInitRequest

Version=n

Version=1

Ver=1

DeviceProfileRequest

DeviceProfileReject

CSP CSP
Client Server

Version=1

Version=n

CSP Client Version >1
CSP Server
Lowest Version Supported = n

Disconnect

CSP Client Version =1
CSP Server Version =1

Table 326 ConsoleDeviceProfileReply

Component Name Offset
(Bytes)

Length
(Bytes) Component Description

CSPOpCode 0 4 0x00000003: CSP Server response to ConsoleDeviceProfileRequest from a
CSP client

DeviceNum 4 4 From the request

ConsoleUserId 8 4 From the request

Version 12 2 The highest version number of CSP messages supported by the CSP server
sending this reply.
Byte 0: Major version
Byte 1: Minor version
This document specifies version 0x0100.

reserved 14 2

ServerBufferSize 16 4 Specifies the maximum number of bytes of a message that the CSP client can
send to the CSP server. The minimum value shall be set to 256.

PingResponseTime 20 2 Maximum number of 10 milliseconds time periods this CSP server will take to
respond to a PingRequest message with a PingResponse.

MaxUsers 22 2 The maximum number of active+suspended sessions allowed per console ser-
vice connection.

reserved 24 2

CapabilityCount 26 2 The number of capability records (max. 255)

CapabilityList 28 n x 12 12 bytes per capability record, as specified in Table 324 on page 1152, where n
is the value of Capability count. n shall be zero if the ConsoleDeviceProfileRe-
quest message contained an invalid DeviceNum.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1156 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.3.4 SESSION ESTABLISHMENT

CSP session establishment protocol runs outside of the context of any
specific session but within the context of a CSP connection.

Capability negotiation (see Section 2.3.3 on page 1153) is recommended
but optional before a console service session is established or re-estab-
lished.

A console user may optionally issue a ConsoleDeviceProfileRequest
message to its CSP server before sending a SessionInitRequest mes-
sage.

To establish a new CSP session a CSP client shall send a SessionInitRe-
quest message to the CSP server.

Table 327 ConsoleDeviceProfileReject

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpCode 0 4 0x00000004: Reject service

DeviceNum 4 4 From the request

ConsoleUserId 8 4 From the request

Version 12 2 If the requested CSP version is lower than the lowest version supported by the
server, reject with the lowest CSP version supported by the server. If the
requested version is an unsupported version between the lowest and highest
versions supported by the server, reject the highest version supported by the
CSP server that is less than the requested version.
Byte 0: Major version
Byte 1: Minor version

Reserved 14 2 Reserved

Reject Code 16 2 0x0001 = Can not support version
0x0002 = DeviceNum not active or not valid
Others reserved

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1157 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Nickname and ConsoleUserName components provide a means for
the console user to identify itself. The exact application of this information
is not specified. However, the expectation is that console server with mul-
tiple windows would use the ConsoleUserName as the window title and
that the Nickname might proceed each line on a console display for when
a single physical display is used for multiple console display objects.

CA2-25: A CSP server shall not assign a DeviceNum of zero.

Table 328 SessionInitRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000005: Establish a new session over a CSP connection

DeviceNum 4 4 Requested deviceNum if known, else set to zero to mean any.

ConsoleUserId 8 4 Unique identifier of the console user at the CSP client
requesting a new session

Nickname 12 8 Short, null-terminated UTF-8 ASCII string identifying the console user

ConsoleUserName 20 64 Long, null-terminated UTF-8 ASCII string identifying the console user

CapabilitiesUsed 84 12 The Console Capability Record (see Table 324) selected by the requesting
console user for use during the session being established

Table 329 SessionInitAck

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000006: Response to SessionInitRequest message (session granted)

DeviceNum 4 4 A non-zero device number assigned to the console display object allocated to
the session being established.

ConsoleUserId 8 4 From request

ReferenceCount 12 4 The count of active sessions on the CSP connection on which the response is
being sent, including the one just established

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1158 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-26: A CSP server shall respond to a SessionInitRequest message
(Table 328 on page 1157) by either establishing a CSP session and
sending a SessionInitAck message (Table 329 on page 1157) or by re-
jecting the session-establishment request, i.e., by sending a Session-
InitNAK message (Table 330 on page 1158).

CA2-27: A CSP client shall include the device number — returned by the
CSP server in the SessionInitAck message — in all subsequent mes-
sages for that session.

CA2-28: All console messages for a CSP session shall contain that ses-
sion’s ConsoleUserId and DeviceNum.

CA2-29: The CSP client shall set exactly one bit of the ContentFormat
field in a SessionInitRequest message (Table 328 on page 1157), for Ca-
pabilityType = Terminal Type.

Table 330 SessionInitNAK

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000007: Response to SessionInitRequest message (request denied)

DeviceNum 4 4 Reserved

ConsoleUserId 8 4 From request

ReferenceCount 12 4 The count of currently active sessions over the CSP connection on which the
response is being sent

NAKCode 16 4 0: reserved
1: DeviceNum already in use or invalid
2: Requested capability not available
3: MaxUsers exceeded for console service connection
4: All devices in use
5: ConsoleUserId in use or not available
6: Not otherwise specified
0xFF80-0xFFFF: Vendor specific error (interpretation is console specific and
unless otherwise known, treat as "device not available").
All other values: reserved

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1159 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.3.5 NORMAL OPERATION

The following messages transfer console I/O traffic within the context of a
CSP session.

CA2-30: ConsoleDataIn messages shall travel only from a CSP server to
a CSP client.

CA2-31: ConsoleDataOut messages shall travel only from a CSP client to
a CSP server.

CA2-32: If a session is established for ASCII, then the ASCII byte stream
shall conform to ISO 646.

CA2-33: If a session is established for UTF-8, then the byte stream shall
conform to ISO/IEC 10646

Table 331 ConsoleDataOut

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000000: Output from console user to display object

DeviceNum 4 4 Indicates device number assigned to the associated console display object

ConsoleUserId 8 4 Indicates the console user

Length 12 4 Length of input or output data (max 4080)

Data 16 as specified by
the Length
component

Opaque contents of the console I/O protocol between a console user and a
console display object. Contents must follow selected content format specified
in the selected Console Capability Record.

Table 332 ConsoleDataIn

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000001: Input from display object to console user

DeviceNum 4 4 Indicates device number assigned to the associated console display object

ConsoleUserId 8 4 Indicates the console user

Length 12 4 Length of input or output data (max 4080)

Data 16 as specified by
the Length
component

Opaque contents of the console I/O protocol between a console user and a
console display object. Contents must follow selected content format specified
in the selected Console Capability Record.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1160 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.3.5.1 ASCII TEXT STREAMS

A CSP client establishes an ASCII session using the normal session es-
tablishment messages described in Section 2.3.4 on page 1156. The Ses-
sionInitRequest must set Terminal Type:ASCII bit in the CapabilitiesUsed
component and the message must be acknowledged by the CSP server
with a SessionInitAck message.

The content of ConsoleDataIn and ConsoleDataOut messages are not in-
terpreted by the CSP client nor CSP server. Rather the content is passed
between the Console User and the Console Display Object. These mes-
sages do not imply any framing (i.e., no implied CR/LF characters) and
thus, long text strings can be passed using multiple messages.

A2.3.5.2 UTF-8 TEXT STREAMS

A CSP client establishes a UTF-8 session using the normal session es-
tablishment messages described in Section 2.3.4 on page 1156. The Ses-
sionInitRequest must set Terminal Type:UTF-8 bit in the CapabilitiesUsed
component and the message must be acknowledged by the CSP server
with a SessionInitAck message.

The content of ConsoleDataIn and ConsoleDataOut messages are not in-
terpreted by the CSP client nor CSP server. Rather the content is passed
between the Console User and the Console Display Object. These mes-
sages do not imply any framing (i.e., no implied CR/LF characters) and
thus, long text strings can be passed using multiple messages.

A2.3.5.3 HTTP CONSOLE SUPPORT

HTML pages or other HTTP-supported content may be transferred from a
console user to a console display object using the HTTP/1.1 protocol27.
In order to accomplish this, a CSP session must be properly set up to
serve as HTTP/1.1 transport. Such a session is called an HTTP-over-CSP
session.

The CSP client establishes an HTTP-over-CSP session using the normal
session establishment messages described in Section 2.3.4 on
page 1156. The CSP client sends the SessionInitRequest setting Terminal
Type of HTTP-over-CSP bit in the CapabilitiesUsed component and the
message must be acknowledged by the CSP server with a SessionInitAck
message.

Once the session is established, the console user shall assume the role
of an HTTP/1.1 server supporting at least the GET and POST methods.
The console display object shall assume the role of an HTTP/1.1 client
and use only the GET or POST methods. Both shall accept HTTP/1.1
chunked transfer encoding (see RFC 261627 for details). Both should use

27. Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616, IETF, June 1999.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1161 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the Connection: Keep-Alive option in HTTP request and response
headers.

All HTTP/1.1 messages (requests as well as responses) shall be frag-
mented into chunks of size 4080 bytes or less using chunked transfer en-
coding. All HTTP/1.1 messages, or chunks thereof, shall be carried in the
payload area (Data field) of Console Input and Console Output messages.
The console user and the console display object shall be responsible for
all fragmentation and reassembly required to fit the messages within the
4080-byte payload limit.

HTTP connections are closed by terminating the console session.

A2.3.6 SESSION HANDOFF AND MAINTENANCE

Session maintenance allows a console user to survive a connection
change and it also allows a session to be handed-off to a new user. In the
first case, a console user may suspend a session before it loses its CSP
connection. It then resumes the session after a new connection has been
established, for instance after a warm reboot. In the second case, a con-
sole user hands off its session to a different console user, for example
during a boot transition.

Session maintenance messages allow a returning console user to resume
a session without losing continuity of console interaction and without a re-
quirement for a CSP client to renegotiate console capabilities with a CSP
server.

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1162 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A session resume request with the originally negotiated console capabili-
ties, submitted within the SuspendTime returned in the SessionSuspen-
dAck (Table 335 on page 1166) message, is expected to succeed. Only in
cases of a crash or reconfiguration of the CSP server does the resume re-
quest fail.

A session may be resumed with new capabilities and it is possible that the
resume request will not be honored if the CSP server does not support the
new capabilities. There may also be resume failures after a crash or re-
configuration of a CSP server.

SessionSuspendRequest

SessionSuspendAck

SessionResumeRequest

SessionResumeAck

CSP CSP ConsoleConsole
User Client Server Display

Object

Figure 236 Suspend Example

ConsoleDataOut

ConsoleDataIn

Connection
lost and

reestablished

ConsoleDataOut

ConsoleDataIn

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1163 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An example of a resume request with new capabilities is a boot platform
that runs with ASCII capabilities and the booted system tries to resume
the session with HTTP capabilities on a new RC. If the CSP server does
not support the new capabilities, it will reject the resume request.

Handoff is similar to session resumption except that a new console user
inherits the session and capabilities must be renegotiated. The console
display object supporting the session may flush interactive streams and
reset display state, for instance, if new capabilities are negotiated.

SessionSuspendRequest

SessionSuspendAck

SessionResumeRequest

SessionResumeNAK

CSP CSP ConsoleConsole
User A Client Server Display

Object

Figure 237 Resume Reject

ConsoleDataOut

ConsoleDataIn

Connection
lost and

reestablished

SessionInitRequest

SessionInitAck

ConsoleDataOut

ConsoleDataIn

Console
Display
Object

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1164 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA2-34: A CSP server shall support CSP sessions being handed off be-
tween two console users over the same CSP connection using messages
described in Table 333, Table 334, Table 335, Table 336, Table 337, and
Table 338.

CA2-35: A CSP server shall support a CSP session being suspended and
subsequently resumed over a new CSP connection using messages de-
scribed in Table 333, Table 334, Table 335, Table 336, Table 337, and
Table 338.

CA2-36: A CSP server that accepts a session maintenance request shall
quiesce its end of the session and go into a state where it expects an op-
tional ConsoleDeviceProfileRequest message followed by a SessionRe-
sumeRequest message from the resuming console user indicating the
current device number.

SessionSuspendRequest

SessionSuspendAck

SessionResumeRequest

SessionResumeAck

CSP CSP ConsoleConsole
User A Client Server Display

Object

Figure 238 Handoff Example

ConsoleDataOut

ConsoleDataIn

ConsoleDataOut

ConsoleDataIn

Console
User B

Connection
lost and

reestablished

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1165 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The message formats are as follows:

Table 333 SessionSuspendRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000008: Suspend Request

DeviceNum 4 4 Indicates device number assigned to the associated console display object

ConsoleUserId 8 4 Indicates previous console user

NewConsoleUserId 12 4 Indicates new console user

SuspendTime 16 4 32 bit unsigned integer indicating in seconds the duration for which the
resources associated with the session are requested to be preserved by the
CSP server.

Table 334 SessionSuspendNAK

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000009: Suspend Reject

DeviceNum 4 4 From request

ConsoleUserId 8 4 From request

ReferenceCount 12 4 The count of active sessions on the CSP connection on which the response is
being sent

NAKCode 16 4 0: Out of resources
1: DeviceNum is invalid
2: ConsoleUserId is invalid
0xFF80-0xFFFF: Other error (interpretation is console specific)
All other values: reserved

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1166 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 335 SessionSuspendAck

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000A: Suspend Accept

DeviceNum 4 4 Device number of the console display object which is being put in suspended
mode (from request)

ConsoleUserId 8 4 ConsoleUserId of the new console user (from request)

ReferenceCount 12 4 The count of active sessions on the CSP connection on which the response is
being sent

ResumeKey 16 8 64-bit key generated by the CSP server for the associated device number and
requesting console user for validation of session resumption request. The
server expects this key to be present in a SessionResumerequest for the
device number in question (see Table 336 on page 1166)

SuspendTime 24 4 32 bit unsigned integer indicating in seconds the duration for which the
resources associated with the session are requested to be preserved by the
CSP server. This value will be less than or equal to the SuspendTime value in
the SessionSuspendRequest.

Table 336 SessionResumeRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000B: CSP SessionResumerequest

DeviceNum 4 4 Device number of the console display object with which to resume session

ConsoleUserId 8 4 ConsoleUserId of the requesting console user

Reserved1 12 4 reserved

ResumeKey 16 8 64-bit key generated by the CSP server at the time of accepting session main-
tenance request corresponding to this resume request (see Table 335 on
page 1166)

Nickname 24 8 Short, null-terminated UTF-8 ASCII string identifying the new console user

ConsoleUserName 32 64 Long, null-terminated UTF-8 ASCII string identifying the new console user

CapabilitiesUsed 96 12 The Console Capability Record (see Table 324) selected by the requesting
console user for use during the session being resumed

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1167 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

On a successful session suspend, the CSP Server retains the state infor-
mation of the session including the ResumeKey. A SessionResumeRe-
quest with the correct ResumeKey can modify certain parameters.

The SessionResumeRequest allows the CSP client to specify a new Con-
soleUserId for flexibility. This may be useful in the case where the boot en-
vironment hands off to the OS and the OS has different Console UserIDs
from the boot environment, but wants to use the same console display ob-
ject.

Table 337 SessionResumeAck

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000C: CSP SessionResumeRequest accepted

DeviceNum 4 4 From request

ConsoleUserId 8 4 From request

ReferenceCount 12 4 The count of active sessions on the CSP connection on which the response is
being sent, including the one just resumed

Table 338 SessionResumeNAK

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000D: CSP SessionResumerequest declined

DeviceNum 4 4 From request

ConsoleUserId 8 4 From request

ReferenceCount 12 4 The count of currently active sessions over the CSP connection on which the
response is being sent

NAKCode 16 4 • 0: Out of session resources
• 1: There is an active session on the requested DeviceNum
• 2: A requested capability in the CapabilitiesUsed field of the request is no

longer available.
• 3: Invalid DeviceNum in request
• 4: There is a suspended CSP session on the specified DeviceNum but the

request did not contain the matching ConsoleUserId
• 5: ResumeKey mismatch for the specified DeviceNum
• 0xFF80-0xFFFF: Other error (interpretation is console specific)
All other values: reserved

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1168 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.3.7 CONNECTION MAINTENANCE MESSAGES

The PingRequest and PingResponse messages allow a CSP client or a
CSP server to verify that the function on the other end of the RC connec-
tion is still responding to requests.

Standard RC management interfaces, CM DisconnectRequest and RNR
Nak for example, also indicate problems on the RC.

CA2-37: A CSP client or server that receives a PingRequest message
shall respond with a PingResponse message within it’s PingResponse-
Time period.

Table 339 PingRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000010: CSP PingRequest

Table 340 PingResponse

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x00000011: CSP PingResponse

PingRequest

PingResponse

CSP CSP
Client Server

Figure 239 Ping Diagrams

CSP Client Pings CSP Server Pings

PingRequest

Disconnect

PingRequest

PingResponse

CSP CSP
Client Server

PingRequest

Disconnect

}{
{ } C

lie
nt

’s
 M

ax

R
es

po
ns

e
Ti

m
e

Se
rv

er
’s

 M
ax

R

es
po

ns
e

Ti
m

e

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1169 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The CSP client PingResponseTime period is specified in the data in-
cluded in his ConsoleDeviceProfileRequest. The CSP server PingRe-
sponseTime period is specified in the data returned in his
ConsoleDeviceProfileResponse.

If a CSP client does not receive a PingResponse message within the ex-
pected timeout period, it is allowed to tear down the RC session and notify
affected Console Users that the session had been terminated.

If a CSP server does not receive a PingResponse message within the ex-
pected timeout period, it is allowed to transition affected Console Display
Objects to the idle state.

A2.3.8 SERVICE CONNECTION AND SESSION TERMINATION

Normal session tear-down may be initiated either by a CSP client or by a
CSP server.

CA2-38: A CSP server shall issue a SessionTerminated message
(Table 341 on page 1169) upon receiving a SessionEndRequest message
(Table 342 on page 1169).

Table 341 SessionEndRequest

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000E: Request to terminate CSP session

DeviceNum 4 4 Device number of the console display object associated with the CSP session
to be terminated

ConsoleUserId 8 4 Console User ID of the console user associated with the CSP session

Table 342 SessionTerminated Message

Component Name Offset
(bytes)

Length
(bytes) Component Description

CSPOpcode 0 4 0x0000000F: Accept termination request

DeviceNum 4 4 From SessionInitAck message or from SessionEndRequest message

ConsoleUserId 8 4 From SessionInitRequest message or from SessionEndRequest message

ReferenceCount 12 4 Count of remaining active CSP sessions over this service connection following
termination of this session

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1170 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A CSP server may optionally issue a SessionTerminated message to the
CSP client in order to unilaterally terminate a CSP session.

CA2-39: A CSP server shall issue a SessionTerminated message on re-
ceiving a ConsoleDataOut message not associated with any active CSP
session.

When a CSP client receives a SessionTerminated message (Table 342 on
page 1169) with ReferenceCount set to zero, it may close the CSP con-
nection immediately.

The CSP server may close the CSP connection after completion of the
send of SessionTerminated message (Table 342 on page 1169) with Ref-
erenceCount set to zero.

Any sessions not suspended using SessionSuspendmessages are con-
sidered terminated when the underlying CSP connection is closed.

SessionTerminated

CSP CSP ConsoleConsole
User A Client Server Display

Object

Figure 240 Session Termination by Server

ConsoleDataOut

ConsoleDataIn

SessionEndRequest

SessionTerminated

CSP CSP ConsoleConsole
User A Client Server Display

Object

Figure 241 Session Termination by Client

ConsoleDataOut

ConsoleDataIn

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1171 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A2.4 COMPLIANCE SUMMARY

This annex specifies two new Compliance Categories (see Volume 1
Chapter 20 for explanation of compliance categories and qualifiers).
These new categories are:

• CSP client
• CSP server.

There are no Compliance Qualifiers for CSP client.

A2.4.1 CSP CLIENT COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of Console-Client, a product shall meet all
requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support (currently there are
no optional compliance qualifiers for this category).

CA2-1: Unique console user ID. Page 1143
CA2-4: SE bit in BTH header . Page 1144
CA2-6: CSP messages over IB RC transport service Page 1146
CA2-8: Messages to CSP Server . Page 1148
CA2-10: Protocol error response. Page 1149
CA2-14: Reserved fields . Page 1153
CA2-15: Reserved bits . Page 1153
CA2-16: Reserved values . Page 1153
CA2-19: Changing buffer size . Page 1153
CA2-24: Console version - Client actions Page 1154
CA2-27: Device number . Page 1158
CA2-28: ConsoleUserId and DeviceNum Page 1158
CA2-29: ContentFormat field. Page 1158
CA2-30: Console input messages. Page 1159
CA2-31: Console output messages. Page 1159
CA2-32: ASCII is ISO 646 . Page 1159
CA2-33: UTF-8 is ISO/IEC 10646 . Page 1159
CA2-37: Ping response . Page 1168

A2.4.2 CSP SERVER COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of Console-Server, a product shall meet all
requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support.

There are two Compliance Qualifiers for CSP Server. They are:

• CSP-IOC - an I/O controller providing console service
• CSP-Process - a console server process running on a host pro-

viding console service
CA2-2: Unique device number . Page 1143
CA2-3: RC service connection . Page 1143
CA2-4: SE bit in BTH header . Page 1144
CA2-5: One CSP session per console display object Page 1144

InfiniBandTM Architecture Release 1.2 Console Service Protocol October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1172 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA2-1: CSP-IOC: IOControllerProfile component values Page 1144
oA2-2: CSP-IOC: obsolete. Page 1145
oA2-3: CSP-Process: Register with SA Page 1145
CA2-6: CSP messages over IB RC transport service Page 1146
CA2-7: Response messages on the same connection Page 1147
CA2-9: Messages to CSP Client . Page 1148
CA2-10: Protocol error response. Page 1149
CA2-11: ContentFormat bit 0 (ASCII Input and output) Page 1152
CA2-12: ContentFormat bit 1 (UTF-8). Page 1152
CA2-13: ContentFormat bit 2 (HTTP) . Page 1153
CA2-14: Reserved fields . Page 1153
CA2-15: Reserved bits . Page 1153
CA2-16: Reserved values . Page 1153
CA2-17: ConsoleDeviceProfileRequest message. Page 1153
CA2-18: ConsoleDeviceProfileReply. Page 1153
CA2-19: Changing buffer size . Page 1153
CA2-20: Console version - Server normal response. Page 1154
CA2-21: Console version - Server supports lower version Page 1154
CA2-22: Console version - Server supports higher version Page 1154
CA2-23: Console version - Supports higher and lower not req . . Page 1154
CA2-25: DeviceNum of zero reserved. Page 1157
CA2-26: Response to Session Init Request message Page 1158
CA2-28: ConsoleUserId and DeviceNum Page 1158
CA2-30: Console input messages. Page 1159
CA2-31: Console output messages. Page 1159
CA2-32: ASCII is ISO 646 . Page 1159
CA2-33: UTF-8 is ISO/IEC 10646 . Page 1159
CA2-34: CSP sessions hand-off . Page 1164
CA2-35: Session suspend / resume . Page 1164
CA2-36: Session maintenance . Page 1164
CA2-37: Ping response . Page 1168
CA2-38: Session Terminated message . Page 1169
CA2-39: Session Terminated message on error Page 1170

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1173 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A3: APPLICATION SPECIFIC IDENTIFIERS

A3.1 INTRODUCTION

This document is a supplement to Volume 1 of the InfiniBand Architecture,
herein referred to as the base document. This document provides an
annex to the base document that specifies application specific values for
InfiniBand management components and policies for using those compo-
nents.

The main topics are:

A3.2 Service ID - Addresses provisions and policies for supporting ser-
vices over the InfiniBand fabric. Specifically policies for assigning and
using Service IDs.

A3.3 I/O Controller Identification - Specifies policies for creating and inter-
preting vendor and protocol specific values in Device Management class
IOControllerProfile attributes

A3.4 Service Names - Specifies policies for creating Service Names used
in various management attributes.

A3.5 Management Class Codes - Lists application specific management
classes.

A3.1.1 GLOSSARY
The following are additional terms not found in the Volume 1 Glossary
(Chapter 2).

Platform A logical node that consists of one or more channel adapters under the
control of a single operating system instance.

Service A service is a function, or set of functions, accessible by a known protocol
(i.e., the service protocol). A service is identified by its Service Name.

Service Client The user of a service. Typically, the service client contacts the service pro-
vider and sends it service requests

Service GID A GID that is used to obtain a path to a service. A service provider makes
known its service GID and a service client uses that GID to obtain a path
to the service provider.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1174 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Service Name A name used to identify a service. Service provides usually register their
services by service name and service clients use the service name to lo-
cate the service.

Service Provider An entity that provides a service. Typically a service provider waits for ser-
vice clients to contact it and responds to service requests.

A3.1.2 COMPLIANCE
This annex does not define functionality, but rather defines the policies for
administering certain InfiniBand values.

This annex specifies 3 new Compliance Categories (see Volume 1
Chapter 20 for explanation of compliance categories and qualifiers).
These new categories are:

• Service ID Administration
• Service Application
• Managed I/O Unit.

There are no Compliance Qualifiers for these categories.

Section A3.7 “Compliance Summary” on page 1194 provides a summary
of compliance statements.

A3.2 SERVICE ID
A Service ID is an InfiniBand construct necessary for Communication
Management (see volume 1 chapter 12). The Service ID is a component
in ComMgt class MADs that the Communication Manager (CM) uses
when resolving a connection request or identifying an Unreliable Data-
gram QP.

This Annex addresses the assignment of Service IDs.

A3.2.1 GOALS AND SCOPE

This Annex defines the structure of the 64-bit IB Service ID name-space
(fields and their bit-widths), provides for multiple administration authori-
ties, and clarifies which fields within the Service ID the administration au-
thority controls. It also specifies how various entities may use and
interpret the various fields of Service IDs.

This annex specifies structure, semantics, policy, and guidelines gov-
erning the use of Service IDs by the various entities involved. It also pro-
vides detailed examples of how operating systems and I/O unit firmware
need to participate in Service ID administration.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1175 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.2.2 PRINCIPLES OF SERVICE ID USAGE
Each port on a CA may support a set of services. Each service is identified
by a given Service ID. Since not all ports support the same set of services,
a tuple composed of the GID, PKey, and a Service ID uniquely identify a
service.

In the process of establishing communications, the communication man-
ager behind the port uses the Service ID to identify the service provider.
The Service ID in conjunction with a GID identifies a service accessible
through that port. In general each Service ID represents a particular ser-
vice entity and thus identifies the QP consumer providing that service.

Because Service IDs are allocated, advertised, discovered, cached, and
eventually used in establishing communication, a number of diverse enti-
ties deal with Service IDs in their various roles: server processes, I/O
units, I/O controllers, operating systems, service clients (including poten-
tial clients), SA, CMs, and boot firmware.

A3.2.2.1 BACKGROUND

A service is a function, or set of functions, accessible by a known protocol
(i.e., the service protocol). An IB Service is any service accessible via an
IB transport service. A Service ID is a value that identifies a particular ser-
vice. Because a service provider might use multiple QPs, a Service ID
identifies the QP consumer (i.e., the application or protocol stack that
uses the QPs to provide the service). Thus, it is not the ID of a particular
QP. The Service ID provides the means for a service client’s communica-
tion manager to resolve a given service to a particular QP. The resolution
process (how the CM determines which QP) is implementation specific.
For example, a service using UD transport service uses a different QP for
each partition and a service using the RC transport service needs a dif-
ferent QP for each client. They each can use a single Service ID and the
clients use that Service ID to learn which QP to use. In fact, the QP might
not exist until the service provider receives a communication request from
the client, at which time the CM or service provider creates and configures
the QP.

Communication management messages provide the mechanism for CMs
to (1) resolve a Service ID to a UD QP, (2) establish a connection to an
RC or UC QP for the service identified by a Service ID, and (3) establish
a Reliable Datagram Channel to the RD service identified by a Service ID.

The two predominant service models are Client-Server and Peer-Peer.

• For the Client-Server model, a service provider (i.e., the applica-
tion providing the service) offers a service to one or more service
clients (i.e., the applications using the service). Typically, service
clients make service requests to the service provider and service

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1176 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

providers respond. This implies that the service client knows both
the port and the QP where it sends its service requests while the
service provider can learn that information from the request.Thus,
the service client needs the ability to locate the service provider.

• In the Peer-Peer model, two or more applications (i.e., peers)
communicate, and each peer may perform a role similar to a cli-
ent, a service provider, or both. Peers also need the ability to lo-
cate other peers.

For both of these models, an application on one platform wants to locate
and establish communications with a particular application on another
platform. This is the role of the Service ID. Since there can be multiple in-
stances of a particular service in the IB fabric, it is the combination of the
Port GID and Service ID that identifies a particular service provider. Thus,
the combination of the port GID, PKey, and Service ID must uniquely iden-
tify a single service provider.

The GID used to identify the port providing the service is called the Ser-
vice GID. A client uses the Service GID to resolve a path to the port. A port
can have multiple GIDs and the DGID in the path that the service client
uses does not need to be the Service GID. Typically, the service client
queries the SA for paths to the service provider’s port by specifying the
Service GID and uses one of the paths that the SA returns.

Figure 242 Typical Service Resolution for Host-based Services

SA

Provider
Service

Service
Registry

e.g., SA:ServiceRecords

 Client
Service

1

2

3

4

1. Each service provider registers
with its well-known Service
Name, Service GID, and
Service ID

2. Each service client queries
the service registry for
the appropriate Service
Name.

3. Using the Service GID
learned in step 2, the
service client queries
the SA for a path to
the service provider.

4. Using the Path from step 3 and the
Service ID learned in step 2, the
service client uses the CM class
methods to resolve to a QP and
then uses that QP for the service
protocol.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1177 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 243 Typical Service Resolution for I/O Services

As previously mentioned, the combination of the {Service GID and Ser-
vice ID} identifies the port and the service. The SA provides a means for
a service provider to register its Service Name, Service GID, Service ID,
and other service related information. Service consumers can query the
SA for service records for a particular service name and get a list of ser-
vice providers registered for that Service Name. Each record provides the
{Service GID, Service ID} for a service provider. The service consumer
uses the Service GID to obtain a path to the service provider (see section
15.2 “SA MADs” subsection on the PathRecord attribute) and then uses
the Service ID to resolve the QP (see Chapter 12.6 “Communication Man-
agement Messages”).

A3.2.2.2 CONSIDERATIONS

Definition of the Service ID name-space gives special consideration to:

• Scope of the service: Whether a single service instance covers just a
port, a channel adapter (or node), multiple channel adapters in a
“platform”, etc. -- Well-known (permanent) Service IDs must have a
platform wide scope because service clients usually remember these
types of services by their host name and Service ID. Dynamically al-
located Service IDs can have a port-only scope. Service resolution
for services that use dynamic Service IDs typically resolves a Service
Name to a <Port GID, Service ID>. While it is possible that a dynamic
Service ID has greater than port only scope, the service consumer
can not assume a service with a dynamically assigned Service ID is
available on any other port. The service provider needs to register its
service for each valid {Service GID, Service ID} combination (i.e., the
service registers each of its ports).

Service
Entries
List

I/O Unit

SA

 Client
I/O 2

1
3

1. The I/O client queries
the SA for a path to
the I/O Unit.

3. Using the Path from step 1 and the
Service ID learned in step 2, The
service client uses CM class MADs
to resolve to a QP and then uses
that QP for the I/O protocol.

2. I/O Client uses DevMgt to read Service Entries which
provides Service Name, Service ID tuples.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1178 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Lifetime: How long can a potential client retain a Service ID after dis-
covery and still use it to establish transport service. -- Well-known
Service IDs are cacheable and can be remembered forever. Howev-
er, because of the nature of dynamic Service ID assignment, not all
Service IDs have this guarantee. Platforms need to assign Service
IDs in a manner that avoids the same Service ID being subsequently
assigned to a different service. This annex provides guidance on how
to avoid or minimize the possibility of subsequent reassignment (see
A3.2.3.3.2 “Coherency Requirements” on page 1184).

• Assigning entity: What body covers the structure of Service IDs for a
given service. -- This annex divides the Service ID address space
into groups and identifies who controls assignment of those Service
IDs. These groups include: local OS, IBTA, and external organiza-
tions.

• Accommodating multiple instances behind a port: If multiple instanc-
es of a service may overlap in scope or time, how to avoid assigning
conflicting Service IDs. -- Where there are multiple entities indepen-
dently providing different instances of the same service (i.e., same
service name/protocol for the same partition), each instance requires
a different Service ID value and thus, the application can not use a
well-known Service ID.This is because the <platform Name, Well-
Known Service ID> or even <Port GID, Well-known Service ID>
would not be unique. Where a service is advertised in the form of
<Service Name, Service ID>, dynamically assigned Service IDs are
sufficient.

• Accommodating host-based services along with device-based servic-
es: The two service categories represent two different service mod-
els; IPC and I/O. -- IPC and I/O mostly differ on how the client
resolves the Service ID (see Figure 242 on page 1176 and Figure
243 on page 1177). Once a client learns the Service ID, there is no
difference in how the I/O client verses the IPC client establishes a
connection or learns the UD QP (Chapter 12).

• The number of advertisements needed by a single service instance:
For services that use a single transport type, it is sufficient to register
once for each port through which the service is available. However,
an application that supports multiple service types (UC, RC, RD, UD)
might need to advertise each service type. It is not necessary for the
application to use a different Service ID for each transport service
type because in the CM:REQ, the transport service type is specified
independently from the Service ID, and the transport service type is
implicit in CM:SIDR_REQ MADs. Therefore, the issue becomes one
of the service client knowing which transport service type(s) the ser-
vice provider supports (because Communication can only occur if
both ends use the same service type). One solution is to have a dif-

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1179 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ferent service name for each appropriate transport service type and
thus require the service provider to register for each Service Name it
supports.

• Using multiple Service IDs to distinguish service types: Even though
a protocol could use a different Service ID for each transport service
type, the service client still needs to know which transport service
type the service provider supports. Different Service IDs typically indi-
cate different service providers.Thus the only reason to use separate
Service IDs for the same service is when one QP consumer provides
the service for one transport service type and a different QP consum-
er provides the service for a different transport service type. For all
practical purposes they are different services. Each with its own Ser-
vice ID. A single QP consumer providing the service independent of
the selected transport service type constitutes a single service in-
stance and thus only needs one Service ID. The specification defin-
ing the service, or defining how the service maps to IB, must specify
of how the service consumer knows which service type to use.

A3.2.2.3 ASSIGNING SERVICE IDS

Service IDs fall into different categories on the basis of geographic and
temporal scope as shown in Table 343.

Geographical scope refers to whether the Service ID assignment is
unique only within the platform, within the network, or universally unique.

Table 343 Service ID Categories and Characteristics
Category

Characteristic

Universally
Assigned

Well-known
Service IDs

Networka
assigned

Service IDs

a. Network is loosely defined to mean a subnet or collection of subnets that form a domain
where each domain has its own administration responsibilities independent of other
domains.

Locally
Assigned

Service IDs

Geographical Scope Global not specified platform

Does the Service ID value identify
the particular service type?

yes not specified no

Temporal Scope: Within the geo-
graphical scope, does a Service ID
value always indicate the same
service type?

yes not specified not
guaranteed

Can there be multiple independent
instancesb of the same service
type per port?

b. Service instance refers to the process providing the service (i.e., the QP consumer) and
not individual instances of service objects accessible through the same QP.

no not specified yes

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1180 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• A Service ID which is permanently assigned to a service type
(i.e., a particular application, protocol, etc.), to be used every-
where is called a “well-known” Service ID and both the service
provider and the service client explicitly know which Service ID to
use. This annex provides for well-known Service IDs.

Well-known Service IDs are assigned per service type and all in-
stances of that particular service type, regardless of where they
are located, use the same Service ID. Conversely, no other ser-
vice type uses that Service ID value, so a well-known Service ID
value explicitly identifies the service type. Since the {port GID,
P_Key, Service ID} tuple must uniquely identify a single service
provider, there can be only one service provider for that service
type per port per partition.

• Network assigned Service IDs are administered by a network ser-
vice or network administrator. Network means a subnet or collec-
tion of subnets that form a domain where each domain has its
own administration responsibilities independent of other domains.
IBA does not prescribe any particular network administration
model. The Internet Engineering Task Force (IETF) is an organi-
zation that defines network service structures and mechanisms.
This annex reserves a range of Service IDs for definition by the
IETF. The details of how these Service IDs are assigned, as well
as their characteristics, are left to the IETF. That definition is not
limited to network assigned Service IDs and may include well-
known values and locally administered values. This annex also
provides for assignment of Service IDs by other organizations.

• Locally assigned Service IDs are Service IDs arbitrarily assigned
by an agent within the local platform. Locally assigned Service
IDs are dynamic. Dynamic means that the Service ID assignment
is not guaranteed to last any longer than the immediate lifetime of
the service provider or OS (i.e., until the application dies or the
OS reboots). Thus, at a later time, the {GID, Service ID} tuple
might identify a different service provider. This annex provides for
locally assigned Service IDs.

Each service provider that uses locally assigned Service IDs has
a different Service ID value. Thus, there can be multiple indepen-
dent instances of a particular service type per port. An example of
multiple independent instances of a service type is an I/O unit con-
taining multiple I/O controllers of the same type. Note that a single
service provider with multiple service objects only needs a single
Service ID.

This annex divides the Service ID address space into groups to permit dif-
ferent authorities to independently assign unique Service ID values within
their scope.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1181 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.2.3 SERVICE ID STRUCTURE

The Service ID structure breaks the 64-bit Service ID address space into
groups of address spaces, which are administered independently of each
other. The first byte of the Service ID identifies the group and thus identi-
fies the administration authority. IBTA defines four of the groups and re-
serves the remainder for future definition. Figure 244 illustrates the
general Service ID structure and Table 343 specifies the values for the Ad-
ministration Group Number (AGN) field.

CA3-1: A Service ID assignment shall use the format specified in Figure
244 and use the AGN values specified in Table 344.

A3.2.3.1 IBTA ASSIGNED SERVICE IDS

Certain applications need a preassigned Service ID to avoid requiring
each service provider to register or advertise its specific Service ID. The
purpose of IBTA Assigned Service IDs is to define Service ID values for
IBTA defined protocols. The format of IBTA defined Service IDs is illus-
trated in Figure 245 and Table 345 lists the IBTA administered Service ID
values.

First
Byte

2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
Byte

7th
Byte

8th
Byte

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

AGN Dependent on value of AGN field

Figure 244 General Service ID Structure

Table 344 AGN Codes

Value Administration Authority

0x00 IBTA Well-known and dynamic Service IDs, see A3.2.3.1 on page
1181

0x01 IETF - (any category), see A3.2.3.2 on page 1183

0x02 Local OS - dynamically assigned with limited lifetime (see A3.2.3.3
on page 1183)

0x10 - 0x1F External organizations (any category, see A3.2.3.4 on page 1186)

others reserved

First
Byte

2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
byte

7th
byte

8th
byte

0x00 Value as per Table 345

Figure 245 IBTA Assigned Service IDs

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1182 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The ROM Repository, Console Process, and some SDP Port Service IDs
are well-known and fully cacheable. Most SDP Port Service IDs are dy-
namic (refer to the SDP Annex for details). A limitation of Service IDs is
that there can be only one service provider using that Service ID per port
(or perhaps per platform), and thus, only one instance of an application
can use a particular well-known Service ID for that port.

A3.2.3.1.1 NULL SERVICE ID
The null Service ID (all zeros) is a special Service ID that applications may
use in data structures containing a Service ID parameter when the Service
ID is not relevant. This might be the case when the application does not
depend on using CM messages to resolve a UD QP and does not set up
a connection. Networking protocols that use multicast to locate service
providers is an example where the application does not need a specific
Service ID. Use of the null Service ID in CM messages is not valid.

A3.2.3.1.2 ROM REPOSITORY

ROM Repository is a service provided by an I/O unit that allows host
nodes to read (and update) device drivers and other images stored in per-
sistent memory on the I/O unit (see Booting Annex). The ROM Repository
Service ID identifies the ROM repository application.

A3.2.3.1.3 CONSOLE PROCESS

The IB Console protocol supports both an I/O based and a host based
console service (i.e., Console IOC and Console Process). The console
IOC does not need or use a well-known Service ID. However, the host
based console server process does (see Console Annex). Thus, a con-
sole IOC uses locally administrated Service IDs while a host based con-
sole server process uses the well-known Console Process Service ID.

Table 345 IBTA Assigned Service IDs

Service First
Byte

2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
byte

7th
Byte

8th
Byte

Null 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

ROM Repository 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

Console Process 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02

Compliance Testing 0x00 0x00 0x00 0x00 0x00 0x00 0x01 any

SDP Port 0x00 0x00 0x00 0x00 0x00 0x01 Port Number

other values reserved

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1183 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.2.3.1.4 SERVICE IDS FOR TESTING

IBA reserves a block of 256 Service IDs for compliance testing as speci-
fied in Table 345 as “Compliance Testing“. The use of these Service IDs
are defined by the IBTA Compliance Test Group.

A3.2.3.1.5 SOCKETS DIRECT PROTOCOL

Sockets Direct Protocol (SDP) is a network protocol equivalent to TCP
that uses a Reliable Connection QP for each socket. A socket is identified
by its TCP port number. The set of SDP Port Service IDs identify specific
applications by their equivalent TCP/IP port number. The last two bytes of
the SDP Port Service ID is the equivalent TCP port number.

Some SDP Port values are well-known port numbers and fall into the cat-
egory of well-known Service IDs as per Table 343 on page 1179. Other
values have the characteristic of a dynamically assigned Service ID (i.e.,
fall into locally assigned category of Service IDs as per Table 343 on page
1179). Refer to the Sockets Direct Protocol Annex for details.

A3.2.3.2 IETF SERVICE IDS

The IBTA recognizes the importance of the IETF and reserves a range of
Service IDs for that organization. How the IETF chooses to use this ad-
dress space is left entirely to the IETF. Unless the IETF specifies other-
wise, these Service IDs should not be considered cacheable.

A3.2.3.3 LOCAL OS ADMINISTERED SERVICE IDS

Local OS administered Service IDs are those Service ID values assigned
by the local platform. Each platform assigns locally administered Service
IDs independent of other platforms. In a host, this assignment is the re-
sponsibility of the operating system (or its designated agent, such as the
CM) that resides above the verbs layer. An equivalent means of assigning
Service IDs can exist for an I/O unit. Other than the AGN field, IBA does
not impose any particular format on local OS administered Service IDs,
leaving that task to the discretion of the local OS. Figure 247 illustrates the
structure of local OS administered Service IDs.

First
Byte

2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
byte

7th
byte

8th
byte

0x01 any value

Figure 246 IETF Service IDs

First
Byte

2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
byte

7th
byte

8th
byte

0x02 Dynamic value assigned by local OS

Figure 247 OS Administered Service IDs

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1184 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Locally administered Service IDs have local scope. That means that the
same service type can have a different Service ID value on each platform
that provides that service. Thus, a service client needs a way to learn the
Service ID. Learning the Service ID can be handled though a number of
service registration facilities such as a DHCP28 server, a registration ser-
vice such as the SubnAdm Service Records, and by Device Management
class Service Entries (see A3.2.4 “Resolving Service Names” on page
1187).

A3.2.3.3.1 PORT ASSOCIATION

Dynamically assigned Service ID assignment is per port. Whether the OS
assigns a dynamic Service ID to an application on a per port basis or per
platform basis is a matter of OS policy. This means that an OS could as-
sign a Service ID to an application and restrict that application to a partic-
ular port (or set of ports) and assign the same Service ID to other
applications as long as none of the port assignments overlap.

CA3-2: The assignment of Service IDs shall ensure that the <Port GID,
P_Key, Service ID> tuple is unique and unambiguous. That is, there is at
most one application (or a set of applications that know that they are
sharing the Service ID) that believes an incoming CM MAD on that port
containing that Service ID is a request for its service.

CA3-3: A CM shall not redirect a CM:REQ or CM:SIDR_REQ to another
port unless the <Port GID, Service ID> tuple for both ports reference the
same QP consumer on the responder side.

A3.2.3.3.2 COHERENCY REQUIREMENTS

A primary concern with using Service IDs is their relative lifetime. That is,
once a service client learns a Service ID, for what period of time is the Ser-
vice ID valid? How the platform administers Service IDs affects the an-
swer.

A cacheable Service ID is a Service ID value where the {ServiceGID, Ser-
vice ID} tuple always represents the same service entity. Only well-known
Service IDs are cacheable. Dynamic Service IDs do not have the same
coherency guarantees.

Because locally administered Service IDs are dynamically assigned,
there is no guarantee that an application will be assigned the same Ser-
vice ID each time the platform, OS, or process initializes. This means that
a particular {Service GID, Service ID} tuple could subsequently identify a
different application. A coherency problem could exist if a Service ID value
assigned to one application is subsequently assigned to another applica-

28. Dynamic Host Configuration Protocol

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1185 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tion while service clients of the first application still think that the Service
ID identifies the first application.

The assigning authority has the responsibility of not reassigning a Service
ID value until all clients have stopped using it. Just because an application
terminates, does not mean that its Service IDs are not in use. In fact, there
may be service registries that retain Service IDs for long periods of time,
depending on lease periods established for those service listings. These
lease periods could be any period of time (e.g., minutes, days, etc.), and
not all service registries have leases.

Service records registered with the SA contain a lease period that identi-
fies how long that service record is valid. The expectation is that the ser-
vice continually renews that lease while the application is active and the
Service ID is valid. If for any reason the Service ID assignment changes
(e.g. the platform providing the service resets, the application terminates,
etc.), the lease expires and the SA removes the service record from use.

Some steps that a platform can take to avoid a coherency problem are:

• Persistently assign Service IDs so that an application always
uses the same value.

• Assign Service IDs sequentially, storing the next value to be as-
signed in non-volatile storage, so it survives power cycles and
platform resets. Thus each time the platform resets, applications
are assigned a new set of Service IDs that do not overlap with the
previous instantiation. Due to the large local OS Service ID ad-
dress space (256 values), the OS should never have to reuse a
value.

• Assign Service IDs sequentially, starting with a random number
each time the OS starts up (or resets). The probability of reas-
signing a Service ID is extremely small and the probability of a
coherency problem is even smaller - much better than exists in
networking such as for TCP and UDP port numbers.

• In all cases, from the time the platform initializes until it resets, it
should never reassign a Service ID value to a different applica-
tion, unless the original application has specifically indicated that
it is ok for the OS to reuse the value.

• A platform that reassigns a Service ID value should assure that
there are no SA:ServiceRecords for the old assignment. One way
this can be meet is by restricting the maximum SA:ServiceRecord
lease period when creating/modifying a ServiceRecord and not
reassigning the Service ID until after the lease has expired.

When the client receives a ServiceRecord from the SA, the Service-
Record contains a ServiceLease component that indicates the remaining

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1186 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

amount of time the Service ID will remain valid. A client should not use a
Service ID after its lease period expires.

A3.2.3.4 EXTERNALLY ADMINISTRATED SERVICE IDS

Other organizations may wish to assign Service IDs or need to map their
equivalent of a Service ID to an IBA Service ID. To keep the IBTA out of
the business of administering Service IDs to other organizations, any or-
ganization that has an IEEE Organizational Unique Identifier (OUI)29 can
specify its own Service IDs as long as they follow the format specified in
Figure 248.

 OUI = IEEE 24-bit Organization Unique Identifier

By placing the organization’s IEEE assigned 24-bit Organization Unique
Identifier in bytes 2, 3 and 4, the organization can define Service IDs by
specifying the value for bits 0-3 of the first byte and all bits of the last 4
bytes. For example, the OUI assigned to ANSI X3 is 00609E and thus if
any X3 subgroups, such as X3T10, needs its own Service IDs, X3 can
create them by using its OUI. Thus, Service IDs 0x1h00609Ehhhhhhhh
(where h is any hexadecimal digit) can be assigned by X3.

Since these values are application specific, the application knows if the
Service ID is cacheable or not. Unless explicitly known, these Service IDs
should not be considered cacheable.

CA3-4: Other than the IETF, which may specify Service IDs as per Sec-
tion A3.2.3.2, an external organization that specifies Service IDs shall use
the structure specified in Figure 248.

CA3-5: The OUI in an Externally Administrated Service ID shall be an OUI
assigned to the defining organization by the IEEE or an OUI which that or-
ganization has permission to use.

29. For additional details, see: “IEEE OUI and Company_id Assignments” at
www.standards.ieee.org/regauth/oui/

First Byte 2nd
Byte

3rd
Byte

4th
Byte

5th
Byte

6th
byte

7th
Byte

8th
Byte

bits
4-7

bits
0-3

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

bits
0-7

0x1 orga

a. value assigned by the organization indicated by the OUI field

OUI Value assigned by organizationa.

Figure 248 Externally Administrated Service IDs

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1187 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.2.4 RESOLVING SERVICE NAMES
Service resolution is the process of learning the service location (i.e., the
port GID and Service ID) for a particular service instance.

A3.2.4.1 SERVICE ADVERTISEMENT

One way to resolve a service location is through service advertisement. A
service advertisement is where the service provider places service infor-
mation in a known location so service clients or peers can find it. The ser-
vice information includes <service name, port GID, and Service ID>.
Services are advertised in different ways.

• A managed I/O unit advertises I/O services provided by its I/O
controllers via DevMgt ServiceEntry or ServiceRecords at-
tributes. These records list <service name, Service ID> tuples for
the I/O controller. The port GID is implied as the same port that
the client used to read the DevMgt attribute.

• Host-based IB subnet services are advertised in SA Service-
Records. These records list <service name, port GID, Service ID>
tuples.

• Some network based services are advertised in configuration and
directory servers, such as a DHCP server / Directory Agent
where service clients retrieve service records through standard
service location protocols (e.g., SLP v2).

Each service advertisement describes exactly one service instance.

Once the service’s port GID and Service ID are known, the service client
can:

• Resolve the UD QP & Q_Key by sending a CM:SIDR_REQ to
that port specifying the Service ID.

• Resolve the RD QP/RDC & Q_Key by sending a CM:REQ to that
port specifying the Service ID.

• Create an RC or UC connection by sending a CM:REQ to that
port specifying the Service ID.

A3.2.4.2 MULTICAST QUERY

Another means to resolve a service location is via multicast. Naturally this
only works for services using Unreliable Datagram or Raw Datagram
transport service. The first service provider creates a multicast group and
additional service providers join the MC group. The service client then
sends a multicast datagram to that MC group address identifying the par-
ticular service provider (e.g., service name, host name, protocol ID, etc.),
and the appropriate service provider(s) respond to it. The service provider
learns the location of the service client from the multicast datagram and
responds with a unicast datagram. The service client learns the location

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1188 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of the service provider from the response. For the multicast method, a
Service ID is not necessary.

The multicast method implies that the service providers and service cli-
ents know which multicast address to use. There are several possible
ways to solve this problem. One way is to use service advertisement de-
scribed previously.

For example, if the IETF wanted to define an IP over InfiniBand (IPoIB)
service resolution process, it could define a unique service name such as
“xyz.MCGroup.IETF”30 and require that the first service provider (or
router) create a MC group and register it via a SubnAdmSet(Service-
Record) using ServiceName= “xyz.MCGroup.IETF”, ServiceGID = the as-
signed multicast GID (in text notation), and Service ID = null or well-known
Service ID.

Now all interested parties can learn the multicast address by:

a) Querying the SA for ServiceRecords with ServiceName =
“xyz.MCGroup.IETF”

b) Querying the SA for MCGroupRecords with MGID=ServiceGID
(after converting the ServiceGID string to its 128-bit binary equiv-
alent).

The MCGroupRecord provides all of the parameters the client needs to
send a UD multicast packet.

A3.2.4.3 ALTERNATIVES

Not every service type needs to use advertisement or multicast. Certain
service types are ubiquitous (i.e., present on most ports or present on plat-
forms of a certain type: e.g. the service for accessing the ROM Repository
is found on some managed I/O units, an OS-specific service on all hosts
incorporating a particular OS, etc. For these situations, there are various
ways for the client to learn the GID of service provider and it is common
for the service to employ a well-known Service ID.

The method that a service client uses to learn which platform provides the
service is application dependant. However, it is typical for service clients
using well-known Service IDs to be configured with just the name of the
host providing the service, and then query a service that resolves the host
name to a port GID.

30. This is a fictitious name created for the example and does not imply an
actual service name.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1189 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.3 I/O CONTROLLER IDENTIFICATION

The DevMgt class attributes contain components that identify properties
of an I/O controller.These components are: VendorID, DeviceID, Device
Version, Subsystem VendorID, SubsystemID, IO Class, IO Subclass, Pro-
tocol, Protocol Version, ID String.

The I/O controller vendor provides this information so the host can identify
the I/O controller and match it with an appropriate I/O driver (refer to the
I/O annex). This section describes the acceptable practice for deriving
values for these fields.

A3.3.1 VENDOR INFORMATION

The following components are vendor specific: VendorID, DeviceID, De-
vice Version, Subsystem VendorID, SubsystemID, ID String.

The vendor places its IEEE assigned Organization Unique Identifier
(OUI)31 in the VendorId field and may place any value in the DeviceID and
Device Version fields. The vendor may also provide an ASCII string of its
choice in the ID String field.

The Subsystem VendorID and SubsystemID provide additional informa-
tion when a subsystem vendor uses components provided by other ven-
dors. In this case the subsystem vendor provides its OUI in the Subsystem
VendorID field and may specify any value in the SubsystemD field.

A vendor that produces a generic controller (i.e., one that supports a stan-
dard I/O protocol such as SRP), which does not have vendor specific de-
vice drivers, may use the value of 0xFFFFFF in the VendorID field.
However, such a value prevents the vendor from ever providing vendor
specific drivers for the product.

A3.3.2 GENERIC INFORMATION

Generic information fields refer to the IO Class, IO Subclass, Protocol,
and Protocol Version components of the in DevMgt attributes. An I/O Con-
troller (IOC) uses these fields to indicate that it supports a standard I/O
protocol32. A host uses these fields to match the IOC with an I/O driver
that performs that I/O protocol (see Annex A1: “I/O Infrastructure” on page
1121 for driver matching).

31. For additional details, see: “IEEE OUI and Company_id Assignments” at
www.standards.ieee.org/regauth/oui/
32. A standard I/O protocol refers to a protocol definition that permits a vendor
other than the IOC vendor to provide the I/O driver. Thus, vendor and product
specific information is not pertinent in matching the IOC with an I/O driver.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1190 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA3-6: A managed I/O unit shall implement a Device Management Agent
as per Section 16.3 (or per a supplemental Annex that supersedes Sec-
tion 16.3).

CA3-7: An IOC shall specify Class, Subclass, and Protocol values in ac-
cordance with A3.3 I/O Controller Identification.

It is the combination of the Class, Subclass, and Protocol fields that iden-
tifies a single I/O class protocol.

The most significant byte of the Class field identifies the I/O category and
the least significant byte of the Class field and the SubClass field identify
the defining organization as illustrated in Figure 249.

Table 346 specifies the values for Category:

Field: Class Field SubClass Field
Bits: 15-12 11-8 7-0 15-0

Content: Category
Table
346

reserved OrganizationIDa

a. The most significant byte of the OUI is in the least significant byte of the Class field and
the least significant byte of the OUI is in the least significant byte of Subclass field. Bits
are in canonical order.

Figure 249 Class/Subclass fields for External Protocols

Table 346 I/O Category
Value I/O Category

0x0 none or other

0x1 Storage class

0x2 Network class

0x4 Video/Multimedia class

0xF Unknown or multiple classes

others reserved

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1191 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.3.3 IBTA PROTOCOLS

An OrganizationID code of 0xFFFFFF indicates an IBA defined class pro-
tocol as listed in Table 347.

A3.3.4 OTHER PROTOCOLS

Any organization may define their own protocol identifiers by specifying a
Class, SubClass, Protocol tuple using their OrganizationID in the Class
field (i.e., the least significant 8 bits) and the Subclass field, as illustrated
in Figure 249. The OrganizationID is the IEEE Organization Unique Iden-
tifier33 (OUI) assigned to the organization that is defining the Protocol and
Version field values. Thus any organization that has an IEEE assigned
OUI may specify Protocol codes. For each Protocol value, the defining or-
ganization selects a Category. It also maintains control of defining Version
values.

A3.4 SERVICE NAMES

Service names appear in a number of different places. In particular, in
SubnAdm:ServiceRecord attributes and in DevMgt:ServiceEntries at-
tributes. The recommended practice is that the service name end in a
name unique to the assigning authority.

The InfiniBand Trade Association (IBTA) reserves the value “.IBTA” for
IBTA defined service names. Thus, the IBTA is the only organization that
may use that value in a service name. For example, “Console.IBTA” can
only be assigned by the IBTA.

CA3-8: The value “.IBTA” shall not be used in a service name unless the
name is explicitly defined by the InfiniBand Trade Association.

CA3-9: An application that specifies an IBTA defined protocol name shall
conform to the requirements for the associated protocol.

Table 347 IBTA Defined Protocols

Classa

a. z = any value

Subclass Protocolb

b. All other combinations reserved

Definition

0xzzFF 0xFFFF 0xFFFF The IOC does not support a standard I/O
protocol (only a proprietary protocol)

0x40FF 0xFFFF 0x0001 Console protocol as defined in Console
Annex

33. For additional details, see: “IEEE OUI and Company_id Assignments” at
www.standards.ieee.org/regauth/oui/

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1192 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.4.1 IBTA SERVICE NAMES

Table 348 lists IBTA Service Names.

A3.4.2 I/O SERVICE RECORDS

Each IOC provides a list of protocol identifiers in one or more service entry
attributes. The number of attribute records for a particular IOC is indicated
in the IOControllerProfile. Typically, an I/O driver uses this information for
establishing connections with the IOC.

For each protocol the IOC supports, the IOC provides a service entry.
Each entry contains a ServiceName and its associated ServiceID. Service
names need to be unique within the scope of the IOC (i.e., the IOC can
not list the same service name more than once in any of its service en-
tries). For proprietary drivers, the IOC vendor defines a service name and
for standard I/O protocols, the organization defining the I/O protocol de-
fines the service name.

A3.4.3 SERVICERECORD ATTRIBUTE

The SubnAdm:ServiceRecord attribute provides the means for a service
to advertise its presence. The service record contains a Service Name
and its associated Service GID and Service ID. Typically a service client
queries the SA for ServiceRecords matching a particular service name to
locate a port and Service ID for a particular protocol. The organization de-
fining the protocol defines the Service Name.

A3.5 MANAGEMENT CLASS CODES

Chapter 13 specifies a range of management class codes as application
specific. Table 349 lists application specific management class code
values and identifies their respective management class.

Table 348 IBTA Service Names

Service Name Defined in:

BaseboardManager.IBTA Chapter 16 - Baseboard Management

BIS.IBTA Boot Information Service Annex

BootManager.IBTA Booting Annex

Console.IBTA Annex A2 “Console Service Protocol”

DeviceManager.IBTA Chapter 16 - Device Management

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1193 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.6 QUEUE KEYS

Chapter 10 section 10.2.5 specifies that Q_Keys with the most significant
bit set can only be sent by QPs that have that Q_Key in the QP context.
This provides for a set of ‘privileged Q_Keys’. That is, the only way for a
QP to send or receive a privileged Q_Key is to have been created with that
privileged Q_Key. Since the operating system controls QP creation and
the user level application can not alter the QP context, the OS has the
means to control use of privileged Q_Keys.

In order for privileged Q_Keys to be meaningful, their use needs to be re-
stricted to the applications for which the Q_Key is assigned. Table 350
lists Privileged Q_Keys and their assigned use.

Table 349 Application Specific Management Class Codes

Class
Codea

a. All other values reserved for future assignment

Management Class

0x10 Device Administration - see Configuration Management Annex

0x11 Boot Management - see Booting Annex

0x12 Boot Information Service - see Boot Information Service Annex

0x20 Reserved for Compliance and Inter-operability Testing

0x21 Congestion Management - see Congestion Management Annex

Table 350 Privileged Q_Keys

Q_Key Management Class

0x8000_0000
thru

0x8000_FFFF

Available for general use - can be used without permission from the
InfiniBand Trade Association

0x8001_0000 Well known IB management Q_Key

0x8001_0001 Device Administration Agent (see Configuration Management Annex)

0x8001_0000
thru

0x8001_FFFF

reserved for IBTA definition

0x8002_0000
thru

0x8FFF_FFFF

Reserved for external use - An organization can request a privileged
Q_Key by sending the request to the InfiniBand Trade Association -
attention Application Working Group.

InfiniBandTM Architecture Release 1.2 Application Specific Identifiers October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1194 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A3.7 COMPLIANCE SUMMARY

This annex specifies 3 new Compliance Categories (see Volume 1
Chapter 20 for explanation of compliance categories and qualifiers).

These new categories are:

• Service ID Administration

• Service Application

• Managed I/O Unit.

There are no Compliance Qualifiers for these categories.

A3.7.1 SERVICE ID ADMINISTRATION

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of Service ID Administration, a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support (currently
there are no optional compliance qualifiers for this category).

CA3-1: Service ID structure. Page 1181
CA3-2: <Port GID, Service ID> unique and unambiguous. Page 1184
CA3-3: CM Redirection to another port Page 1184
CA3-4: Structure for externally assigned Service IDs Page 1186
CA3-5: OUI in an Externally Administrated Service ID Page 1186

A3.7.2 SERVICE APPLICATION

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of Service Application, a product shall meet
all requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support (currently there are
no optional compliance qualifiers for this category).

CA3-8: Using ".IBTA" in a service name Page 1191
CA3-9: IBTA defined protocol . Page 1191

A3.7.3 MANAGED I/O UNIT

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of Managed I/O Unit, a product shall meet
all requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support (currently there are
no optional compliance qualifiers for this category).

CA3-6: Must implement Device Management Page 1190
CA3-7: IocProfile: Class, Subclass, and Protocol values Page 1190

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1195 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A4: SOCKETS DIRECT PROTOCOL (SDP)

A4.1 INTRODUCTION

This document is a supplement to release 1.0.a of Volume 1 of the Infini-
Band Architecture, herein referred to as the base document. This docu-
ment provides an annex to the base document defining a transport layer
protocol called Sockets Direct Protocol (SDP).

SDP is a byte-stream transport protocol that closely mimics TCP's stream
semantics. SDP utilizes InfiniBand's advanced protocol offload, kernel by-
pass, and zero copy capabilities. Because of this, SDP can have lower
CPU and memory bandwidth utilization when compared to conventional
implementations of TCP, while preserving the familiar byte-stream ori-
ented semantics upon which most current network applications depend.

This version of the specification expands the SDP protocol to leverage the
optional Base Memory Management Extensions provided in this version
of the IBA Specification.

Base Memory Management Extensions provided in this version of the IBA
Specification support Local and Remote Invalidate features. Connecting
and accepting peers in a SDP connection will need to exchange the Send
with Invalidate capability during the connection setup. Once both sides of
an SDP connection have advertised Send with Invalidate support, both
sides shall use R_Keys that are suitable for a Remote Invalidate.

This version of the specification allows each peer to support more than
255 outstanding Zcopy advertisements.

A4.1.1 ARCHITECTURAL GOALS

SDP has the following architectural goals:

• Maintain traditional sockets SOCK_STREAM semantics as com-
monly implemented over TCP/IP. Some specific issues that are
addressed include:
• Graceful close, including half-closed sockets
• Ability to use TCP port space
• IP addressing (IPv4 or IPv6)
• Connecting/accepting connect model
• Out-of-band (OOB) data
• Support for common socket options

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1196 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Support for byte-streaming over a message passing protocol
• Capable of supporting kernel bypass data transfers
• Capable of supporting zero-copy data transfers from send up-

per-layer-protocol (ULP) buffers to receive ULP buffers.
This specification focuses specifically on the wire protocol, finite state ma-
chine, and packet semantics. Operating system specific issues and other
implementation specific issues are outside the scope of this specification,
including application programming interfaces (APIs), ULP completion
mechanisms, kernel bypass capabilities, etc. These issues are left up to
each implementation.

Note that SDP only supports SOCK_STREAM semantics (i.e., byte-
stream), not SOCK_DGRAM (i.e., datagram) semantics.

A4.1.2 OVERVIEW OF THE BYTE-STREAM PROTOCOL

SDP’s ULP interface is a byte-stream interface that is layered on top of In-
finiBand's Reliable Connection message-oriented transfer model. The
mapping of the byte-stream protocol to InfiniBand message-oriented se-
mantics was designed to enable ULP data to be transferred by one of two
methods - through intermediate private buffers (Bcopy) or directly be-
tween ULP buffers (Zcopy).

A mix of InfiniBand Send and RDMA mechanisms are used to transfer
ULP data. Zcopy uses InfiniBand RDMA Reads or Writes, transferring
data between RDMA buffers. Bcopy uses InfiniBand Sends, transferring
data between send buffers and receive private buffers. An implementation
is expected, but not required, to have RDMA buffers be ULP buffers, en-
abling the RDMA path to perform a true zero-copy. An implementation is
expected, but not required, to use the receive private buffer pool to buffer
data and eventually copy the data from the receive private buffer pool into
the receive ULP buffer. An implementation may choose to implement dif-
ferent ULP buffering semantics.

SDP has two types of buffers:

• Private buffers - used for transmission of all SDP messages and ULP
data that is to be copied into the receive ULP buffer. The Bcopy data
transfer mechanism is used for this traffic.

• RDMA buffers - used when performing Zcopy data transfer. ULP data
is intended to be RDMAed directly from the Data Source's ULP buffer
to the Data Sink's ULP buffer.

The policy which controls when to use private buffers versus RDMA
buffers is outside the scope of this specification. An implementation de-
pendent parameter defined as the Bcopy Threshold is used to abstractly
define the results of the policy decision.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1197 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

To remain compatible with the base InfiniBand specification, this annex
defines a wire protocol which can be layered on top of the semantics de-
fined by verbs (see section 11.1 Verbs Introduction and Overview on page
546 in Volume 1a and Figure 250 SDP Relation to IBA Architecture Layers
on page 1197). Thus when this specification uses the term “send” in rela-
tion to an SDP message, it is in reference to when the Work Queue Entry
is posted to the Send Queue. When this specification uses the term “re-
ceive” in relation to an SDP message, it is in reference to when the asso-
ciated Completion Queue Entry is dequeued. Sending an SDP message
specifically does not refer to when the CA actually places the message on
the InfiniBand link; reception of an SDP message specifically does not
refer to reception of the SDP message at the CA interface or when the
SDP message Completion Queue Entry is first inserted into the Comple-
tion Queue.

Figure 250 SDP Relation to IBA Architecture Layers

SDP Messages SDP

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

Upper Level
Protocols

Transport
Layer

Network
Layer

Link
Layer

Physical
Layer

 SDP

IBA
Operations

SAR

Network

Link
Encoding

Media
Access
Control

InfiniBand Messages

(QP)

Inter Subnet Routing

(GRH) Packet
Relay

M
A

C

 L

in
k

M
A

C

 L

in
k

Packet
Relay

Subnet Routing (LRH)

M
A

C

M
A

CFlow

Control

Signaling

End Node Switch Router End Node

 Application Application

 Sockets
Interface
Session

Layer

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1198 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.2 GLOSSARY

Accepting peer The peer which sent the REP MAD during connection establishment.
Equivalent to the passive peer in section 12.9.6 Communication Estab-
lishment - Passive on page 688.

Bcopy See Buffer-copy.

Buffered Mode One of three modes for an SDP half-connection. This mode uses the
Bcopy Data transfer mechanism exclusively.

Bcopy Threshold A locally defined threshold existing separately for each peer of a half-con-
nection, which helps the peer determine whether it will attempt to use the
Bcopy Data transfer mechanism versus the Zcopy Data transfer mecha-
nism to transfer a given size ULP buffer.

Buffer-copy A Data transfer mechanism where the transfer of ULP payload between
peers is done through an SDP managed receive Private Buffer pool. The
received ULP data may require a copy into the receive ULP Buffer.

Combined Mode One of three modes for an SDP half-connection. This mode enables the
use of the Bcopy and Read Zcopy Data transfer mechanisms.

Connecting peer The peer which received the REP MAD during connection establishment.
Equivalent to the active peer in section 12.9.5 Communication Establish-
ment and Release - Active on page 687.

Controlling address space The address space in which the socket currently exists. This is relevant
for socket duplication, where a Non-controlling address space can re-
quest control of the socket.

Data Sink The peer receiving ULP payload. Note that the Data Sink can be required
to both send and receive messages to complete a data transfer mecha-
nism.

Data Source The peer sending ULP payload. Note that the Data Source can be re-
quired to both send and receive messages to complete a data transfer
mechanism.

Data transfer mechanism A sequence of messages, including control messages (with or without
ULP payload) and/or RDMA messages, to transfer data from a Data
Source to a Data Sink with flow control. Four data transfer mechanisms
are defined - Buffer-copy, Zero-copy with RDMA Write (Write Zcopy),
Zero-copy with RDMA Read (Read Zcopy), and Transaction.

Flow control mode The mode of the half-connection that determines which Data transfer
mechanisms may be used; can be either Buffered, Pipelined, or Com-
bined.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1199 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In-Process An SDP message sequence is In-Process if it is actively being worked on.
For example, if a SrcAvail message is In-Process, RDMA reads may have
been issued or completed, but a completion message (RdmaRdCompl or
SendSm) has not been sent. See also Unprocessed and Processed.

Incomplete See In-Process.

Message In this annex “message” is context dependent. It may either be an SDP
message or an InfiniBand message. If there is any ambiguity, either the
exact message name is used or it is explicitly stated whether it is an SDP
or an InfiniBand message.

Mode See Flow control mode.

Mode Master The side of an SDP half-connection which may initiate a mode transition
by sending a ModeChange message. This is either the Data Source or the
Data Sink, depending upon the flow control mode.

Mode Slave The side of an SDP half-connection which reacts to mode changes. It may
advise the Mode Master to change modes (by using SendSm messages
or setting the REQ_PIPE flag in the BSDH), but it cannot force a mode
change. This is either the Data Source or the Data Sink, depending upon
the flow control mode.

Non-controlling address
space

An address space that does not currently have control of the socket. See
Controlling address space.

OOB See Out-Of-Band Data.

Out-Of-Band Data Out-of-Band Data is a single byte of data in the data stream whose han-
dling should be expedited.

Pipelined Mode One of three modes for an SDP half-connection.This mode enables the
use of the Bcopy, Read Zcopy, Write Zcopy, and Transaction Data transfer
mechanisms.

Private Buffer Buffers owned by SDP and not exposed to the ULP. Receive private
buffers are used for reception of all SDP messages and ULP data transfer
using the Bcopy or Transaction Data transfer mechanisms. All receive pri-
vate buffers must be at least the current advertised size, and are posted
to the InfiniBand Receive Queue.

Processed An SDP message sequence has been completed by sending the last
message of the sequence. Note that the completing message may not
have been received. For example, a SinkAvail advertisement is said to
have been Processed when the corresponding RdmaWrCompl message
has been sent. See also Unprocessed and In-Process.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1200 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

RDMA Buffer A buffer which is exposed by the SDP protocol for RDMA access. It is
used by the Write Zcopy, Read Zcopy, and Transaction Data transfer
mechanisms.

Receiver Destination of an SDP or InfiniBand message.

SDP Message An InfiniBand message which contains an SDP Base Sockets Direct
Header (BSDH). This specifically does not include InfiniBand RDMA Write
and RDMA Read messages. SDP connection initialization messages are
encapsulated in the CM REQ and REP messages.

Sender Source of an SDP or InfiniBand message.

Transaction A Data transfer mechanism that collapses a Data message and a
SinkAvail message into a single SDP message.

ULP Upper Layer Protocol.

ULP Buffer Buffers owned by and visible to the ULP. A ULP buffer may serve as an
RDMA source buffer, an RDMA sink buffer, or a send buffer.

Unprocessed An SDP message is Unprocessed if it has been sent, and possibly re-
ceived, but it has not been operated on. For example, a SinkAvail mes-
sage is Unprocessed if it has been sent by the Data Sink, received by the
Data Source, but no RDMA Writes have begun. Note that processing of
flow control information by the receiver may have been done. See also In-
Process and Processed.

WrapSubtract WrapSubtract is meant to represent a function which subtracts the second
argument (arg2) from the first argument (arg1). Both arguments are un-
signed integers which wrap from a value of 0xFFFFFFF to 0x0. Mathe-
matical operations on wrapping unsigned integers can be done by a
variety of methods, including methods defined in RFC1982 (see
www.ietf.org). The following equation is an example implementation of the
function that casts the unsigned integers into two’s complement integers,
and then takes the absolute value of the result:

 result = abs((int)arg1 - (int)arg2)

Zcopy See Zero-copy.

Zero-copy Three Data transfer mechanisms (Read Zcopy, Write Zcopy, and Trans-
actions) where the transfer of ULP payload between peers is done directly
into the ULP buffer, thus avoiding a Buffer-copy on receive.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1201 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3 SDP MESSAGE FORMATS

Sockets Direct Protocol defines several types of messages to transfer
data and control the state of a connection. Each SDP message contains
a Base Sockets Direct Header (BSDH). SDP connection setup messages
(Hello and HelloAck) are encapsulated within CM REQ and REP MADs,
respectively. Some SDP message types also contain an extended header
and/or ULP payload. The extended header (if present) immediately fol-
lows the BSDH. The ULP payload follows the headers (BSDH and ex-
tended header, if any).

CA4-1: All SDP message headers shall use big endian byte ordering, as
defined in section 1.5.1 Byte Ordering on page 66.

CA4-2: The SDP Hello and HelloAck messages shall be carried in the pri-
vate data of the CM REQ and CM REP MADs, respectively.

CA4-3: All SDP messages, except for Hello and HelloAck, shall be trans-
mitted via the InfiniBand RC channel.

A4.3.1 BASE SOCKETS DIRECT HEADER (BSDH)
CA4-4: All SDP messages shall contain the Base Sockets Direct Header,
as defined in this section.

A4.3.1.1 MESSAGE IDENTIFIER (MID)
Specifies the type of the SDP message. The type of SDP message indi-
cates whether an extension header is present.

Figure 251 Base Sockets Direct Header (BSDH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 MID flags bufs

4-7 len

8-11 MSeq

12-15 MSeqAck

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1202 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-5: Table 351 shall be used to define the MID parameter in the BSDH,
the type of SDP message, and the extended headers and payload that
follow the BSDH for a specific SDP message.

Note that SDP messages Hello and HelloAck are encapsulated in the pri-
vate data of CM REQ and REP MADs, respectively.

Reserved MID values may be assigned in future versions of the protocol.
Experimental values will never be used for permanent assignment.

Table 351 SDP Message Definitions

MID[7-0] Message Name Extended Header Following the
Base Sockets Direct Header

Packet Contents Following the
Extended Header (if any)

00000000 Hello HH none

00000001 HelloAck HAH none

00000010 DisConn none none

00000011 AbortConn none none

00000100 SendSm none none

00000101 RdmaWrCompl RWCH none

00000110 RdmaRdCompl RRCH none

00000111 ModeChange MCH none

00001000 SrcAvailCancel none none

00001001 SinkAvailCancel none none

00001010 SinkCancelAck none none

00001011 ChRcvBuf CRBH none

00001100 ChRcvBufAck CRBAH none

00001101 SuspComm SuspCH none

00001110 SuspCommAck none none

00001111 Reserved n/a n/a

00010000-
00111111

Reserved n/a n/a

01000000-
01111111

Experimental n/a optional payload

10000000-
11111100

Reserved n/a n/a

11111101 SinkAvail SinkAH optional ULP payload

11111110 SrcAvail SrcAH optional ULP payload

11111111 Data optional ULP payload

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1203 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.1.2 FLAGS

CA4-6: Table 352 shall be used to define the BSDH Flags field.

If the OOB_PRES bit is set then the last byte of the ULP payload in the
SDP message is OOB data.

CA4-7: The OOB_PRES bit shall be set only in a Data message.

Normal ULP payload may also be present in the Data message before the
OOB data. See section A4.6.5.3 Processing Out-Of-Band Data on page
1240.

If the OOB_PEND bit is set then Out-Of-Band data has been sent by the
ULP. This flag may be set in any SDP message. The actual Out-Of-Band
data may or may not be in the current SDP message. See section
A4.6.5.3 Processing Out-Of-Band Data on page 1240.

The REQ_PIPE bit is a hint from the Data Sink to the Data Source to
switch to Pipelined Mode.

CA4-8: The Data Sink shall clear the REQ_PIPE bit if it would prefer the
Data Source to stay in Combined Mode. The Data Sink shall set the
REQ_PIPE bit to one if it would prefer the Data Source to switch to Pipe-
lined Mode or remain in Pipelined Mode. REQ_PIPE shall only be set in
RdmaRdCompl messages.

The Data Source is not obligated to follow the recommendation.

CA4-9: The Data Source shall ignore REQ_PIPE if the current mode is
Buffered Mode.

A4.3.1.3 BUFFERS (BUFS)
Number of private buffers which were currently posted after the last SDP
message was received by the local peer, in units of private buffers. More
precisely, Bufs equals the total number of private buffers posted over the
lifetime of the connection minus the number of SDP messages received
over the lifetime of the connection. A maximum of 65535 (216-1) buffers
may be posted at any one time.

Table 352 BSDH Flags
Bit

Position
Name Description

0 OOB_PRES Out-Of-Band Data is present

1 OOB_PEND Out-Of-Band Data is pending

2 REQ_PIPE Request change to Pipelined Mode

3-7 reserved transmitted as zero and not checked at receiver

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1204 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.1.4 LENGTH (LEN)

SDP message length in bytes.

In a Hello or HelloAck message, the BSDH Len is equal to the sum of the
sizes of the BSDH plus the HH or HAH, respectively. See sections
A4.3.2.1 Hello Message (HH) on page 1204 and A4.3.2.2 HelloAck Mes-
sage (HAH) on page 1208.

CA4-10: For SDP messages other than Hello and HelloAck, Len shall be
equal to the sum of the sizes of the BSDH, extended header (if present),
and ULP payload (if present). The IB message length shall equal the
value of Len.

A4.3.1.5 MESSAGE SEQUENCE NUMBER (MSEQ)

CA4-11: The first SDP message sent after connection establishment
shall have a MSeq value of 1. Each successive SDP message shall in-
crease the value of Mseq by one, wrapping to zero after 0xFFFFFFFF.

A4.3.1.6 MESSAGE SEQUENCE NUMBER ACKNOWLEDGEMENT (MSEQACK)

MSeqAck is the sequence number of the last SDP message received by
the local peer. See section A4.6.5.4 SrcAvail Revocation on page 1240 for
additional constraints.

CA4-12: If no messages have been received by the local peer since con-
nection establishment, a MSeqAck value of zero shall be transmitted.

A4.3.2 CONNECTION MANAGEMENT MESSAGES

SDP connection setup uses InfiniBand CM REQ, REP, and RTU MADs,
with additional SDP information exchanged in the private data. SDP spe-
cific information includes the size of the receive private buffers, the initial
credits for the receive private buffers, and source and destination IP ad-
dresses, as well as other parameters. SDP connection teardown uses In-
finiBand DREQ and DREP messages, plus additional SDP messages
(DisConn and AbortConn) to emulate TCP connection teardown seman-
tics.

A4.3.2.1 HELLO MESSAGE (HH)

The Hello message shall contain a BSDH and a Hello Header (HH). The
Hello message shall be contained in the private data of the CM REQ MAD.
See section A4.5.1 Connection Setup on page 1218.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1205 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-13: The Hello Header format shall be as defined in Figure 252.

CA4-14: The BSDH fields of the REQ MAD shall be set as follows:

• MID = Hello
• len = size of the BSDH, plus the size of the HH
• flags = 0
• bufs = see section A4.5.1 Connection Setup on page 1218 and

section A4.7.3 Initialization of Send Credit on page 1245.
• MSeq = set to zero and not checked on receive.
• MSeqAck = set to zero and not checked on receive.

A4.3.2.1.1 MAJOR PROTOCOL VERSION NUMBER (MAJV) - 4 BITS

The current specification requires MajV to be set to 2. See section A4.5.1
Connection Setup on page 1218 for additional information.

CA4-15: The accepting peer shall reject the connection if MajV in the HH
does not match its local value.

A4.3.2.1.2 MINOR PROTOCOL VERSION NUMBER (MINV) - 4 BITS

The current specification requires MinV to be set to 2.

Figure 252 Hello Header

bits
bytes

31-24 23-16 15-8 7-0

0-3 MajV MinV IPV Cap rsvd MaxAdverts

4-7 DesRemRcvSz

8-11 LocalRcvSz

12-15 LocalPort rsvd

16-19 SrcIP(127-96)

20-23 SrcIP(95-64)

24-27 SrcIP(63-32)

28-31 SrcIP(31-00)

32-35 DstIP(127-96)

36-39 DstIP(95-64)

40-43 DstIP(63-32)

44-47 DstIP(31-00)

48-51 rsvd ExtMaxAdverts

52-55 rsvd

...

72-75

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1206 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-16: The accepting peer shall not reject the connection, solely on the
basis that MinV of the HH does not match its local value.

This enables future protocol extensions which are upwardly compatible.

A4.3.2.1.3 IP VERSION (IPV) - 4 BITS

The Internet Protocol version number of the end-point address field (fields
SrcIP and DstIP). If IPV = 0x4, the IP addresses are IP version 4 format
(32 bit addresses). If IPV = 0x6, then both IP addresses are IP version 6
format (128 bit addresses). All other IPV values are reserved

CA4-17: The accepting peer shall reject the connection if IPV of the HH
has a value other than 0x4 or 0x6.

A4.3.2.1.4 MAXIMUM ADVERTISEMENTS (MAXADVERTS) - 8 BITS

The maximum number of concurrent Zcopy advertisements that can be
outstanding to the local QP at any one time. This includes SrcAvail adver-
tisements for data transfer from the remote peer to the local peer and
SinkAvail advertisements for data transfer from the local peer to the re-
mote peer. MaxAdverts may be between 1 and 28-1, inclusive.

CA4-18: The accepting peer shall reject the connection if MaxAdverts of
the HH is zero.

Note that there is no correlation between this parameter and InfiniBand
RDMA Read resources (the Responder Resources parameter specified
during connection setup).

A4.3.2.1.5 DESIRED REMOTE RECEIVE SIZE (DESREMRCVSZ) - 32 BITS

Desired size of remote peer’s receive private buffers, in units of bytes
(maximum = 231 bytes). Usually set to the initial size of the local send
buffers (assuming the send buffers are all the same size). This is a hint to
the remote peer. The remote peer should take this into consideration
when choosing the size of its receive private buffers, but it is free to select
a different size.

A4.3.2.1.6 LOCAL RECEIVE SIZE (LOCALRCVSZ) - 32 BITS

Initial size of the local receive private buffers, in units of bytes (maximum
= 231 bytes).

A4.3.2.1.7 LOCALPORT - 16 BITS

The local TCP port number. See IETF RFC 1122 (Host Requirements
RFC) for requirements on the TCP port number.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1207 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.2.1.8 INTERNET PROTOCOL ADDRESS (SRCIP, DSTIP) - 128 BITS

The Internet Protocol (IP) address for the local interface (SrcIP) and re-
mote interface (DstIP). These can be either IPv4 or IPv6 addresses, as
specified by the IPV field.

CA4-19: If SrcIP and DstIP of the HH are IPv4 addresses, as specified by
the IPV field, then SrcIP(31-0) and DstIP(31-0) shall be used to transmit
the source and destination IP addresses, respectively, and bits SrcIP(127-
32) and DstIP(127-32) shall be set to zero.

A4.3.2.1.9 RSVD

Reserved for future use. Must be transmitted as zeroes and not checked
on receive.

A4.3.2.1.10 CAPABILITIES (CAP) - 4 BITS

The Capabilities field conveys the connecting peer’s capabilities. The fol-
lowing capabilities are defined.

CA4-19.2.1: SDP Extensions Table 353 "Capabilities" shall be used to de-
fine the Hello Header Cap field.

CA4-19.2.2: The connecting peer shall set the INVALIDATE_CAP bit in
the Cap field in Hello Header only if it can support incoming invalidate
messages.

If the accepting peer does not support Send w/Invalidate, it will ignore the
Invalidate Capability advertisement.

CA4-19.2.3: The following rules shall be applied by a connecting peer
when using EXTENDED_MAXADVERTS capability bit:

• Set the EXTENDED_MAXADVERTS bit only if the connecting peer
supports more than 255 outstanding Zcopy advertisements on the lo-
cal QP.

• If EXTENDED_MAXADVERTS bit is set, the MaxAdverts field shall
be set to 255.

Table 353 Capabilities

Bit
Position

Capability
Description

0 INVALIDATE_CAP Supports incoming Send w/Inval-
idate opcode

1 EXTENDED_MAXADVERTS Extended MaxAdverts is used

2-3 reserved transmitted as zero and not
checked at receiver

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1208 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If EXTENDED_MAXADVERTS bit is set, the Extended MaxAdverts
field shall have the maximum number of outstanding Zcopy adver-
tisements that the connecting peer supports.

A4.3.2.1.11 EXTENDED MAXADVERTS (EXTMAXADVERTS) - 16 BITS

The maximum number of concurrent Zcopy advertisements that can be
outstanding to the local QP at any time. If EXTENDED_MAXADVERTS bit
is set, ExtMaxAdverts must be between 256 and 216-1, inclusive. If
EXTENDED_MAXADVERTS bit is clear, ExtMaxAdverts must be zero.

A4.3.2.2 HELLOACK MESSAGE (HAH)

The HelloAck (Hello Acknowledgement) message shall contain a BSDH
and a HelloAck Header (HAH). The HelloAck message contains a subset
of the information sent in the Hello message. The HelloAck message shall
be contained in the private data of the CM REP MAD. See section A4.5.1
Connection Setup on page 1218

CA4-20: The HelloAck Header format shall be as defined in Figure 253.

CA4-21: The BSDH fields of the REP MAD shall be set as follows:

• MID = HelloAck
• len = size of the BSDH, plus the size of the HAH
• flags = 0
• bufs = see section A4.5.1 Connection Setup on page 1218 and

section A4.7.3 Initialization of Send Credit on page 1245.
• MSeq = set to zero and not checked on receive.
• MSeqAck = set to zero and not checked on receive.

A4.3.2.2.1 MAJOR PROTOCOL VERSION NUMBER (MAJV) - 4 BITS

The current specification requires MajV to be set to 2. See section A4.5.1
Connection Setup on page 1218 for additional information.

Figure 253 HelloAck Header

bits
bytes

31-24 23-16 15-8 7-0

0-3 MajV MinV rsvd Cap ExtMaxAdverts

4-7 ActRcvSz

8-11 rsvd

...

176-179

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1209 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-22: The connecting peer shall terminate the connection attempt if
MajV does not match its local value, i.e., it sends a REJ back to the remote
peer, instead of RTU.

A4.3.2.2.2 MINOR PROTOCOL VERSION NUMBER (MINV) - 4 BITS

The current specification requires MinV to be set to 2.

CA4-23: The connecting peer shall not terminate the connection attempt,
solely on the basis that MinV of the HAH does not match its local value.

A4.3.2.2.3 EXTENDED MAXADVERTS (EXTMAXADVERTS) - 16 BITS

The maximum number of concurrent Zcopy advertisements that can be
outstanding to the local peer at any one time. This includes SrcAvail ad-
vertisements sent to the local peer for data transfer from the remote peer
to the local peer and SinkAvail advertisements for data transfer from the
local peer to the remote peer.

CA4-24: This compliance statement has been obsoleted.

CA4-24.2.1: If the connecting peer has set MajV of 2 and MinV of 1 in the
HelloHeader, the valid values for the ExtMaxAdverts in HAH are between
1 and 28-1, inclusive.

CA4-24.2.2: If the connecting peer has set MajV of 2 and MinV of 2 in the
HelloHeader, the valid values for the ExtMaxAdverts in HAH are between
1 and 216-1, inclusive.

CA4-24.2.3: The connecting peer shall terminate the connection attempt
if ExtMaxAdverts of the HAH is set to zero.

Note that there is no correlation between this parameter and InfiniBand
RDMA Read resources (the Responder Resources parameter specified
during connection setup).

A4.3.2.2.4 ACTUAL RECEIVE SIZE (ACTRCVSZ) - 32 BITS

The initial size of the local receive private buffers, in units of bytes (max-
imum = 231 bytes).

A4.3.2.2.5 RSVD

Reserved for future use. Must be transmitted as zeroes and not checked
on receive.

A4.3.2.2.6 CAPABILITIES (CAP) - 4 BITS

The Capabilities field conveys the accepting peer’s capabilities. The fol-
lowing capabilities are defined.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1210 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-24.2.4: SDP Extensions Table 354 "Capabilities" shall be used to
define the HelloAck Header Cap field.

CA4-24.2.5: The accepting peer shall set the INVALIDATE_CAP bit in the
Cap field in HelloAck Header only if it can support incoming invalidate
messages and the incoming Hello Header Cap field has the
INVALIDATE_CAP bit set.

If both connecting and accepting peers in an SDP connection set the
INVALIDATE_CAP bit in the Cap field of Hello Header and HelloAck
Header respectively, the SDP connection is configured to be Invalidate
Enabled.

A4.3.2.3 DISCONN MESSAGE

The DisConn (Disconnect Connection) message informs the remote peer
that the local ULP will not be sending any more data on this connection,
and that the ULP has requested graceful teardown of the socket in the
send direction. This is functionally equivalent to TCP sending a FIN
packet. See section A4.5.3 Connection Teardown on page 1223.

The DisConn message shall have only a BSDH. It contains no ULP pay-
load.

A4.3.2.4 ABORTCONN MESSAGE

The AbortConn (Abort Connection) message tells the remote peer to ig-
nore an earlier DisConn message and to consider socket teardown as
abortive. This message is sent only if a DisConn message has been sent
earlier. AbortConn is functionally equivalent to TCP setting the RST bit to
reset a connection. See section A4.5.3 Connection Teardown on page
1223.

The AbortConn message shall have only a BSDH. It contains no ULP pay-
load.

Table 354 Capabilities

Bit
Position

Capability
Description

0 INVALIDATE_CAP Supports incoming Send w/Inval-
idate opcode

1-3 reserved transmitted as zero and not
checked at receiver

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1211 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.3 DATA TRANSFER AND FLOW CONTROL MESSAGES

A4.3.3.1 DATA MESSAGE

The Data message is normally used to send ULP payload. A Data mes-
sage without ULP payload is a gratuitous credit update.

The Data message is one of three SDP message types which may contain
ULP data. The other types are SrcAvail and SinkAvail messages. See
section A4.6.1 Bcopy on page 1228.

The Data message shall contain a BSDH.

A4.3.3.2 SRCAVAIL MESSAGE (SRCAH)

The SrcAvail (Data Source Available) message is sent by the Data Source
to the Data Sink to inform the latter of the availability of an RDMA buffer
that can be transferred through an RDMA Read operation.

The SrcAvail message shall contain a BSDH and a SrcAvail Header
(SrcAH).

The SrcAH may include a copy of the initial portion of the send RDMA
buffer as ULP payload of the SDP message, depending upon the flow
control mode. See section A4.6.2 Read Zcopy on page 1229).

CA4-25: The SrcAvail Header format shall be as defined in Figure 254.

A4.3.3.2.1 LENGTH (LEN) - 32 BITS

The size of the send RDMA buffer (in bytes) represented by the VA and
R_Key.

CA4-26: The value of Len shall be greater than zero and less than or
equal to 231 bytes.

A4.3.3.2.2 VIRTUAL ADDRESS (VA) - 64 BITS

The start address of the send RDMA buffer. The RDMA VA may start on
any byte boundary.

Figure 254 SrcAvail Header (SrcAH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Len

4-7 R_Key

8-11 VA (63-32)

12-15 VA (31-0)

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1212 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-27: The buffer addressed by the RDMA VA shall include the initial
ULP data that was copied into the ULP payload of the SrcAvail message
(if any).

A4.3.3.2.3 R_KEY - 32 BITS

CA4-28: The R_Key field shall contain the R_Key value to be used by the
Data Sink, when retrieving data from the memory of the Data Source via
an RDMA Read.

A4.3.3.3 SINKAVAIL MESSAGE (SINKAH)
The SinkAvail (Data Sink Available) message is sent by the Data Sink to
the Data Source to inform the latter of the availability of an RDMA buffer
that can be filled through an RDMA Write operation. See section A4.6.3
Write Zcopy on page 1233.

CA4-29: The SinkAvail Header format shall be as defined in Figure 255.

The SinkAvail message shall contain a BSDH and SinkAH.

The SinkAvail message may include some send data as ULP payload for
data flow in the opposite direction. See section A4.6.4 Transaction Mech-
anism on page 1235.

A4.3.3.3.1 LENGTH (LEN) - 32 BITS

The size (in bytes) of the receive RDMA buffer represented by the VA and
R_Key.

CA4-30: The value of Len shall be greater than zero and less than or
equal to 231 bytes.

A4.3.3.3.2 VIRTUAL ADDRESS (VA) - 64 BITS

The start address of the receive RDMA buffer. The RDMA VA may start
on any byte boundary.

Figure 255 SinkAvail Header (SinkAH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Len

4-7 R_Key

8-11 VA (63-32)

12-15 VA (31-0)

16-19 NonDiscards

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1213 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.3.3.3 R_KEY - 32 BITS

CA4-31: The R_Key field shall contain the R_Key to be used by the Data
Source, when sending the data via an RDMA Write into the memory of the
Data Sink.

A4.3.3.3.4 NONDISCARDS - 32 BITS

The NonDiscards field in the SinkAvail message contains the Data Sink's
current local value for NonDiscards. After connection setup, the Data Sink
shall initialize the local value for NonDiscards to zero. The Data Sink shall
increment its local value for NonDiscards when a ULP payload carrying
SDP message is received and the SDP message did not cause the Data
Sink to discard a previously sent SinkAvail message. This count wraps
around to 0 after reaching 0xFFFFFFFF.

See section A4.6.5.1 Detecting Stale SinkAvail Advertisements on page
1237 for additional information.

A4.3.3.4 RDMA MESSAGES

SDP uses the existing InfiniBand RDMA Write and RDMA Read mes-
sages to transfer zero-copy data.

A4.3.3.5 SENDSM MESSAGE

The Data Source uses a SrcAvail message to inform the Data Sink of data
which can be transferred using RDMA. If the Data Sink is unable or un-
willing to transfer this data using RDMA, it can use the SendSm (Send
Small) message to inform the Data Source it should send the data using
the Bcopy Transfer Mechanism. See section A4.6.5.2 Mechanisms For
Forcing Bcopy on page 1238.

The SendSm message shall contain only a BSDH and no ULP payload.

A4.3.3.6 RDMAWRCOMPL MESSAGE (RWCH)
The RdmaWrCompl (RDMA Write Complete) message is sent by the Data
Source to inform the Data Sink of completion of an RDMA Write transfer.
See section A4.6.3 Write Zcopy on page 1233.

CA4-32: The RdmaWrCompl Header format shall be as defined in Figure
256.

The RdmaWrCompl message shall contain only a BSDH and a RWCH.

Figure 256 RdmaWrCompl Header (RWCH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Len

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1214 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.3.3.6.1 LENGTH (LEN) - 32 BITS

The size (in bytes) transferred to the receiver’s RDMA buffer through
RDMA Write(s) for the oldest outstanding SinkAvail. The size may be less
than the size of the RDMA buffer advertised by the Data Sink in the
SinkAvail message.

A4.3.3.7 RDMARDCOMPL MESSAGE (RRCH)

The RdmaRdCompl (RDMA Read Complete) message is sent by the
Data Sink to inform the Data Source of completion of an RDMA Read
transfer. See section A4.6.2 Read Zcopy on page 1229

CA4-33: The RdmaRdCompl Header format shall be as defined in Figure
257.

The RdmaRdCompl message shall contain only the BSDH and RRCH.

The sender (Data Sink) may set the REQ_PIPE bit in the Flags field of the
BSDH. This bit should be set to zero if the Data Sink would prefer the Data
Source to stay in Combined Mode. The REQ_PIPE bit should be set to
one if the Data Sink prefers the Data Source to switch to Pipelined Mode
or remain in Pipelined Mode. This is just a hint to the Data Source. The
Data Source is not obligated to follow the recommendation. The Data
Source (which is the receiver of the RdmaRdCompl message) does not
examine the REQ_PIPE bit when in Buffered Mode.

A4.3.3.7.1 LENGTH (LEN) - 32 BITS

The size (in bytes) transferred to the Data Sink’s RDMA buffer from the
Data Source’s RDMA buffer (i.e., the buffer advertised in the original Sr-
cAvail message) through RDMA Read(s). The Len field does not include
the portion of the buffer (if any) transferred within the SrcAvail message
as ULP data payload. If there is ULP data in the SrcAvail message, Len
shall be less than the size of the Data Source RDMA buffer advertised in
the SrcAvail message by exactly the number of ULP payload bytes in-
cluded in the SrcAvail message.

A4.3.3.8 MODECHANGE MESSAGE (MCH)

The ModeChange message is used to inform the remote peer of a flow
control mode transition. See section A4.8 SDP Modes on page 1248.

Figure 257 RdmaRdCompl Header (RRCH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Len

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1215 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-34: The ModeChange Header format shall be as defined in Figure
258.

The ModeChange message shall contain only a BSDH and MCH.

The receiver of the ModeChange message must change its send or re-
ceive mode to the new mode specified in the message.

A4.3.3.8.1 S - 1 BIT

Specifies whether the peer receiving the ModeChange message should
change its flow control mode for its Send half-connection (S = 1) or Re-
ceive half-connection (S = 0), for the connection over which the
ModeChange message was received.

A4.3.3.8.2 MODE - 3 BITS

Specifies the new mode.

CA4-35: The ModeChange MCH field value shall be as defined in Table
355.

A4.3.3.8.3 RSVD - 28 BITS

Reserved for future use. Must be transmitted as zeroes and not checked
on receive.

A4.3.3.9 SRCAVAILCANCEL MESSAGE

The SrcAvailCancel (Data Source Available Cancel) message is sent by
the Data Source to ask the Data Sink to ignore all SrcAvail advertisements
sent by the Data Source which are Unprocessed by the Data Sink. See
section A4.6.5.4 SrcAvail Revocation on page 1240.

Figure 258 ModeChange Header (MCH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 S Mode RSVD

Table 355 MCH Mode Values

Mode
Value

Name Description

0 BUFF_MODE New mode should be
Buffered Mode

1 COMB_MODE New mode should be
Combined Mode

2 PIPE_MODE New mode should be
Pipelined Mode

3-7 reserved Reserved value

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1216 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The SrcAvailCancel message shall contain only a BSDH.

A4.3.3.10 SINKAVAILCANCEL MESSAGE

The SinkAvailCancel (Data Sink Available Cancel) message is sent by the
Data Sink to ask the Data Source to ignore all SinkAvail advertisements
sent by the Data Sink which are Unprocessed by the Data Source. See
section A4.6.5.5 SinkAvail Revocation on page 1242.

The SinkAvailCancel message shall contain only a BSDH.

A4.3.3.11 SINKCANCELACK MESSAGE

The SinkCancelAck (Data Sink Available Cancel Acknowledgement)
message is sent by the Data Source in response to the SinkAvailCancel
message. It shall be sent after it has canceled all Unprocessed SinkAvail
advertisements. See section A4.6.5.5 SinkAvail Revocation on page
1242.

The SinkCancelAck message shall contain only a BSDH.

A4.3.4 PRIVATE BUFFER RESIZING MESSAGES

A4.3.4.1 CHRCVBUF MESSAGE (CRBH)
The ChRcvBuf (Change Receive private Buffer size) message is sent by
a the Data Source to the Data Sink to request a change in the size of the
latter’s receive private buffers. See section A4.7.6 Receive Buffer Re-
sizing on page 1247.

The ChRcvBuf message shall contain only a BSDH and a CRBH

CA4-36: The ChRcvBuf Header format shall be as defined in Figure 259.

A4.3.4.1.1 DESIRED SIZE (DESSZ) - 32 BITS

 Desired size (in bytes) of the Data Sink’s receive private buffers.

A4.3.4.2 CHRCVBUFACK MESSAGE (CRBAH)
The ChRcvBufAck (Change Receive private Buffer size Acknowledge-
ment) message is sent in response to the ChRcvBuf message. The
ChRcvBufAck message informs the Data Source of the new size of the re-
ceive private buffers. See section A4.7.6 Receive Buffer Resizing on page
1247.

The ChRcvBufAck message shall contain only a BSDH and a CRBAH.

Figure 259 ChRcvBuf Header (CRBH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 DesSz

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1217 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-37: The ChRcvBufAck Header format shall be as defined in Figure
260.

A4.3.4.2.1 ACTUAL SIZE (ACTSZ) - 32 BITS

The actual or new size (in bytes) of the local receive private buffers. The
actual size may be the same as the size prior to receipt of the ChRcvBuf
message if the protocol implementation does not wish to resize its receive
private buffers.

A4.3.5 SOCKET DUPLICATION MESSAGES

A4.3.5.1 SUSPCOMM MESSAGE

The SuspComm (Suspend Communication) message is sent to ask the
remote peer to suspend communication as part of preparing the socket for
duplication. See section A4.10 Socket Duplication on page 1260.

The SuspComm message shall contain only a BSDH and a SuspCH.

CA4-38: The SuspComm Header format shall be as defined in Figure
261.

A4.3.5.1.1 SERVICE ID - 64 BITS

The Service ID that the remote peer should try to connect with to re-es-
tablish the connection with the local peer after duplication has completed.

A4.3.5.2 SUSPCOMMACK MESSAGE

The SuspCommAck (Suspend Communication Acknowledgement) mes-
sage is sent in response to the SuspComm message. This message in-
forms the peer that all communication has been suspended as requested
by the peer in its SuspComm message. See section A4.10 Socket Dupli-
cation on page 1260.

The SuspCommAck message shall contain only a BSDH.

Figure 260 ChRcvBufAck Header (CRBAH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 ActSz

Figure 261 SuspComm Header (SuspCH)

bits
bytes

31-24 23-16 15-8 7-0

0-3 Service ID(63-32)

4-7 Service ID(31-0)

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1218 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.4 ADDRESS RESOLUTION

CA4-39: SDP shall use either IPv4 or IPv6 addressing (generically called
IP addressing), as defined in IETF RFC791 and IETF RFC2460, respec-
tively. SDP shall use the IP over InfiniBand address resolution mecha-
nism. This mechanism is being developed by the IP over IB (IPoIB) IETF
working group. See http://www.ietf.org/html.charters/ipoib-charter.html.

SDP does this rather than defining a new mechanism for mapping from an
IP address to an InfiniBand address (either a LID or GID). Thus the SDP
protocol definition begins after the source and destination addresses have
been resolved to an InfiniBand address.

IP over InfiniBand does not define a mechanism to perform an inverse
lookup (from an InfiniBand address to an IP address). It is also possible
for a single InfiniBand address to have many IP addresses, providing a
one-to-many mapping when attempting to perform an inverse lookup. To
resolve these issues, the complete source and destination IP address is
provided during connection setup to enable mapping the destination and
source LID/GID to an IP address at the accepting peer of the connection.

A4.5 CONNECTION MANAGEMENT

SDP connection setup uses the existing InfiniBand connection manage-
ment MADs (REQ/REP/RTU/REJ/MRA), which include the ability to redi-
rect the connection to a different CM or Port (see section 12.10.7 Active
Client to Passive Server with Redirector - All Accept Communication on
page 704) or to automatically migrate the connection to an alternate path
(APM, see sections 10.4 Automatic Path Migration on page 461 and
17.2.8 Automatic Path Migration on page 1031). SDP connection tear-
down uses the existing InfiniBand teardown messages (DREQ/DREP),
but requires additional SDP message types to emulate TCP connection
teardown semantics for abortive and graceful connection teardown.

A4.5.1 CONNECTION SETUP

A4.5.1.1 INFINIBAND RELIABLE CONNECTION SETUP

CA4-40: SDP communications shall use InfiniBand’s Reliable Connec-
tion transport service exclusively.

Recall that an SDP implementation uses the private data field in the Infini-
Band CM REQ and CM REP MADs to transfer initial connection informa-
tion through the Hello and HelloAck messages, respectively.

Each socket corresponds to a single queue pair. The CM REQ MAD also
contains the destination Service ID, which is used to map the connection
to the destination TCP port number. The connection setup mechanism is
the InfiniBand Active/Passive (Client/Server) model as specified in sec-
tion 12.2 Establishment on page 652.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1219 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-41: The connection setup sequence shall include the following num-
bered steps in order:

4) The connecting peer prepares to send a CM REQ MAD with private
data.

a) Socket applications use 16-bit TCP port numbers to establish
connections. InfiniBand requires a 64-bit Service ID for connec-
tion setup. The mapping between TCP port numbers and Infini-
Band Service IDs is defined in the Application Specific Identifiers
Annex. It is reproduced here for convenience, where the TCP
port number is a hex value, 0xXXXX.

Service ID = 0x0000 0000 0001 XXXX

b) The connecting peer configures how many local receive private
buffers will be posted to the HCA and the size of the receive pri-
vate buffers. See section A4.7 Private Buffer Management on
page 1244 for constraints on private buffers.

c) The connecting peer should post all of its receive private buffers
to the Receive Queue (using the Post Receive Request verb) at
this time or before sending the CM RTU MAD. The connecting
peer may wait until immediately after completion of connection
setup to post the buffers, however it is possible the InfiniBand
RNR NAK protocol will be invoked. The RNR NAK protocol will
stall data transfer until the receive private buffers are posted. See
section A4.7 Private Buffer Management on page 1244.

d) The Responder Resources field in the CM REQ MAD shall be
greater than or equal to one.

5) The connecting peer shall send a CM REQ MAD with the Hello
message to the accepting peer. See section A4.3.2.1 Hello Message
(HH) on page 1204 and section A4.7.3 Initialization of Send Credit on
page 1245 for additional information on filling in the REQ private
data.

6) The accepting peer, upon receipt of the Hello message, performs the
following operations:

a) The accepting peer should post all of its receive private buffers to
the Receive Queue (using the Post Receive Request verb) before
sending the CM REP MAD with the HelloAck message. The ac-
cepting peer may wait until immediately after completion of con-
nection setup to post the buffers, however it is possible the
InfiniBand RNR NAK protocol will be invoked. The RNR NAK Pro-
tocol will stall data transfer until the receive private buffers are
posted. See section A4.7 Private Buffer Management on page
1244.

b) The Responder Resources field in the CM REP MAD shall be
greater than or equal to one.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1220 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

c) The accepting peer shall reject the connection by sending a CM
REJ MAD if:

• The local Major Protocol Version Number does not match the
Major Protocol Version Number in the Hello message. If the
accepting peer’s Major Protocol Version Number matches,
but the Minor Protocol Version Number does not, the accept-
ing peer shall accept the connection. The protocol specified
by the lower Minor Protocol Version Number shall be used for
all communication after connection setup.

• If the Responder Resources field in the CM REQ MAD is
equal to zero.

7) If the connection is accepted, the accepting peer shall send a CM
REP MAD with a HelloAck message back to the connecting peer.
See section A4.3.2.2 HelloAck Message (HAH) on page 1208 for ad-
ditional information.

8) The connecting peer replies to the CM REP MAD HelloAck message
with a CM RTU MAD.

a) If the connecting peer did not previously post receive private buff-
ers to the receive queue, it should do so before sending the CM
RTU MAD. It may wait until immediately after the CM RTU MAD
is sent, but as previously mentioned, this may stall data transfer
until the buffers are posted.

b) The connecting peer shall set the flow control mode to Combined
Mode and may immediately commence data transfer.

c) The connecting peer shall reject the connection by sending a CM
REJ MAD if:

• The local Major Protocol Version Number does not match the
Major Protocol Version Number in the HelloAck message.

• The Responder Resources field in the CM REP MAD is equal
to zero.

9) The accepting peer receives the CM RTU MAD.

a) The accepting peer shall set the flow control mode to Combined
Mode and may immediately commence data transfer.

If the RTU is dropped, the accepting peer may implement a timeout and
retransmit the REP. If a retransmission timeout is not implemented, it is
possible that the connecting peer’s SDP messages may be received
without an RTU having been delivered. This issue is resolved by the HCA
generating an event which completes connection setup. However, if the
accepting peer did not post receive private buffers before the SDP mes-
sage was received, data transfer will stall until connection setup is com-
pleted and the receive private buffers are posted to the Receive Queue.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1221 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-42: Implementations shall set the RNR NAK retry count to be non-
zero to avoid teardown of the connection because the remote peer has
not posted receive private buffers before completion of connection setup.

A4.5.1.2 ABORTING CONNECTION SETUP

CA4-43: When a CM REJ MAD is received by either the connecting or ac-
cepting peer the connection setup shall be aborted.

If a CM REJ MAD is sent for an SDP-specific error, the reject reason code
value shall be 28 (Consumer Reject -- 12.6.7.2 Rejection Reason on page
665.

An SDP implementation is expected to clean up any resources associated
with an aborted connection.

A4.5.2 AUTOMATIC PATH MIGRATION

SDP is designed to be compatible with the optional InfiniBand Automatic
Path Migration feature defined in sections 10.4 Automatic Path Migration
on page 461 and 17.2.8 Automatic Path Migration on page 1031 (APM).
SDP implementations should support APM, if it is available on the under-
lying InfiniBand implementation. SDP consumers may at their option use
this feature if it is available. APM usage involves two basic steps. First, al-
ternate paths are determined. Second, those paths are configured into the
SDP connection.

A4.5.2.1 DETERMINING ALTERNATE PATHS

Exactly how alternate paths are chosen is a matter of policy and outside
the formal scope of the SDP specification. However, SDP was designed
to be compatible with a number of different styles of alternate path selec-
tion. These styles include policies which use a priori information or infor-
mation exchanged outside of the SDP protocol.

Alternate paths are commonly determined at connection setup time. How-
ever, they may be determined later. Also, new alternate paths may need
to be determined later if fabric conditions change or to reload a new alter-
nate path after path migration has occurred.

A4.5.2.2 EXAMPLE ALTERNATE PATH SELECTION PROCEDURE

The address resolution procedure (see section A4.4 Address Resolution
on page 1218) provides address information in the form of a GID. If de-
sired, implementations may use the following procedure to find an alter-
nate path based on this address. The alternate path found by this
procedure is not guaranteed to map back into a valid IP-on-IB path.

This alternate path procedure employs a query commonly used to obtain
REQ information for the a single path.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1222 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SubnAdmGetTable(PathRecord: SGID, DGID, RawTraffic=0, other-pa-
rameters)

“other-parameters” may specify items such as SL, P_Key, MTU,
Rate, etc.

Note that SDP does not require any particular MTU, while IP-on-
IB paths have additional restrictions.

NumbPath could be 1 (in which case the SA query may use Sub-
nAdmGet rather than SubnAdmGetTable) or it could be higher if
some other criteria are used to select a path that cannot be spec-
ified in an SA query.

If an alternate path is desired to the above port, modify the single path
query. One modification is to specify NumbPaths greater than 1 (up to
127) and choose two path records to use. (Note, it is possible that a fabric
configuration may only provide a single possible path.) Another method is
to repeat the single path query but specify different “other-parameters”
(e.g. SL) to obtain an alternate path.

If it is desired that an alternate path be to another port of the HCA con-
taining the above port, the following procedure may be used.

1) Obtain the primary path by the single path query described above.

2) Use the LID from the primary PathRecord to construct a RID (see
section 15.2.4.2 Record Identifier (RID) Fields on page 887)

(Note that section C15-0.1.9: on page 887 allows this to work even if
the LID is not the base LID.)

3) Obtain the primary port NodeRecord (see section 15.2.5.2 No-
deRecord on page 891) for the CA:

SubnAdmGet(NodeRecord: RID)

Save the NodeGUID, PortGUID and LocalPortNum fields from the No-
deInfo (see section 14.2.5.3 NodeInfo on page 818) portion of this No-
deRecord.

4) Get all other NodeRecords for this CA:

SubnAdmGetTable(NodeRecord: NodeGUID)

For each NodeRecord returned (there will be one per port), save the
NodeRID. Also save the PortGUID and LocalPortNum from the No-
deInfo portion. Note that one record returned from this query will be a
duplicate of that returned from step 3. The duplicate can be found by
matching on the LocalPortNum field.

5) For each possible alternate port, find its GID Prefix by querying the
SA:

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1223 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SubnAdmGet(PortInfoRecord: RID=NodeRecord.NodeRID,
LocalPortNum=NodeRecord.NodeInfo.LocalPortNum)

Save the GIDPrefix field from the PortInfoRecord.

6) Assemble the zeroth GID for each possible alternate port:

GID<127:64> = PortInfoRecord.PortInfo.GIDPrefix

GID<63:0> = NodeRecord.NodeInfo.PortGUID

7) Optionally, the other possible GIDs for each alternate port can be
constructed by looking up GUIDInfoRecords. (This may be necessary
in inter-subnet routing cases.)

8) The single path query can now be repeated on each possible al-
ternate port using the GID(s) constructed in steps 6 and 7.

9) Select an alternate path from those looked up in step 8.

A4.5.2.3 CONFIGURING ALTERNATE PATHS

Configuration of alternate paths is accomplished using standard CM
MADs. Two means are possible. One method is to specify the alternate
path information in the CM REQ MAD as part of the normal
REQ/REP/RTU exchange for connection setup. This procedure places
the responsibility for specifying alternate paths with the connecting side.
The second method uses the CM LAP MAD to modify an existing connec-
tion. Note that the LAP/APR MAD exchange can only be initiated from the
connecting side.

The LAP can also be used to reconfigure alternate paths. If a two step pro-
cess is again required, one LAP/APR sequence can exchange private
data to drive a second LAP method configuration.

A4.5.3 CONNECTION TEARDOWN

SDP emulates TCP connection teardown functionality. TCP provides two
ways to close a connection - a graceful close, where any data that has
been posted by the ULP to the transport is transferred before the connec-
tion is torn down, and abortive close, where the connection is immediately
torn down.

A4.5.3.1 GRACEFUL CLOSE

TCP’s graceful close (also known as graceful disconnect or half-closed
connections) is an agreement between the transport and ULP that:

• before the connection is terminated, all data accepted for trans-
mission by the transport before the close occurred is guaranteed
to be sent out (under reasonable limitations) and reliably ac-
knowledged.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1224 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• data reception can continue normally until the remote peer per-
forms a close.

Sockets Direct Protocol provides the same behavior.

CA4-44: The local peer shall not close the InfiniBand connection at the
time of the ULP’s call to gracefully close the half-connection. The local
peer shall reject any send data posted by the ULP after the ULP close call
occurred.

CA4-45: The local peer shall continue to receive ULP data through any
of the SDP data transfer mechanisms until the remote peer gracefully
closes the connection or the connection is abortively closed (see section
A4.5.3.2 Abortive Close on page 1226 for the abortive close protocol).

CA4-46: The local peer shall also perform the following operations in the
order specified:

1) The local peer shall complete the transmission of all outbound data
posted by the ULP before the ULP requested the graceful close. This
means that all Bcopy transfers, Write Zcopy transfers, Read Zcopy
transfers, and Transaction transfers from this Data Source have been
completed (see section A4.6 Data Transfer Mechanisms on page
1227). Completions may be successful or unsuccessful (e.g. an In-
finiBand timeout occurred). Unsuccessful completions shall cause
the local peer to perform an abortive close (see section A4.5.3.2
Abortive Close on page 1226).

2) The local peer shall send a DisConn message to the remote peer.
This informs the remote peer that the connection is being terminated
gracefully, allowing the remote peer to inform the ULP of this fact as
appropriate. If the DisConn message completed with an error, the
connection tear down was abortive.The DisConn message provides
similar functionality to a TCP segment with the FIN bit set. Because
InfiniBand reliable connection service provides in-order delivery, no
ULP data will be received after the DisConn message has been re-
ceived. Note that SDP messages may continue to be received by the
local peer to enable ULP data transfer on the opposite half-con-
nection.

3) The local peer shall wait for one of the following events:

• reception of a DisConn message - the remote peer gracefully
closed the opposite half-connection (unless an AbortConn mes-
sage is received before the connection is terminated).

• the InfiniBand connection is torn down (this may be due to either
a graceful or an abortive close).

• the local ULP abortively closes the connection (see section
A4.5.3.2 Abortive Close on page 1226).

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1225 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• if no forward progress is being made, the connection may be
abortively closed (see section A4.5.3.2 Abortive Close on page
1226).

4) When the SDP implementation is informed that the InfiniBand con-
nection was torn down all work completions shall be examined to de-
termine whether a DisConn message, or a DisConn message
followed by an AbortConn message, was received. If a DisConn
message was received without an AbortConn, the graceful close was
successfully completed. If a DisConn message was not received, or a
DisConn message and an AbortConn message were received, then
the close was abortive (see section A4.5.3.2 Abortive Close on page
1226). In either case, all ULP receive buffers shall be completed with
information about how much of the buffer was filled.

5) The local peer shall wait for all send work requests to complete
(either successfully or in error). This is necessary because the
remote peer’s DisConn message may have crossed the local peer’s
DisConn message (i.e. both sides are simultaneously attempting a
graceful teardown). Because InfiniBand connection teardown imme-
diately places the Queue Pair in the Error state (see section 12.10.8
Communication Release on page 705), any outstanding SDP mes-
sages or RDMA transfers would be aborted if the connection were
immediately torn down.

6) The InfiniBand connection teardown protocol shall be used to com-
plete the teardown (see section 12.10.8.1 Disconnect Request on
page 705). The local peer shall close and clean up all InfiniBand re-
sources associated with the connection (queue pair, buffers, etc.).

CA4-47: To effect a graceful close, the remote peer shall perform the fol-
lowing operations in the order given:

1) Upon receipt of a DisConn message, the remote peer shall consider
all its outstanding SinkAvail advertisement as canceled, complete all
ULP receive buffers, and wait for the ULP to close the connection.
The remote peer shall continue to allow normal ULP send data
transfer, but shall complete any new ULP receive buffers and inform
the ULP (as appropriate) that the receive half-connection has been
gracefully closed.

2) If the ULP issues an abortive close, the abortive close protocol shall
be used (see section A4.5.3.2 Abortive Close on page 1226). If the
ULP issues a graceful close, the remote peer shall complete the
transmission of all send ULP data that was posted before the ULP
posted the graceful close. Completions may be successful or unsuc-
cessful (e.g. an InfiniBand timeout occurred). The remote peer shall
reject any send data posted by the ULP after the ULP close call oc-
curred.

3) The remote peer shall send a DisConn message to the local peer.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1226 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4) The remote peer shall wait for all send work requests to complete
and then shall process all work completions. If the DisConn message
completed without error and no AbortConn message was received,
then the graceful teardown was successful. If the DisConn message
completed with an error (including a flush error status) or an
AbortConn was received, the connection teardown was abortive.

5) The InfiniBand connection teardown protocol shall be used to com-
plete the teardown. The remote peer shall close and clean up all In-
finiBand resources associated with the connection (queue pair,
buffers, etc.).

A4.5.3.2 ABORTIVE CLOSE

CA4-48: If the ULP specifies an abortive disconnect or an abortive discon-
nect is required for some other reason, the following rules shall be fol-
lowed:

• if the IB connection is still valid and a DisConn message was previ-
ously sent, then an AbortConn message shall be sent and its com-
pletion processed before terminating the InfiniBand connection.

• if the IB connection is not valid or if the IB connection is valid and no
DisConn message was previously sent, no further SDP messages
shall be placed on the Send Queue and the InfiniBand connection
shall be terminated immediately (see section 12.10.8 Communica-
tion Release on page 705).

CA4-49: SDP shall consider the connection abortively torn down if the In-
finiBand connection is torn down without receiving a DisConn message,
or if both an AbortConn and a DisConn message were received. Any un-
sent ULP data shall be discarded.

If an SDP protocol violation occurs, the connection should be abortively
closed. A protocol violation includes but is not limited to InfiniBand errors,
invalid SDP messages, or incorrectly formatted SDP messages.

Certain ULP behaviors can lead to a situation under which the ULP initially
indicates graceful teardown in the send direction (causing the DisConn
message to go out), and then some error occurs which requires the con-
nection to be abortively closed. The AbortConn message is used for this
purpose. It is sent if the DisConn message has already been sent out (but
InfiniBand connection has not been terminated yet) and some error con-
dition arises which calls for abortive teardown of the socket under TCP se-
mantics. Sending out the AbortConn message informs the remote peer to
ignore the earlier DisConn message and inform the ULP (as appropriate)
that the connection was closed abortively. In this case, the AbortConn
message is similar to TCP sending a segment with the RST bit set after it
has already sent a segment with the FIN bit set.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1227 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-50: Once the AbortConn message completion event occurs, the
normal InfiniBand connection teardown protocol shall be used to com-
plete the teardown.

A4.6 DATA TRANSFER MECHANISMS

SDP employs four data transfer mechanisms:

• Bcopy - transfer of ULP data from send buffers into receive pri-
vate buffers.

• Read Zcopy - transfer of ULP data through RDMA Reads, prefer-
ably directly from ULP buffers into ULP buffers.

• Write Zcopy - transfer of ULP data through RDMA Writes, prefer-
ably directly from ULP buffers into ULP buffers.

• Transaction - an optimized ULP data transfer model for transac-
tions. It piggy-backs ULP data transfer using private buffers on
top of the Write Zcopy mechanism used to transfer ULP data on
the opposite half-connection.

The policy which controls when to use the Bcopy data transfer mecha-
nisms versus a Zcopy data transfer mechanism is outside the scope of
this specification. An implementation dependent parameter defined as the
Bcopy Threshold is used to abstractly define the results of the policy de-
cision. There are no constraints placed on the Data Source Bcopy
Threshold values, and the value of the Data Source Bcopy Threshold may
be static or dynamic. The Data Sink Bcopy Threshold has a single con-
straint: it must be greater than or equal to the size of the receive private
buffers. Its value may also be static or dynamic.

Note that some socket implementations do not provide deterministic re-
sults if overlapping receive buffers are posted.

CA4-51: An SDP implementation shall support the Bcopy data transfer
mechanism, both as a Data Source and as a Data Sink.

It is strongly recommended that an SDP implementation support the
ability to initiate all data transfer mechanisms.

It is strongly recommended that an SDP implementation support the
ability to carry out all data transfer mechanism requests.

CA4-52: If an SDP implementation does not support carrying out a re-
ceived request for a given optional data transfer mechanism, the imple-
mentation must still be able to parse the received request, and to force
the use of the Bcopy data transfer mechanism.

For example, if an SDP implementation does not support carrying out the
Read Zcopy data transfer mechanism request, when the implementation

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1228 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

receives a SrcAvail message, the implementation must be able to re-
spond with a SendSm message to force the Data Source to use the Bcopy
data transfer mechanism.

A4.6.1 BCOPY

SDP maintains a small set of receive private buffers for receiving data that
the Data Source transfers using InfiniBand Sends. Each connection has
a separate pool of receive private buffers.

Each peer chooses its own sizes of send and receive private buffers and
informs the other peer of these during connection setup.

CA4-53: The Data Source shall limit the amount of ULP data sent in an
SDP message (specifically a Data, SinkAvail, or SrcAvail message) to en-
sure the ULP data plus SDP header(s) will fit within the receive private
buffer size advertised by the Data Sink.

SDP message transfer is flow controlled as described in section A4.7 Pri-
vate Buffer Management on page 1244.

For the Data Source, data may be copied from the ULP’s buffer to the pay-
load sections of one or more of the send buffers or the ULP buffer may be
referenced directly by the send work request. In the header, the MID is set
to type Data message and the SDP message size is set to the ULP pay-
load size plus the size of the header. The SDP message is sent by posting
a Send work request.

Figure 262 Ladder Diagram for BCopy Mechanism

Data message
with payload #1

Data message with

no payload for flow

control

A ladder diagram showing the Data Source
sending multiple Data messages to send ULP
data. Note that Data messages are sent to the re-
ceive private buffer pool, and thus require a flow-
control update periodically. This update can be
piggybacked on a SDP message sent as part of
normal data flow or it can be sent in a Data mes-
sage with no payload.

Data message
with payload #2Data message
with payload #3

Data Source Data Sink

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1229 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Data Sink receives the SDP message in its posted receive private
buffers. When a ULP receive buffer is completed is outside the scope of
this specification.

A4.6.2 READ ZCOPY

This mechanism shall transfer data through the following sequence of op-
erations:

1) The Data Source sends a SrcAvail message when a send ULP buffer
the Source deems suitable has been posted (there are no protocol
restrictions on the Data Source use of the Bcopy mechanism versus
Read Zcopy mechanism for transfer of a specific ULP buffer). For ex-
ample a SrcAvail message may be sent if the ULP buffer is larger
than the Bcopy Threshold. If the Source chooses to advertise a ULP
buffer in a SrcAvail message, the ULP buffer is referred to as an
RDMA buffer (the RDMA buffer may be a copy of the ULP buffer).

Note that in Combined Mode the SrcAvail message payload must con-
tain at least one byte of ULP payload and in Pipelined Mode the Sr-
cAvail message must not contain ULP payload (see sections A4.8.2
Combined Mode on page 1251 and A4.8.3 Pipelined Mode on page
1251).

CA4-54: The SrcAH Len, VA, and R_Key fields shall describe the entire
send RDMA buffer, regardless of whether a copy of the initial portion of
the RDMA buffer is included in the SrcAvail message payload.

CA4-54.2.1: In an Invalidate Enabled SDP connection, the R_Key in a Sr-
cAvail message shall be capable of being remotely invalidated. Refer to
the Base Memory Management Extensions for additional details on re-
mote invalidation.

In an Invalidate Enabled SDP connection, the Data Source should not
rely on the Data Sink to perform a remote invalidate after the data
transfer is completed.

After receiving a SrcAvail message, the Data Sink may send a
SendSm message when ULP receive buffer(s) are not suitable for
Read Zcopy.

2) The Data Sink receives the SrcAvail message and waits for the ULP
to post a receive buffer to SDP. If the receive ULP buffer is viewed as
unsuitable for Read Zcopy, a SendSm message should be sent (see
section A4.6.5.2 Mechanisms For Forcing Bcopy on page 1238). If
the receive ULP buffer is viewed as suitable for Read Zcopy, the ULP
buffer should be used as the RDMA buffer. An implementation may
choose to create an intermediate buffer as the RDMA buffer, and
then copy the data into the ULP buffer. If there is an initial portion of
the send RDMA buffer present in the SrcAvail advertisement, the

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1230 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Data Sink shall move the data into the RDMA buffer through one of
the following mechanisms:

• copy some or all of the ULP payload of the SrcAvail message to
the receive RDMA buffer, and then perform one or more RDMA
Read(s) to retrieve the rest of the data, offsetting the initial RDMA
Read transfer by the number of bytes that were copied out of the
SrcAvail message ULP payload.

• avoid the ULP payload copy and start the initial RDMA Read at
the start of the send RDMA buffer. Additional RDMA Reads may
be used to transfer the rest of the buffer.

CA4-55: After the RDMA Read(s) complete(s), the Data Sink shall send
a RdmaRdCompl message to the Data Source, unless the operation was
canceled (see section A4.6.5.4 SrcAvail Revocation on page 1240). The
RdmaRdCompl shall either have the fence indicator set or the Data Sink
shall wait for completion of the RDMA Read before posting the RdmaRd-
Compl to the Send Queue.

CA4-56: The RdmaRdCompl header shall contain the size (in bytes) of
ULP data transferred through the RDMA Read(s), excluding any portion
of the ULP data that was originally transferred through the SrcAvail mes-
sage. The RdmaRdCompl message shall refer to data made available
through a single SrcAvail advertisement.

CA4-57: A Data Sink shall only send an RdmaRdCompl message asso-
ciated with the oldest incomplete SrcAvail message.

The size does not include the portion of the data, if any, transferred
within the SrcAvail message as ULP payload. It may be less than the
size of the Data Source RDMA buffer advertised in the SrcAvail mes-
sage minus the size of ULP data payload included in the SrcAvail mes-
sage. An implementation may loop performing a series of RDMA Read
operations followed by RdmaRdCompl messages to transfer the send
RDMA buffer contents.

It is expected (but not required) that protocol implementations would
typically RDMA Read all the ULP data and then send a single Rd-
maRdCompl message to inform the Data Source that the SrcAvail
message has been Processed. The facility to specify data transfer
size less than the RDMA buffer size advertised in the SrcAvail mes-
sage enables various transfer scenarios. For example, a protocol im-
plementation may RDMA Read part of the data and then send a
RdmaRdCompl message followed by a SendSm message to retrieve
the rest of the data using the Bcopy mechanism. Only one SendSm
message may be used to complete data transfer for a given SrcAvail
advertisement. See 3) below.

In an Invalidate Enabled SDP connection, the Data Sink should send
the last RdmaRdCompl message, associated with a SrcAvail mes-

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1231 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

sage, through a Send w/Invalidate; the R_Key used for the RDMA
Read data transfer shall be used as an argument to the Send w/Inval-
idate verb.

CA4-57.2.1: The Data Sink shall not send an RdmaRdCompl message
through a Send w/Invalidate for partially completed data transfers.

Note that if the flow control mode from the Data Source to the Data
Sink is Combined Mode, the Data Sink may set the REQ_PIPE bit in
the BSDH Flags field of the RdmaRdCompl message if it wishes to
transition to Pipelined mode (see section A4.3.1 Base Sockets Direct
Header (BSDH) on page 1201).

3) Upon receiving the RdmaRdCompl message, the Data Source shall
compare the RRCH Len field against the length of the oldest, incom-
plete SrcAvail advertisement. If the send RDMA buffer has not been
completely transferred, the Data Source shall wait until the SrcAvail
message has been Processed by an ensuing RdmaRdCompl
message or a SendSm message. Once the send RDMA buffer is
completed, this may map to completion of a send ULP buffer, as ap-
propriate.

CA4-57.2.2: If the Data Sink has remotely invalidated the RDMA buffer
through a RdmaRdCompl message, the Data Source shall verify that the
invalidated R_Key is associated with the RDMA buffer sent in the oldest
incomplete SrcAvail message. If there is a mismatch, the Data Source
shall view the operation as a protocol violation.

CA4-58: Data advertised by SrcAvail shall remain available for Read
Zcopy by the Data Sink until its consumption has been acknowledged with
RdmaRdCompl message(s), a SendSm message is received from the
Data Sink, the SrcAvail message has been over ridden because of a
SinkAvail message (see section A4.8.3 Pipelined Mode on page 1251), or
the Data Source has Processed a SrcAvailCancel sequence (see section
A4.6.5.4 SrcAvail Revocation on page 1240).

Note the portions of the RDMA Read buffer that have been completed
by an RdmaRdCompl are no longer required to be available for RDMA
Read.

If a SendSm message is received at the Data Source, the Data Source
shall match the message with the oldest, incomplete SrcAvail adver-
tisement. The Data Source shall view this SrcAvail as Processed and
shall send the remaining ULP data using Data messages (see section
A4.6.1 Bcopy on page 1228). The Data Sink shall consume this data
before sending an RdmaRdCompl for other SrcAvail messages (this
condition can only occur in Pipelined Mode - see section A4.8.3 Pipe-
lined Mode on page 1251).

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1232 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-59: Upon receiving a SendSm message, the Data Source shall
complete the oldest incomplete SrcAvail advertised buffer using Data
message(s). After sending a SendSm message, the Data Sink shall wait
until it has received all of the data that was advertised in the corre-
sponding SrcAvail before sending any RdmaRdCompl message, even for
another advertised buffer.

Note that the Data Sink calculates the number of remaining bytes ex-
pected through Data messages by subtracting from the SrcAH length field
the sum of the number of bytes that the Data Sink has acknowledged with
RdmaRdCompl message(s) plus the amount of ULP payload included in
the SrcAvail message.

CA4-60: When the Data Sink sends multiple RdmaRdCompl messages
for a single SrcAvail advertisement, the RdmaRdCompl message length
field shall be the number of bytes transferred since the last RdmaRd-
Compl was sent for this SrcAvail advertisement.

Figure 263 Ladder Diagram for Read Zcopy Mechanism

A ladder diagram showing the Data Source
sending a send RDMA buffer advertisement (Sr-
cAvail message) to the Data Sink. The Data Sink
initiates one or more RDMA Read(s) to transfer
source ULP data. When the RDMA Read(s) com-
pletes, a RdmaRdCompl message is sent to the
Data Source. Further RDMA Read(s) and Rd-
maRdCompl messages may be necessary to con-
sume the entire source buffer.

RdmaRdCompl

message

Data Source Data Sink
SrcAvailmessage

RDMA Read

Optional Message

RDMA Read

RdmaRdCompl

message

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1233 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

It is possible to create a deadlock if, at the same time, both ULP peers
post send data suitable for Read Zcopy and both ULPs wait for the asso-
ciated send to complete before posting a receive. A SrcAvail message
could be sent by each SDP peer, but no ULP receive buffer would be
posted. This deadlock is possible when all of the following are true:

• A SrcAvail is received; and

• No ULP receive buffer is posted; and

• The local Data Source has a SrcAvail outstanding.

When these conditions are true, a deadlock can be avoided in a variety of
ways:

• The Data Sink could send a SendSm message to force the use of
the Bcopy data transfer mechanism.

• The Data Source could send a SrcAvailCancel message and then
complete the ULP write using the Bcopy data transfer mecha-
nism.

• The Data Sink could complete the Read Zcopy using a local buff-
er, holding that data until the ULP posts a receive.

Regardless of the method used, it is strongly recommended that SDP im-
plementations detect and recover from this deadlock situation.

A4.6.3 WRITE ZCOPY

This mechanism shall transfer data through the following sequence of op-
erations:

1) The Data Sink may send a SinkAvail message to the Data Source
when a suitable receive ULP buffer is posted (note that the ULP
buffer must be larger than the size of the local receive private buffers
- see section A4.6.5.1 Detecting Stale SinkAvail Advertisements on
page 1237). If Write Zcopy is chosen, the ULP buffer is referred to as
a receive RDMA buffer (the receive RDMA buffer may actually be a
private buffer from where receive data is copied to the ULP buffer --
this is implementation-dependent).

CA4-61: The SinkAH Len, VA, and R_Key fields shall describe the entire
receive RDMA buffer. The NonDiscards field shall be set as specified in
section A4.3.3.3.4 NonDiscards - 32 bits on page 1213.

CA4-61.2.1: In an Invalidate Enabled SDP connection, the R_Key in a
SinkAvail message shall be capable of being remotely invalidated. Refer
to the Base Memory Management Extensions for additional details on re-
mote invalidation.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1234 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In an Invalidate Enabled SDP connection, the Data Sink should not
rely on the Data Source to perform a remote invalidate after the data
transfer is completed.

2) The Data Source receives the SinkAvail message and waits for the
ULP to post a send buffer. If the Data Source determines the buffer is
suitable for Write Zcopy, it shall use one or more RDMA Writes to
transfer ULP data to the Data Sink. If the Data Source determines the
buffer is unsuitable for Write Zcopy, it shall use the protocol described
under section A4.6.5.2.2 Data Source Forcing Bcopy on page 1239

CA4-62: After the RDMA Writes(s) complete, the Data Source shall send
a single RdmaWrCompl message to the Data Sink, unless the operation
was canceled.

In an Invalidate Enabled SDP connection, the Data Source should
send an RdmaWrCompl message, associated with a SinkAvail mes-
sage, through a Send w/Invalidate; the R_Key used for the RDMA
Write data transfer shall be used as an argument to the Send w/Inval-
idate verb.

CA4-63: The RdmaWrCompl header shall contain the size (in bytes) of
data transferred through the RDMA Write(s).

3) Upon receiving the RdmaWrCompl message, the Data Sink shall
match the RdmaWrCompl message to the oldest incomplete
SinkAvail advertisement and shall consider the SinkAvail adver-
tisement Processed. Once the receive RDMA buffer is Processed,
this may map to completion of a receive ULP buffer, as appropriate.

CA4-63.2.1: If the Data Source has remotely invalidated the RDMA buffer
through a RdmaWrCompl message, the Data Sink shall verify that the in-
validated R_Key is associated with the RDMA buffer sent in the oldest in-
complete SinkAvail message. If there is a mismatch, the Data Sink shall
view the operation as a protocol violation.

CA4-64: A Data Sink RDMA buffer advertised by SinkAvail shall remain
available for Write Zcopy from the Data Source until it has been acknowl-
edged with an RdmaWrCompl message, the SinkAvail was canceled due
to a Data message (see section A4.6.5.1 Detecting Stale SinkAvail Adver-
tisements on page 1237), or the advertisement has been revoked, (and

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1235 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the revoke request has been Processed - see section A4.6.5.5 SinkAvail
Revocation on page 1242).

Some socket implementations support an option to ensure that receive
ULP buffers are completely filled before they are returned to the ULP. This
is typically implemented as a flag called MSG_WAITALL which is speci-
fied when a receive ULP buffer is posted. If the MSG_WAITALL socket op-
tion is supported by the Data Sink implementation, it shall disable Write
Zcopy for ULP buffers which have MSG_WAITALL set by not sending
SinkAvail advertisements to the Data Source. Enabling Write Zcopy for
buffers with MSG_WAITALL breaks the ULP buffer accounting algorithm
which addresses crossing SinkAvail and Data messages (see section
A4.6.5.1 Detecting Stale SinkAvail Advertisements on page 1237). If the
ULP buffer accounting algorithm were used, then the ULP buffer must be
partially completed if a Data message and SinkAvail message cross. Dis-
abling SinkAvail prevents this condition, thus enabling the receive ULP
buffer to be completely filled in all scenarios.

oA4-1: For any ULP buffer with the MSG_WAITALL socket option flag set,
no SinkAvail advertisement shall be sent to the Data Source.

A4.6.4 TRANSACTION MECHANISM

If the ULP is transaction oriented, typically one peer is sending short com-
mand messages and medium to long reply messages are expected. It is
possible to optimize this transfer model by collapsing the SinkAvail adver-
tisement for the reply receive RDMA buffer with the Data message for the
command. This enables zero-copy receives on potentially smaller replies
as well as reducing control traffic. Note that the SinkAvail message is used

Figure 264 Ladder Diagram for Write Zcopy Mechanism

RDMA Write

A ladder diagram showing the Data Sink sending
a receive RDMA buffer advertisement (SinkAvail
message) to the Data Source. The Data Source
transmits source ULP data when available by
using an RDMA Write followed by a RdmaWr-
Compl message.

RdmaWrCompl
message

SinkAvail message

Data Source Data Sink

Optional Message

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1236 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

to transfer ULP payload which is being sent in the opposite direction of the
SinkAvail message, and that for the SinkAvail to be generated the flow
control mode must be Pipelined Mode (see section A4.8.3 Pipelined Mode
on page 1251). Also note that the receive RDMA buffer for the SinkAvail
advertisement must be larger than the local receive private buffer size
(see section A4.6.5.1 Detecting Stale SinkAvail Advertisements on page
1237).

Note that the Data Sink can only send a SinkAvail message with ULP pay-
load to the Data Source if the current flow control mode is Pipelined mode
(see section A4.8.3 Pipelined Mode on page 1251).

If an end point receives a SinkAvail message with ULP payload, it may
use RDMA Writes to fill the advertised RDMA buffer unless prior ULP pay-
load-carrying messages effectively canceled this SinkAvail advertisement
(see section A4.6.5.1 Detecting Stale SinkAvail Advertisements on page
1237).

Figure 265 Ladder Diagram of Transaction Mechanism on page 1236
shows the collapsing of the Data message into the SinkAvail advertise-
ment. ULP peer A is communicating with ULP peer B, with a traffic pattern
that appears as though it is transactional. Peer A is repetitively sending
peer B a single small ULP message (this is the command) and then im-
mediately posting a receive ULP buffer (this is the reply). Without the pig-
gyback mechanism, two SDP messages would potentially be generated
by peer A.

Figure 265 Ladder Diagram of Transaction Mechanism

SinkAvailmessage

RDMA Write

peer A peer B
Data message

RdmaWrCompl

message

Non-Optimized
Transaction

SinkAvailmessage withpayload

RDMA Write

peer A peer B

RdmaWrCompl

message

Optimized

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1237 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ULP peer B is consistently waiting for reception of a command before
posting a send ULP buffer for the reply. If the Transaction mechanism was
not available and the SinkAvail advertisement was not received before the
reply was posted by the ULP, the reply Data Source would have to choose
whether to wait for the SinkAvail advertisement, generate a SrcAvail ad-
vertisement, or transfer the ULP data using the Bcopy mechanism. With
the Transaction mechanism, the logic is straightforward. The reply Data
Source may use the Write Zcopy mechanism to transfer the reply. If the
reply ULP buffer is not suitable for RDMA Write, the Data Source may
send the reply data using the Bcopy mechanism. All Pipelined Mode rules
apply (see section A4.8.3 Pipelined Mode on page 1251).

A4.6.5 MISCELLANEOUS DATA TRANSFER ISSUES

A4.6.5.1 DETECTING STALE SINKAVAIL ADVERTISEMENTS

SDP allows the Data Source to send ULP data through SDP messages.
This creates an issue in Pipelined Mode because a SinkAvail advertise-
ment may cross an SDP message containing ULP data which is destined
for the same receive ULP buffer that was advertised in the SinkAvail mes-
sage. The receive ULP buffer could be at least partially satisfied through
the Data message. This effectively requires the Data Source to view the
receive RDMA buffer advertisement as outdated or stale.

CA4-65: The Data Sink shall only send a SinkAvail advertisement if the
RDMA buffer is larger than the local receive private buffer size.

Note that this also means that the Data Sink Bcopy Threshold must be
larger than or equal to the receive private buffer size.

SDP shall use the following algorithm to enable the Data Source to detect
and recover from stale SinkAvail advertisements:

1) If a ULP receive RDMA buffer R has been advertised through a
SinkAvail message and one or more messages with ULP payload
(Data or SinkAvail message with ULP payload) arrive at the Data
Sink, then the ULP payload of exactly one SDP message shall be
copied to R and R shall be returned to the ULP. In other words, R will
not consume the ULP payload of more than one SDP message.

CA4-66: In Pipelined mode, the ULP payload of only one SDP message
(Data message or SinkAvail) shall be used to complete any one RDMA
buffer advertised through SinkAvail.

If a receive ULP buffer has not been advertised through a SinkAvail
message, it may consume the ULP payload of more than one SDP
message.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1238 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) The Data Source shall keep a 32-bit counter, PotentialNonDiscards,
which tracks the number of SDP messages carrying ULP payload
that the Data Source has sent that might not cause a SinkAvail
message to be discarded. It is initialized to zero. It wraps to zero after
reaching 0xFFFFFFFF.

3) The Data Source, upon sending an SDP message carrying ULP
payload, shall increment PotentialNonDiscards by one.

4) At the Data Source:

CA4-67: The Data Source shall execute the following pseudo-code for
each received SinkAvail advertisement before initiating a Write Zcopy
data transfer using the advertised buffer. If ULP payload is present in the
SinkAvail, it shall be processed normally regardless of whether the
SinkAvail was discarded.

 If (SinkAvail.NonDiscards!= PotentialNonDiscards)

 Discard(SinkAvail)

 PotentialNonDiscards--

 Else

 Process SinkAvail normally

For example, if PotentialNonDiscards=2 and the Data Source has
three SinkAvail advertisements, all with NonDiscards=0, then the first
two advertisements are discarded as stale and RDMA is initiated on
the third advertisement.

Note that this algorithm can cause receive ULP buffers to be partially filled
when completed. If a ULP buffer is required to be completely filled an SDP
implementation should not advertise the ULP buffer with a SinkAvail mes-
sage. See section A4.6.3 Write Zcopy on page 1233 for additional details.

Detecting stale SinkAvail advertisements is one mechanism that causes
a SinkAvail advertisement to be discarded. Section A4.9.4 Transition
From Pipelined Mode to Combined Mode on page 1256 defines a different
circumstance when a SinkAvail message must be discarded.

A4.6.5.2 MECHANISMS FOR FORCING BCOPY

A4.6.5.2.1 DATA SINK FORCING BCOPY

While in Combined or Pipelined Modes, if the Data Sink determines that
its buffer is unsuitable for use with Read Zcopy from an RDMA buffer ad-
vertised by the Data Source, the Data Sink can use the SendSm message
to force the Data Source to send data through the Bcopy mechanism (i.e.,
through Data messages). The Data Sink may send the SendSm message
after receiving a SrcAvail message.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1239 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-68: Upon receiving the SendSm message, the Data Source shall
send all remaining ULP data (advertised in the associated SrcAvail mes-
sage) using Data messages.

Section A4.7.1 SDP Message Ordering on page 1245 requires that the
Data Sink process SrcAvail messages in MSeq order. For each SrcAvail
message received, the Data Sink shall either proceed with the appropriate
RDMA data transfer mechanism (Read Zcopy if a SinkAvail advertise-
ment did not cross, or wait for an RdmaWrCompl if a crossing occurred -
see section A4.8.3 Pipelined Mode on page 1251) or it shall respond with
a SendSm message.

The Data Source shall respond to the SendSm request by matching it to
the oldest incomplete SrcAvail advertisement and then sending the re-
maining ULP data for the SrcAvail advertisement (i.e. that has not been
Processed by RdmaRdCompl message(s) from the Data Sink or already
sent as ULP payload in the SrcAvail message) through the Bcopy mech-
anism.

Implementation note: in some cases the Data Source and Data Sink will
have different Bcopy Threshold values. When the Source advertises an
RDMA buffer whose size is greater than the Source’s Bcopy Threshold
but less than the Sink’s Bcopy Threshold, the Sink may choose to force a
Bcopy. However, since the Source has already invested in setting up a
Read Zcopy data transfer, the Sink should give special consideration to
cooperating with the Source’s attempt to use Read Zcopy. Still, the Sink is
free to force a Bcopy if it determines that for any reason its buffer is un-
suitable for Read Zcopy.

A4.6.5.2.2 DATA SOURCE FORCING BCOPY

While in Pipelined Mode, if the Data Source determines that its buffer is
unsuitable for use with Write Zcopy to an RDMA buffer advertised by the
Data Sink, the Data Source is allowed to choose to not use the Data Sink’s
RDMA buffer advertisement, and use Data messages to send data using
the Bcopy data transfer mechanism. In this case, the Data Source and
Data Sink shall follow the protocol described in section A4.6.5.1 Detecting
Stale SinkAvail Advertisements on page 1237.

Implementation note: in some cases the Data Source and Data Sink will
have different Bcopy Threshold values. When the Data Sink advertises an
RDMA buffer whose size is greater than the Data Sink’s Bcopy Threshold
but less than the Data Source’s Bcopy Threshold, the Data Source may
choose to force a Bcopy. However, since the Data Sink has already in-
vested in setting up a Write Zcopy data transfer, the Data Source should
give special consideration to cooperating with the Data Sink’s attempt to
use Write Zcopy. Still, the Data Source is free to force a Bcopy if it deter-
mines that for any reason its buffer is unsuitable for Write Zcopy.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1240 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.6.5.3 PROCESSING OUT-OF-BAND DATA

CA4-69: When the Data Source ULP posts Out-Of-Band data (a single
byte) to be transmitted, the ordering of the Out-Of-Band data in the output
byte stream shall be preserved.

The precise mechanism for conveying OOB data requests from the ULP
to the SDP implementation is outside the scope of this specification.

CA4-70: Once the ULP has indicated that a particular byte in its output
stream should be marked as Out-Of-Band data, the SDP implementation
shall notify the remote peer that out-of-band data is pending by setting the
OOB_PEND flag on an outgoing SDP message. It is recommended that
this notification be accomplished in an expeditious fashion, however, the
only requirements levied by the specification are as follows:

• The OOB_PEND flag shall be sent exactly once for each OOB data
indication.

• The OOB_PEND flag shall be sent on a message sent no later than
the message containing the Out-Of-Band data byte.

• The implementation shall, if necessary, delay sending the
OOB_PEND flag to ensure that there will be no more than 65,535
(216-1) bytes of data sent between the flag and its associated Out-Of-
Band data byte. This includes all ULP data sent by any SDP data
transfer mechanism, including any data sent in or advertised by the
SDP message containing the OOB_PEND flag.

Note that an implementation is allowed to send a message with the
OOB_PEND flag using a reserved credit. See section A4.7.5 Use of Send
Credits on page 1246.

CA4-71: When the output byte-stream advances to the point where the
Out-Of-Band data was inserted into the data stream by the ULP, the Data
Source shall send the Out-Of-Band data using a Data message with the
OOB_PRES bit set and the Out-of-Band data byte as the last byte of the
ULP payload in the Data message.

Upon receipt of an SDP message with the OOB_PEND flag set, it is rec-
ommended that the SDP implementation expeditiously notify the ULP that
OOB data is pending; however, the precise mechanism for conveying
OOB notifications from the SDP implementation to the ULP is outside the
scope of this specification.

A4.6.5.4 SRCAVAIL REVOCATION

To revoke all incomplete SrcAvail messages sent by the Data Source to
the Data Sink, the Data Source shall send a SrcAvailCancel message.
This is needed, for example, if the ULP performs a socket write and a tim-
eout capability is supported. If the timeout interval passes without suc-

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1241 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cessful completion of the transfer all RDMA buffers advertised on behalf
of the socket write need to be canceled. Rather than create a new mes-
sage type to explicitly acknowledge the SrcAvailCancel message, the
SendSm message is used because it can be unambiguously understood
to complete the cancel operation.

The Data Sink, upon receiving the SrcAvailCancel message, shall invali-
date all Unprocessed SrcAvail messages (SrcAvail messages which have
not been operated on), and should invalidate all In-Process SrcAvail mes-
sages (RDMA Read processing has started, but an RdmaRdCompl or
SendSm message to complete the SrcAvail advertisement has not been
sent) -- see details below. If all SrcAvail messages have been Processed,
then the SrcAvailCancel message shall be ignored.

If a SrcAvail message is In-Process at the Data Sink (i.e., it has initiated
one or more RDMA Reads), the RDMA Read cannot be canceled.

CA4-72: The Data Sink shall not update the value of MSeqAck to be sent
in SDP messages, to greater than or equal to the MSeq value, with wrap,
in the SrcAvailCancel message until all In-Process SrcAvail advertise-
ments have been completed with the following sequence of events:

1) The Data Sink shall not initiate any new RDMA Reads.

2) After completion of all In-Process RDMA Reads, the Data Sink shall
send any relevant RdmaRdCompl messages (this may or may not
complete the SrcAvail message, depending on how many bytes have
been consumed).

3) If there is more ULP data which has not been transferred from the
original SrcAvail message, the Data Sink shall cancel the remainder
of the SrcAvail advertisement.

CA4-73: If the Data Sink canceled one or more SrcAvail advertisements
(either Unprocessed or In-Process), the Data Sink shall send exactly one
SendSm message associated with the oldest incomplete SrcAvail mes-
sage.

CA4-74: The Data Source, after sending a SrcAvailCancel message,
shall not send any new SrcAvail messages until the SrcAvailCancel mes-
sage has been Processed, as defined below.

This enables the Data Sink to implement simpler accounting (i.e., not
have to account for whether a SrcAvail message was sent before or after
the SrcAvailCancel message).

The Data Source shall consider the SrcAvailCancel message Processed
if any of the following occur:

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1242 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• All Unprocessed or In-Process SrcAvail messages have been
moved to the Processed state with an RdmaRdCompl message
or have been over-ridden by a SinkAvail message (see section
A4.8.3 Pipelined Mode on page 1251).

• A SendSm message is received with an MSeqAck value greater
than or equal to the MSeq value in the SrcAvailCancel message.

A4.6.5.5 SINKAVAIL REVOCATION

To revoke all incomplete SinkAvail advertisements sent by the Data Sink
to the Data Source, the Data Sink shall send the SinkAvailCancel mes-
sage. This is needed, for example, if the ULP performs a socket read and
a timeout capability is supported. If the timeout interval passes without
successful completion of the transfer all RDMA buffers advertised on be-
half of the socket read need to be canceled.

The Data Source, upon receiving the SinkAvailCancel message, shall in-
validate all Unprocessed SinkAvail advertisements (SinkAvail messages
which have not been operated on) and should cancel all In-Process
SinkAvail messages (RDMA Write processing has started, but an Rd-
maWrCompl message which completes the SinkAvail advertisement has
not been sent) -- see details below. If all SinkAvail advertisements have
been Processed, the SinkAvailCancel message shall be ignored.

Because an RDMA Write can not be canceled, if a SinkAvail message is
In-Process at the Data Source (i.e., it has initiated one or more RDMA
Writes), the RDMA Write shall be allowed to complete and the RdmaWr-
Compl message shall be sent.

CA4-75: The Data Source shall complete the buffer with the following se-
quence of events:

1) The Data Source shall not initiate any new RDMA Writes

2) After completion of the In-Process RDMA Writes, the Data Source
shall send any relevant RdmaWrCompl messages (this may or may
not complete the SinkAvail message, depending on how many bytes
have been consumed)

3) if there is more ULP data which has not been transferred into the
RDMA buffer advertised by the SinkAvail message, the Data Sink
shall invalidate the remainder of the SinkAvail advertisement.

CA4-76: If the Data Source canceled one or more SinkAvail advertise-
ments (either Unprocessed or In-Process), the Data Source shall send
exactly one SinkCancelAck message.

CA4-77: The Data Sink, after sending the SinkAvailCancel message,
shall not send a new SinkAvail or SinkAvailCancel message until all pre-
vious SinkAvail messages have been Processed, as defined below.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1243 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This enables the Data Source to implement simpler accounting (i.e., not
have to account for whether a SinkAvail message was sent before or after
the SinkAvailCancel message).

The Data Sink shall consider the SinkAvailCancel message Processed if
any of the following occur:

• All Unprocessed or In-Process SinkAvail messages have been
moved to the Processed state with an RdmaWrCompl message
(i.e. the byte count returned in the RdmaWrCompl completely
consumed the buffer).

• a Data message that adhered to the stale advertisement rules
(see section A4.6.5.1 Detecting Stale SinkAvail Advertisements
on page 1237).

• A SinkCancelAck message is received.

A4.6.5.6 BUFFERING ULP PAYLOAD

Under certain conditions it is possible for a sockets application to deadlock
unless ULP payload is buffered by the underlying sockets implementation.
For example, if all of the following occur:

a) both ULP peers perform a sockets send followed by a sockets re-
ceive,

b) both ULP peers do not post the receive buffer until the send is
completed, and

c) the underlying sockets implementation does not buffer the send
data

then the send will never complete - thus creating deadlock. To solve this
in the most general case (i.e. infinite length sends) is intractable, thus ex-
isting sockets applications bound the amount of buffering required by the
transport layer through the use of the socket options SO_RCVBUF and
SO_SNDBUF.

An application whose behavior is similar to the above example will not
deadlock if the application ensures that a send is never larger than the
size of the local peer’s SO_RCVBUF plus the remote peer’s
SO_SNDBUF, and the SDP implementation ensures there is
SO_RCVBUF plus SO_SNDBUF amount of buffering in the local and re-
mote peer respectively.

Note that an application may post buffers larger than SO_RCVBUF plus
SO_SNDBUF - but to remain deadlock free it must ensure that it does not
exhibit the above behavior (e.g. a backup application could post large
sends in one direction after it is sure the remote peer is posting receives).

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1244 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Specification of the exact buffering algorithm is beyond the scope of this
specification, but care must be taken if the receive private buffer pool is
used as part of the SO_RCVBUF buffers. This is because an entire re-
ceive private buffer may, in some situations, contain only one byte of ULP
data instead of being filled completely.

Thus an SDP implementation should provide at least SO_RCVBUF
amount of buffering for ULP data at the Data Sink. An SDP implementa-
tion should provide at least SO_SNDBUF amount of ULP data buffering
at the Data Source.

A4.7 PRIVATE BUFFER MANAGEMENT

SDP uses credit-based flow control on a per-socket connection basis.
Each peer – for each connection – posts some number of private buffers
as receive requests to the Receive Queue of the QP associated with the
socket. The number of currently posted receive private buffers is adver-
tised by the local peer to the remote peer in the Bufs field in the BSDH of
each SDP message.

CA4-78: Private buffers shall obey the following enumerated constraints:

a) All receive private buffers shall be at least as large as the adver-
tised buffer size. See section A4.7.6 Receive Buffer Resizing on
page 1247 for receive private buffer constraints when resizing.

b) The total number of receive private buffers shall be at least 3 per-
connection for normal data flow. It is recommended the number of
receive private buffers be substantially greater than 3.

c) A local peer shall not send SDP messages larger than the size
of the remote peer’s receive private buffers.

d) The sizes of both send and receive private buffers shall be at
least the size of the BSDH plus the size of the largest extended
header in an SDP message (which is SinkAH) plus one byte.

e) The Data Sink Bcopy Threshold shall be greater than or equal to
the size of the local peer’s receive private buffers.

f) the number of posted private buffers shall not exceed HCA or QP
limits.

Receive private buffers should be substantially larger than the minimum
value to enable practical data transfer using the Bcopy mechanism.

In addition, send buffers may obey the following constraint:

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1245 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• If the local peer’s send buffer size is larger than the remote peer’s
receive private buffer size, the local peer may reduce the size of
its send buffers or leave them unmodified. The latter approach
may be advantageous if the remote peer enlarges its receive pri-
vate buffers at a later time.

A4.7.1 SDP MESSAGE ORDERING

CA4-79: The SDP sender shall insert messages into the Send Queue in
BSDH MSeq order.

Note that this means the SDP message MSeq value in the BSDH will be
monotonically increasing in the Send Queue.

CA4-80: The SDP receiver shall process all messages in BSDH MSeq
order.

A4.7.2 SEND CREDIT CALCULATION

Send credit is calculated using information in the BSDH included with
each SDP message.

Consider the case of peer 1 sending a SDP message to its connected
peer, peer 2. The header of the SDP message includes the number of re-
ceive private buffers peer 1 currently has posted on that connection (in the
Bufs field of the BSDH). The header also includes the sequence number
of the last SDP message peer 1 has received before sending this SDP
message (in the MSeqAck field of the BSDH - see section A4.6.5.4 Sr-
cAvail Revocation on page 1240 for additional constraints on MSeqAck).
Upon receiving this SDP message, peer 2 uses this information to update
its send credit for that connection:

New send credit = bufs – WrapSubtract(LSSeq – MSeqAck)

where LSSeq (“Last Sent Sequence number”) is the MSeq of the last SDP
message sent by peer 2.

See section A4.7.5 below for the detailed rules governing usage of avail-
able send credits.

A4.7.3 INITIALIZATION OF SEND CREDIT

Initial send credit advertisements are exchanged during connection setup
in the Buf field of the BSDH within the Hello and HelloAck messages.
These credit advertisements shall be greater than or equal to 3. Either be-
fore or after connection setup, the receiver may post additional receive
private buffers and increase the advertised window.

CA4-81: On connection establishment, initial credit advertisement from
each peer shall be no less than three.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1246 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.7.4 GRATUITOUS UPDATE OF THE REMOTE PEER’S SEND CREDIT

As previously mentioned, credit updates are included in the header of
each SDP message. Therefore when ULP data flow is such that SDP
message flow is bidirectional (e.g., when doing Zcopy data transfer),
credits are refreshed as part of the data transfer process. In some sce-
narios, bidirectional SDP message flow does not occur. Under these cir-
cumstances, SDP shall send gratuitous Data messages (Data messages
with no ULP payload) as required to update the remote peer's send credit.

A4.7.5 USE OF SEND CREDITS

The sender shall reserve two receive private buffer credits to ensure the
SDP connection operates correctly under flow controlled conditions.

The sender must reserve one credit for an SDP message which provides
additional credits. If this credit was not reserved, a deadlock scenario is
possible if both ends become flow controlled. Reserving a receive private
buffer for the flow control update ensures that the sender can always up-
date the receiver when more receive private buffers are posted.

The sender must reserve one additional credit for sending any SDP mes-
sage which does not contain ULP payload. This ensures that the credit
can be refreshed by the remote peer without depending upon ULP receive
behavior. If ULP payload was allowed to be present in the SDP message,
it is possible to have protocol deadlock.

CA4-82: Before sending any SDP message over the IB RC connection,
an SDP implementation shall compute its available send credit as de-
tailed in section A4.7.2, and shall then obey the following rules:

• If no credits are available, an implementation shall not send any type
of SDP message.

• If one credit is available, an implementation shall only send SDP
messages that provide additional credits and also do not contain ULP
payload.

• If two credits are available, an implementation shall only send SDP
message which do not contain ULP payload.

• An SDP implementation shall send an SDP message that provides
additional credit(s) if the remote side's credits drop to one or fewer
credits. The sending of this message by the local side shall not be
contingent upon the local side first receiving some other SDP mes-
sage from the remote side.

Note that if three or more credits are available, an implementation may
send any type of SDP message which would otherwise be legal.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1247 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.7.6 RECEIVE BUFFER RESIZING

The local peer may request the remote peer to change its receive private
buffer pool buffer size by sending a Change Receive Buffer message
(ChRcvBuf) with the desired new size. This enables the local peer to in-
crease or decrease the maximum size of its outgoing messages if the re-
mote peer agrees to the change. See section A4.7 Private Buffer
Management on page 1244 for restrictions on the size of the receive pri-
vate buffers.

The remote peer should change the size of its receive private buffers to
the desired size specified in the ChRcvBuf message; it may make them
larger than the desired size, for example for alignment or performance op-
timization. If the remote peer is unable or unwilling to change its receive
private buffer size in this manner, it should change the size to be as close
as possible.

CA4-83: Upon receipt of ChRcvBuf message, the remote peer shall not
change the buffer size in the direction opposite of that requested.

That is, if the local peer requests a decrease, the remote peer shall either
decrease the size or leave it unchanged. Conversely, if the local peer re-
quests an increase, the remote peer shall either increase the size or leave
it unchanged.

CA4-84: Upon receipt of the ChRcvBuf message, if the local peer re-
quested a decrease in the private buffer size, the remote peer shall not
decrease the private buffer size to be smaller than that requested.

CA4-85: To confirm the change, the remote peer shall send a ChRcvBu-
fAck message with the new size of its receive private buffers when all pre-
vious receive private buffers of smaller size have been consumed.

The ChRcvBufAck message may be sent immediately if the new size is
smaller than or equal to the old size. If the new size is larger than the old
size, the ChRcvBufAck message shall be sent after all receive private
buffers of the old size have been consumed. If the remote peer is unable
to resize its receive private buffers, it shall specify in the ChRcvBufAck
message the original receive private buffer size.

The remote peer shall continue to use the old receive private buffer size
to determine whether a SinkAvail message can be sent for a specific ULP
buffer until it has sent the ChRcvBufAck message. At that time the remote
peer shall use the new receive private buffer size to determine whether a
SinkAvail message may be sent.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1248 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

After receiving the ChRcvBufAck message, the local peer may change the
maximum size of an SDP send message to the value specified in the
ChRcvBufAck message.

CA4-86: The local peer shall not increase the maximum size of an SDP
send message until the ChRcvBufAck message is received.

CA4-87: If the ChRcvBuf message requested an increased size and the
ChRcvBufAck message contains a size that is the same as the original
size before the ChRcvBuf message was sent, then the local peer shall
not request any further size increases for this connection.

CA4-88: If the ChRcvBuf message requested a decreased size and the
ChRcvBufAck message contains a size that is the same as the original
size before the ChRcvBuf message was sent, then the local peer shall
not request any further size decreases for this connection.

CA4-89: The local peer shall not send a new ChRcvBuf message if there
is an unacknowledged ChRcvBuf message.

A4.7.6.1 CONFLICT RESOLUTION

CA4-90: If both peers concurrently send each other ChRcvBuf messages,
then the accepting peer shall disregard the ChRcvBuf message.

The connecting peer shall respond to the ChRcvBuf message. The con-
necting peer may re-send its ChRcvBuf message after sending the
ChRcvBufAck message in response to the accepting peer’s ChRcvBuf
message.

A4.7.6.2 FLOW CONTROL ISSUES DURING RESIZING

When a peer receives the ChRcvBuf message and it decides to change
its receive private buffer size in response to this request, the peer must
allocate new receive private buffers of the desired size and post these pri-
vate buffers to the Receive Queue. The peer shall not wait for completion
of all posted receive private buffers of the previous size before allocating
and posting the new (different size) receive private buffers. This is re-
quired to enable the remote peer to continue sending messages which will
cause the old-size receive private buffers to complete; otherwise the re-
mote peer will stop sending messages once the channel becomes stalled
and the reserved receive private buffers will not be consumed.

A4.8 SDP MODES

SDP modes control how ULP buffers larger than the Bcopy Threshold are
transferred. Data Source ULP buffers less than or equal to the Bcopy
Threshold are sent using the Bcopy or Transaction mechanism (note that
because the Bcopy Threshold is locally defined, it may be fixed, variable,
or be defined as infinite - which would cause the Data Source to always

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1249 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

use the Bcopy mechanism). ULP buffers larger than the Bcopy Threshold
are sent in a variety of ways depending upon the current mode. The three
modes are:

• Combined Mode - the initial mode. This mode enables both
Bcopy and Read Zcopy data transfer mechanisms, but with only
one outstanding Read Zcopy operation at a time. The SrcAvail
message contains a non-zero length ULP payload.

• Pipelined Mode - All data transfer mechanisms are valid, includ-
ing multiple outstanding transfers at one time (with some limits).
The SrcAvail message contains no ULP payload.

• Buffered Mode - only the Bcopy data transfer mechanism is valid.
The main difference between this mode and Combined Mode is
that the Data Source cannot generate SrcAvail messages.

In all modes the Data Sink may force the Data Source to transfer data via
the Bcopy mechanism. In Buffered Mode the Data Source always uses
the Bcopy mechanism. In Combined or Pipelined mode, the Data Sink
may force data transfer using the Bcopy mechanism by issuing a SendSm
message. In this case, however, an extra round trip is required to cause
the Bcopy mechanism to be used because of the SrcAvail/SendSm se-
quence. Buffered Mode eliminates this extra overhead.

Pipelined Mode is the highest performance mode. It enables multiple out-
standing zero-copy transfers, optimizing for either the Data Sink ULP
buffer being posted first (Write Zcopy) or the Data Source ULP buffer
being posted first (Read Zcopy). Pipelined Mode also enables mixing of
Bcopy and Zcopy mechanisms.

CA4-91: The data flow mode between peers shall be independent in
each direction.

For example, data flow from the local peer to its remote peer may be in
Buffered mode in one direction, but the reverse direction may be in Com-
bined mode. Table 356 summarizes the various characteristics of each
mode. Table 357 summarizes the possible actions at the local peer A for
each combination of modes between the local peer A and remote peer B.
In the table, a “1” in the Send or Accept column indicates that the specific
message type is valid, but only one can be outstanding at a time.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1250 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 356 Mode Characteristics

Mode

Multiple
Outstanding

Zcopy
Requests

Simultaneous
Outstanding
SinkAvail &

SrcAvail

Data in
SrcAvail

Mix ULP Data
Messages
 with Write

Zcopy

Mix ULP Data
Messages
 with Read

Zcopy

List of
Available
Transfer

Mechanisms

Buffered N/A N/A N/A N/A (Write Zcopy
not allowed)

N/A (Read
Zcopy not
allowed)

Bcopy,
Transaction*

Combined No No Yes N/A (Write Zcopy
not allowed)

Yes, but not at
same time

Bcopy, Read
Zcopy,

Transaction*

Pipelined Yes Yes No Yes Yes, but not at
same time

Bcopy, Read
Zcopy, Write

Zcopy,
Transaction*

*if the reverse half-connection is in Pipelined Mode

Table 357 Summary of Permitted Actions By Mode Pair

Half Connection Host A is Allowed To:

A to B B to A Post Send Accept

RDMA
Read
Req

RDMA
Write

SrcAvail SinkAvail Trans-
action SrcAvail SinkAvail Trans-

action

Buffered Buffered NO NO NO NO NO NO NO NO

Buffered Combined YES NO NO NO NO 1 NO NO

Buffered Pipelined YES NO NO YES YES YES NO NO

Combined Buffered NO NO 1 NO NO NO NO NO

Combined Combined YES NO 1 NO NO 1 NO NO

Combined Pipelined YES NO 1 YES YES YES NO NO

Pipelined Buffered NO YES YES NO NO NO YES YES

Pipelined Combined YES YES YES NO NO 1 YES YES

Pipelined Pipelined YES YES YES YES YES YES YES YES

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1251 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.8.1 BUFFERED MODE

CA4-92: In Buffered Mode all data shall be transferred using the Bcopy
mechanism or optionally, if the opposite half-connection is in Pipelined
Mode, the Transaction mechanism.

Thus only Data or SinkAvail messages may used to transfer ULP data.

A4.8.2 COMBINED MODE

In Combined Mode, if the send ULP buffer is less than or equal to the Data
Source Bcopy Threshold, the Data Source uses the Bcopy mechanism
(i.e., by sending Data messages) or optionally, if the opposite half connec-
tion is in Pipelined Mode, the Transaction mechanism. If the ULP buffer is
larger than the Bcopy Threshold, data is transferred using the Read Zcopy
mechanism.

CA4-93: In Combined Mode the Data Sink shall be prepared to receive
ULP data through either the Bcopy mechanism, the Read Zcopy mecha-
nism, or the Transaction mechanism.

CA4-94: In Combined Mode, if the Read Zcopy mechanism is used, after
the Data Source sends a SrcAvail message it shall not send any mes-
sages which contain a ULP payload until all data transfer associated with
the SrcAvail message is complete (specifically, a RdmaRdCompl or
SendSm message is received).

This effectively means that only a single SrcAvail message may be In-Pro-
cess at any one time, and the Data Source can not use the Bcopy data
transfer mechanism if a Read Zcopy is In-Process.

CA4-95: In Combined Mode, the SrcAvail message shall contain greater
than zero bytes of ULP payload. The actual amount of ULP data included
is implementation dependent.

A4.8.3 PIPELINED MODE

In Pipelined Mode, if the ULP buffer is less than or equal to the Bcopy
Threshold, the Data Source uses the Bcopy mechanism (e.g., by sending
Data messages) or optionally, if the opposite half connection is in Pipe-
lined Mode, the Transaction mechanism. If the ULP buffer is larger than
the Bcopy Threshold, data is transferred using the Read Zcopy mecha-
nism or the Write Zcopy mechanism.

CA4-96: In Pipelined Mode the Data Sink shall be prepared to receive
ULP data through any of the data transfer mechanisms.

CA4-97: In Pipelined Mode, the Data Source shall not include ULP pay-
load in any SrcAvail messages.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1252 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-98: After sending one or more SrcAvail messages, the Data Source
shall not send any messages with a ULP payload until all data transfers
associated with previously sent SrcAvail message(s) have been Pro-
cessed. The single exception to this is the case when the Data Sink sends
a SendSm message. In this case, the Data Source shall send the re-
maining data associated with the SrcAvail through Data messages. The
remaining Unprocessed or In-Process SrcAvail advertisements remain
valid and shall be Processed by the Data Sink after it consumes these
Data messages.

This restriction is necessary since a crossing SinkAvail message would
cancel any advertised SrcAvails, and the Sink would be unable to process
the received in-line ULP payload until it received and processed all the
data associated with the canceled SrcAvails. See A4.6.2 Read Zcopy on
page 1229 for further details.

The Data Sink may also advertise receive RDMA buffers using SinkAvail
messages (i.e., Write Zcopy mechanism, which uses RDMA Writes). If Sr-
cAvail and SinkAvail messages cross, then Write Zcopy has higher priority
than Read Zcopy (i.e., the SrcAvail messages are canceled).

CA4-99: The following rules for crossing SinkAvail/SrcAvail advertise-
ments shall be obeyed. If both compliance statements 4-67 (4-67 de-
scribes discarding stale SinkAvail messages) and 4-99 apply, then
compliance statement 4-67 shall take precedence over 4-99.

a) If the Data Source receives a SinkAvail message:

i) the Data Source shall use the Write Zcopy mechanism to
transfer data - even if it has already advertised the ULP send
data through a SrcAvail message.

ii) the Data Source shall treat all outstanding SrcAvail advertise-
ments as having been discarded by the Data Sink.

• This implies that if the Data Source consumes all
SinkAvail advertisements and ULP send data remains that
is suitable for RDMA, the Data Source should advertise
the ULP data through a SrcAvail message, even if a
SrcAvail advertisement for that send RDMA buffer was
sent prior to receiving the SinkAvail message.

b) If the Data Sink receives a SrcAvail message

i) and it has no Unprocessed or In-Process SinkAvail message,
the Data Sink shall not send a SinkAvail message and the
Data Sink shall transfer data using the Read Zcopy mecha-
nism.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1253 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ii) and a SinkAvail message is Unprocessed or In-Process, the
Data Sink shall discard all Unprocessed or In-Process Sr-
cAvail advertisements and shall ignore the current SrcAvail
advertisement (but otherwise process the packet normally,
e.g. flow control information, etc.).

In Pipelined mode multiple send/receive RDMA buffers may be advertised
by sending multiple SrcAvail/SinkAvail messages without waiting for data
transfers associated with prior SrcAvail/SinkAvail messages to complete.

CA4-100: The Data Sink shall limit the maximum number of outstanding
SrcAvail and SinkAvail advertisements to the HH or HAH MaxAdverts
value specified by the remote peer during connection setup.

A4.9 SDP MODE TRANSITIONS

CA4-101: Figure 266 defines the possible transitions between the SDP
modes. Each SDP mode shall have a master, which controls any mode
changes, and a slave, which passively changes mode when told by the
master, as specified in Table 358.

Data Source specifies
move to Buffered Mode

Figure 266 Mode State Machine

Data Source specifies
move to Pipelined Mode

Data Sink specifies
move to Combined Mode

Data Source specifies
move to Combined Mode

Mode transitions are signaled with
the ModeChange message.

Connection Initialization

Combined Buffered

Pipelined

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1254 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-102: An SDP implementation shall not send a ModeChange mes-
sage which specifies the current mode.

The slave may indicate to the master that a mode change is recom-
mended by either setting the REQ_PIPE flag in the BSDH (transition from
Combined Mode to Pipelined Mode) or by using SendSm to transfer ULP
data (transition from Pipelined Mode to Combined Mode or from Com-
bined Mode to Buffered Mode). The master may choose to ignore the re-
quest.

CA4-103: The master shall change its mode immediately after sending a
ModeChange message.

This may occur before the completion event associated with completion
of the Reliable Connection transfer of the ModeChange message. In a
specific mode, the master shall only use data transfer mechanisms al-
lowed for that mode (see section A4.8 SDP Modes on page 1248). For ex-
ample, if the prior mode was Combined Mode and the current mode is
Buffered Mode, the Data Source shall not generate SrcAvail messages.

CA4-104: When the slave receives the ModeChange message, the slave
shall immediately set its current mode to the mode specified in the
ModeChange message.

In a specific mode, the slave shall only use data transfer mechanisms al-
lowed for that mode. For example, if the prior mode was Pipelined Mode
and the current mode is Combined Mode, the Data Sink (slave) must not
generate SinkAvail messages.

Depending on the mode transition, the master and slave may be required
to take some further actions, as described later in this chapter.

Note that when a connection is first set up, the local peer shall set the ini-
tial mode for the local Data Sink and Data Source to be Combined Mode
(see section A4.5.1 Connection Setup on page 1218).

The Data Source (master) may cause a transition to either Buffered Mode
or Pipelined Mode.

Table 358 Mode Master

Mode Master Mode Change Hint From Slave

Buffered Data Sink None

Combined Data Source SendSm messages or REQ_PIPE

Pipelined Data Source SendSm messages

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1255 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When in Buffered Mode or Pipelined Mode, the only legal mode transition
is to Combined Mode.

Following subsections give details of SDP message exchanges needed to
transition from one mode to another. Each transition is caused by sending
a ModeChange message.

A4.9.1 TRANSITION FROM COMBINED MODE TO BUFFERED MODE

CA4-105: To transition from Combined to Buffered mode, the Data
Source (master) shall send a ModeChange message with the MCH fields
set as follows:

• S=0, (i.e., change the Data Sink mode)
• Mode = BUFF_MODE (see section A4.3.3.8.2 Mode - 3 bits on

page 1215)
CA4-106: The Data Source shall not send the ModeChange message
until all Unprocessed or In-Process Read Zcopy transfers have been
moved to the Processed state with either a RdmaRdCompl or SendSm
message from the Data Sink (there will be at most one outstanding in
Combined Mode).

This ensures that no messages specific to Combined Mode (i.e., those re-
lated to the Read Zcopy mechanism) can be received by either peer when
in Buffered Mode.

A4.9.2 TRANSITION FROM BUFFERED MODE TO COMBINED MODE

CA4-107: To transition from Buffered to Combined mode, the Data Sink
(master) shall send a ModeChange message with the MCH fields set as
follows:

• S=1 (i.e., change the Data Source mode)
• Mode = COMB_MODE (see section A4.3.3.8.2 Mode - 3 bits on

page 1215)
Because all SDP message types which are legal for Buffered Mode are
also legal for Combined Mode, no special action is needed for this transi-
tion.

A4.9.3 TRANSITION FROM COMBINED MODE TO PIPELINED MODE

CA4-108: To transition from Combined to Pipelined mode, the Data
Source (master) shall send a ModeChange message with the MCH fields
set as follows:

• S=0 (i.e., change the Data Sink mode)
• Mode = PIPE_MODE (see section A4.3.3.8.2 Mode - 3 bits on

page 1215)

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1256 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Because all SDP message types which are legal for Combined Mode are
also legal for Pipelined Mode, no special action is needed for this transi-
tion. For example, if the Data Source has an outstanding SrcAvail adver-
tisement (and there can be at most one such advertisement outstanding
in Combined Mode), then it need not wait for a RdmaRdCompl or SendSm
before sending the ModeChange message.

A4.9.4 TRANSITION FROM PIPELINED MODE TO COMBINED MODE

CA4-109: To transition from Pipelined to Combined mode, the Data
Source (master) shall send a ModeChange message with the MCH fields
set as follows:

• S=0 (i.e., change the Data Sink mode)
• Mode = COMB_MODE (see section A4.3.3.8.2 Mode - 3 bits on

page 1215)
CA4-110: After sending the ModeChange message, the Data Source im-
mediately transitions to Combined Mode, but Data Source shall not sub-
sequently switch to any other mode until it receives an SDP message with
the following constraint:

MSeqAck >= (MSeq of the ModeChange message)

In the above calculation, MSeqAck and “MSeq of the ModeChange mes-
sage” are treated as signed integers.

This constraint ensures that all stale SinkAvail messages will be received
at the Data Source before a transition out of Combined Mode. The be-
havior upon receiving a stale SinkAvail message while in Combined Mode
is described later in this section.

If data transfer is occurring, the Data Source is guaranteed to eventually
receive the acknowledgement for the ModeChange message. If no data
transfer is occurring, the acknowledgement can take an indeterminate
amount of time. However there is no need to immediately switch out of
Combined Mode if no data transfer is occurring.

The transition from Pipelined to Combined Mode imposes additional con-
straints on the Data Source and Data Sink.

CA4-111: The transition from Pipelined Mode to Combined Mode shall be
governed by Figure 267 Data Source Transition from Pipelined to Com-
bined Mode on page 1258 and Figure 268 Data Sink Transition from Pipe-
lined to Combined Mode on page 1259.

CA4-112: The Data Source shall complete any RDMA Writes that are In-
Process, and issue all RdmaWrCompl messages before sending a
ModeChange message.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1257 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This ensures that RDMA Writes will not be used in Combined Mode.

CA4-113: If the Data Source has incomplete SinkAvail advertisements,
the Data Source shall discard them and re-issue all Unprocessed or In-
Process SrcAvail messages, if there are any.

Normal Combined Mode rules apply, for example, only one SrcAvail mes-
sage may be outstanding at any one time and it must contain ULP pay-
load. If the Data Source has no incomplete SinkAvail advertisements, but
a SinkAvail advertisement is received before the acknowledgement for
the ModeChange message, it shall ignore the SinkAvail message (but
process flow control information, etc.) and re-issue all outstanding Sr-
cAvail messages according to Combined Mode rules. In either case, if any
more SinkAvail messages arrive after the initial discard of SinkAvail mes-
sage(s), the Data Source shall ignore these SinkAvail messages (but flow
control information, etc., shall be Processed normally).

Normal Data Sink behavior in Pipelined Mode requires it to drop any Sr-
cAvail messages (but process flow control information, etc.) if there is a
SinkAvail outstanding.

CA4-114: Thus the only behavior the Data Sink must follow when transi-
tioning to Combined Mode after receiving the ModeChange message is to
invalidate local state associated with any outstanding SinkAvail mes-
sages.

As mentioned previously, the Data Source will ensure that any out-
standing SrcAvail messages will be re-issued.

A4.9.5 STATE MODE TRANSITION SUMMARY

Table 359 Data Source Mode Transition Events on page 1260 and Table
360 Data Sink Mode Transition Events on page 1260 summarize the
events and consequent actions for the Data Source and Data Sink, re-
spectively. Advisory input to the Mode Master to change modes is not
meant to be exhaustive. The Mode Master may change modes at any
time, possibly for reasons beyond the scope of this specification. The ta-
bles only list events which may cause a mode transitions or may be an
event which is handled uniquely in a specific mode.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1258 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 267 Data Source Transition from Pipelined to Combined Mode

RDMA

Write In-Pro-

Send

Finish and send
RdmaWrCompl

Discard

incomplete

Re-issue all

outstanding

Drop all SinkAvail
until

ModeChange
Ack

Data Source may initiate another mode transition
(if needed)

Data Source decides to switch to Combined Mode

SinkAvail re-
ceived before
ModeChange

Ack?

yes

no

yes

no

no

yes

SinkAvail

incomplete?

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1259 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

Figure 268 Data Sink Transition from Pipelined to Combined Mode

Outstanding

SinkAvail?

Stop sending

Invalidate all
outstanding
SinkAvail

ModeChange message received by Data Sink

yes

no

Proceed with Combined Mode behavior

Normal Pipelined Mode
rules require the Data
Sink to invalidate all Sr-
cAvail advertisements if
SinkAvail advertise-
ments are outstanding.

Outstanding is de-
fined as a SinkAvail
was sent without a
corresponding Rd-
maWrCompl.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1260 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A4.10 SOCKET DUPLICATION

When a socket exists in one address space and is then accessed in a dif-
ferent address space (on the same peer), the socket needs to be dupli-
cated into the second address space. Note that if two threads are

Table 359 Data Source Mode Transition Events

Data Source Mode Event Action/Transition

Combined (master) Receive REQ_PIPE=1 in an RdmaRd-
Compl message

Advisory: May decide to transition to
Pipelined Mode.

Data Source decides to change modes to
Buffered

If outstanding SrcAvail, wait for RdmaRd-
Compl or SendSm from Data Sink, then
send ModeChange message

Data Source decides to change to Pipe-
lined Mode

Change to Pipelined Mode and send a
ModeChange message

Receive SendSm Advisory: May decide to transition to
Buffered Mode.

Receive SinkAvail Can happen if just transitioned from Pipe-
lined Mode. See Figure 267 Data Source
Transition from Pipelined to Combined
Mode on page 1258 for processing
details.

Buffered (slave) Receive ModeChange message with
S=1 and Mode=COMB_MODE

Immediately transition to Combined
Mode.

Pipelined (master) Receive SendSm Advisory: May decide to transition to
Combined Mode.

Data Source decides to change to Com-
bined Mode

Change to Combined Mode and send a
ModeChange message. See Figure 267
Data Source Transition from Pipelined to
Combined Mode on page 1258 for pro-
cessing details.

Table 360 Data Sink Mode Transition Events

Data Sink Mode Event Action/Transition

Combined (slave) Receive ModeChange message with
S=0 and Mode=BUFF_MODE

Immediately transition to Buffered Mode.

Receive ModeChange message with
S=0 and Mode=PIPE_MODE

Immediately transition to Pipelined Mode.

Buffered (master) ULP receive buffer is posted Advisory: If the receive ULP buffer is suit-
able for RDMA, the Data Sink may
choose to transition to Combined Mode.

Data Sink decides to change to Com-
bined Mode.

Send ModeChange message.

Pipelined (slave) Receive ModeChange message with
S=0 and Mode=COMB_MODE

Immediately transition to Combined
Mode. See Figure 268 Data Sink Transi-
tion from Pipelined to Combined Mode on
page 1259 for processing details.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1261 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

accessing the socket in the same address space, socket duplication is not
required.

Performing socket duplication in user-mode imposes certain restrictions
because socket state cannot be shared between the address spaces. In
fact, in the context of InfiniBand networks available today, the socket can
only exist in one address space at a time (since HCAs are not required to
support sharing queue pairs between multiple address spaces).

Because of these restrictions, SDP allows only one address space at a
time to execute operations that either transfer data or change state for an
underlying shared socket. Address spaces dynamically swap control of
the underlying socket, as needed, to execute requested operations. The
SDP socket duplication procedure serializes operations that different ad-
dress spaces request on a shared socket. The procedure waits for all In-
Process operations to complete before swapping control of an underlying
socket to another address space. Logically, the procedure takes control of
the underlying socket away from the controlling address space as soon as
a non-controlling address space requests an operation on that socket.
After control is taken away, the procedure treats the original controlling ad-
dress space like a non-controlling address space if the original controlling
address space requests operations on that socket. In this way a socket
may transition back and forth between controlling address spaces based
on ULP behavior.

SDP enables socket duplication by bringing the connection to a consistent
state, closing the InfiniBand connection, handing the state to the new con-
trolling address space, and then creating a new reliable connection in the
new address space. Note that after the connection is suspended and then
restarted on a new InfiniBand connection, the connection by definition
does not have any outstanding SinkAvail or SrcAvail advertisements. Any
incomplete SinkAvail or SrcAvail advertisements were effectively can-
celed during the transition to a new connection.

A4.10.1 IMPLEMENTING SOCKET DUPLICATION

CA4-115: An SDP implementation shall support responding to a socket
duplication request using the procedure defined for the remote peer in
section A4.10.1.1.

oA4-2: If SDP socket duplication initiation is supported, an SDP local peer
shall employ the procedure defined in section A4.10.1.1 when initiating
socket duplication.

A4.10.1.1 SOCKET DUPLICATION PROCEDURE

1) The SDP implementation in the non-controlling address space shall
use the appropriate verbs to accept incoming connection requests at

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1262 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a Service ID in one of two formats (see the Application Specific Iden-
tifiers Annex for additional information):

• 0x0000 0000 0001 XXXX, where 0xXXXX is the TCP destination
port number. This may or may not be the original TCP port num-
ber specified during the initial connection setup. Note that if this
format is used, the connection request should not be completed
unless the source IP address, destination IP address, and source
TCP port number contained in the Hello message match the ex-
pected value. Checking just the Service ID (i.e. destination TCP
port number) is not sufficient in some implementations.

• Local OS Administered Service IDs.

The mechanism which enables the Service ID to be conveyed to the
controlling address space is outside the scope of this specification.

2) The SDP implementation in the controlling address space shall wait
for all In-Process data transfer operations to complete, then it shall
send a SuspComm message to the remote peer to request a sus-
pension of the session. This SDP message also contains the Service
ID received from the non-controlling address space. The remote peer
shall connect to this Service ID when resuming communication (step
4). The local peer shall send no more SDP messages, nor perform
any RDMA operations from the controlling address space, after
sending the SuspComm message.

3) Upon receiving the SuspComm message, the remote peer shall wait
for all In-Process data transfer operations to complete, then shall
send a SuspCommAck message indicating that the session is sus-
pended. This peer shall not send any more messages or perform
any RDMA operations until a new connection is set up (step 8).

4) The remote peer shall wait for completion of the send work request
for the SuspCommAck message, then close the InfiniBand con-
nection. Before sending the REQ CM MAD, the remote peer shall
use the address resolution procedure to determine the destination
address for the REQ MAD; note that this may be different from the
original destination address. It shall then initiate the new connection
to the Service ID received through the SuspComm message. Posting
of receive private buffers and the contents of the HH shall follow the
same rules as connection setup (see section A4.5.1 Connection
Setup on page 1218).

5) Once the SuspCommAck message is received, the controlling ad-
dress space on the local peer shall send a signal to the non-con-
trolling address space through some private means outside the
scope of this specification. The controlling address space shall also
send to the non-controlling address space through some private
means outside the scope of this specification:

• any buffered receive ULP data

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1263 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• the remote peer’s TCP port number (to ensure the parameter
does not change when the socket is re-connected).

• the size of the local receive private buffers.

6) Non-controlling address space shall accept the connection request
from the remote peer and initialize its state variables for the new con-
nection. The Hello message in the REQ MAD initializes SDP con-
nection state. The non-controlling address space shall also verify
that the TCP port number is the same as the TCP port number
passed from the controlling address space.

7) When both steps 5 and 6 have completed, the (previously) non-con-
trolling address space:

a) Shall send a CM REP MAD with a HelloAck message to the re-
mote peer (see section A4.5.1 Connection Setup on page 1218).
The receive private buffer size parameter in the HelloAck mes-
sage shall be the values received from the controlling address
space.

b) Shall make received data from the controlling address space
available to the ULP.

8) the remote peer shall respond by sending an RTU.

9) When connection setup is complete, the local peer shall resume
normal data transfer. See section A4.5.1.1 InfiniBand Reliable Con-
nection Setup on page 1218 for a description of connection setup
completion.

A4.10.1.2 CONFLICT RESOLUTION

CA4-116: If both peers concurrently send each other SuspComm mes-
sages, then the accepting peer shall disregard the SuspComm message,
while the connecting peer shall respond to the SuspComm message. The
connecting peer shall re-send its own SuspComm message once com-
munication is re-established.

A4.10.2 HCA MANAGED FAILOVER

SDP supports Managed Failover by leveraging the Socket Duplication
procedure (see section A4.10 Socket Duplication on page 1260). During
socket duplication, a change of address space is occurring. In managed
failover, the SDP connection may in fact be reestablished using different
paths, ports, HCAs or hosts. The original connection in a managed
failover scenario is analogous to the controlling address space in socket
duplication. The new failed over connection is analogous to the non-con-
trolling address space. Managed failover changes where one end of the
connection is situated. Failing over both ends requires two managed
failover operations.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1264 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The decision to attempt a managed failover must occur before step 1 of
the Socket Duplication procedure. How such a decision is made is depen-
dent on policy and outside the scope of the SDP specification.

oA4-3: If an SDP implementation supports managed failover, it shall do
so using the socket duplication procedure (see section A4.10.1 Imple-
menting Socket Duplication on page 1261) with the following change to
Step 1:

• A new endpoint for the failover connection must be chosen. How the
new endpoint is chosen is a matter of policy. However, it must be cho-
sen in such a way that the address (see section A4.4 Address Reso-
lution on page 1218) will resolve to the failover port. This address
resolution uses the IP addresses from the original connection's Hello
message (see section A4.3.2.1 Hello Message (HH) on page 1204).
As before, the Service ID chosen for the SuspComm (see section
A4.3.5.1 SuspComm Message on page 1217) message should re-
solve to the failover endpoint.

A4.11 INFINIBAND TRANSPORT LAYER ISSUES

A4.11.1 INFINIBAND MESSAGE REQUIREMENTS

CA4-117: A conforming implementation of SDP shall enable RDMA
Reads and RDMA Writes on each RC connection.

CA4-118: A conforming implementation of SDP shall not use InfiniBand
Immediate Data.

A4.11.2 SOLICITED EVENTS

An SDP implementation occasionally needs to stop processing on a half-
connection and wait for one of the following messages to arrive before
proceeding further:

1) flow control credit update SDP message - flow control credits for the
receive private buffer pool have been exhausted, thus it cannot send
data, control, and/or RDMA advertisement to the peer;

2) data or RDMA advertisement SDP message - the ULP has indicated
its interest in data via a sockets interface select call or receive;

3) RDMA completion (or cancel) SDP message - before it can de-reg-
ister a send or receive RDMA buffer it must either complete the
RDMA transfer or receive a cancel acknowledgement message.

A typical SDP implementation would request completion queue notifica-
tion and block the ULP process (or thread) until the appropriate message
arrives and the notification is delivered. The goal of using the SE (solicited
event) bit is to minimize completion queue notification events and corre-
sponding process (or thread) wake-ups when the arriving message does

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1265 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

not match the class of SDP messages that the implementation requires.
For example, if the Data Source is waiting for a RdmaRdCompl message
to complete a send ULP buffer and there is no local receive ULP buffer
posted or local invocation of a sockets interface select on the opposite
half-channel (local Data Sink), it should not receive notifications for the
opposite half-connection if the peer sends a Data message or SrcAvail
RDMA advertisement.

To accomplish this goal, all SDP messages are subdivided into solicited
or unsolicited SDP messages.

Solicited SDP messages are those that most likely require immediate at-
tention regardless of ULP behavior at the remote peer and regardless of
whether the remote peer is waiting for other (unsolicited) messages. So-
licited SDP messages are defined as:

• AbortConn, SuspComm, SuspCommAck, SendSm, SrcAvailCan-
cel, SinkAvailCancel - because it is essential for the sender of
these messages that its peer react to them as soon as possible;

• RdmaWrCompl, RdmaRdCompl, SinkCancelAck - because the
peer most likely needs to deregister and release RDMA buffers to
the ULP upon reception of these messages;

• Data with OOB_PRES or OOB_PEND bit set - because the peer
SDP implementation most likely needs to notify the ULP as soon
as possible that this message has been received.

CA4-119: An SDP implementation shall request the InfiniBand SE bit in
the InfiniBand Base Transport Header be set for solicited SDP messages.

Unsolicited SDP messages are those which may require immediate atten-
tion by the peer, but only the peer can decide whether or not a notification
is necessary - it depends on the ULP behavior or the implementation of
the peer. Unsolicited SDP messages are defined as:

• DisConn, SrcAvail, SinkAvail, Data without OOB_PEND or
OOB_PRES bit set - because the peer only needs to immediately
process these messages when the ULP has issued a sockets in-
terface select or receive request;

• ModeChange, ChRcvBuf, ChRcvBufAck - because after receiving
these messages the peer only needs to take action for new mes-
sages it generates itself or messages which follow which are so-
licited SDP messages (e.g., it will not be blocked specifically
waiting for these SDP messages).

CA4-120: An SDP implementation shall not request the InfiniBand SE bit
in the InfiniBand Base Transport header be set for Unsolicited SDP mes-
sages.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1266 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The SE bit is never applicable for RDMA Reads, and for RDMA Writes is
applicable only for those that contain Immediate Data. Since SDP never
generates RDMA Writes with Immediate Data, the SE bit is not applicable
for RDMA Read or RDMA Write requests generated by SDP.

A4.11.3 KEEPALIVE MESSAGES

The sockets interface provides the ULP with the capability of periodically
transmitting messages to the peer (which require an answer) to determine
if the peer is still alive (SO_KEEPALIVE). This is referred to as the kee-
palive feature, and the associated messages are known as keepalive
messages. If an SDP implementation supports the keepalive feature, then
it must implement this functionality by using zero-length RDMA Writes
(see C9-88: on page 305). A zero-length RDMA does not require a valid
memory region at the Data Sink; the R_Key and VA may be set to any
value and are not checked at the destination.

Initiation of keepalive messages is determined by SDP message activity
as well as the passage of a recurring time period known as the idle period.
The first idle period begins when the SDP implementation determines that
the keepalive feature will be enabled on a particular connection. The du-
ration of the idle period is determined by a value called the idle interval;
once that amount of time has passed, a new idle period begins.

oA4-4: If the SDP implementation supports the keepalive feature, and
keepalive is enabled for a particular connection, then the implementation
shall obey the following two rules regarding the generation of keepalive
messages, and the default value of the idle interval:

1) If no SDP messages are sent or received during an idle period, then
at the end of that period the SDP implementation shall send a zero-
length RDMA Write keepalive message.

2) The default idle interval shall be 2 hours.

The value for the default idle interval should be configurable.

If a keepalive message completes in error, the QP will transition to the
Error state. This is considered an SDP protocol violation, and the SDP im-
plementation shall perform an abortive close. At that time normal Infini-
Band clean up processing must occur to reclaim system resources.

Note that the SDP implementation of keepalive differs somewhat from the
traditional TCP implementation in two ways:

1) The successful completion of the keepalive message verifies that the
IB Reliable Connection is still operational; it does not assess the
health of the remote SDP implementation.

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1267 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) SDP does not maintain separate keepalive idle and interval timers for
a connection; the IB Reliable Connection retry mechanism serves the
function that the keepalive interval timer serves in TCP.

A4.12 SDP COMPLIANCE CATEGORY

In order to claim compliance to the Sockets Direct Protocol Specification
to the SDP Compliance Category, a product shall meet all requirements
specified in this section, except for those statements preceded by Quali-
fiers that the product does not support.

CA4-1: SDP Message Headers - Byte ordering rule Page 1201
CA4-2: Hello & HelloAck shall be in REQ and REP msgs Page 1201
CA4-3: SDP msgs xmitted on IB RC channel Page 1201
CA4-4: BSDH header required for all SDP messages Page 1201
CA4-5: SDP message format and MID definition. Page 1202
CA4-6: BSDH - Flags field definition. ... Page 1203
CA4-7: BSDH - OOB_PRES bit set only in Data messaage Page 1203
CA4-8: BSDH - Data Sink REQ_PIPE bit usage rules Page 1203
CA4-9: BSDH - Data Source REQ_PIPE handling rule Page 1203
CA4-10: BSDH - Len in other SDP message headers Page 1204
CA4-11: BSDH - Rules for setting MSeq value Page 1204
CA4-12: BSDH - MSeqAck value ... Page 1204
CA4-13: HH - header format. ... Page 1205
CA4-14: REQ Message - BSDH field settings.............................. Page 1205
CA4-15: HH - Accepting Peer MajV mismatch behavior Page 1205
CA4-16: HH - Accepting Peer MinV mismatch behavior Page 1206
CA4-17: HH - Valid IPV values... Page 1206
CA4-18: HH - Accepting peer behavior when MaxAdverts = 0 Page 1206
CA4-19: HH - SrcIP and DstIP IPV4 byte location Page 1207
CA4-19.2.1:SDP: Extensions Table.. Page 1207
CA4-19.2.2:SDP: Invalidate capability bit Page 1207
CA4-19.2.3:SDP: Extended maximum advertisements Page 1207
CA4-20: HAH - header format. ... Page 1208
CA4-21: REP message - BSDH field settings Page 1208
CA4-22: HAH - Connecting Peer MajV mismatch behavior Page 1209
CA4-23: HAH - Connecting Peer MinV mismatch behavior Page 1209
CA4-24.2.1:SDP: Valid values for minor version 1 Page 1209
CA4-24.2.2:SDP: Valid values for minor version 2 Page 1209
CA4-24.2.3:SDP: Extended Max Advertisements in HAH = 0........ Page 1209
CA4-24.2.4:SDP: Extensions Table 1... Page 1210
CA4-24.2.5:SDP: Accepting peer Invalidate Capability bit Page 1210
CA4-25: SrcAvail - header format. ... Page 1211
CA4-26: SrcAvail - Valid Len value range Page 1211
CA4-27: SrcAvail - RDMA data buffer payload Page 1212
CA4-28: SrcAvail - RKey field value usage Page 1212
CA4-29: SinkAvail - header format. .. Page 1212
CA4-30: SinkAvail - Valid Len value range Page 1212
CA4-31: SinkAvail - RKey field value usage Page 1213
CA4-32: RdmaWrCompl - header format. Page 1213
CA4-33: RdmaRdCompl - header format. Page 1214
CA4-34: ModeChange - header format. Page 1215
CA4-35: ModeChange - MCH value definitions Page 1215
CA4-36: ChRcvBuf - header format. .. Page 1216
CA4-37: ChRcvBufAck - header format. Page 1217
CA4-38: SuspComm - header format. .. Page 1217
CA4-39: IP Address resolution requirements. Page 1218
CA4-40: SDP communications use RC transport......................... Page 1218
CA4-41: SDP connection setup sequence requirements. Page 1219

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1268 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-42: RNR NAK retry count requirement................................. Page 1221
CA4-43: REJ message aborts connection setup.......................... Page 1221
CA4-44: Local peer behavior after ULP graceful close call Page 1224
CA4-45: Local peer ULP data receive on half-open connection .. Page 1224
CA4-46: Local peer required operations for graceful close Page 1224
CA4-47: Remote peer required operations for graceful close Page 1225
CA4-48: Abortive disconnect behavior ... Page 1226
CA4-49: Conditions resulting in an abortive disconnect Page 1226
CA4-50: AbortConn uses InfiniBand teardown............................. Page 1227
CA4-51: Required support for data transfer mechanisms Page 1227
CA4-52: Response to unsupported xfer mechanisms.................. Page 1227
CA4-53: ULP data size limitation on send.................................... Page 1228
CA4-54: Read Zcopy - SrcAH message Len field value Page 1229
CA4-54.2.1:SDP: Invalidate Enabled SDP SrcAvail + Invalidate ... Page 1229
CA4-55: Read Zcopy - RDMA Read completion Processing Page 1230
CA4-56: Read Zcopy - RdmaRdCompl message contents.......... Page 1230
CA4-57: Read Zcopy - generation of RdmaRdCompl Page 1230
CA4-57.2.1:SDP: RdmaRdCompl+Inv invalid for partial transfers . Page 1231
CA4-57.2.2:SDP: Verification that correct buffer was Invalidated .. Page 1231
CA4-58: Read Zcopy - Data Source buffer availability Page 1231
CA4-59: Read Zcopy - SendSm message processing................. Page 1232
CA4-60: Read Zcopy - RDMARdCompl Len rules Page 1232
CA4-61: Write Zcopy - SinkAH message contents....................... Page 1233
CA4-61.2.1:SDP: Invalidate Enabled SDP SinkAvail + Inv Page 1233
CA4-62: Write Zcopy - RDMA Write completion processing Page 1234
CA4-63: Write Zcopy - RdmaWrCompl header contents Page 1234
CA4-63.2.1:SDP: Verify buffer invalidated on RdmaWrCompl Page 1234
CA4-64: Write Zcopy - Data Sink RDMA buffer availability Page 1234
oA4-1: MSG_WAITALL: Write Zcopy rules................................ Page 1235
CA4-65: Write Zcopy - when Data Sink can send SinkAvail Page 1237
CA4-66: Write Zcopy - SinkAvail completion................................ Page 1237
CA4-67: Write Zcopy - stale SinkAvail detection.......................... Page 1238
CA4-68: Read Zcopy - Data Source rule for SendSm.................. Page 1239
CA4-69: Out-Of-Band Data - Ordering in the byte stream Page 1240
CA4-70: Out-Of-Band Data - Pending notification........................ Page 1240
CA4-71: Out-Of-Band Data - Data Source OOB Processing Page 1240
CA4-72: SrcAvailCancel - handling MSeqAck.............................. Page 1241
CA4-73: SrcAvailCancel - generating SendSm............................ Page 1241
CA4-74: SrcAvailCancel - can only have one outstanding Page 1241
CA4-75: SinkAvailCancel - Data Source completions.................. Page 1242
CA4-76: SinkAvailCancel - generation of SinkCancelAck............ Page 1242
CA4-77: SinkAvailCancel - at most one outstanding.................... Page 1242
CA4-78: Priv Buff - usage constraints .. Page 1244
CA4-79: Send Queue message ordering Page 1245
CA4-80: Receive Queue message processing order Page 1245
CA4-81: Credits - Initial credit advertisement Page 1245
CA4-82: Credits - permitted usage... Page 1246
CA4-83: Priv Buff Resize - remote peer size rules....................... Page 1247
CA4-84: Priv Buff Resize - remote peer size rules....................... Page 1247
CA4-85: Priv Buff Resize - remote peer ack rules........................ Page 1247
CA4-86: Priv Buff Resize - local peer timing of size increase Page 1248
CA4-87: Priv Buff Resize - local peer increase rules Page 1248
CA4-88: Priv Buff Resize - local peer decrease rules Page 1248
CA4-89: Priv Buff Resize - only one ChRcvBuf outstanding Page 1248
CA4-90: Priv Buff Resize - crossing ChRcvBuf messages Page 1248
CA4-91: Mode - each half-connection has a mode Page 1249
CA4-92: Buffered Mode - Data transfer mechanism Page 1251
CA4-93: Combined Mode - Data Sink operation Page 1251
CA4-94: Combined Mode - Read Zcopy Data Source operation . Page 1251
CA4-95: Combined Mode - SrcAvail message payload Page 1251
CA4-96: Pipelined Mode - Data Sink ULP data receive Page 1251
CA4-97: Pipelined Mode - SrcAvail payload for Read Zcopy....... Page 1251

InfiniBandTM Architecture Release 1.2 Sockets Direct Protocol (SDP) October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1269 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA4-98: Pipelined Mode - Data Source operation Page 1252
CA4-99: Pipelined Mode - Crossing SinkAvail/SrcAvails Page 1252
CA4-100: Pipelined Mode - Data Sink buffer advertisements Page 1253
CA4-101: Mode - transition state machine Page 1253
CA4-102: Mode - ModeChange must change the mode................ Page 1254
CA4-103: Mode - Master mode after sending ModeChange Page 1254
CA4-104: Mode - Slave mode after receiving ModeChange Page 1254
CA4-105: Combined to Buffered - ModeChange values Page 1255
CA4-106: Combined to Buffered - ModeChange restriction........... Page 1255
CA4-107: Buffered to Combined - ModeChange values Page 1255
CA4-108: Combined to Pipelined - ModeChange values............... Page 1255
CA4-109: Pipelined to Combined - ModeChange values............... Page 1256
CA4-110: Pipelined to Combined - ModeChange usage limitation Page 1256
CA4-111: Pipelined to Combined - Transition rules Page 1256
CA4-112: Pipelined to Combined - RDMA Write processing Page 1256
CA4-113: Pipelined to Combined - SinkAvail advertisements........ Page 1257
CA4-114: Pipelined to Combined - Data Sink transition behavior .. Page 1257
CA4-115: Responding to a Socket Duplication request. Page 1261
oA4-2: Initiating Socket Duplication: optional. Page 1261
CA4-116: Crossing SuspComm messages conflict resolution Page 1263
oA4-3: Managed failover: requirements..................................... Page 1264
CA4-117: RDMA Read and RDMA Write requirements. Page 1264
CA4-118: Immediate Data usage is disallowed.............................. Page 1264
CA4-119: Solicited Event bit usage - Solicited SDP msgs Page 1265
CA4-120: Solicited Event bit usage - Unsolicited SDP msgs Page 1265
oA4-4: Keepalive: message generation, interval value.............. Page 1266

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1270 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A5: BOOTING ANNEX

A5.1 INTRODUCTION

A5.1.1 PURPOSE

This annex provides relevant information necessary to build IBA solutions
which are capable of booting their operating system using IB attached de-
vices. It provides implementers with guidance about how various boot
methods can be supported, defines boot resolution methods as policies,
and provides a descriptive time-line of the booting process.

Selection of booting methods and boot resolution methods are matters of
policy, this annex specifies a Boot Management class and an optional
Boot Management Agent (BtA) to manage boot parameters in a booting
platform. The Boot Management class provides a mechanism for a
system administrator to manage the InfiniBand specific booting policies of
platforms that contain a BtA. This is done using Boot Management MADs.
Booting policies are installation specific, there are no prescribed defaults
for boot methods or boot resolution methods.

This annex addresses the considerations for producing IB specific boot
code. These topics include:

• How to identify, select, locate, and use IB I/O Controllers and
Console services needed for booting.

• Network Boot Models - IB Network and NIC
• How to manage the IB specific behavior of booting platforms

throughout the fabric.
• How to boot using the Boot Information Service
• The dependencies the booting platform has on the IB fabric.
• BtA traps and notices to notify the BootManager of asynchronous

events within the booting platform.
• The ability of the booting platform to expand the boot environment

by loading and executing additional code from a ROM Repository
• The definition and usage of ROM Repositories when the platform

is booting.

A5.1.2 GLOSSARY

The following terms are in addition to the terms in Chapter 2: Glossary on
page 69.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1271 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

BIS Boot Information Service (see Annex A6: Boot Information Service on
page 1403).

BIS Locator Records Locator Record provided by the BIS.

BIS Resolution Method The method for locating a ROM Repository, a Console object, or an OS
Boot Loader by sending a query to the BIS which returns Locator Records
back to the booting platform.

Boot The bootstrap process used by a platform that terminates when the Oper-
ating System is loaded. The process begins with either a power on reset
or a node reboot (also called Reboot).

Boot Environment A software environment that controls the booting platform during the boot
process.

Boot Information Service A management service (specified in the Boot Information Service Annex)
that provides boot information to booting platforms upon request.

Boot Management A class of MADs that allow the BootManager to Set (write) and Get (read)
attributes that control the behavior of the booting platform.

Boot Management Agent An optional General Services Agent (GSA) located behind each port of a
booting platform that supports InfiniBand Boot Management.

BootManager A IBA management entity that issues Boot Management Class MADs to
Boot Management Agents to manage the behavior of the platform during
the Boot process.

BootMgt Boot Management

Boot Method Identifies the style or process (Storage, Network) that a boot environment
uses to load the OS.

Boot Platform An endnode that can Boot using the IB fabric and Locator Records pro-
vided by the BootManager or the BIS.

Booting Platform A Boot Platform that is in the process of booting.

Boot Resolution Method A way that a Booting Platform selects I/O devices, a Console service, or
ROM Repository used during the Boot process. This annex defines two
boot resolution methods, which are Local Resolution Method and BIS
Resolution Method.

BtA Boot Management Agent.

Console Locator Record A record that identifies the Console I/O controller (Console IOC) or Con-
sole Service the Booting Platform uses during the Boot process.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1272 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Extended Boot Environ-
ment

A Boot Environment that has been extended by loading additional code.

Firmware Firmware is the ROM-based software that controls a computer between
the time it is turned on and the time the primary operating system takes
control of the machine.

IB Network Boot A way of booting that reads file(s) from a service using Network boot pro-
tocols (e.g. IP) over the IB fabric. See Figure 272 on page 1279.

LAN Network Boot A way of booting that reads file(s) using a LAN adapter or Network Inter-
face Controller (LAN NIC). See Figure 271 on page 1278.

Local Resolution Method A method for locating a ROM Repository, a Console object or an OS Boot
Loader by using non-volatile storage to persistently save the identities of
these entities across power cycles.

Locator Record Attributes that describe the identity of an OS Boot Loader, Console ser-
vice, or ROM Repository. In some cases, additional information exists
within the locator record that can be used by the protocol to assist in
finding a particular OS Boot Loader or Console service when multiple ob-
ject can be accessed. There are 3 types of locator records - OS Locator
Record, ROM Repository Locator Record and Console Locator Record.

NVRAM Non-volatile Random Access Memory. Refers to any type of non-volatile
storage.

OS Boot Loader The term used to describe code located on an I/O device or boot server
that when executed by the Booting Platform will load the target OS.

OS Locator Record A Locator Record that points to the device that contains an OS Boot
Loader used to load the OS into the Booting Platform.

Local-Persistent Locator
Records

Boot information that a Boot Platform saves in local, non-volatile memory
to use when the platform Boots. A persistent LocatorRecord local to the
booting platform is accessible across power-cycles.

Reboot To restart the boot process. See Boot.

ROM Repository A non-volatile storage cache on a managed I/O unit that contains images
such as device drivers and Extended Boot Environment code.

ROM Repository Locator
Record

A Locator Record that points to a ROM Repository containing images
such as device drivers and Extended Boot Environment code.

SCSI RDMA SCSI RDMA Protocol. See SRP.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1273 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SRP SCSI RDMA Protocol - An I/O storage protocol defined by ANSI T10 that
may be used for the purposes of booting the platform.

Storage Boot A way of booting that reads blocks of information from a storage device
such as a hard disk drive.

A5.1.3 OVERVIEW

Booting platform is a conceptual term that describes an entity which starts
with an elementary operating environment34 herein called the boot envi-
ronment and uses I/O functions to load a more sophisticated operating en-
vironment. I/O functions might involve devices and services attached via
the IB fabric. A booting platform contains one or more CA’s.

This annex describes the booting framework that allows a booting plat-
form to use an IB fabric to boot.

In general, a booting platform needs IB specific information to boot if it is
to use the IB fabric in its boot process. That information may be stored lo-
cally on the booting platform or provided dynamically by a Boot Informa-
tion Service (BIS) each time the platform boots. The Boot Information
Service Annex specifies BIS operation, which provides the means for the
booting platform to query the BIS when it needs boot information.

As shown in Figure 269, this annex defines two management entities; the
BtA and the BootManager. These are conceptual entities that send and
receive Boot Management Class MADs to affect the booting process
(refer to section 13.3 Managers, Agents, and Interfaces on page 713).
These MADs are not part of the platform's booting process and are not
meant to describe the implementation of the booting platform. The BtA is
an optional General Services Agent (GSA) located behind each port of a
booting platform that supports InfiniBand Boot Management.

34. A software environment that is not as feature rich as current vintage
Operating Systems. For example Firmware (e.g. BIOS) is considered an
elementary operating environment.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1274 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 269 describes a booting platform containing a Boot Environment,
a BtA and persistent storage. A BootManager uses Boot Management
class MADs to communicate with the BtA. The Boot Environment through
firmware can access the BIS using BIS class MADs. Both Boot Manage-
ment and BIS class MADs serve the booting platform by providing infor-
mation used by the platform during the boot process.

The booting framework also supports various phases of booting, providing
the booting platform with locator records that identify:

• ROM Repositories that contain additional code to update or expand
the boot environment or contain device drivers needed to access the
OS Boot Loader.

• A Console Service that the booting platform can use to input informa-
tion manually and output status.

• The location for the platform’s Boot Loader. This includes the source
for the installation program, such as when a new platform needs to
boot an Install program that installs the OS. A platform boots an In-
stall program just like it boots the OS - by executing what it thinks is a
boot loader.

QP

Boot

ROM Repository

Device, File system, etc.

Stored

QP
Environment

BootBoot
Info

Booting Platform

QP
QP
QP

QPBoot
Agent

Console

containing the Boot Loader

Management
Infrastructure

Manager

BIS

QP

Boot
Configuration
Information

Query for BIS Info

Get & Set Boot Attributes

Traps

Manual input
or learned

I/O Protocol
BIS Class MADs
Boot Management Class MADs
Implementation specific

Local-
Persistent
Storage

Figure 269 Booting Framework

Legend:

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1275 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• The destination where the Install Program can place the platform’s
OS Boot Loader. Thus, if the Install is successful, then the location
becomes a source for the platform’s OS Boot Loader.

Locator Records (see A5.6.5 “Persistent Locator Records” on page 1327
and A5.6.5.5 “RecordFunction” on page 1331) contain information for a
platform to identify a device from which to boot an OS and to locate either
a Console device or service. Platforms that do not have Locator Records
in non-volatile storage need to query the BIS for Locator Records or wait
to be configured with boot information, such as by a BootManager. Propri-
etary methods to read or write Local-Persistent locator records are out of
the scope of IBA. Regardless of how Locator Records are set, they can
be read by a BootManager if a BtA is present on the boot platform.

The boot environment (e.g. BIOS) controlling the boot platform after
power on reset, reset, or reboot might or might not contain a BtA. After the
OS is loaded it too might or might not contain a BtA. The Capability of the
BtA in the boot environment may be different than the Capability of the BtA
after the OS is running. When the BtA is not running, the BootManager
does not have the ability to change local-persistent locator records, time-
outs or receive Boot Management Traps/Notices from the booting plat-
form.

A booting platform includes any node booting over IB that contains a CA.
This includes compute nodes, I/O nodes, and routers. For example, an I/O
unit might import its operating environment from a device or server at-
tached by the IB fabric. A switch or a router may also boot from the fabric
and be considered a booting platform. However, booting capability is gen-
erally associated with how a compute node loads its operating system
(OS).This annex describes the IB booting framework with respect to a
booting platform loading its OS.

A booting platform might contain multiple CA’s and each CA might contain
multiple ports. There are no architectural limitations on which CA or which
port can be used for booting. Thus, the selection of the CA and the selec-
tion of a port on the CA becomes a decision based on the location of the
boot device, port priority, and booting policy. If the boot platform can ac-
cess a boot device using multiple ports, then the booting platform makes
the determination of exactly which port it uses.

Platform booting environments vary based on processor type, platform
vendor, etc. Some well-known firmware boot environments include BIOS,
IEEE1275, EFI, PA-IODC and there are others. Each of these booting en-
vironments provide interfaces for supporting different I/O technologies,
such as IBA. Thus, there is some form of boot environment specific code
that interfaces the boot environment to the I/O technology. In our case,
this is IB specific boot code, as conceptually illustrated in Figure 270.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1276 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 271 also illustrates the IB I/O boot model (e.g., I/O controller con-
trolling storage devices) and Figure 272 illustrates the IB Network boot
model. Both I/O and services are used in most booting methods. For ex-
ample, resolution of I/O devices require using certain subnet services
such as BIS and make use of storage or network protocols such as SRP.

These considerations vary depending on the Boot Method and the Boot
Resolution methods supported. The most pervasive booting methods are
storage and network. In addition, most boot environments desire some
form of console service and that service can also be provided via IBA.

Figure 270 IB I/O Boot Model
A5.1.4 CONSOLE

Typically booting environments use console services to display booting
progress, to make booting selections, to input boot parameters, and to
troubleshoot or recover from failed boot attempts.

Console service is independent of any boot method. There are two key
considerations in supporting console service over IB fabric. The first is the
selection of the console service and the second is the console protocol.
Naturally, both the booting platform and the console service support the
same console protocol. IBA defines a console protocol (see Annex A2:
Console Service Protocol on page 1140) and while it is not the only pos-
sible console protocol, it is the only one specifically addressed in this

IB FabricIB Fabric

Boot
Environment

IB Boot Code
Channel Adapter(s)

IB I/O Boot Model

IB Services I/O DevicesNetwork Services
SA Services,
BootManager,
BIS, CFM

DHCP Server,
File Server, Console
Service, etc

Storage and Console

Booting Platform

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1277 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

annex. All other console protocols are considered proprietary. The IB
booting framework supports proprietary protocols, but does not address
issues with implementing them or determining if a booting platform is com-
patible with a proprietary console protocol.

The IB console service can be provided by a server or by an I/O controller.
This annex describes how the IB boot code can locate the server or I/O
controller that provides console service.

Normally there is an affinity from a booting platform to a particular console
service or device using either local-persistent or BIS Locator Records. If
this affinity fails then an exhaustive search for a console might be per-
formed. For a console device the hunt begins when the platform queries
all I/O units (IOU) that the booting node has a path to using
DevMgtGet(ServiceEntries) and scanning for the well-known service
name of Console.IBTA. A console service is found by querying Subnet
Administration (SA) with SubnAdm(ServiceRecord) also scanning for the
well-known service name of Console.IBTA.

A5.1.5 STORAGE BOOT METHOD

The predominant booting method is booting from a fixed-length random
block storage device. Other storage devices such as sequential (tape)
storage and variable-length block storage are also viable. The IB booting
framework does not differentiate between various storage device types.

Typically the booting environment reads blocks of data from a storage de-
vice. For the IB I/O model, that storage device is accessed by an I/O con-
troller (IOC) that is part of an I/O unit (IOU).

There are two key considerations in supporting a storage method over the
IB fabric. The first is the boot resolution method which selects the IOC.
The second is the boot method (i.e. the storage protocol) used after se-
lecting to the IOC. Naturally, both the booting platform and the IOC sup-
port the same I/O protocol. ANSI T10 defines a SCSI protocol specifically
suited for IBA (see Annex A1: I/O Infrastructure on page 1121). It is called
SCSI RDMA protocol or SRP. While SRP is not the only possible storage
protocol, it is the only one specifically addressed in this annex. All other
storage protocols are considered proprietary. The IB booting framework
supports proprietary protocols, but does not address issues with imple-
menting them or determining if a booting platform is compatible with a pro-
prietary protocol.

This annex describes how IB boot code can locate the I/O controller for a
storage device and determine the I/O protocol using Locator Records.
Through the use of multiple Locator Records, the IB booting framework
also addresses ways to establish an affinity with a storage controller as
well as the ability to support redundant storage controllers.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1278 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.1.6 NETWORK BOOT METHOD

The Network boot method is considered more complex than storage be-
cause it involves multiple services and multiple protocols. There are a
number of network booting methods that range from simply identifying the
boot server and then extracting the boot file to a complex, service rich net-
work environment.

There are multiple ways for the booting platform to access network based
services. Two of them are as follows.

• One way is through a LAN Network Interface Controller (LAN
NIC) as illustrated in Figure 271. In this case the boot environ-
ment (BIOS, etc.) needs a LAN driver that controls the LAN NIC
so it can send and receive network packets through the NIC. The
I/O protocol between the LAN driver and the LAN NIC is not spec-
ified by IBA. Boot resolution is very similar to that for a Storage
Boot method because the booting platform only needs to locate
the I/O controller (LAN NIC), make a connection to the I/O con-
troller, and then use standard IP protocols over an IB connection.

•

• The second case is where the Boot Server is attached to the IB
fabric and the IB fabric is the network as illustrated in Figure 272.

InfiniBand FabricInfiniBand Fabric

Boot
Environment

LAN Driver
CA

Boot
Server

LAN Driver

Any
I/O

Interconnect

LAN Network Boot Model

CA
LAN NIC

Local Area NetworkLocal Area Network

Figure 271 LAN Network Boot Model

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1279 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The IB network boot model does not require a LAN NIC. In this case, the
boot environment (BIOS, etc.) needs a LAN driver that can send and re-
ceive IP packets over the IB transport.

A5.1.7 BOOT ENVIRONMENT

The boot environment is defined as the software environment (including
the BtA) running before the booting platform’s OS is operational. The boot
environment makes use of CA’s on the IB subnet that provide I/O and
subnet services needed to boot.

Console Service - Boot firmware, OS loaders and low-level applications
(diagnostics, recovery) often assume the presence of a console, which is
an abstraction for a pair of input and output devices used for interaction
with an administrator.

This Annex describes how consoles are discovered. The Console Annex
defines a wire protocol for consoles, which is suitable for use with console
devices as well as console services.

Power Management - The management infrastructure provides for
power management including the ability to power down and wake a node.
Booting principles assume that I/O units are alive and active. The booting
host should take into consideration that there may be a delay from the
time that it starts to send MADs to an I/O unit, until the I/O unit is capable
of responding. This delay could include the time for the power manager to

IB FabricIB Fabric

Boot
Environment

LAN Driver
CA

Boot
Server

LAN Driver
CA

Network Boot IB Model

Figure 272 IB Network Boot Model

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1280 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

respond to a trap and the time for the I/O unit to initialize. Currently this
time is not bounded, but is expected to be in the order of seconds.

It is recommended that I/O units that take significant time to initialize, es-
pecially those supporting power management and wake-on-fabric (see
Volume 2, 12.7 “Power Management Wake-up”), be able to respond with
DevMgtGetResp(PortClassInfo) as soon as possible.

A5.1.8 MANAGING THE BEHAVIOR OF A BOOTING PLATFORM

Subnets range from very simple to very complex and the selection of the
appropriate Boot Resolution Methods is dependant on subnet complexity.
Also, booting platforms with multiple ports can belong to multiple subnets
with multiple BootManagers and more than one BIS.

A5.1.8.1 BOOT RESOLUTION METHODS

The IB booting framework defines two Boot Resolution Methods and pro-
vides two ways to manage them and allows for IB Network Boot.

One Boot Resolution Method, called the Local Resolution Method, simply
remembers (through non-volatile storage located on the booting platform)
information (i.e Locator Records) required to locate devices or services for
the purpose of booting a platform over the IB fabric. Using local-persistent
Locator Records provides the boot platform a relatively static way to iden-
tify boot devices or services without depending on additional fabric ser-
vices such as BIS.

Another Boot Resolution Method, called Boot Information Service (see
Annex A6: Boot Information Service on page 1403) also resolves devices
and services used for booting. It provides a booting platform with the iden-
tity of devices and services it needs to boot over the IB fabric. Using the
BIS in this manner provides both an adaptive and redundant boot capa-
bility that scales with subnet size. A booting platform can query the BIS for
any particular attribute and the BIS returns the requested attributes. The
attributes returned by the BIS to the booting platform are identical to the
R/W components of the equivalent Boot Management attributes (Plat-
formBootInfo, PortBootInfo, RomRepositoryLocatorRecord,ConsoleLo-
catorRecord and OsLocatorRecord) written by the BootManager to the
BtA.

Boot resolution methods vary from site to site and between platform ven-
dors. Subnet management providers are likely to support both the Local
and BIS Resolution methods. Therefore, the Boot Management class pro-
vides the means to specify which boot resolution method to use and in
what order to use them when both are selected. Local resolution allows
the booting platform to maintain a list of Locator Records for one or more
devices. The BIS provides a more dynamic and centralized mechanism to
manage Locator Records.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1281 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Using the locator records, the boot environment can locate a specific OS
boot loader, console objects, and ROM Repositories within the IB fabric.

A5.1.8.2 ROM REPOSITORY

To accommodate extending the boot environment and 3rd party drivers,
the IBA booting framework provides for ROM Repositories. See A5.12
“ROM Repository” on page 1365. The booting platform can discover if
there are Option ROM images designed for that particular boot environ-
ment. It also provides the means (i.e. protocol) to download the desired
ROM image to the booting platform. Of course what happens to the image
(i.e., how the code is linked to the boot environment and how it gets exe-
cuted) is outside the scope of this document.

A5.1.8.3 BOOT ENVIRONMENT EXTENSION

A platform's boot environment code might provide full functionality or
might contain a minimum amount of code that has the capability of being
extended. When shipped with code that can be extended, the booting
platform needs the ability to access additional code located in another
node’s ROM Repository. This extended code together with the co-resident
code of the booting platform provides an extended boot environment. In
general, the booting platform powers on, locates a ROM repository using
either Local or BIS supplied ROM Repository Locator Records, and then
downloads additional boot environment code, which provides a richer set
of services or functions, including enhancing the BtA itself.

When a power on reset or reboot takes place, the booting platform uses
saved platform boot information to determine the method (BIS or Local-
Persistent) that it uses to locate and connect to a ROM Repository.

A5.1.8.4 PROPRIETARY DRIVER LOAD

Many booting environments support loading additional code such as 3rd
party drivers. This allows the boot environment to import additional code
such as proprietary I/O protocols for existing boot methods. This includes
extending the boot environment on the booting platform to cover new boot
methods.

A5.1.9 SUBNET INITIALIZATION

The Master SM has the task of stabilizing the fabric (see 14.1 Subnet
Management Model on page 794”). The Master SM initializes the fabric
(node discovery/configuration, topology discovery, and routing table con-
figuration). A booting node might also be the Master SM and thus per-
forms these functions before it can boot. A booting platform that does not
contain SM functionality waits until the fabric is stable (PortState = Armed
or Active) before the port is allowed onto the IB subnet. A booting platform
that does contain SM functionality waits until the subnet is initialized, op-
tionally loads code images from a ROM Repository, and then finds its OS
boot loader on the fabric.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1282 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Power is often applied to many platforms at the same time, requiring spe-
cial consideration. A number of factors (CPU speed, memory testing,
other diagnostics etc.) allow nodes in the fabric to become SM’s at dif-
ferent points of time with a default or persistent recollection of SM Priority.
The Master SM (MSM) will switch from node to node until the highest pri-
ority SM is on the fabric. From a booting platform’s perspective it means
that IB paths may be reassigned at any time after the first MSM sets the
routing tables/LIDs until the MSM with the highest priority wins the SM dis-
covery process. Subnet management is a dynamic process that responds
to topology changes. SM election is completely asynchronous to the boot
process, thus the boot environment should tolerate MSM changes.

A5.1.10 BOOT/REBOOT
Booting takes place when the platform is powered on and the firmware
running on the platform loads the operating system. Generally, rebooting
follows this same process except that power is not cycled.

A5.2 BOOTMANAGER

The Boot Management class provides mechanisms (methods and at-
tributes) to enable a BootManager to set and retrieve boot information
from platforms supporting Boot Management.

A5.2.1 GENERAL OPERATION

The BootManager configures a boot platform for the subnet’s booting
policy using attributes listed Table 366 Boot Management Attribute Sum-
mary on page 1293. The booting platform uses these attributes to guide
the booting process.

A BootManager communicates with the BtA as shown in Figure 273. The
BootManager sends a message (BootMgtSet() or BootMgtGet()) to the
BtA and the BtA responds with a BootMgtGetResp(). The BtA can also
send Traps to the BootManager and the BootManager can retrieve No-
tices (not illustrated) from the BtA using BootMgtGet(Notice) and Boot-
MgtSet(Notice).

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1283 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 273 BootManager/BtA Relationship

Boot methods and resolution policies are dictated by the user or com-
puting facility policies. There is no single boot method nor boot resolution
policy that is valid for all. In fact, a boot method and resolution strategy
that might be ideal in one environment (such as a small single host static
topology) is undesirable and sometimes prohibited for another environ-
ment (such as a large dynamic facility, clusters, etc.). Additionally, as a
site continues to evolve, it may become necessary to vary those strate-
gies over time. A BootManager is also useful to update a platform’s boot
attributes when subnet configuration changes might otherwise leave the
booting platform unable to boot.

The system administrator uses the BootManager as a mechanism to
manage the booting policy of each boot platform in order to:

• Assure that when a booting platform is installed, it can be config-
ured to follow the booting policies of the facility. For example, set-
ting Platform Boot Information, Port Boot Information, and Locator
Records convey that information to the booting platform via Boot-
Mgt MADs.

• Reconfigure each booting platform’s boot policy when the booting
policy changes.

• Intervene when configuration changes or failures prevent a boot-
ing platform from booting.

• Select the BIS port priority for when a booting platform attaches
to multiple subnets (see Table 372 PortBootInfo Attribute on page
1321).

BootMgr

CA
CASwitch

BtA

1) BootManager issues a BootMgtSet or BootMgtGet

2) BtA responds with a BootMgtGetResp

BootMgr

CA
CASwitch

BtA
1) BtA issues a BootMgtTrap

2) BootManager issues a BootMgtTrapRepress

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1284 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Set the priority of the local-persistent Locator Records. This al-
lows the BootManager to pass the booting platform multiple Loca-
tor Records and indicate the order by which each should be tried.

One way for the BootManager to determine if a BtA resides on a booting
platform is to query the SA using SubnAdminGet(PortInfoRecord) for any
port on the platform. Using CapabilityMask:IsBootManagementAgent-
Supported from the PortInfoRecord query returned by the SA, the Boot-
Manager determines if the BtA exists. If so, the BootManager can
determine if the BtA supports either Traps or Notices by testing BootMgt-
GetResp(ClassPortInfo:CapabilityMask(0)) = 1b and BootMgtGet-
Resp(ClassPortInfo:CapabilityMask(1)) = 1b respectively. Traps and
Notices from the booting platform allows the BtA to notify the BootMan-
ager of problems that prevent the platform from booting and alerting the
system administrator if necessary.

Third parties can register to receive Boot Management Traps and Notices
initiated from a port that contains a BtA by issuing a BootMgtSet(Inform-
Info) to the BootManager. When a trap event occurs on the booting plat-
form, the platform issues a trap to the BootManager. The BootManager
forwards the Trap to the third party through the BootMgtReport(Notice)
method and attribute. For more information on Boot Management Traps
and Notices see A5.6.7 “Traps and Notice Queues” on page 1336]

A5.2.2 DETECTING NEW BOOT PLATFORMS

The BootManager needs to be aware of booting platforms entering and
exiting the subnet. The BootManager can subscribe with the SA for in ser-
vice and out of service Traps (Trap number 64/65). Using traps 64/65 the
BootManager is kept informed of the nodes that are online and reachable
by the BootManager.

CA5-1: The BootManager shall check for new BtAs by subscribing to SA
for trap 64.

In addition to being aware that new booting platforms have entered the
subnet the BootManager should be aware that the capability of a booting
platform are not static and may change and the BootManager may peri-
odically query each booting platform by querying PlatformBootInfo:Capa-
bility. The booting platform’s Capability may change whenever a new BtA
is loaded for any reason including expansion of the boot environment and
the OS loading a new BtA.

A5.2.3 MULTIPLE BOOT MANAGERS

When multiple BootManagers access the same platform, then access to
a booting platform should be serialized by the BootManagers to prevent
race conditions that result when multiple BootManagers are reading and
writing attributes on a platform at the same time.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1285 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.2.4 PROTECTING THE BTM_KEY

When BtM_KeyInfo:BtM_KeyProtectBits are non-zero, the BootManager
needs to protect against unauthorized access by sending each BtA a
BootMgt MAD with a valid MADHeader:BtM_Key before BtA's BtM_Key
lease period expires.

CA5-2: When the BootManager sets a non-zero BtM_Key and a non-zero
BtM_ProtectionBits in a booting platform, the BootManager shall reset the
lease period counter by sending a BootMgt MAD with MAD-
Header:BtM_Key equal to BtM_KeyInfo:BtM_Key at an interval less than
the lease period.

A5.2.5 EVENT REPORTING

The BootManager needs to collect Notices from booting platforms that
support Notices.

oA5-1: If the BootManager supports event subscriptions, then the Boot-
Manager shall periodically query the BtA notice queue and shall generate
a BootMgtReport() for each notice.

A5.2.6 SA ADVERTISEMENT
The BootManager advertises it’s location using the ServiceRecord speci-
fied in 15.2.5.14 ServiceRecord on page 895. Nodes that choose to sub-
scribe to Traps and Notices can find the BootManager by querying the SA.

CA5-3: The BootManager shall register with the SA via the Sub-
nAdmSet(ServiceRecord) using the <ServiceName>=”BootMan-
ager.IBTA”. If the BootManager is configured for multiple partitions, it shall
register once for each partition.

The values for the other ServiceRecord parameters are implementation
dependent.

If for any reason a BootManager cannot advertise it’s location with the SA
using the ServiceRecord then 3rd party nodes will not be able to subscribe
to Traps and Notices from booting platforms.

CA5-4: If the BootManager cannot register with the SA then it shall not
send Boot Management class MADs to a BtA.

The BootManager is responsible for periodically renewing its lease with
the SA to prevent the SA from dropping its ServiceRecord from the SA da-
tabase (see 15.2.5.14 ServiceRecord on page 895 and 15.2.5.14.3 Ser-
viceLease on page 898).

CA5-5: The BootManager shall renew its registration lease by reregis-
tering with the SA before its service lease expires.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1286 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.3 BOOTAGENT

A BootAgent (BtA) provides the means for a BootManager to remotely
manage the platform’s boot attributes. At a minimum, it provides a way for
the BootManager to read the platform’s booting attributes and optionally
provides the means for setting them.

The BtA behind each port allows the BootManager to:

1) Get() (read) the booting platform’s capabilities.

2) Set() locator components (see A5.6.3.4 Boot Record Locator
Sources on page 1315) to control resolution methods and the specific
order that the platform uses to locate a ROM Repository, the
Console, and the OS.

3) Set() time-out components to set the minimum amount of time a
booting platform should wait to connect to devices or services re-
quired to boot.

4) Set() the local-persistent Locator Records the platform will use to
boot and the order by which they will be used when booting

5) Be notified (via Traps or Notices) of events that occur within the
booting platform that involve the boot process

Boot Management class attributes with a scope of platform can be read
and written by a BootManager through any port with identical results. Boot
Management class attributes with a scope of port can be read and written
by a BootManager on a particular port. Table 363 specifies the scope of
each attribute.

CA5-6: The BtA shall return the same component values on all ports of
the booting platform for attributes that have a platform scope (as per Table
363).

A5.4 MAD FORMAT

CA5-7: The datagrams in the Boot Management class shall conform to
the MAD format and use as specified in Vol1, 13.4 Management Data-
grams and further customized in Figure 274 ”Boot Management MAD” on
page 1286, and Table 361, “Boot Management MAD Components,” on
page 1287

.

bytes 0 1 2 3
bits 7 0 7 0 7 0 7 0

0 BaseVersion MgmtClass ClassVersion R Method

Figure 274 Boot Management MAD

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1287 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4 Status Reserved

8 TransactionID

12

16 AttributeID Reserved

20 AttributeModifier

24 BtM_Key

28

32 Reserved

...

60

64 BootMgtData

...

252

bytes 0 1 2 3

Figure 274 Boot Management MAD (Continued)

Table 361 Boot Management MAD Components

Component Name Offset
(bits) Length Description

BaseVersion 0 1 byte as per 13.4 Management Datagrams on page 717

MgmtClass 8 1 byte Management class value = 0x11 indicates Boot Management

ClassVersion 16 1 byte Version field. Value is set to 1.

R 24 1 bit as per 13.4 Management Datagrams on page 717

Method 25 7 bits Boot Management Method, as defined in Table 362 on page 1289

Status 32 2 bytes The Status field (0:7) is defined in Volume 1, 13.4.7 “Status Field”. Status
bits 8-15 are class specific and reserved for future definition. See A5.4.1
“Boot Management MAD Status” on page 1288

Reserved 48 2 bytes Reserved

TransactionID 64 8 bytes as per 13.4 Management Datagrams on page 717

AttributeID 128 2 bytes as per 13.4 Management Datagrams on page 717 and further defined in
Table 366, “Boot Management Attribute Summary,” on page 1293.

Reserved 144 2 bytes Reserved

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1288 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.4.1 BOOT MANAGEMENT MAD STATUS

13.4.7 Status Field on page 731 defines the use of the MAD Status com-
ponent.

Busy
The BootManager may attempt to alter attributes such as Platform-
BootInfo, PortBootInfo, and Locator Records at anytime. If the BtA relies
on stable boot parameters during the boot process, then the BtA can re-
ject the Set() command by setting bit 0 of the Status component. For ex-
ample, while booting, some implementations may expect registers to be
stable for the duration of the boot. If the implementation dictates this be-
havior then the BtA may return the MAD with a Status(0)=1b.

Invalid Field Encode
A Set() or Get() is rejected (i.e. MAD:Status(2:4)=0x3) by the BtA when
the attribute, a component of an attribute, or an attribute/component com-
bination cannot be accepted by the BtA. One example of the usage of this
status is when the BtA receives a BootMgtSet(RomRepositoryLocator-
Record) and the BtA does not have the capability of setting this attribute.

When a BtA receives a Set() the Read Only (RO) components of the at-
tribute are ignored.

A BootMgtSet() informs the recipient to set values maintained by the re-
cipient according to the values contained in the attribute conveyed in
MADHeader:BootMgtData. The components of the attribute shall be set
equal to the equivalent values maintained by the recipient after the set has
been performed except when the Status returned is non-zero.

By convention, reserved fields must be filled with 0 by the initiator and ig-
nored by the receiver (see 13.4.1 Conventions on page 717).

CA5-8: A BtA or a BootManager that does not support the class version
in a request message shall respond by returning the message and setting
the R bit, the MAD:Status(2:4) to 0x1 and the ClassVersion set to 1.

AttributeModifier 160 4 bytes See Table 366 Boot Management Attribute Summary on page 1293

BtM_Key 192 8 bytes A 64-bit (8-byte) key used to validate Boot Management operations. See
A5.6.2 BtM_KeyInfo on page 1295

Reserved 156 32 bytes Reserved

BootMgtData 188 192 bytes Attribute data

Table 361 Boot Management MAD Components (Continued)

Component Name Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1289 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-9: A BtA or a BootManager that does not support the method in a re-
quest message shall respond by returning the message and setting the R
bit and set MAD:Status (2:4) to 0x2.

CA5-10: A BtA or a BootManager that does not support the method/at-
tribute combination in a request message shall respond by returning the
message and setting the R bit set MAD:Status (2:4) to 0x3 in the re-
sponse.

CA5-11: A BtA or a BootManager that does not support a particular value
in a Set request message shall respond by returning the message and
setting the R bit and set MAD:Status (2:4) to 0x7 in the response.

CA5-12: A BootManager shall ignore the contents of the BootMgtData
component if the BtA returns a non-zero status in a BootMgtGetResp().

CA5-13: A BtA shall ignore RO components when processing a Boot-
MgtSet().

Policy Reject
The Boot Manager may reject a BootMgtSet(InformInfo) using
MAD:Status(11:8)=0x3 to indicate that the boot manager’s policy does not
permit subscription to that trap.

CA5-13.2.1: If the Boot Manager rejects a BootMgtSet(InformInfo) be-
cause it does not permit subscription to that trap, it shall reject the request
using MAD:Status(11:8)=0x3.

A5.4.2 MAD BTM_KEY
The BtM_Key in the MAD:Header is used to validate the source of the
BootMgt MADs. See section A5.6.2.1 “BtM_Key General Use” on page
1296 for additional details.

A5.5 BOOT MANAGEMENT METHODS AND ATTRIBUTES

The Boot Management class methods listed in Table 362 are a subset of
the common methods described in section 13.4.5 Management Class
Methods on page 721.

Table 362 Boot Management Methods

Method
Value

(8b=R,Method)
Description

BootMgtGet() 0x01 Request a get (read) of a Boot Management attribute.

BootMgtSet() 0x02 Request a set (write) of a Boot Management attribute

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1290 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 363 shows the complete list of BootMgt class method and attribute
combinations and indicates which are mandatory or optional. Section
A5.6 Boot Management Attribute Definitions on page 1293 defines Boot
Management attributes.

Attribute Scope identifies the attribute as affecting booting parameters of
the port or the entire platform.

BootMgtGetResp() 0x81 Response to a BootMgtGet() or BootMgtSet().

BootMgtTrap 0x05 A Boot Management datagram providing the BootManager with asyn-
chronous event notification. Traps are described in 13.4.9. Trap support
indicated by BootMgtGetResp(ClassPortInfo:CapabilityMask) bits(0:1)
described in 13.4.8.1.

BootMgtTrapRepress() 0x07 A Boot Management datagram notifying the BtA to stop reporting a partic-
ular instance of a Trap matching the TransactionID and the Notice
attribute.

BootMgtReport() 0x06 BootManager Only, not BtA -Sent from a BootManager to forward
Traps/Notices to subscribers.

BootMgtReportResp() 0x86 BootManager Only, not BtA - Response to a BootMgtReport, sent by sub-
scriber to the BootManager.

Table 362 Boot Management Methods (Continued)

Method
Value

(8b=R,Method)
Description

Table 363 BtA Method/Attribute Combinations

Attribute Name Attribute
Scope

Methods

BootMgt
Get

BootMgt
GetResp

BootMgt
Set

BootMgt
Trap

BootMgt
Trap

Repress

ClassPortInfo Port Mandatory n/a

BtM_KeyInfo Platform Mandatory n/a

PlatformBootInfo Platform Mandatory Conditional n/a

PortBootInfo Port Mandatory Conditional n/a

RomRepositoryLocator-
Record

Platform Conditional Conditional n/a

ConsoleLocatorRecord Platform Conditional Conditional n/a

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1291 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-14: A BtA shall implement the methods and attribute combinations
listed as Mandatory in Table 363 on page 1290. and conditionally listed in
Table 364 on page 1291.

 Table 364 describes the Boot Management Methods and Attributes that

OsLocatorRecord Platform Conditional Conditional n/a

NodeReboot Platform Conditional n/a

Notice Platform Conditional Conditional

Table 363 BtA Method/Attribute Combinations (Continued)

Attribute Name Attribute
Scope

Methods

BootMgt
Get

BootMgt
GetResp

BootMgt
Set

BootMgt
Trap

BootMgt
Trap

Repress

Table 364 BtA Capability Requirements

Method(Attribute) Condition/Requirement

BootMgtSet(PlatformBootInfo) If Capability(10),Capability(11) or Capability(12)=1b, then a BtA shall process
BootMgtSet(PlatformBootInfo) and BootMgtGet(PlatformBootInfo) and return
BootMgtGetResp(PlatformBootInfo).

BootMgtSet(PortBootInfo) If Capability(8),Capability(10),Capability(11) or Capability(12)=1b, then a BtA
shall process BootMgtSet(PlatformBootInfo) and BootMgtGet(Platform-
BootInfo) and return BootMgtGetResp(PlatformBootInfo)

BootMgtGet(RomRepositoryLocator-
Record),
BootMgtGetResp(RomRepositoryLocator-
Record)

If Capability(0) or Capability(1) = 1b then a BtA shall process BootMgt-
Get(RomRepositoryLocatorRecord) and return BootMgtGetResp((RomRe-
positoryLocatorRecord)

BootMgtSet(RomRepositoryLocator-
Record)

If Capability(10) = 1b then a BtA shall process BootMgtSet(RomRepository-
LocatorRecord) and return BootMgtGetResp((RomRepositoryLocator-
Record)

BootMgtGet(ConsoleLocatorRecord),
BootMgtGetResp(ConsoleLocatorRecord)

If Capability(2) or Capability(3) = 1b then a BtA shall process BootMgt-
Get(ConsoleLocatorRecord) and BootMgtGetResp(ConsoleLocatorRecord)

BootMgtSet(ConsoleLocatorRecord) If Capability(11) = 1b then a BtA shall process BootMgtSet(ConsoleLocator-
Record) and return BootMgtGetResp((ConsoleLocatorRecord)

BootMgtGet(OsLocatorRecord),
BootMgtGetResp(OsLocatorRecord)

If Capability(4),Capability(5),Capability(6) or Capability(7) = 1b then a BtA
platform shall process BootMgtGet(OsLocatorRecord) and BootMgtGet-
Resp(OsLocatorRecord)

BootMgtSet(OsLocatorRecord) If Capability(12) = 1b then a a BtA shall process BootMgtSet(OsLocator-
Record) and return BootMgtGetResp((OsLocatorRecord)

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1292 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

are conditionally supported based on the values found in Platform-
BootInfo:Capability and ClassPortInfo:CapabilityMask

CA5-15: A BtA shall implement the methods and attribute combinations
listed as Conditional in Table 363 on page 1290 when the conditions listed
in Table 364 on page 1291 are true.

Some vendors may implement proprietary means to create or alter R/W
components and locator records. This may be done through various
means including a console session and is outside the scope of this Annex.

oA5-2: If the Booting Platform supports Local RomRepositoryLocator-
Records then these records shall be readable via a BootMgtGet(RomRe-
positoryLocatorRecord) regardless of the method used to set
RomRepositoryLocatorRecords.

oA5-3: If the Booting Platform supports Local ConsoleLocatorRecords
then these records shall be readable via a BootMgtGet(ConsoleLocator-
Record) regardless of the method used to set ConsoleLocatorRecords.

oA5-4: If the Booting Platform supports Local OsLocatorRecords then
these records shall be readable via a BootMgtGet(OsLocatorRecord) re-
gardless of the method used to set OsLocatorRecords.

oA5-5: If the BtA supports BootMgtGet(RomRepositoryLocatorRecord)
then it shall return the record indicated by the AttributeModifier as speci-
fied in A5.6.5 “Persistent Locator Records” on page 1327.

oA5-6: If the BtA supports BootMgtGet(ConsoleLocatorRecord) then it
shall return the record indicated by the AttributeModifier as specified in
A5.6.5 “Persistent Locator Records” on page 1327.

oA5-7: If the BtA supports BootMgtGet(OsLocatorRecord) then it shall re-
turn the record indicated by the AttributeModifier as specified in A5.6.5
“Persistent Locator Records” on page 1327.

BootMgtSet(NodeReboot) If Capability(14) or Capability(15)= 1b then a BtA shall process BootMgt-
Set(NodeReboot), BootMgtGet(NodeReboot) and BootMgtGet-
Resp(NodeReboot) and return BootMgtGetResp(NodeReboot)

BootMgtSet(Notice),
BootMgtTrapRepress(Notice)

If ClassPortInfo:CapabilityMask(0) = 1b then a BtA shall process BootMgt-
Trap(Notice) and BootMgtTrapRepress(Notice).

BootMgtSet(Notice) and repress If ClassPortInfo:CapabilityMask(1) = 1b then the BtA shall process BootMgt-
Set(Notice) and BootMgtGet(Notice).

Table 364 BtA Capability Requirements (Continued)

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1293 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 365 describes additional methods and attribute combinations that
are supported by the BootManager allowing 3rd parties to subscribe to
traps and notices.

A5.6 BOOT MANAGEMENT ATTRIBUTE DEFINITIONS

This section specifies the format of the attributes used for managing
booting platforms over the IB fabric.

.

Table 365 BootManager Method/Attribute Combinations

Attribute Name

Methods

BootMgt
Get

BootMgt
Set

BootMgt
Report

ClassPortInfo x x

Notice x x x

InformInfo x

Table 366 Boot Management Attribute Summary

Attribute Name Attribute
ID

Attribute
Modifier Description

ClassPortInfo 0x0001 0x00000000 as per Chapter 13: Management Model on page 709

BtM_KeyInfo 0x0010 0x00000000 BtM_Key information for the platform used to check
received Boot Management class MADs.

PlatformBootInfo 0x0020 0x00000000 The PlatformBootInfo attribute allows the BootManager to
Get() the booting platforms capabilities and Set() compo-
nents to control certain boot behavior.

PortBootInfo 0x0021 0x00000000 The PortBootInfo attribute allows the BtA to Get() and Set()
the booting platforms BIS priority and time-out values on a
port by port basis.

RomRepositoryLocatorRecord 0x0030 0x00000000 -
0x000000FF

A Locator Record that identifies a ROM Repository used to
expand the boot environment, BtA, and/or contains propri-
etary device drivers. The AttributeModifier determines the
priority of the record.

ConsoleLocatorRecord 0x0031 0x00000000 -
0x000000FF

A Locator Record that identifies the console to be used by
the booting platform. The AttributeModifier determines the
priority of the record.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1294 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-16: The BtA shall return MAD:Status(2:4) = 0x3 when an invalid At-
tributeID or AttributeModifier is specified as per Table 366.

OSLocatorRecord 0x0032 0x00000000 -
0x000000FF

A Locator Record that identifies the device that the booting
platform will use to bootstrap the OS. The AttributeModifier
determines the priority of the record.

NodeReboot 0x0040 0x00000000 Allows the BootManager to reboot a platform.

Notice 0x0002 0x00000000 Attribute supporting Traps and Notice Queues

InformInfo 0x0003 0x00000000 Attribute to subscribe to Boot Management Traps. Inform-
Info is not used by the BtA.

Reserved Other
values

reserved

0x00000000 -
0xFFFFFFFF

Reserved

Table 366 Boot Management Attribute Summary (Continued)

Attribute Name Attribute
ID

Attribute
Modifier Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1295 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.1 CLASSPORTINFO

CA5-17: The BtA shall implement ClassPortInfo for the BootMgt class as
described in 13.4.8.1 ClassPortInfo on page 734 and further specified in
Table 367, “Boot Management ClassPortInfo:CapabilityMask,” on
page 1295.

A5.6.2 BTM_KEYINFO

Table 367 Boot Management ClassPortInfo:CapabilityMask

Component Access Offset
(bits)

Length
(bits) Description

ClassVersion RO 0 8 Current supported BootMgt class version = 0x01

CapabilityMask RO 16 16 Supported capabilities of this management class, bit set to 1 for affir-
mation of management support.
Bits 0-7: are defined in 13.4.8.1 ClassPortInfo on page 734
Bits 8-15 for Boot Agent
 • Bit 8: IsBtM_KeyNonVolatile
 1b = BtM_Key saved in non-volatile storage
 0b = BtM_Key not saved in non-volatile storage
 • Bit 9-15: Reserved Class-specific bits, set to 0.
Bits 8-15 for Boot Manager
 • Bit 8-13: Reserved Class-specific bits, set to 0.
 • Bit 14: GracefulFailover - This bit indicates if the Boot Manager

shares subscription information with standby mangers. A value of
1 indicates that the DA retains subscriptions across fail-overs so
a client does not have to re-subscribe if fail-over is successful.
Requirements for setting this bit are specified in sections
A5.6.7.3.1 Subscription Integrity on page 1348.

 • Bit 15: IsContextPersistent - This bit indicates if the manager
persistently stores subscription information such that subscrip-
tions are retained across reset, restarts, and power cycles.
Requirements for setting this bit are specified in A5.6.7.3.1 Sub-
scription Integrity on page 1348.

See 13.4.8.1 ClassPortInfo on page 734 for more information on the
CapabilityMask.

Table 368 BtM_KeyInfo Attribute

Component Access Offset
(bits)

Length
(bits) Description

BtM_Key R/W 0 64 The 8-byte Boot Management key used in all Boot Management
MADs by all valid BootManagers. A BtM_KeyInfo:BtM_Key value of 0
means no BtM_Key check is performed by the BtA (see Table 369,
“BtM_Key Check,” on page 1297).

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1296 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.2.1 BTM_KEY GENERAL USE

The Boot Management Key (BtM_Key) provides a separate level of au-
thentication that helps protect against receipt of bad management re-
quest messages. The BootManager includes the BtM_Key in the BootMgt
MAD to obtain authorization. The BtM_Key is used to authenticate a
trusted source. Similar to the model used for the M_Key and B_Key, this
model assumes that the fabric has some level of physical security. While
the BtM_Key is located in the header of the BootMgt MAD, BtM_Key han-
dling depends on whether BootMgt MAD contains a request or a response
message or is a BootMgt Trap.

The BootManager sets the BtM_Key using BootMgtSet(BtM_KeyInfo). A
BootMgtGetResp shall return a MADHeader:BtM_Key of zero as speci-
fied in Table 369, “BtM_Key Check,” on page 1297. The Method,
BtM_Key, and BtM_KeyProtectBits determine how the BtA handles the
BtM_Key. If a key check fails, then the BtA silently drops the packet and
increments the BtM_KeyViolations counter. If the BtA supports traps or
notices, then it issues a Key Violation notice.

CA5-18: The BtM_KeyInfo:BtM_KeyViolations component shall be incre-
mented once, each time the BtA receives a MAD for which the BtM_Key

BtM_KeyProtectBits R/W 64 2 See A5.6.2.3 “BtM_Key Operations” on page 1297 for details.

Reserved R/W 66 14 Reserved

BtM_KeyLeasePeriod R/W 80 16 Timer value used to indicate how long the BtM_KeyProtectBits are to
remain non zero after a failed BtM_Key check. The value of the timer
indicates the number of seconds for the lease period. With a 16 bit
counter, the period can range from one second to approximately 18
hours. 0 shall mean infinite. See A5.6.2.5 “BtM_Key Recovery” on
page 1299 for details.

BtM_KeyViolations R/W 96 16 Number of MADs that have been received at this booting platform
since power-on or reset that have been dropped due to a failed
BtM_Key check.
Counts the number of Boot Management MADs that have been
received by the platform that have had an invalid BtM_Key. The
counter Increments until the count reaches all 1s and then must be
set back to zero to re-enable incrementing.
When the BootManager sets this component to 0x0000 the counter is
reset to 0x0000 and counting resumes. Setting the counter to a value
other than zero results the counter being left unchanged.

Reserved RO 112 1424 Reserved

Table 368 BtM_KeyInfo Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1297 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

check was performed according to Table 369, “BtM_Key Check,” on
page 1297 and failed. However, the counter shall not be incremented if its
value is all 1's.

CA5-19: The BtM_KeyInfo:BtM_KeyViolations component shall be set to
0x0000 when a Set(BtM_KeyInfo) is received with
BtM_KeyViolations=0x0000. A BtM_KeyViolations value other than
0x0000 shall leave the counter unchanged.

A5.6.2.2 BTM_KEY ASSUMPTIONS

Assumptions for using the BtM_Key are:

1) To use the correct key for each booting platform, the BootManager or
a higher-level BtM_Key manager keeps track of the keys for the plat-
forms that it is managing.

2) If a backup BootManager exists, it shares the BtM_Key for ease of
fail-over.

3) The BootManager sets the BtM_Key, the BtM_KeyProtectBits, and
the BtM_Key lease period via the BtM_KeyInfo Attribute with one
BootMgtSet(BtM_KeyInfo) MAD. A successful completion of this as-
signment indicates to the BootManager that it has taken ownership of
the booting platform.

A5.6.2.3 BTM_KEY OPERATIONS

The success and affect of the BtM_Key validation check depends on the
value of the BtM_Key, BtM_KeyProtectBits, and on the method and at-
tribute contained in the incoming MAD. If the key check succeeds then the
BtA responds to the MAD. If the key check fails the MAD is silently
dropped.

Table 369 BtM_Key Check

BtM_KeyInfo Component Values

Description
BtM_Key BtM_Key

ProtectBits

zero any The BtM_Key contained in the MADHeader:BtM_Key of the MAD shall
not be checked when the BtM_KeyInfo:BtM_Key is zero. As a result,
no authentication is performed.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1298 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-20: When the BtA receives a validated BootMgtGet() or Boot-
MgtSet() and BtM_Key checking succeeds according to the rules speci-
fied in Table 8, “BtM_Key Check” on page 35, then the BtA shall generate
a BootMgtGetResp().

CA5-21: The BtA shall perform the authentication determined by the con-
tents of BtM_KeyInfo:BtM_Key and the BtM_KeyInfo:BtM_KeyProtectBits
as per the behaviors described in Table 369, “BtM_Key Check,” on
page 1297.

CA5-22: If BtM_Key check specified in Table 369, “BtM_Key Check,” on
page 1297 fails, the BtA shall:

1) Silently drop the MAD.

non-zero 00b • BootMgtGet(*) and BootMgtTrapRepress(*) shall succeed for any
key in the MADHeader:BtM_Key

 • BootMgtGet(BtM_KeyInfo) shall return the platform’s BtM_Key in
BootMgtGetResp(BtM_KeyInfo) allowing any BootManager to
learn the BtM_Key of the port.

 • BootMgtSet(*) shall fail if MADHeader:BtM_Key does not match
the BtM_KeyInfo:BtM_Key component of the platform.

non-zero 01b • Any Boot Management MAD received at the port shall succeed if
MADHeader:BtM_Key matches the BtM_KeyInfo:BtM_Key com-
ponent of the platform.

 • BootMgtTrapRepress(*) shall succeed for any key in the MAD-
Header:BtM_Key

 • BtM_Key check on BootMgtGet(*) shall succeed for any key in the
MADHeader:BtM_Key

 • BootMgtGetResp(BtM_KeyInfo) shall return the BtM_Key set to
zero if MADHeader:BtM_Key does not match the
BtM_KeyInfo:BtM_Key. This prevents the BootManager from
learning the BtM_Key of the platform.

 • BootMgtSet(*) shall fail if MADHeader:BtM_Key does not match
the BtM_KeyInfo:BtM_Key component of the platform.

non-zero 10b • Any Boot Management MAD received at the port shall succeed if
MADHeader:BtM_Key matches the BtM_KeyInfo:BtM_Key com-
ponent of the platform

 • BootMgtTrapRepress(*) shall succeed for any key in the MAD-
Header:BtM_Key

 • BootMgtGet(*) and BootMgtSet(*) shall fail if MADHeader:
BtM_Key does not match the BtM_KeyInfo:BtM_Key component
of the platform.

non-zero 11b Reserved

Table 369 BtM_Key Check (Continued)

BtM_KeyInfo Component Values

Description
BtM_Key BtM_Key

ProtectBits

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1299 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) Increment BtM_KeyViolations. Incrementing shall stop when the
component reaches all 1s.

3) Send a Key Violation 0x0000 trap on all ports that have a non-zero
ClassPortInfo:TrapLID if traps are supported by the BtA.

4) If Notice Queues are supported, a notice is posted into the Notice
Queue.

CA5-23: The BootManager shall not check the MADHeader:BtM_Key in
any received Boot Management class MAD.

When the BtA sends a MAD to the BootManager there is no requirement
for the BootManager to do any type of key authentication. For simplicity
and consistency, the MADHeader:BtM_Key is set to zero for all MADs is-
sued by the BtA.

CA5-24: The BtA shall set MADHeader:BtM_Key to zero in all Boot Man-
agement MADs that it sends.

A5.6.2.4 BTM_KEY INITIALIZATION

CA5-25: At power-up, reset, or reboot, the BtM_Key,
BtM_KeyProtectBits, and BtM_KeyLeasePeriod shall be set to zero if
NVRAM is not used; otherwise, they shall be set to the values stored in
NVRAM.

Using a BootMgtSet(BtM_KeyInfo), the BootManager may assign the
subsequent BtM_Key, BtM_KeyProtectBits, and BtM_KeyLeasePeriod.
Note that the BootManager must ensure that the lease period allows
ample time for the BootManager to sweep the subnet to prevent the lease
from expiring.

A5.6.2.5 BTM_KEY RECOVERY

The BtM_Key lease period timer starts when a BootManager sends the
BtA a Boot Management class MAD whose BtM_Key fails the BtM_Key
check. At this time, the booting platform sends a Key Violation trap to the
BootManager (if traps are supported and if the BootManager stored its in-
formation in the trap components of the ClassPortInfo attribute). This trap
serves as a request to the BootManager to refresh the lease period by is-
suing any MAD with a MADHeader:BtM_Key that matches the
BtM_KeyInfo:BtM_Key. The lease period timer is reset to the value con-
tained in BtM_KeyInfo:BtM_KeyLeasePeriod when any MAD is received
with MADHeader:BtM_Key that matches the BtM_KeyInfo:BtM_Key.

If the BootManager fails to send a MAD with the BtM_Key that matches
BtM_KeyInfo:BtM_Key, then the lease period expires - clearing the
BtM_KeyProtectBits to zero and allowing anyone to read (and then set)
the BtM_Key.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1300 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the case when a booting platform initializes using NVRAM (e.g.
IsBtM_KeyNonVolatile=1b) then BtM_Key, BtM_KeyProtectBits,
BtM_KeyLeasePeriod are set to the values in local-persistent storage.
The TrapLID is reset to zero and waits for the BootManager to come
around to set the TrapLid. If the port receives a MAD that fails the
BtM_Key check and the TrapLid is reset then the booting platform can not
determine the LID of the BootManager needed to send the trap. In this
case, the booting platform does not send the trap and the lease period
timer can expire, causing eventual take over by a new BootManager.

With the BootMgtGet(BtM_KeyInfo), any BootManager can detect
whether the BtM_Key is set (although hidden) based on the
BtM_KeyProtectBits. If the BtM_KeyProtectBits are non-zero, the
BtM_Key is set and hidden. Otherwise, the returned BtM_Key is the real
one even if it is zero. Failure to get a response after some number of at-
tempts is an indication that the BtM_Key is set and BtM_KeyProtectBits =
10b.

A5.6.2.6 LEASE PERIOD

A Lease Period is specified by setting the contents of the
BtM_KeyInfo:BtM_KeyLeasePeriod component. It is intended to allow a
BtM_Key to 'expire' if the BootManager inadvertently goes away without
sharing the BtM_Key with backup BootManagers.

CA5-26: The lease period timer shall start counting down toward zero
when a Boot Management MAD is received for which the BtM_Key check
was performed according to Table 369, “BtM_Key Check,” on page 1297
and failed. If the lease timer count is already underway, it shall not be in-
terrupted by the arrival of that MAD.

Furthermore, if a port is capable of sending Boot Management traps, a
Key Violation trap described in Table 380, “Notice Details for Trap 0x0000
- KeyViolation,” on page 1341 is sent to the BootManager indicating that
the lease timer has started counting. In response to that trap, the Boot-
Manager may refresh the Lease Period. If a BootManager with the proper
BtM_Key has gone away, the Lease Period may expire.

CA5-27: The lease period timer shall cease counting down and shall be
reset to the value contained in BtM_KeyInfo:BtM_KeyLeasePeriod com-
ponent when any MAD is received with MADHeader:BtM_Key that
matches the BtM_KeyInfo:BtM_Key.

CA5-28: The BtA shall set its BtM_KeyInfo:BtM_KeyProtectBits to zero
when its lease period counter expires.

When the lease period expires, clearing the BtM_KeyProtectBits allow
any BootManager to read (and then set) the BtM_Key.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1301 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-29: When the BtM_KeyInfo:BtM_KeyLeasePeriod is set to zero, the
lease period timer shall never expire.

Whether there is an out-of-band mechanism to reset data protected with
a lease period of zero is outside the scope of the specification.

A5.6.3 PLATFORMBOOTINFO ATTRIBUTE

The BootManager informs the BtA of the desired behavior of the platform
in order to assist in setting the booting policy of the subnet. The scope of
this attribute is the booting platform. Table 370 "PlatformBootInfo At-
tribute" on page 1302 describes the format of the PlatformBootInfo at-
tribute. The BootManager reads the booting platforms capabilities and
current status by sending a BootMgtGet(PlatformBootInfo). This attribute
also allows the BootManager to Set(PlatformBootInfo) components and
therefore control the booting behavior of the platform.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1302 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 370 PlatformBootInfo Attribute

Component Access Offset
(bits) Length Description

Capability RO 0 32 bits This component reports the capability of the Booting Platform
0b indicates booting platform does not support the capability.
1b indicates booting platform supports the capability.
 • bit 0 - Extended Boot Environment - Booting platform is able to

load code from a ROM Repository that extends the boot environ-
ment and/or BtA capability.

 • bit 1 - Proprietary Driver Load - The booting platform is able to
load proprietary device drivers from a ROM Repository

 • bit 2 - IB Console Protocol - The boot environment supports
this protocol

 • bit 3 - Proprietary Console Protocol - The boot environment
supports a proprietary console protocol.

 • bit 4 - SRP Storage Protocol - The boot environment supports
this protocol

 • bit 5 - Proprietary Storage Protocol - The boot environment
supports a proprietary storage protocol

 • bit 6 - Network Boot-IB Network Model - The boot environment
supports a proprietary network boot protocol (without LAN NIC)
see A5.1.6 Network Boot Method on page 1278.

 • bit 7 - Network Boot- NIC Model - The boot environment sup-
ports a proprietary network boot protocol (with LAN NIC) see
A5.1.6 Network Boot Method on page 1278.

 • bit 8 - BIS - Booting platform can boot from Locator Records pro-
vided by a BIS.

 • bit 9 - Persistent Boot - Booting platform can boot from Locator
Record information located in local non-volatile storage.

 • bit 10 - Update ROM Locator Records - BtA can write persis-
tent ROM Repository information located in local non-volatile
storage

 • bit 11 - Update Console Locator Records - BtA can write per-
sistent console information located in local non-volatile storage

 • bit 12 - Update OS Locator Records - BtA can write persistent
OS locator information located in local non-volatile storage

 • bit 13 - Reserved
 • bit 14 - Immediate Reboot. This booting platform has the capa-

bility of initiating an Immediate reboot to the platform when the
BtA receives a BootMgtSet(NodeReboot).

 • bit 15 - Graceful Reboot. This booting platform has the capabil-
ity of initiating a Graceful reboot of the platform when the BtA
receives a BootMgtSet(NodeReboot).

 • bit 16-31 - Reserved

reserved RO 32 4-bits reserved

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1303 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ROMRepositoryLoca-
torSource

R/W 36 4-bits This component indicates how and in what order the boot platform
locates a ROM Repository to extend its boot environment. When
Capability(0) = 0b and Capability(1) = 0b, then the only valid value is
0xF.
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - Disable/No ROM Repository for expansion.

ConsoleLocatorSource R/W 40 4-bits This component indicates how and in what order the boot platform
locates a Console IOC or Server. When both Capability(2) = 0b and
Capability(3) = 0b, then the only valid value is 0xF.
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - Disable/No console

OsLocatorSource R/W 44 4-bits This component indicates how and in what order the boot platform
locates an IOC and device containing its operating system loader for
either storage or network booting.
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - Disable/No OS boot loader

reserved RO 48 8 bits reserved

reserved RO 56 6-bits reserved

PlatformBootInfoSource R/W 62 1-bit This component indicates if the booting platform will query BIS for
PlatformBootInfo - A booting platform may obtain PlatformBootInfo
from either a BIS of from persistent information saved locally on the
platform.
0b - The booting platform will query the BIS for PlatformBootInfo at

the beginning of the boot process. This is the Default value
1b - The booting platform will obtain PlatformBootInfo from Persistent

storage.

PortBootInfoSource R/W 63 1-bit This component indicates if the booting platform will query BIS for
PortBootInfo - A booting platform may obtain PortBootInfo from either
a BIS of from persistent information saved on the platform.
0b - The booting platform will query the BIS for PortBootInfo at the

beginning of the boot process. This is the Default value
1b - The booting platform will obtain PortBootInfo from Persistent stor-

age.

RomLocatorCount RO 64 8 bits This component specifies the number of ROM Repository Locator
Records the booting platform can persistently save that point to a
ROM Repository.

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1304 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ConsoleLocatorCount RO 72 8 bits This component specifies the number of Console Locator Records the
booting platform can persistently save that point to a console
device/service.

OsLocatorCount RO 80 8 bits This component specifies the number of OS Locator Records the
booting platform can persistently save that point to a OS boot loader
located on a device or provided as a service that points to a device or
service that can access the OS boot loader.

reserved RO 88 8 bits reserved

DeletePersisten-
tRecords

RW 96 8 bits This component instructs the BtA to erase persistent Locator Records
bit 0 - 1b erases all Persistent RomRepositoryLocatorRecords from

use
bit 1 - 1b erases all Persistent ConsoleLocatorRecords from use
bit 2 - 1b erases all Persistent OsLocatorRecords from use
bit 3-7 - Reserved and set to zero
This component is set to zero in BootMgtGetResp(PlatformBootInfo)

reserved RO 104 24 bits reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1305 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ExtendedBootProgress RO 128 16 bits This component reports the status of a booting platform while attempt-
ing to load the extended boot environment. The ROM Repository is
accessed when loading the extended boot environment.
bit 0 - Not Attempted - Platform has not attempted to use the ROM

Repository to extend the boot environment.
bit 1 - In Progress - Platform will use the ROM Repository. This sta-

tus bit is set when the platform either accesses the Persistent
ROM Repository Locator Record or queries the SA for a path to
the BIS in order to locate a ROM Repository.

bit 2 - No ROM Repository Locator Record - Platform either does
not have a ROM Repository Locator Record or one or more Rom-
RepositoryLocatorRecords are invalid. Both local-persistent and
BIS Locator Records, if supported, are include in this status bit.

bit 3 - No Path Returned to ROM Repository (IOU not found)- Plat-
form cannot locate an IOU specified by a RomRepositoryLocator-
Record

bit 4 - ROM Repository not found on IOU - The IOU in the RomRe-
positoryLocatorRecord does not contain a ROM Repository.

bit 5 - Cannot connect to ROM Repository - After repeated
attempts, the platform cannot make an RC connection to the ROM
Repository.

bit 6 - ROM Repository image for Extension not found - A ROM
Repository does not contain an Extended Boot Image suitable for
the platform.

bit 7:9 - Reserved and set to zeros
bit 10 - ROM Repository protocol error - A protocol error was

detected while connected to the ROM Repository causing the con-
nection to be terminated.

bit 11 - Reserved and set to zeros.
bit 12 - Reserved and set to zeros.
bit 13 - ROM Repository image invalid, corrupted or incompatible

- A ROM Repository is corrupted or contains a corrupt image.
bit 14 - Extension process complete and operational - The plat-

form has successfully loaded the extended boot environment
code. This status may be present even though other failures were
detected. This can occur when multiple ROM Repositories are
available.

bit 15 - Reserved and set to zeros
0x0000 - Disabled or Not Supported - This platform does not report

ExtendedBootProgress.
0x0001 - Set to this value at reset (Not Attempted)

Reserved RO 144 8 bits Reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1306 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ExtendedBootState RO 152 8 bits This component reports the state of a booting platform attempting to
load the extended boot environment. The ROM Repository is
accessed when loading the extended boot environment. This compo-
nent reports the success or failure of the platform to extend its boot
environment.
0x00 - Set to this value at reset

0x01 - In Progress - Platform has begun to load the extended boot
environment and has not detected a failure.

0x10 - Extended Boot Environment Failure - The booting platform
has failed to boot the OS because the boot environment could not
be extended.

0x11 - Extended Boot Environment Failure - The booting platform
has failed to load the desired extended boot environment. The
non-extended boot environment is/was used to boot the OS.

0xFE -Success - The platform is using the extended boot environ-
ment

0xFF - Disabled or Not Supported - This platform does not report
ExtendedBootState.

All other code points reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1307 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ConsoleBootProgress RO 160 16 bits This component reports Console Boot Progress - The Console device
or service is normally enabled as early as possible in the boot pro-
cess. Extending the boot environment and loading Console device
drivers may be a prerequisite for making a console connection.
0x0001 - Set to this value at reset (Not Attempted)
bit 0 - Not Attempted - Platform has not yet attempted to use the

Console
bit 1 - In Progress - Platform will use a Console device or service.

This status bit is set when the platform either accesses the local-
persistent ConsoleLocatorRecord or queries the SA for a path to
the BIS in order to locate a console.

bit 2 - No ConsoleLocatorRecord - Platform either does not have a
ConsoleLocatorRecord or one or more ConsoleLocatorRecords
are invalid. Both Local-Persistent and BIS Locator Records, if sup-
ported are include in this status bit.

bit 3 - No Path Returned for Console (IOU or service not found)-
Platform cannot access one or more Console targets because a
Path Record was not returned from the SA.

bit 4 - Console IOU or Server not found - The IOU or server identi-
fied by the ConsoleLocatorRecord is not responding to MADs.

bit 5 - Console GUID/SID not found - The GUID/SID in the Console-
LocatorRecord cannot be found.

bit 6 - Cannot connect to Console - After repeated attempts, the
platform cannot make an RC connection to the Console.

bit 7 - Reserved and set to zero
bit 8 - Console ProtocolName not found - ProtocolName not found

in AdditionalInfo when ConsoleLocatorRecord:Protocol(7)=1b
bit 9 - Console protocol not supported - The platform does not sup-

port the protocol used by the device or service.
bit 10 - Console protocol error - A protocol error was detected while

connected to the Console causing the connection to be termi-
nated.

bit 11 - Console Device Driver not found - The platform cannot
locate a Console Device Driver suitable for this platform.

bit 12 - Reserved and set to zeros
bit 13 - Console Device Driver image invalid, corrupted or incom-

patible - The console device driver found in the ROM Repository
is not usable.

bit 14 - Console operational - The platform has successfully con-
nected to the console device or service.

bit 15 - Reserved and set to zeros
0x0000 - Disabled or Not Supported - This platform does not report

Console Informational Status.
0x0001 - Set to this value at reset (in Progress)

Reserved RO 176 8 bits Reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1308 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ConsoleBootState RO 184 8 bits This component reports Console Boot State - This component reports
the success or failure of the platform to use the console.
0x00 - Set to this value at reset
0x01 - In Progress - Platform has begun to access the IB console

and has not detected a failure.
0x10 - Console Device Driver Load Failure - The platform could not

locate a Device Driver for the console device or service - the plat-
form will attempt to load the OS.

0x11 - Boot Failure Console Device Driver - The platform has failed
to boot the OS because the platform could not locate a Device
Driver for the console device or service.

0x20 - Console Failure - The platform has located a DD but failed to
connect to a console - the platform will attempt to load the OS.

0x21 - Boot Failure Console - The platform has located a DD but
has failed to connect to a console - the platform will not attempt to
load the OS.

0xFE -Success - The platform is using the console
0xFF - Disabled or Not Supported - This platform does not report

ConsoleBootState.
All other code points reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1309 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

OSBootProgress RO 192 16 bits This component reports the status of the platform’s OS boot process.
0x0001 - Set to this value at reset (Not Attempted)
bit 0 - Not Attempted - Platform has not yet attempted to load the OS

loader from the boot device or server.
bit 1 - In Progress - This status is set when the platform either

accesses the Local-Persistent OSLocatorRecords or queries the
SA for a path to the BIS in order to locate the boot device.

bit 2 - No OSLocatorRecord - Platform either does not have an OS
Locator Record or one or more OS Locator Records are invalid.
Both Local-Persistent and BIS Locator Records, if supported are
include in this status bit.

bit 3 - No Path Returned for Device/Service (IOU or service not
found)- Platform cannot access one or more boot targets because
a Path Record was not returned from the SA.

bit 4 - OS Boot Device or Server not found - The device or server
identified by an OsLocatorRecord cannot be found.

bit 5 - IocGUID/SID not found - The IocGUID or SID in the OsLoca-
torRecord cannot be found.

bit 6 - Cannot connect to OS Boot Target - After repeated attempts,
the platform cannot make a connection to the Boot Target.

bit 7 - Reserved and set to zero
bit 8 - I/O ProtocolName not found - ProtocolName not found in

AdditionalInfo when OsLocatorRecord:Protocol(7)=1b
bit 9 - OS Device protocol Unknown - The platform does not sup-

port the protocol used by the device.
bit 10 - OS Boot protocol error - A protocol error was detected while

connected to the Boot target causing the connection to be termi-
nated.

bit 11 - OS Boot Device Driver not found - The platform cannot
locate an OS Boot Device Driver suitable for this platform.

bit 12 - OS Boot AdditionalInfo - Device in AdditionalInfo not found
or AdditionalInfo invalid.

bit 13 - OS Boot Device Driver image invalid, corrupted or incom-
patible - The console device driver found in the ROM Repository
is corrupt.

bit 14 - OS Boot Loader operational - The platform has successfully
loaded the OS Boot Loader.

bit 15 - Reserved and set to zeros
0xFFFF - Disabled or Not Supported - This platform does not report

OSBootProgress.
0x0001 - Set to this value at reset (in Progress)

Reserved RO 208 8 bits Reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1310 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-30: A BtA shall report its Capability via the PlatformBootInfo attribute
returned in the BootMgtGetResp method. See Capability in Table 370
"PlatformBootInfo Attribute" on page 1302.

CA5-31: If PlatformBootInfo:Capability(10:12) is non-zero then the BtA
shall persistently save the R/W components of PlatformBootInfo and Port-
BootInfo in non-volatile storage.

CA5-32: If the BtA does not support BootMgtSet(PlatformBootInfo) or
BootMgtSet(PortBootInfo) then the BtA shall return MAD:Status(2:4) =
0x3 in the response of the request.

oA5-8: If the booting platform attempts to locate a ROM repository using
Local-Persistent ROMRepositoryLocatorRecords, it shall use them in the
order specified by their AttributeModifier.

OSBootState RO 216 8 bits This component reports the state of the platform in booting its OS. It
reports the success or failure to locate an OS boot loader.
0x00 - Set to this value at reset
0x01 - In Progress - Platform has begun to access the OS boot

loader and has not detected a failure.
0x00 - Not Urgent - Platform has not detected an urgent error

accessing the OS Loader. Set to this value at reset (in Progress)
0x11 - OS Boot Failure Device Driver - The platform has failed to

boot the OS because the platform could not locate a Device Driver
for any of the boot devices.

0x21 - OS Boot Failure, no Boot Loader - The platform has failed to
locate any boot loader (i.e., IOU/IOC not present, no boot device,
or no boot loader on boot device, etc.).

0xFE -Success - The platform is using the boot device.
0xFF - Disabled or Not Supported - This platform does not report

OSBootState.
All other code points reserved

BootPlatformUUID RO 224 128
bits

A 128-bit universally unique identifier (UUID) as defined by ISO/IEC
11578 that uniquely identifies the booting platform.

PlatformInfo RO 352 1024
bits

(128-
Bytes)

A TLV encoded component containing multiple packed elements as
described in A5.6.3.2 "PlatformInfo" on page 1311.

Reserved RO 1376 160 Reserved

Table 370 PlatformBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1311 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-9: If the booting platform attempts to locate a Console using Local-
Persistent ConsoleLocatorRecords, it shall use them in the order speci-
fied by their AttributeModifier.

oA5-10: If the booting platform attempts to locate an OS boot loader
using Local-Persistent OsLocatorRecords, it shall use them in the order
specified by their AttributeModifier.

oA5-11: A BtA shall report the number of RomRepositoryLocatorRecords
it can save in non-volatile storage by returning the count of locator records
in BootMgtGetResp(PlatformBootInfo:RomLocatorCount).

oA5-12: A BtA shall report the number of ConsoleLocatorRecords it can
save in non-volatile storage by returning the count of locator records in
BootMgtGetResp(PlatformBootInfo:ConsoleLocatorCount).

oA5-13: A BtA shall report the number of OsLocatorRecords it can save
in non-volatile storage by returning the count of locator records in Boot-
MgtGetResp(PlatformBootInfo:OsLocatorCount).

A5.6.3.1 BOOTPLATFORMUUID

The BtA uniquely identifies a booting platform by its BootPlatformUUID.
The 128-bit UUID was selected over a 64-bit GUID (EUI-64) because it
can be generated easily by software, which de-couples the boot environ-
ment from any particular hardware. For example, it removes the necessity
for a hardware serial number to be machine readable. Software genera-
tion is also advantageous for retrofit and field upgrades in machines that
are not specifically designed for InfiniBand. A BootManager does not
need to interpret the BootPlatformUUID, but rather uses it as an opaque
value to match with locator records assigned to that BootPlatformUUID.

CA5-33: The booting platform shall provide a persistent UUID in Platform-
BootInfo:BootPlatformUUID that uniquely identifies the booting platform.

oA5-14: If a booting platform supports BIS, then the booting platform shall
provide a persistent BootPlatformUUID in the BisQuery() that uniquely
identifies the booting platform. The UUID in the BIS query shall be the
same value reported in the BtMGetResp(PlatformBootInfo).

A5.6.3.2 PLATFORMINFO

The BootPlatformUUID is a component that a BootManager uses to iden-
tify a booting platform. The PlatformInfo component is intended as supple-
mental information to identify those characteristics of a booting platform
that may influence the set of locator records selected for the booting plat-
form.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1312 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Elements in PlatformInfo are in TLV format. The first byte is the Type, the
second byte is the Length (number of bytes in the value string), and the
remainder of the element is the value string, in UTF-8 format. Type codes
are specified in Table 371. The PlatformInfo component contains a vari-
able number of variable length elements and is terminated with the null
value (0x00). All bytes after the termination byte should also be null bytes.

Each respective booting platform vendor is responsible for defining its
own value string definition. For instance the Platform vendor defines
unique values for each of its products and firmware vendor defines unique
values for each of its products. An element with a Length of zero means
that the booting platform does not know the value for that element.

The recommended practice is for the booting platform to order elements
by their Type value, lowest to highest.

Table 371 PlatformInfo Elements

Type
Value

Length
Value

Description
(All strings are in UTF-8 and the content of each element is vendor specific)

0x00 0x00 Marks end of elements - ignore remainder of component data following this Type code

0x01 variable Platform Vendor Name String
This string provides the name of the vendor that manufactured the booting platform.

0x02 variable Platform Vendor Model/Type String
This string provides the model and type of the booting platform.

0x03 variable Platform Serial Number String
This string provides the serial number of the booting platform.

0x04 variable Firmware Vendor Name String
This string provides the name of the firmware vendor that manufactured the boot envi-
ronment code (e.g., BIOS vendor.).

0x05 variable Firmware Version String
This string provides the version of the firmware code.

0x06 variable CPU Vendor Name String
This string provides the name of the CPU vendor

0x07 variable CPU Vendor Version String
This string provides the CPU version, stepping, etc.

0x08 variable Platform Name String
This string provides the local name assigned the booting platform - usually assigned by
the System Administrator to identify the platform by name.

0x09 variable OS Name String
This string provides the name of the preferred Operating System.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1313 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.3.3 BOOTING PLATFORM CAPABILITY

Platform vendors provide BtAs with varying degrees of functionality. The
booting platform’s Capability component in PlatformBootInfo reports the
functionality of the BtA to the BootManager. See Table 370.

A5.6.3.3.1 EXTENDED BOOT ENVIRONMENT

A 1b returned in PlatformBootInfo:Capability(0)) indicates that the boot
environment can be expanded by loading additional code from a ROM
Repository.

Each vendor that desires to expand its boot environment using the ROM
Repository should test the repository Image Descriptor (see A5.12.8
"IMAGE Descriptor" on page 1375). It is expected that each platform
vendor checks the ImageAuthority component in the Image Descriptor for
an ImageAuthority and ImageType recognized by the boot environment of
the booting platform. Other checks such as validating the content of the
image may also be necessary. For more information on using the ROM
Repository see A5.12 "ROM Repository" on page 1365.

A5.6.3.3.2 PROPRIETARY DRIVER LOAD

Capability(1)) indicates that the booting platform has the capability of
loading proprietary drivers. Proprietary Driver Load is a method or pro-
cess to load Storage, Network, and/or Console device drivers from an-
other node (e.g the ROM Repository) into the booting platform. This
allows the I/O subsystem to deliver the boot platform code (3rd party
drivers) enabling devices, services, and protocols present within the IB
fabric. This firmware is typically dependent on the HW-platform (BIOS,
IEEE1275, EFI, etc.) when loading code for the boot environment and
also OS dependant when loading code for the OS (i.e. the driver is specific
to the OS). When the booting platform is booting from a device, the plat-
form may search for the ROM Repository on the same IOU that contains
the IOC, or may use a centralized ROM Repository35. If the booting plat-
form is booting from a boot service or if the correct device driver is not
found, then the platform should search the ROM repositories pointed to
by the RomRepositoryLocatorRecord(s).

A5.6.3.3.3 PROTOCOLS SUPPORTED

Capability(0:7) indicates that the booting platform supports particular pro-
tocols.

• Capability(0) or Capability(1) indicates that the booting platform
supports the IB ROM Repository protocol described in Table 370
"PlatformBootInfo Attribute" on page 1302.

35. Console and OS Locator Records contains a component
(DeviceDriverLocation) that informs the booting platform of which repository to
search first.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1314 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Capability(2) indicates that the booting platform supports the IB
Console protocol described in Annex A2: Console Service Proto-
col on page 1140.

• Capability(3) indicates that the booting platform supports a propri-
etary Console protocol the details of which are outside the scope
of IBA.

• Capability(4) indicates that the booting platform supports the SRP
Storage protocol described in Annex A1: I/O Infrastructure on
page 1121.

• Capability(5) indicates that the booting platform supports a propri-
etary Storage protocol the details of which are outside the scope
of IBA.

• Capability(6) indicates that the booting platform supports a Net-
work protocol that uses a LAN NIC.

• Capability(7) indicates that the booting platform supports a Net-
work protocol that does not use a LAN NIC. The details of which
are outside the scope of IBA (see Section 5.1.6, “Network Boot
Method,” on page 1278).

A5.6.3.3.4 BOOT RESOLUTION METHODS SUPPORTED

There are two sources for locator records, Local-Persistent storage or
BIS. Local-Persistent Locator Records are saved in non-volatile storage
on the booting platform. Local-Persistent Locator Records can be set
using Boot Management attributes. BIS records are provided by a BIS
service when the service is queried by the booting platform.

• Capability(8) indicates that the boot platform can query the BIS
using BIS class MADs and use the BIS Locator Records returned
for locating a ROM Repository, a console and a boot device.

• Capability(9) indicates that the booting platform can use Local-
Persistent Locator Records located locally in non-volatile storage.

CA5-34: A BtA that supports the Local-Persistent Locator Records (Ca-
pability(9)) shall have the capability to read all RomRepositoryLocator-
Records, ConsoleLocatorRecords, and OSLocatorRecords in non-volatile
storage.

oA5-15: A booting platform whose BtA sets Capability(8) shall have the
capability to query the BIS for RomRepositoryLocatorRecord, ConsoleLo-
catorRecords, OSLocatorRecords, PlatformBootInfo, and PortBootInfo
attributes.

A5.6.3.3.5 UPDATE LOCATOR RECORDS SUPPORTED

Capability(10) indicates that the BtA has write access to Local-Persistent
Locator Records pointing to the ROM Repository.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1315 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-16: A BtA that supports Update ROM Locator Records, Capa-
bility(10) = 1b, shall have the capability to save RomLocatorCount Rom-
RepositoryLocatorRecords in non-volatile storage across power cycles
and RomLocatorCount shall be greater than zero. A 0b indicates that the
booting platform does not have this capability.

Capability(11) indicates that the BtA has write access to Local-Persistent
Locator Records pointing to the Console object.

oA5-17: A BtA that supports Update Console Locator Records, Capa-
bility(11) = 1b shall have the capability to save ConsoleLocatorCount Con-
soleLocatorRecords in non-volatile storage across power cycles and
ConsoleLocatorCount shall be greater than zero. A 0b indicates that the
booting platform does not have this capability.

Capability(12) indicates that the BtA has write access to Local-Persistent
Locator Records pointing to the OS boot loader.

oA5-18: A BtA that supports Update OS Boot Locator Records, Capa-
bility(12) = 1b shall have the capability to save OsLocatorCount OsLoca-
torRecords in non-volatile storage across power cycles and
OsLocatorCount shall be greater than zero. A 0b indicates that the
booting platform does not have this capability.

A5.6.3.4 BOOT RECORD LOCATOR SOURCES

The ROMRepositoryLocatorSource, ConsoleLocatorSource, and OsLo-
catorSource components inform the booting platform of the Locator
Record sources (Local-Persistent or BIS) to use when booting. Each lo-
cator selects the boot resolution method used and the order in which the
method shall be used. BIS can only be used if Capability(8) = 1b. Local-
Persistent can only be used if Capability(9) = 1b. These attributes can be
set by the BootManager or the booting platform can query the BIS (see
BisQuery in Annex A6: Boot Information Service on page 1403).

The component encode determines if either BIS or Local-Persistent
methods should be used and if both are used which is attempted first.

ROMRepositoryLocatorSource
When the ROMRepositoryLocatorSource contains a 0x0 or 0x1 the
booting platform will query the BIS to determine the location of a ROM Re-
pository when required to expand the boot environment or access Propri-
etary drivers. When the ROMRepositoryLocatorSource contains a 0x3 the
booting platform will query the BIS only if necessary after using RomRe-
positoryLocatorRecords saved in non-volatile storage.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1316 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When the ROMRepositoryLocatorSource contains a 0x2 or 0x3 the
booting platform will use the Local-Persistent RomRepositoryLocator-
Records to determine the location of the Repository. When the ROMRe-
positoryLocatorSource contains a 0x1 the booting platform will use Local-
Persistent RomRepositoryLocatorRecords only if necessary after que-
rying the BIS.

ConsoleLocatorSource
When the ConsoleLocatorSource contains a 0x0 or 0x1 the booting plat-
form will query the BIS to determine the location of the Console device or
service. When the ConsoleLocatorSource contains a 0x3 the booting plat-
form will query the BIS only if necessary after using Local-Persistent Con-
soleLocatorRecords saved in non-volatile storage.

When the ConsoleLocatorSource contains a 0x2 or 0x3 the booting plat-
form will use the Local-Persistent ConsoleLocatorRecords to determine
the location of the Console device or service. When the ConsoleLocator-
Source contains a 0x1 the booting platform will use Local-Persistent Con-
soleLocatorRecords only if necessary after querying the BIS.

OsLocatorSource
The OsLocatorSource is a way that a booting platform selects services
and IOCs. Specifically, a mechanism by which a booting platform can re-
solve or select a set of Locator Records that the booting platform uses to
find a Boot Device or a Boot Service.

When the OsLocatorSource contains a 0x0 or 0x1 the booting platform will
query the BIS for OsLocatorRecords. When the OsLocatorSource con-
tains a 0x3 the booting platform will query the BIS only if necessary after
using Local-Persistent OsLocatorRecords saved in non-volatile storage.

When the OsLocatorSource contains a 0x2 or 0x3 the booting platform will
use its Local-Persistent OsLocatorRecords. When the OSLocatorSource
contains a 0x1 the booting platform will use Local-Persistent OsLocator-
Records only if necessary after querying the BIS.

oA5-19: If the boot platform supports RomRepositoryLocatorRecords,
then the platform shall use PlatformBootInfo:RomRepositoryLocator-
Source to determine the method to use to locate the ROM Repository.

oA5-20: If the boot platform supports ConsoleLocatorRecords, then the
platform shall use PlatformBootInfo:ConsoleLocatorSource to determine
the method to use to locate the Console.

oA5-21: If the boot platform supports OsLocatorRecords, then the plat-
form shall use PlatformBootInfo:OsLocatorSource to determine the
method to use to locate the OS loader.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1317 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-22: The BtA shall set MAD:Status(2:4) to 0x3 in the response if a
BootMgtSet(PlatformBootInfo) attempts to Set() a component to an un-
supported value inconsistent with PlatformBootInfo:Capability.

oA5-23: If PlatformBootInfo:OsLocatorSource is set to 0xF then the plat-
form shall not boot from the IB fabric.

A BootManager would set PlatformBootInfo:OsLocatorSource to 0xF
while updating OsLocatorSource records so that if the platform re-booted
while the Boot manager is updating OsLocatorRecords the OsLocator-
Records would not be used as a pointer to the OS boot loader.

oA5-24: If PlatformBootInfo:ConsoleLocatorSource is set to 0xF then the
platform shall not access the console over the IB fabric.

oA5-25: If PlatformBootInfo:RomRepositoryLocatorSource is set to 0xF
then the platform shall not use RomRepositoryLocatorRecord to locate a
ROM Repository.

When a booting platform has multiple ports on multiple subnets or multiple
partitions then multiple BootManagers may share the platform BtM_Key.
To keep each BootManager informed of changes to Locator Records, a
Trap is issued out all ports that have a non-zero ClassPortInfo:TrapLID-
when any Locator Record is modified.

A5.6.3.5 RECORD COUNT

The BtA reports the number of Local-Persistent Locator Records capable
of being persistently saved by the platform for each of the 3 types of Local-
Persistent locator records, namely RomRepositoryLocatorRecord, Con-
soleLocatorRecord, and OsLocatorRecord.

A non-zero count returned in RomLocatorCount, ConsoleLocatorCount,
or OsLocatorCount indicates that the booting platform has the ability to
persistently save count number of Local-Persistent Locator Records
across power cycles.

oA5-26: BootMgtGetResp(PlatformBootInfo:RomLocatorCount) shall in-
dicate the number of RomRepositoryLocatorRecords the platform can
persistently store. A 0x00 indicates that the platform can not save any
RomRepositoryLocatorRecords.

oA5-27: BootMgtGetResp(PlatformBootInfo:ConsoleLocatorCount) shall
indicate the number of ConsoleLocatorRecords the platform can persis-
tently store. A 0x00 indicates that the platform can not save any Console-
LocatorRecords.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1318 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-28: BootMgtGetResp(PlatformBootInfo:OsLocatorCount) shall indi-
cate the number of OsLocatorRecords the platform can persistently store.
A 0x00 indicates that the platform can not save any OsLocatorRecords.

oA5-29: A BtA shall set MAD:Status(2:4) to 0x3 in BootMgtGetResp()
when it receives a Set(RomRepositoryLocatorRecord) and the Attribute-
Modifier is equal to or greater than the number of RomRepositoryLocator-
Records indicated in PortBootInfo:RomLocatorCount.

oA5-30: A BtA shall set MAD:Status(2:4) to 0x3 in BootMgtGetResp()
when it receives a Set(ConsoleLocatorRecord) and the AttributeModifier
is equal to or greater than the number of ConsoleLocatorRecords indi-
cated in PortBootInfo:ConsoleLocatorCount.

oA5-31: A BtA shall set MAD:Status(2:4) to 0x3 in BootMgtGetResp(Ge-
tResp) when it receives a Set(OsLocatorRecord) and the AttributeModi-
fier is equal to or greater than the number of OsLocatorRecords indicated
in PortBootInfo:OsLocatorCount.

The BootManager erases individual persistent locator records by issuing
a BootMgtSet() specifying the attribute (RomRepositoryLocatorRecord,
ConsoleLocatorRecord, or OsLocatorRecord), the AttributeModifier to in-
dicate the slot, and setting the BootMgtData component to zero.

The BtA shall not use a LocatorRecord containing all zero's (i.e. skips this
record when booting).

The BtA may report non-initialized, invalid, or otherwise unusable Local-
Persistent locator records by setting the BootMgtData component to zero
in the BootMgtGetResp() of a RomRepositoryLocatorRecord, ConsoleLo-
catorRecord, or OsLocatorRecord read.

CA5-35: The BtA shall return RomRepositoryLocatorRecord in the Boot-
MgtGetResp() with BootMgtData of the MAD(64:256) equal to all zeros
(see Figure 274 ”Boot Management MAD” on page 1286) when the lo-
cator record specified by the AttributeModifier has never been initialized,
has been erased, or is otherwise unusable.

CA5-36: The BtA shall return ConsoleLocatorRecord in the BootMgtGet-
Resp() with BootMgtData of the MAD(64:256) equal to all zeros (see
Figure 274 ”Boot Management MAD” on page 1286) when the locator
record specified by the AttributeModifier has never been initialized, has
been erased, or is otherwise unusable.

CA5-37: The BtA shall return OsLocatorRecord in the BootMgtGetResp()
with BootMgtData of the MAD(64:256) equal to all zeros (see Figure 274
”Boot Management MAD” on page 1286) when the locator record speci-

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1319 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

fied by the AttributeModifier has never been initialized, has been erased,
or is otherwise unusable.

A5.6.3.6 DELETING PERSISTENT RECORDS

When a configuration change affects the booting policy the BootManager
may need to erase Locator Records on a booting platform. This compo-
nent allows the BootManager to erase all the Local-Persistent Locator
Records on a booting platform or just a particular type.

oA5-32: If PlatformBootInfo:Capability(10) is 1b and the BtA receives a
Set(PlatformBootInfo) with DeletePersistentRecords(0) set to 1b then the
BtA shall erase all RomRepositoryLocatorRecord's from non-volatile
storage.

oA5-33: If PlatformBootInfo:Capability(11) is 1b and the BtA receives a
Set(PlatformBootInfo) with DeletePersistentRecords(1) set to 1b then the
BtA shall erase all ConsoleLocatorRecord's from non-volatile storage.

oA5-34: . If PlatformBootInfo:Capability(12) is 1b and the BtA receives a
Set(PlatformBootInfo) with DeletePersistentRecords(2) set to 1b then the
BtA shall erase all OsLocatorRecord's from non-volatile storage.

A5.6.3.7 STATUS COMPONENTS

The Status components allows the BtA to report multi-step operations
when extending the boot environment, making a console connection, or
accessing the OS boot loader. There are 2 status categories, boot
progress and boot state. The status components in PlatformBootInfo are
especially useful when a booting platform does not support Traps.

The informational progress components (ExtendedBootProgress, Con-
soleBootProgress, OSBootProgress) report failures while processing one
or more Locator Records. Once a bit comes on, it stays on until the plat-
form resets or reboots.

The BootState components (ExtendedBootState, ConsoleBootState, OS-
BootState) report severe failures in which the platform no longer attempts
to use the ROM Repository, the Console, or load the OS. Once an error
code is set it stays set until the platform resets.

ExtendedBootProgress - This status component allows the BtA to report
the status of the platforms attempt to expand its boot environment. Ex-
tendedBootProgress is set to 0x0001 at power on reset or reboot. If the
platform will expand its boot environment, the BtA sets this ExtendedBoot-
Progress(1) - In Progress. All other bits in ExtendedBootProgress are de-
scribed in Table 370 "PlatformBootInfo Attribute" on page 1302.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1320 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ExtendedBootState - This status component allows the BtA to report the
results of the platforms attempt to expand its boot environment using one
or more Locator Records. The ExtendedBootState component is de-
scribed in Table 370 "PlatformBootInfo Attribute" on page 1302.

ConsoleBootProgress - This status component allows the BtA to report
the status of the platforms attempt make a connection to a console. Con-
soleBootProgress is set to 0x0001 at power on reset or reboot. If the plat-
form uses an IB console during boot, the BtA sets this
ExtendedBootProgress(1) - In Progress. All other bits in ConsoleBoot-
Progress are described in Table 370 "PlatformBootInfo Attribute" on page
1302.

ConsoleBootState - This status component allows the BtA to report the re-
sults of the platforms attempt to connect to a Console using one or more
Locator Records. The ConsoleBootProgress component is described in
Table 370 "PlatformBootInfo Attribute" on page 1302.

OSBootProgress - This status component allows the BtA to report the
status of the platforms attempt load the OS loader from a boot device. OS-
BootProgress is set to 0x0001 at power on reset or reboot. If the platform
uses an IB OSLocatorRecord during boot, the BtA sets this OSBoot-
Progress(1) - In Progress. All other bits in ConsoleBootProgress are de-
scribed in Table 370 "PlatformBootInfo Attribute" on page 1302.

OSBootState - This status component allows the BtA to report the results
of the platforms attempt to load the OS loader onto the boot platform using
one or more Locator Records. The OSBootState component is described
in Table 370 "PlatformBootInfo Attribute" on page 1302.

A5.6.4 PORTBOOTINFO ATTRIBUTE

Components in this attribute have a port scope and indicate the relative
priority of the port in locating a BIS, ROM Repository, Console, and an OS
boot loader. In addition, three time-out components determine the min-
imum amount of time the booting platform should spend attempting to find
or make a connection.

Table 372 describes the format of the PortBootInfo attribute. PortBootInfo
attribute allows the BootManager to set the port time-out value and port
priorities with respect to other ports on the same booting platform. Time-
outs are used so the boot environment can determine the maximum
amount of time it should take to make a connection to a device or service
through the port and the minimum time the booting platform should con-
tinue to attempt making a connection.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1321 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 372 PortBootInfo Attribute

Component Access Offset
(bits) Length Description

BISPortPriority R/W 0 2-bits This component indicates the priority of this port to locate the BIS
managing locator records used for booting.
• 11b is the highest priority
• 10b is medium priority
• 01b is the lowest and the default
• 00b indicates that this port should not be used to

query the BIS.

RomPortPriority R/W 2 2-bits This component indicates the priority of this port to locate the
RomRepository using RomRepositoryLocatorRecords.
• 11b is the highest priority
• 10b is medium priority
• 01b is the lowest and the default
• 00b indicates that this port should not be used to

locate the RomRepository.

ConsolePortPriority R/W 4 2-bits This component indicates the priority of this port to locate the Con-
sole using ConsoleLocatorRecords.
• 11b is the highest priority
• 10b is medium priority
• 01b is the lowest and the default
• 00b indicates that this port should not be used to

locate the Console.

IocPortPriority R/W 6 2-bits This component indicates the priority of this port to locate an I/O
unit containing the IOC specified by an OsLocatorRecord.
• 11b is the highest priority
• 10b is medium priority
• 01b is the lowest and the default
• 00b indicates that this port should not be used to

locate OS boot loader

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1322 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-38: Every port shall have an InitTimeout parameter whose factory
default is 0x04b0.

InitTimeout may be configured locally by a system administrator and can
be set by the BootManager when the platform contains a BtA that sup-
ports BootMgtSet(PortBootInfo).

NetworkBootPortPriority R/W 8 2-bits This component indicates the priority of this port when attempting
an IB network boot (see A5.1.6 on page 1278).
• 11b is the highest priority
• 10b is medium priority
• 01b is the lowest and the default
• 00b indicates that this port should not be used for

IB Network booting

reserved RO 10 22-bits reserved

InitTimeout R/W 32 16-bits The amount of time (in 100 msec increments) from power on reset
that the booting platform allows for subnet resources to become
operational.
The factory default is ~2 min. = 0x04b0. This allows sufficient time
for the IOU or services to become active and to prevent this boot-
ing platform from timing out too early and moving on to the next
Locator Record.

BisTimeout R/W 48 16-bits Specifies the maximum amount of time (100 mSec increments)
from power on reset that a BIS takes to become operational.
The factory default is ~2 min. = 0x04b0. This allows sufficient time
for the BIS to become active and to prevent this booting platform
from timing out too early and moving on to the next BIS.

EndNodeTimeout R/W 64 16-bits The period of time the booting platform allows an endnode to
respond to the first MAD. The booting platform continues to retry
the MAD until EndNodeTimeout has expired or the endnode
become operational. Each endnode the booting platform sends a
MAD to is allowed EndNodeTimeout period of time to respond to
the MAD before the booting platform determines the endnode
unreachable. The time-out is specified in 100 mSec increments.
 • 0x0000 = 0 mS - Endnodes require no additional time to

become operational
 • 0x0001 = 100 mS = default
 • 0x0002-0xFFFF = Additional valid time-out values
Once an endnode responds, the booting platform no longer has to
retry waiting for the endnode to become operational.

Reserved RO 80 182
Bytes

Reserved

Table 372 PortBootInfo Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1323 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-35: If the booting platform supports BIS, then every port shall have a
BisTimeout parameter whose factory default is 0x04b0.

BisTimeout may be configured locally by a system administrator and can
be set by the BootManager when the platform contains a BtA that sup-
ports BootMgtSet(PortBootInfo).

oA5-36: If BootMgtSet(PortBootInfo) is supported, the BtA shall persis-
tently save the values of all PortBootInfo R/W components in non-volatile
storage.

oA5-37: If BootMgtSet(PortBootInfo) is supported, the booting platform
shall use BootMgtSet(PortBootInfo) component values only on the port in
which the MAD was received.

oA5-38: If the Platform supports BIS then the platform shall attempt to
query the BIS for Locator Records through ports in their Port-
BootInfo:BISPortPriority order. If PortBootInfo:BISPortPriority = 0x0 then
the booting platform shall not attempt to query the BIS through this port.

CA5-39: When the Platform uses RomRepositoryLocatorRecords, then
the platform shall attempt to access the RomRepository through ports in
their PortBootInfo:RomPortPriority order. If PortBootInfo:RomPortPriority
= 0x0 then the booting platform shall not attempt to access the RomRe-
pository through that port.

oA5-39: If the Platform supports the IB Console then the platform shall at-
tempt to access the IB Console using Locator Records through ports in
their PortBootInfo:ConsolePortPriority order. If PortBootInfo:Console-
PortPriority = 0x0 then the booting platform shall not attempt to access the
IB Console through this port.

oA5-40: If the Platform supports booting over IB (e.g. Capability(4:7) is
non-zero) then the platform shall attempt to access the OS boot loader,
through an IOC using Locator Records through ports in their Port-
BootInfo:IocPortPriority order. If PortBootInfo:IocPortPriority = 0x0 then
the booting platform shall not attempt to access the OS boot loader
through this port.

oA5-41: If the platform supports Capability(6), IB Network Boot, then the
booting platform shall attempt network booting through ports in their Port-
BootInfo:NetworkBootPortPriority order. The booting platform shall not at-
tempt an IB Network Boot through a port that has a
PortBootInfo:NetworkBootPortPriority of zero.

oA5-42: The booting platform shall allow at least InitTimeout amount of
time for all subnet resources to become operational. The period of time

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1324 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

begins at the last power on reset and extends for InitTimeout period mea-
sured in 100 mSec increments.

oA5-43: The booting platform shall allow at least BisTimeout amount of
time for a BIS to become operational. The period of time begins at the last
power on reset and extends for BisTimeout period measured in 100 mSec
increments.

oA5-44: The booting platform shall allow at least EndNodeTimeout
amount of time for an endnode to become operational. The period of time
begins when the 1st MAD is sent to the particular end node and extends
for EndNodeTimeout period measured in 100 mSec increments.

A5.6.4.1 BISPORTPRIORITY

BIS Port priority notifies the BtA of which port it is more likely to find a BIS
that can supply ROM Repository, Console, and OS Locator Records. This
component is useful when a booting platform attaches to multiple subnets.

A5.6.4.2 ROMPORTPRIORITY

RomPortPriority identifies which ports are more likely to find the RomRe-
pository. This component is useful when the booting platform attaches to
multiple subnets. When the booting platform processes a RomReposito-
ryLocatorRecord then the booting platform should access the RomRepos-
itory through the port with the highest priority first. If that fails, the booting
platform proceeds with lower priority ports in priority order. When multiple
ports have the same priority, the booting platform may select the port in
any order relative to the ports that have this same priority.

A5.6.4.3 CONSOLEPORTPRIORITY

ConsolePortPriority identifies which ports are more likely to find the Con-
sole. This component is useful when the booting platform attaches to mul-
tiple subnets. When the booting platform processes a
ConsoleLocatorRecord then the booting platform should access the Con-
sole through the port with the highest priority first. If that fails, the booting
platform proceeds with lower priority ports in priority order. When multiple
ports have the same priority, the booting platform may select the port in
any order relative to the ports that have this same priority.

A5.6.4.4 IOCPORTPRIORITY

IocPortPriority identifies which ports are more likely to find the IOC from
which to load the OS boot loader. This component is useful when the
booting platform attaches to multiple subnets. When the booting platform
processes a OsLocatorRecord then the booting platform should access
the OS boot loader through the port with the highest priority first. If that
fails, the booting platform proceeds with lower priority ports in priority
order. When multiple ports have the same priority, the booting platform

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1325 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

may select the port in any order relative to the ports that have this same
priority.

A5.6.4.5 NETWORKBOOTPORTPRIORITY

NetworkBootPortPriority identifies which ports are more likely to find the
IB Network boot server. This component is useful when the booting plat-
form attaches to multiple subnets. When the booting platform processes
a OsLocatorRecord then the booting platform should access the OsLoca-
torRecord through the port with the highest priority first. If that fails, the
booting platform proceeds with lower priority ports in priority order. When
multiple ports have the same priority, the booting platform may select the
port in any order relative to the ports that have this same priority.

A5.6.4.6 TIME-OUTS

Three components provide the booting platform with time-out values used
in determining how much time a platform should wait for subnet resources
(InitTimeout), the BIS (BisTimeout) and end nodes (EndNodeTimeout) to
become operational.

A5.6.4.6.1 INITTIMEOUT AND BISTIMEOUT

Determining the amount of time after power-on-reset to contact an end-
node providing a boot device, console, or BIS service is the role of the Init-
Timeout and BisTimeout values. Each time-out specifies the minimum
amount of time in 100 mSec increments (approximately 109 minutes
max.). The booting platform waits at least this period of time before
making the determination that the node is not available. The timer begins
at power on reset of the booting platform and unconditionally counts. The
BootManager should set this value to the maximum amount of time it
takes for IOUs or Services to become operational and accept requests
from booting platforms.

When the booting platform is connecting to a device or console service,
the platform continues trying to connect to the IOC/Service for at least the
period of time listed in InitTimeout before declaring that the IOC or service
is not operational through this port.

If the booting platform queries the BIS, then the platform continues to
query the BIS for at least the period of time listed in BisTimeout before de-
claring that the BIS is not operational through this port.

The InitTimeout value allows sufficient time for the all IOCs or services to
become available to the booting platform.

For BIS, the time-out value provides sufficient time for the BIS Service to
boot itself, register with the SA, and become available on the subnet.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1326 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Generally, a booting platform attempts to communicate with an endnode
for booting. If the platform cannot communicate with the endnode, time-
out values are used, and only then is the Free Running Timer compared
against the time-out value. This allows booting platforms to make
progress as soon as the resource becomes available on the network.
Once the time-out value has been reached, the BtA tries to use each Lo-
cator Record in priority order with zero tolerance for “no path” reported by
the SA. That is, once the SA reports “no path” the BtA moves on to the
next port and then the next Locator record.

oA5-45: The boot platform shall contain a Free Running Timer that is ini-
tialized at power on reset and counts time unconditionally.

oA5-46: If the booting platform supports Traps, the platform shall issue a
BootReport Trap when a failure listed in Table 382 on page 1343 occurs.

oA5-47: If the booting platform supports Notices, it shall post a BootRe-
port notice when a failure listed in Table 382 on page 1343 occurs.

There may be a need to update time-out values periodically as fabric re-
sponse times slow down due to scaling factors, such as increasing the
number of platforms booting from the same IOU. As the number of booting
platforms sharing resources increases, it is expected that booting will take
longer. As it takes longer to boot it may be undesirable that a booting plat-
form time-out value is reached due to subnet scaling issues. There are
many ways of calculating the correct timer values and preventing the
timers from expiring. One might be the BootManager periodically ad-
justing the value of the timers as a simple function of the number of plat-
forms booting from the same IOU.

A5.6.4.6.2 ENDNODETIMEOUT
Some nodes needed to boot a platform may not be able to respond to
MADs immediately upon receiving a MAD. This may be due to the CA
being in a powered down state or any other state that might not allow the
target node to respond to a MAD.

When the booting platform is connecting to a device or service, then the
platform continues trying to connect IOC/Service for at least the period of
time listed in EndNodeTimeout before declaring that the IOC or service is
not operational through this port. Unlike BisTimeout and InitTimeout, each
target (not just the first) is given at least this much time to respond.

oA5-48: The booting platform shall continue to retry MADs sent to target
nodes for a period of time defined in EndNodeTimeout or the node has
generated a response.

oA5-49: If Traps are supported the booting platform shall issue Trap
0x0110 during boot if the platform does not receive a Response to a MAD

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1327 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Request in the period specified in section 13.4.6.2 Timers and Timeouts
on page 727 and the platform has given up retrying the MAD.

oA5-50: If Notices are supported the booting platform shall post notice
0x0110 during boot if the platform does not receive a Response to a MAD
Request in the period specified in section 13.4.6.2 Timers and Timeouts
on page 727 and the platform has given up retrying the MAD.

A5.6.5 PERSISTENT LOCATOR RECORDS

The BootManager can Get() and optionally Set() Local-Persistent Loca-
torRecords. When a BootManager does a Set() to OsLocatorRecord,
ConsoleLocatorRecord, or RomRepositoryLocatorRecord, then the BtA
saves the record persistently. The BtA indicates which Locator Records
that the booting platform supports and whether the BootManager can
modify them in the PlatformBootInfo:Capability component (see A5.6.3
"PlatformBootInfo Attribute" on page 1301). The booting platform uses the
Locator Records the next time the platform boots using Local-Persistent
Locator Records. The BootManager can determine the current set of per-
sistent Locator Records of a booting platform by issuing Get()s to that plat-
form's BtA Locator Record attributes.

There are 3 Local-Persistent Locator Record types:

• ROM Repository - Pointer to the ROM Repository
• Console - Pointer to the Console
• OS - Pointer to the OS boot loader

Each booting platform saves Persistent Locator Records in slots. The
number of slots available per record type is defined by the Platform-
BootInfo Capability and Count components. Slot numbers can range from
0 to 255 with slot 0 being the highest priority and 255 the lowest. The At-
tributeModifier component in the MAD header serves as an index to the
slot. For example, BootMgtSet(RomRepositoryLocatorRecord) with At-
tributeModifier=0 writes slot 0 of the RomRepositoryLocatorRecord. At-
tributeModifier=1 writes slot 1 of the RomRepositoryLocatorRecord, and
so on. AttributeModifier is used for both Set() and Get() to the RomRepos-
itoryLocatorRecord, ConsoleLocatorRecord, and OsLocatorRecord at-
tributes.

.

Table 373 RomRepositoryLocatorRecord Attribute

Component Access Offset
(bits) Length Description

Reserved RO 0 16-
Bytes

Reserved

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1328 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

PortGID R/W 128 16-
Bytes

Port GID for the IOU

Reserved RO 256 160-
Bytes

Reserved

Table 373 RomRepositoryLocatorRecord Attribute (Continued)

Component Access Offset
(bits) Length Description

Table 374 ConsoleLocatorRecord Attribute

Component Access Offset
(bits) Length Description

Reserved RO 0 8-bits Reserved

Device-Service R/W 8 1-bit Indicates if this record describes a Console Device or
Server:
0b = this record describes an Console device
1b = this record describes a Console server

DeviceDriverLocation R/W 9 2-bits Provides information on the search order to locate a Device
Driver supporting this Console:
00b = Search only the ROM Repository on the same IOU as

the IOC
01b = First search the ROM Repository on the same IOU as

the IOC then use the RomRepositoryLocatorRecords
10b = First search the ROM Repository pointed to by the

RomRepositoryLocatorRecords then use the ROM
Repository on the same IOU as the IOC

11b = Search only the ROM Repository pointed to by the
RomRepositoryLocatorRecords

Reserved RO 11 5-bits Reserved

Protocol R/W 16 8-bits Identifies the console protocols supported by the console
device or service:
 • 0x00 = unknown
 otherwise bit specific where:
 • bit 0 - proprietary protocol
 • bit 1 - IBTA Console protocol (refer to Annex A2: Con-

sole Service Protocol on page 1140)
 • bits 2-6 are reserved and set to zero
 • bit 7 -Use any ProtocolName specified by a Protocol-

Name element in the AdditionalInfo component.

Reserved RO 24 5-Bytes Reserved

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1329 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

IocGUID-SID R/W 64 8-Bytes GUID of the I/O controller or ServiceID of the service
depending on setting of the Device-Service component
 • If Device-Service = 0b (console IOC), then this is the

IocGUID.
 • If Device-Service = 1b (server process), then this is the

ServiceID.

PortGID R/W 128 16-
Bytes

Port GID for the IOU or service

AdditionalInfo R/W 256 160
Bytes

Console Protocol specific data in Type-Length-Value (TLV)
format see A5.11 "AdditionalInfo" on page 1362. This com-
ponent is passed to the Console Driver.

Table 374 ConsoleLocatorRecord Attribute (Continued)

Component Access Offset
(bits) Length Description

Table 375 OsLocatorRecord Attribute

Component Access Offset
(bits) Length Description

BootMethod R/W 0 8-bits Indicates the Boot Method:
 • 0x01 = Storage (Locator Record specifies IOC to use)
 • 0x02 = Network (Locator Record specifies IOC)
 • 0x03 = Proprietary (Locator Record specifies IOC to

use)
 • 0x04 = IB Network Boot (Locator record specifies IB

network boot protocol and/or IB Boot Server, i.e., it does
not specify an IOC)

all other values reserved

Reserved R/W 8 1-bit reserved

DeviceDriverLocation R/W 9 2-bits Provides information on the search order to locate a Device
Driver supporting this Locator Record:
00b = Search only the ROM Repository on the same IOU as

the IOC
01b = First search the ROM Repository on the same IOU as

the IOC, then use the RomRepositoryLocatorRecords.
10b = First search ROM Repositories pointed to by the Rom-

RepositoryLocatorRecords, then use the ROM Reposi-
tory on the same IOU as the IOC.

11b = Search only the ROM Repositories pointed to by the
RomRepositoryLocatorRecords.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1330 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When multiple BootManagers access the same booting platform the Boot-
Managers should act in concert. To ensure BootManagers are aware of
changes, when a LocatorRecord is changed then the BootAgent sends
the BootManager identified in each port's ClassPortInfo, a ChangeReport
Trap informing them of the change.

A5.6.5.1 DEVICE-SERVICE

This component qualifies the IocGUID/SID component. If Device-Service
= 0b, then the IocGUID/SID component contains the IocGUID. Otherwise
it contains the ServiceID.

RecordFunction RO 11 2-bits Indicates the purpose of this Locator Record:
• 00b - Install Source - this record describes a source for

the installation program which can install an OS for the
booting platform.

• 01b - Boot Source - this record describes a source for the
booting platforms OS boot loader

• 10b - Install Destination - this record describes a destina-
tion where an installation program can install an OS boot
loader. A booting platform should not attempt to use an
OsLocatorRecord with RecordFunction=10b as the source
for its boot loader.

• 11b - Install Destination/Boot Source - this record
describes a destination where an installation program can
or has installed an OS boot loader. A booting platform can
attempt to boot from this location. An installation program
can install an OS boot loader at this location.

Reserved RO 13 3-bits Reserved

Protocol R/W 16 8-bits Specifies I/O protocols supported by the IOC
 • 0x00 = unknown otherwise bit specific (refer to Table

376 "Protocol Component Bit Definitions" on page
1331):

Reserved RO 24 5-bytes Reserved

IocGUID/SID R/W 64 8-Bytes GUID of the I/O controller or SID of the IB Network Boot Ser-
vice (a value of zero means unknown or not used).

PortGID R/W 128 16-
Bytes

Port GID for the IOU or the IB Network Boot Service (a value
of zero means unknown or not used)

AdditionalInfo R/W 256 160
Bytes

Protocol specific data in Type-Length-Value (TLV) format
which identifies the device or path behind the IOC or the IB
Network Boot Service. This component is passed to the IO
Driver. See A5.11 "AdditionalInfo" on page 1362.

Table 375 OsLocatorRecord Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1331 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.5.2 IOCGUID-SID
This component defines the GUID of the IOC if the Device-Service com-
ponent indicates a device. If the Device-Service component indicates a
service this component contains a ServiceID. For IB network boot, the SID
identifies the boot server (or the first server that the booting platform con-
tacts). A value of zero is valid if the network boot protocol is capable of
finding its own boot server. The AdditionalInfo component provides pro-
tocol specific information to further help the booting platform locate the
protocol specific objects.

A5.6.5.3 PORTGID
PortGID of the CA where the IOU or Service resides.

A5.6.5.4 PROTOCOL

Locator records contain a Protocol component that the booting platform
uses to determine which protocols the booting platform can use with the
specified device. This field is bit specific (i.e., each bit represents a pro-
tocol). When a device supports more than one protocol, the BootManager
can indicate a preference by setting multiple records, each with a single
Protocol value. If the BootManager sets more than one bit, it means that
the booting platform may use any of the indicated protocols. A value of
zero means that the BootManager does no know which protocols the de-
vice supports. In this case the booting platform determines which protocol
to use.

Protocols are dependant on the BootMethod component as specified in
are Table 376.

A5.6.5.5 RECORDFUNCTION

Local-Persistent and BIS OsLocatorRecords are provided to the booting
platform in priority order. When trying to load the OS, a booting platform
processes OsLocatorRecords starting with the first record and continuing
until it finds a boot loader. The boot loader can be the normal OS boot

Table 376 Protocol Component Bit Definitions

Boot Method

Bit 01
Storage

02
LAN Network

Boot

03
Proprietary

04
IB Network

Boot

0 proprietary proprietary proprietary proprietary

1 SRP Reserved Reserved IPoIB

2-6 Reserved

7 Use any ProtocolName specified by a ProtocolName element in the
AdditionalInfo component.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1332 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

loader that loads the OS onto the platform or a boot loader that loads an
OS-Install program onto the platform. The RecordFunction component
identifies the intent of the OsLocatorRecord as (a) a pointer to the source
of the platforms OS boot loader, (b) a pointer to the source of the platforms
OS-Install boot loader, and/or (c) a pointer to the destination device used
by the OS installation program as the target for a newly installed OS boot
loader.

By including an OsLocatorRecord with RecordFunction = 00b, the Boot-
Manager or BIS enables the installation process. Setting RecordFunction
= 01b identifies that the OS loader is to be used as a source but ignored
by the OS-Install program. Setting RecordFunction=10b identifies that the
OsLocatorRecord only identifies a destination where the installation pro-
gram can install an OS boot loader and is ignored by a platform as a boot
loader source. Setting RecordFunction=11b identifies that the OsLocator-
Record is a source for the platforms OS boot loader and a destination
where the installation program can install an OS boot loader. Thus this
record can be used by the platform when it is trying to boot and by the In-
stallation program.

The order in which the BootManager or BIS provides OsLocatorRecords
effects the booting process. For example, providing an OsLocatorRecord
that points to an OS-Install Program (RecordFunction=00b) first followed
by the second OsLocatorRecord that points to the destination device
(usually RecordFunction=11b) can be used to install or re-install an OS.
Supplying multiple source and destination OsLocatorRecords provides
redundancy.

If an OS-Install is not desired then the BootManager or BIS provides only
OsLocatorRecords that describe OS boot loader sources (RecordFunc-
tion = 01b) and does not provide OS-Install sources, RecordFunc-
tion=00b.

If the policy is to attempt to boot an OS and upon detection of a missing
or corrupt boot loader reinstall the OS onto a new device then the Boot-
Manager or BIS could provide two OsLocatorRecords, the first OsLoca-
torRecord (RecordFunction =11b, both destination and source) and the
second OsLocatorRecord describing the source of a boot loader and an
OS-Install Program (RecordFunction=00b). If the booting platform detects
a failure in the first source, such as failing to find a valid boot sector on the
disk or detects that the OS boot loader was not installed properly, then it
proceeds to the next OsLocatorRecord and thus uses the OsLocator-
Record RecordFunction=00b as source to install the OS. The installation
program then uses OsLocatorRecord (RecordFunction =11b) as the
target for the new OS. If the installation was successful, then the next time
the platform reboots, it finds a valid OS boot loader at the location speci-
fied by the first OsLocatorRecord and the booting platform boots the OS

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1333 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

from the first OsLocatorRecord and would not use the OsLocatorRecord
that re-installs the OS.

OsLocatorRecords can be provided so that the platform normally attempts
to load the OS, but if it encounters a device failure while attempting to load
the OS, the platform will install the OS onto another device To do this the
BootManager or BIS would provide three OsLocatorRecords (A,B and C).
The first OsLocatorRecord, RecordFunction =01b, record A points to the
source of the active boot loader. The second OsLocatorRecord, record B
describes the source of an OS Install Program (RecordFunction=00b).
The third OsLocatorRecord, RecordFunction =11b, record C points to a
backup boot loader destination. If the booting platform detects a device
failure in the first source (A) in which the platform cannot access to the
boot loader, then it bypasses this OsLocatorRecord and proceeds to the
second source OsLocatorRecord (B) as source to install the OS. The in-
stallation program then uses the third destination OsLocatorRecord, Re-
cordFunction =11b, record (C) as the target of the newly installed OS.
Care should be taken that this platform does not repeatedly install the OS.
In this case, during subsequent reboots, the booting platform may have
the ability to determine that the new OS has been installed correctly and
by-pass repetitive re-installs of the OS. Alternatively, the booting platform
could wait for the BootManager to update OsLocatorRecords by either re-
moving the OsLocatorRecord pointing to the OS-Install or placing the
newly installed OS locator at a higher priority than the OS-Install OsLoca-
torRecord.

Another possibility is to provide source OsLocatorRecords before any OS-
Install locator records such that the OS-Install only occurs after the boot
environment attempts to boot from all source devices. To do this the Boot-
Manager or BIS could provide three OsLocatorRecords. The first OsLoca-
torRecord, RecordFunction =01b, points to the source of the active boot
loader. The second OsLocatorRecord, RecordFunction =11b, points to a
device that is both the destination of an OS-Install and a boot source
which does not currently contain a boot loader. The third OsLocator-
Record, points to the OS Install Program (RecordFunction=00b). With this
combination, the first time device pointed to by the first record fails to pro-
duce an OS loader then the booting platform skips loading from the device
pointed to by the first locator record. The booting platform also skips the
second record because it does not yet have an OS Loader. Thus, the
booting platform uses the third record as the OS-Install source and uses
the second record as a pointer to the destination of the OS-Install. After
the OS installation completes and the platform re-boots, the first record
again fails to produce a boot loader and the platform boots from the
second record, which now contains a valid OS loader.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1334 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.6 NODE REBOOT

The system administrator using the BootManager may reboot a platform
by issuing a Set(NodeReboot) MAD. Normally, the system administrator
would use a graceful reboot to shutdown the OS in an orderly fashion.
There are some conditions that may occur that prevent a graceful reboot
from completing. Under this circumstance the system administrator may
need to signal an immediate reboot to the platform. It is the boot platform
that makes the final determination of the actions that it takes when it re-
ceives a NodeReboot. The RebootStatus in the BootMgtGetResp() indi-
cates the platforms reaction to the Reboot MAD.

Varying platforms offer different types of reboots. Some might clear
caches and memory and some might not. Some might run a number of
diagnostics and some might not. What is of concern is the state of the BtA
when the reboot occurs. It is expected that if the platform supports IB re-
boot, that it not clear the information required to reboot. Of particular in-
terest are the R/W components in PlatformBootInfo and the Locator
Records themselves. These must be maintained by the booting platform
in order for the reboot to be successful.

A5.6.6.1 NODEREBOOT ATTRIBUTE

Table 377 NodeReboot Attribute

Component Access Offset
(bits) Length Description

Type R/W 0 1bit Reboot Type
 • 0b - Graceful Reboot - Shutdown and Reset. Close files etc., then

reboot.
 • 1b - Immediate Reboot - Immediate Reboot.
This component is reserved as zero in Resp() to a BootMgt-
Get(NodeReboot);

Reserved RO 1 5-bits Reserved

LocatorRecordType R/W 6 2-bits Select the Locator Record Type
 • 00b - Other - Non-IBA boot (e.g., from PCI)
 • 01b - Selects Persistent or BIS record as set in Platform-

BootInfo:OsBootLocator.
 • 10b - reserved
 • 11b - reserved
This component is set to zero in the BootMgtGetResp() to a BootMgt-
Get(NodeReboot);

RebootStatus RO 8 8-bits Reboot Status
 • 0x00 - Not attempting to Reboot
 • 0x01 - Reboot in progress
 • 0x02 - Reboot failed

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1335 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-51: If Capability(14:15) is non-zero, then the BtA shall report the time
that the last reboot started (or the time that the BtA was loaded if no re-
boot) in the NodeReboot:Timestamp component in a format that repre-
sents the number of seconds from 1/1/70 00:00am in
NodeReboot:Timestamp.

oA5-52: If Capability(15) is 1b then the BtA shall request the platform (OS,
BIOS, etc.) to gracefully reboot the platform when a BootMgtSet(NodeRe-
boot:Type) = 0b is received from any port.

oA5-53: If Capability(14) is 1b then the BtA shall request the platform (OS,
BIOS, etc.) to immediately reboot the platform when a BootMgtSet(No-
deReboot:Type) = 1b is received from any port.

oA5-54: If Capability(14:15) is non-zero, then the booting platform shall
use the value in NodeReboot:LocatorRecordType to select the source of
the OS record locator.

oA5-55: If Capability(14:15) is non-zero then the BtA shall return Boot-
MgtGetResp(NodeReboot) according to Table 377 "NodeReboot At-
tribute" on page 1334.

A5.6.6.2 REBOOT TIME LINE

Figure 275 on page 1336 illustrates that two BtAs (non-OS and OS BtAs)
can exist on a booting platform. After a booting platform is powered on, it
takes some period of time for a BtA to become active (Blue bar). This non-
OS BtA normally exists on the booting platform before the OS is loaded
and is part of the Platform Vendors boot environment. It is the responsi-
bility of the boot environment and the Non-OS BtA to locate boot devices
containing the Console and OS boot loaders. Many times, when the plat-
form vendors boot environment gives up control to the OS loader there is
a period of time when a BtA is not available on the port. Then as the OS
becomes functional, an OS BtA may appear in place of the non-OS BtA.
The non-OS and OS BtAs may have differing capabilities. For example,

Reserved RO 1 16-bits Reserved

Timestamp RO 32 32-bits Timestamp - The BtA reports the time that the last reboot started.
The timestamp is the number of seconds since 1/1/70 00:00am.

Reserved RO 64 184
Bytes

Reserved

Table 377 NodeReboot Attribute (Continued)

Component Access Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1336 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the non-OS BtA might have access to non-volatile storage and the OS BtA
might not.

The BootMgt GetResp(NodeReboot:Status) reflects the progress of the
platform with respect to the reboot. Although a reboot is shown occurring
while the OS BtA is running, a non-OS BtA may also be requested to re-
boot.

Traps or Notices, if supported, are very useful in assisting the BootMan-
ager in determining the state of the booting platform. For more information
on Traps see A5.6.7 "Traps and Notice Queues" on page 1336.

Figure 275 Reboot Time Line

A5.6.7 TRAPS AND NOTICE QUEUES

Traps and Notices Queues are optional and allow a BtA to inform a Boot-
Manager of failures while the platform is booting or at anytime when a
failure is detected which might affect a future booting of the platform.
Some notable traps or notices are a failed attempt to locate an IOU and
the loss of Local-Persistent Locator Records within the booting platform.
Once a failure is detected, it should be reported to the BootManager via
the trap or notice mechanism.

Traps and Notice Queues are described in detail in 13.4.9 Traps on page
741 and 13.4.10 Notice Queue on page 743. This annex uses the
Common Framework described in Chapter 13 and this section serves only
to describe behavior that is unique to the Boot Management class.

POR

BootAgent (non-OS)
OS Loader

BootAgent (OS)

Bios, IEEE1275 etc OS operational

NodeReboot MAD*

Immed
Graceful

0 – Not attempting to Reboot
1 – Reboot In Progress
2 – Reboot failed

0 – Not Attempting
to Reboot

0 – Not attempting to Reboot
1 – Reboot in Progress
2 – Reboot failed

BootMgt MADs targeted to booting platform are lost

Status

* The NodeReboot MAD can also be received by the non-OS BootAgent

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1337 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The BootManager shall [Compliance assured in the base document] sup-
port Traps and Notices. Traps are asynchronous notifications for the pur-
pose of alerting an entity about exception conditions or other events of
interest related to booting. The BootManager can also use a BootMgtRe-
port(Heartbeat) to inform subscribed clients that the Boot Manager is still
operational.

Other 3rd party nodes may want to register for Event Forwarding to be no-
tified when a booting Platform reports a boot failure or boot event.

The Trap and Notice ladder diagrams in Figure 276 on page 1337 and
Figure 277 on page 1338 respectively describe the flow of reporting fail-
ures to/from the BtA and to/from the BootManager.

Figure 276 Boot Management Trap Flow

Agent Manager 3rd Party
BootMgtSet:ClassPortInfo()

BootMgtGetResp:ClassPortInfo()

BootMgtSet:InformInfo()

BootMgtGetResp:InformInfo()

BootMgtTrap:Notice()

BootMgtTrap:Notice()
:

BootMgtTrapRepress:Notice()
BootMgtReport:Notice()

BootMgtReportResp:Notice()

Boot Management Trap Handling

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1338 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 277 Boot Management Notice Flow

For details on Trap and Notice usage refer to 13.4.9 Traps on page 741
and 13.4.10 Notice Queue on page 743.

In each Data Details definition there is a LostTrap bit. This bit is used to
signal when the boot agent had to stop sending a trap before receiving a
TrapRepress(). The premise is that the Boot Agent has a trap queue of
limited depth (one or more outstanding traps). When a new trap is gener-
ated, it is placed at the tail of the trap queue and the trap at the head of
the queue is repeated until the Boot Agent receives a matching TrapRe-
press(). The matching trap is then discarded and then next trap in the
queue is sent immediately and repeated until a matching TrapRepress is
received.

If the trap queue is full and a new trap is generated, the Boot Agent dis-
cards the trap at the head of the trap queue, adds the new trap to the tail
of the trap queue, sets the LostTrap bit in trap at the head of the queue
and immediately starts sending that trap.

There could be other reasons why a trap is discarded. It is the boot agent’s
responsibility to set the LostTrap bit in the first trap sent after the dis-
carded trap would have been sent. If the discarded trap is the only trap in
the queue, then the agent should fabricate a StatusReport trap with Sta-
tusType = 0x00 (Trap or Notice Queue flushed) and the LostTrap bit set
to indicate the lost trap.

Agent Manager 3rd Party
BootMgtSet:ClassPortInfo()

BootMgtResp:ClassPortInfo()

BootMgtSet:InformInfo()

BootMgtResp:InformInfo()BootMgtGet:Notice()

BootMgtGetResp:Notice()

BootMgtReport:Notice()

BootMgtReportResp:Notice()

Boot Management Notice Handling

BootMgtSet:Notice()

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1339 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This bit is also used to signal when the boot agent had to discard a trap in
the Notice Queue before receiving a Set(Notice). With the Notice Queue,
when a new trap is generated, it is placed at the tail of the queue and the
Trap at the head of the queue is read until the Boot Agent receives a
matching Set(Notice). When the BtA receives a matching Set(Notice), it
discards the matching trap and returns the next trap in the queue in the
GetResp(Notice). If the Notice Queue is full when a new trap is generated,
the Boot Agent discards the trap at the head of the Notice Queue, adds
the new trap to the tail of the queue, and sets the LostTrap bit in the trap
at the head of the queue.

There might be other events that could cause the boot agent to prema-
turely discard one or more notices. When there is at least one notice to be
reported and a condition occurs in which the BtA discards all of the no-
tices, then the BtA generates a StatusReport notice with a StatusType of
x00 and sets the LostTrap. This will inform the Boot Manager and sub-
scribed clients that one or more notices have been lost.

A5.6.7.1 NOTICE ATTRIBUTE

The Notice attribute describes an exception or other CA, switch, or router
event. It is used by both the trap mechanism described in 13.4.9 Traps
and the Notice mechanism described in 13.4.10 Notice Queue.

CA5-39.2.1: Unless otherwise specified, Notice attribute components for
Notices specified in Table 379 shall be set as follows:

• IsGeneric = 1 (Generic)
• Type - as per Table 379
• ProducerType = 1 (Channel Adapter)
• TrapNumber - as per Table 379

Table 378 Notice Attribute

Component Access
Offset
(bits)

Length
(bits)

Description

BaseNoticeComponents RO 0 80 This component contains the IsGeneric, Type, NodeType,
TrapNumber, IssuerLID, NoticeToggle and NoticeCount
defined in section 13.4.8.2 Notice on page 737

DataDetails RO 80 432
(54

Bytes)

Each Trap defines its own Data Details. See Table 380 "Notice
Details for Trap 0x0000 - KeyViolation" on page 1341, Table
381 "Notice Details for Trap 0x0100 - ChangeReport" on page
1342, Table 382 "Notice Details for Trap 0x0110 - StatusRe-
port" on page 1343, and Table 383 "Notice Details for Trap
0x0007 - Heartbeat" on page 1345

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1340 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• IssuerLID - as per Section 13.4.8.2, “Notice,” on page 737
• NoticeToggle - as per Section 13.4.8.2, “Notice,” on page 737
• Notice Count - as per Section 13.4.8.2, “Notice,” on page 737
• DataDetails - as per Table 379
• IssuerGID=0 as per Section 13.4.8.2, “Notice,” on page 737

oA5-56: If the BtA supports Traps or the Notice Queue, then the BtA shall
use the format in Table 378 "Notice Attribute" on page 1339, Table 380
"Notice Details for Trap 0x0000 - KeyViolation" on page 1341 and Table
381 "Notice Details for Trap 0x0100 - ChangeReport" on page 1342.

This section specifies specific traps for the Boot Management Class. Dat-
aDetails of the Notice attribute leaves 54 bytes to trap specific data (See
DataDetails in Table 378 on page 1339).

oA5-57: If the BtA supports Traps or the Notice Queue, then the BtA shall
only use the Type and Number listed in Table 379 on page 1340.

The BtA sends traps to the BootManager listed in ClassPortInfo.

oA5-58: The BtA shall zero the BtM_Key component when generating a
BootMgtTrap().

Table 379 Boot Management Traps

Trap Name Type TrapNumber DataDetails

KeyViolation Security 0x0000 See Table 380 "Notice Details for Trap 0x0000 - KeyViola-
tion" on page 1341

ChangeReport Urgent 0x0100 See Table 381 "Notice Details for Trap 0x0100 - ChangeRe-
port" on page 1342

StatusReport Urgent/
Informational

0x0110 See Table 382 "Notice Details for Trap 0x0110 - StatusRe-
port" on page 1343

Heartbeat Informational 0x0007 Indicates that the Boot Manager is still active. See Table 383
"Notice Details for Trap 0x0007 - Heartbeat" on page 1345

All other Boot Management Traps are reserved.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1341 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.6.7.1.1 KEYVIOLATION NOTICE

oA5-59: If the BtA supports Traps as indicated in ClassPortInfo, then the
BtA shall set the KeyViolation notice as specified in Table 380 on page
1341 and issue the Trap to every port when a BtM_Key mismatch is de-
tected.

oA5-60: If the BtA supports Notices as indicated in ClassPortInfo, then
the BtA shall post the KeyViolation notice as specified in Table 380 on
page 1341 to the notice queue when a BtM_Key mismatch is detected.

oA5-61: If the BtA generates a trap, then a trap shall be issued to all ports
that have a non-zero ClassPortInfo:TrapLID.

Table 380 Notice Details for Trap 0x0000 - KeyViolation

Component Offset
(bits)

Length
(in bits)

54B/432b
Description

BtAType 0 8b 0x00 - BtA is Firmware controlled, non-Extended
0x01 - BtA is Firmware controlled, Extended
0x10 - BtA is OS controlled
All other encodes are reserved

Method 8 8b Method used in MAD that caused the violation

AttributeID 16 16b AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64b Port GUID of the port receiving the violation

OffendingPortGid 96 128b Requestor port GID from the MAD that caused the violation

OffendingLIDADDR 224 16b SLID used in MAD that caused the violation

Reserved 240 16 Reserved

QP 256 24b Source Queue Pair from the MAD that caused the violation

Reserved 280 8b Reserved

BtM_Key 288 64b BtM_Key from the MAD that caused the violation

Timestamp 352 48b Timestamp when violation was detected. The format of the timestamp
is the number of milliseconds since 1/1/70 00:00am
Zero indicates Timestamp not supported

Reserved 384 47b Reserved

LostTrap 431 1b This bit is set when the BtA had to discard a Trap before receiving a
TrapRepress() for it. The bit is reset when the IOU receives a valid
TrapRepress() with this bit set.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1342 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-62: “If the BootAgent supports notices, it shall maintain a a single no-
tice queue accessible from every port on the platform.

A5.6.7.1.2 CHANGEREPORT NOTICE

oA5-63: If the BtA supports Traps, then any change made by a proprietary
mechanism which affects the outcome of a platform boot for conditions
specified in Table 381 on page 1342 shall be accompanied by a Chang-
eReport Trap 0x0100 issued on every port.

Table 381 Notice Details for Trap 0x0100 - ChangeReport

Component Offset
(bits)

Length
(in bits)

54B/432b
Description

BtAType 0 8b 0x00 - BtA is Firmware controlled, non-Extended
0x01 - BtA is Firmware controlled, Extended (See A5.1.8.3 "Boot

Environment Extension" on page 1281)
0x10 - BtA is OS controlled
All other encodes are reserved

Method 8 8b Method used in MAD that caused this event

BootMgrLID 16 16b BootManager LRH:SLID that caused this event

AttributeID 32 16b AttributeID used in MAD that caused this event (see Table 366 on
page 1293)

Reserved 48 16 Reserved

PlatformPortGUID 64 64b GUID of the port on the booting platform receiving the BootMgtSet()
that caused this event

BootMgrPortGID 128 128b GRH:SGID of the port GID that caused this event. This value is zero if
the MAD does not contain a GRH.

AttributeModifier 256 32b AttributeModifier used in MAD that caused this event

Reserved 288 8b Reserved

BootMgrSrcQP 288 24b Source Queue Pair (DETH:SrcQP) from the MAD that caused this
event

Timestamp 320 48b Timestamp when change was detected. The format of the timestamp
is the number of milliseconds since 1/1/70 00:00am
Zero indicates Timestamp not supported

Reserved 368 63 Reserved

LostTrap 431 1b This bit is set when the BtA had to discard a Trap before receiving a
TrapRepress() for it. The bit is reset when the IOU receives a valid
TrapRepress() with this bit set.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1343 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-64: If the BtA supports the Notice Queue, then any change made by
a proprietary mechanism which affects the outcome of a platform boot for
conditions specified in Table 381 on page 1342 shall be accompanied by
a 0x0100 notice posted to the Notice Queue.

A5.6.7.1.3 STATUSREPORT NOTICE

Table 382 Notice Details for Trap 0x0110 - StatusReport

Component Offset
(bits

Length
(in bits)

54B/432b
Description

BtAType 0 8b 0x00 - BtA is Firmware controlled, non-Extended
0x01 - BtA is Firmware controlled, Extended (See A5.1.8.3 "Boot

Environment Extension" on page 1281)
0x10 - BtA is OS controlled
All other encodes are reserved)

LocatorRecordType 8 8b 0x00 - none
0x02 - Local-Persistent OsLocatorRecord
0x03 - BIS OsLocatorRecord
0x04 - Local-Persistent ConsoleLocatorRecord
0x05 - BIS ConsoleLocatorRecord
0x06 - Local-Persistent RomRepositoryLocatorRecord
0x07 - BIS RomRepositoryLocatorRecord
All other encodes are reserved

LocatorRecordNumber 16 8b If LocatorRecordType = 0x02-0x07 then the LocatorRecordNumber
identifies the locator record of interest.
If Local-Persistent Locator Record - AttributeModifier used in the
Set().
If BIS Locator Records - this value represents the priority order by
which the BIS sent locator records back to the booting platform in
response to a BIS query. The first record is 0x00, the second is 0x01,
and so on.
If LocatorRecordType is other than 0x02-0x07, this value should be
set to 0x00.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1344 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

StatusType 24 8b Reason for StatusReport
0x00 - Trap Queue or Notice Queue flushed
0x01 - Platform Boot Failed, reboot- platform will initiate reboot
0x02 - Platform Boot Failed, waiting for BootManager to initiate reboot

via Set(Reboot)
0x03 - Platform Boot Failed, Boot canceled manually
0x04 - Platform Boot Failed, reboot - platform will initiate non-IB boot

process
0x05 - reserved
0x06 - Non-volatile platform storage failure
0x07 - Locator Record Failure (see LocatorRecordType)
0x08 - Extended ROM Repository Failure
0x09 - Device Driver ROM Repository Failure
0x0A - IOU Failure
0x0B - Network Boot server failure
0x10 - No path to BIS - SA did not return PathRecord
0x11 - BIS Timeout - BIS did not return Locator Records in allowed

time (see BisTimeout in Table 372 "PortBootInfo Attribute" on
page 1321

0x12 - BisQueryResp() received without matching TransactionID -
see BisPortGID for failing BIS

0x13 - ProtocolName not found in AdditionalInfo. This is set when the
OsLocatorRecord:Protocol(7)=1b and OsLocatorRecord:Addition-
alInfo does not contain a protocol.

0x14 - ProtocolName not found in AdditionalInfo. This is set when the
ConsoleLocatorRecord:Protocol(7)=1b and OsLocator-
Record:AdditionalInfo does not contain a protocol.

0x20 - BtA started
0x21 - BtA terminated, OS Loading - Persistent Boot
0x22 - BtA terminated, OS Loading - BIS Boot
0x23 - reserved
0x24 - BtA terminated, OS Loading - Non-IB Boot
0x25 - BtA terminated, Reboot

Reserved 32 24b Reserved

AdditionalStatus 56 8b Additional Status
0x00 - No additional status
0x01 - SA did not return a Path to the targeted port
0x02 - MAD Time-out
0x03 - Connection Time-out
0x04 - ROM Repository image not found
0x05 - ROM Repository image failed (i.e. platform determined the

image is not usable)
0x06 - Connection to target failed - Service not found
0x07 - Connection to target failed - Connection failure

Table 382 Notice Details for Trap 0x0110 - StatusReport (Continued)

Component Offset
(bits

Length
(in bits)

54B/432b
Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1345 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-65: If the BtA supports Traps as indicated in ClassPortInfo, then the
BtA shall issue a StatusReport Trap 0x0110 to every port on the booting
platform for conditions described in StatusType or AdditionalStatus in
Table 382 on page 1343.

oA5-66: If the BtA supports Notices as indicated in ClassPortInfo, then
the BtA shall post a StatusReport notice 0x0110 in the Notice Queue for
conditions described in StatusType or AdditionalStatus in Table 381 on
page 1342.

A5.6.7.1.4 HEARTBEAT NOTICE

This notice is not generated by the Boot Mgt agent, it is generated by a
Boot Manager in a BootMgtReport() to inform subscribed clients that the
Boot Manager is still operational.

Timestamp 68 48b Timestamp when error was detected. The format of the timestamp is
the number of milliseconds since 1/1/70 00:00am
Zero indicates Timestamp not supported

BisPortGID 112 128b PortGID of the BIS() if BIS failure else set to zero

Reserved 240 191 Reserved

LostTrap 431 1b This bit is set when the BtA had to discard a Trap before receiving a
TrapRepress() for it. The bit is reset when the IOU receives a valid
TrapRepress() with this bit set.

Table 382 Notice Details for Trap 0x0110 - StatusReport (Continued)

Component Offset
(bits

Length
(in bits)

54B/432b
Description

Table 383 Notice Details for Trap 0x0007 - Heartbeat

Field Offset
(bits)

Length
(bits) Description

TTNH 0 12 Time till next heartbeat - specifies the number of
minutes before the Boot Manager will send another
Heartbeat notice. If more that this time elapses, it is
an indication that the Boot Manager has terminated
the subscription.

reserved 12 4

Fail-over 16 1 When this bit is set to one it indicates that a standby
manager has taken-over. The client platform should
query the SA to locate and verify the new Boot
Manager.

reserved 17

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1346 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

See A5.6.7.3.3 "Heartbeat" on page 1350 for requirements on generating
the Heartbeat notice.

A5.6.7.2 TRAPREPRESS

Common Trap datagrams are described in 13.4.9 Traps on page 741.

oA5-67: Upon receipt of a valid TrapRepress() MAD and independent of
the MADHeader:BtM_Key, the BtA shall cease sending the trap which
matches the trap identified by the TrapRepress() MAD. A trap being re-
peatedly sent matches a trap identified in a TrapRepress() MAD when
both MADHeader:TransactionID in the trap MAD matches MAD-
Header:TransactionID in the TrapRepress MAD and the Notice attribute
in the trap MAD matches the Notice attribute in the TrapRepress().

A5.6.7.3 TRAP SUBSCRIPTION / REPORTING

A node may subscribe for BootMgt Trap forwarding by issuing a Boot-
MgtSet(InformInfo) to the Boot Manager. The LID Range and GID in the
InformInfo attribute indicates for which booting node the client is inter-
ested in receiving Report()s. Note that when subscribing and unsub-
scribing for the Heartbeat, the GID and LID Range components in the
InformInfo is irrelevant and thus the client should set GID, LIDRange-
Begin, LIDRangeEnd to zero, 0xFFFF, & zero respectively and the Boot
Manager shall ignore those components.

When the Boot Manager receives a BootMgtTrap(), it forwards the trap to
subscribed parties via the BootMgtReport(Notice) with the exception of
traps listed in Table 384: Privileged Traps. Traps in Table 384 are consid-
ered private and must not be forwarded except as indicated in the table.

reserved 431 1 LostTrap: This bit is not used and set to zero since
this notice is not sent in a Trap() (only in a Report).

Table 383 Notice Details for Trap 0x0007 - Heartbeat (Continued)

Field Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1347 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-67.2.1: When a Boot Manager receives a BootMgtTrap() not listed in
Table 384 "Privileged Traps" on page 1347, it shall generate a Boot-
MgtReport() to all parties that have subscribed with the Boot Manager for
that notice if a GID of the IOU matches the InformInfo:GID or the IOU has
a LID that falls in the range of the InformInfo: LIDRangeBegin – LIDRan-
geEnd.

oA5-67.2.2: When a Boot Manager receives a BootMgtTrap() listed in
Table 384 "Privileged Traps" on page 1347, it shall only generate a Boot-
MgtReport() as described in the table.

Because BootMgt Agents are not required to support Traps, the Boot
Manager is required to poll notice queues of Boot Agents that do not sup-
port notices, and generate BootMgtReport()s for Notices it reads from
those notice queue.

oA5-67.2.3: Except for traps listed in Table 384 "Privileged Traps" on
page 1347, the Boot Manager shall generate BootMgtReport()s for No-
tices it reads from a notice queue of a Boot Agent that does not support
Traps (as indicated in the Boot agent’s ClassPortInfo:Capability bits).

The manager reports traps in the order that it receives them from the BtA.
When the manager receives multiple traps from the same BtA, it delivers
them one at a time in the order that the traps were received and waits for
a ReportResp() from the client before delivering the next Report().

oA5-67.2.4: A Boot Manager shall report Traps from a BtA in the order it
receives the traps. However, the Boot Manager is not required to maintain
ordering of traps from different BtAs.

oA5-67.2.5: A Boot Manager shall only have one BootMgtReport() out-
standing per subscriber per booting node. That is, the Boot Manager shall

Table 384 Privileged Traps

Trap Trap

Key Violation This is a security trap that contains information which might be considered sen-
sitive (such as invalid keys). The Boot Manager may restrict which nodes
receive the BootMgtReport() and/or may zero the key component in the
Notice attribute. The Boot Manager policy can be on a trap by trap basis. If
a node attempts to subscribe to one of these traps individually and the Boot
Manager policy is not to forward the trap to that node, then the Boot Man-
ager rejects the BootMgtSet(InformInfo) with MAD Status [8:15] = Policy
Reject (see page 1289). However, the Boot Manager accepts a subscrip-
tion for ‘TrapNumber=0xFFFF’ (all traps) regardless of whether it forwards
the Key Violation trap.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1348 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

wait for a BootMgtReportResp() before sending a subsequent Boot-
MgtReport() for another trap from the same BtA.

A5.6.7.3.1 SUBSCRIPTION INTEGRITY

Clients depend on receiving Report()s whenever a BtA generates a trap
and thus depend on the Boot Manager reporting traps to subscribers.
However, there are a number of events that can cause a subscription to
be destroyed where the client might not be aware that its subscriptions
were destroyed.

• Boot Manager reset - In the event that the Boot Manager is reset,
subscriptions can be lost. It is recommended that the Boot Man-
ager retain subscription information in persistent storage, such
that subscriptions survive power cycles and Boot Manager resets.
A client can subscribe with the SA for Trap 64/65 ‘Port In/Out of
Service’ to detect when the node on which the Boot Manager
resides is reset. The client can also subscribe with the Boot Man-
ager for the Heartbeat notice (see A5.6.7.3.3 "Heartbeat" on page
1350), so it can detect when the Boot Manager disappears or
ceases to function. Successful reception of the heartbeat indi-
cates that the Boot Manager is alive and that the client’s subscrip-
tions are still valid.

• Boot Manager failover - In the event that the active Boot Manager
fails and another Boot Manager takes over, subscriptions with the
old Boot Manager might not be carried over to the new Boot Man-
ager. For graceful failover, the active Boot Manager provides sub-
scription information to standby Boot Managers before replying to
a subscription request. A client can subscribe with the SA for
Trap 65 ‘Port Out of Service’ to detect when the node on which
the Boot Manager resides goes down and subsequently query
the SA to locate the new Boot Manager. If the client subscribed
with the Boot Manager for the Heartbeat notice (see A5.6.7.3.3
"Heartbeat" on page 1350), the heartbeat can indicate graceful
failover. Successful reception of the heartbeat indicates that the
new Boot Manager inherited the client’s subscriptions.

• Temporary path disruptions can make a client unreachable, which
might result in the Boot Manager timing-out and removing the cli-
ent’s subscriptions. Both the client and the manager can sub-
scribe to SA trap 65 to detect such a condition (assuming that the
SM detects the path failure). Again, the client can subscribe with
the Boot Manager for the Heartbeat notice (see A5.6.7.3.3
"Heartbeat" on page 1350), so it can detect when the Boot Man-
ager drops its subscriptions. Successful reception of the heart-
beat indicates that the client’s subscriptions are still valid.

oA5-67.2.6: If the Boot Manager supports Persistent Context (i.e. sets the
IsContextPersistent bit in BootMgtGetResp(ClassPortInfo) to 1), it shall

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1349 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

retain subscriptions across power cycles (i.e., use subscription informa-
tion stored in non-volatile storage).

oA5-67.2.7: If the Boot Manager supports Persistent Context (i.e. sets the
IsContextPersistent bit in BootMgtGetResp(ClassPortInfo) to 1), it shall
save subscription information in non-volatile storage before responding to
the BootMgtSet(InformInfo).

oA5-67.2.8: If the Boot Manager supports Graceful Failover (i.e., sets the
GracefulFailover bit in BootMgtGetResp(ClassPortInfo) to 1), it shall
share subscription information with all standby Boot Managers provided
by that same vendor. This includes supplying Standby Boot Managers
with subscription information when the standby manager comes on-line
and updating standby Boot Managers when subscription information
changes before responding to the BootMgtSet(InformInfo).

oA5-67.2.9: If the Boot Manager supports Graceful Failover (i.e., sets the
GracefulFailover bit in BootMgtGetResp(ClassPortInfo) to 1), it shall
make subscription information known to all standby Boot Managers pro-
vided by that same vendor before responding to the BootMgtSet(Inform-
Info).

A5.6.7.3.2 SUBSCRIPTION TIMEOUT

When a subscribed node fails or resets, it does not always have the
chance to unsubscribe. For the express purpose of limiting the number of
retries and the size of the Boot Manager’s subscribers list over long pe-
riods of time, clients that become unreachable by the Boot Manager or
otherwise leave the fabric for any reason will have their subscription ter-
minated by the Boot Manager. However the Boot Manager needs to be
able to distinguish between subscribers that are temporarily unreachable
verses those that have gone away.

When the Boot Manager receives a trap, it sends a BootMgtReport() to
each subscriber and waits for a BootMgtReportResp(). If it fails to receive
the response, it resends the BootMgtReport(). The minimum amount of
time the Boot Manager waits before re-sending is specified in the Inform-
Info attribute. The Boot Manager should implement the Retry-Backoff
Policy specified in Annex A1 section A1.3.2 between successive attempts
to limit the number of retries when trying to reach an unreachable node. If
after 10 minutes the subscriber has not responded, the Boot Manager
may terminate the retry and cancel all of the subscriptions for that client.

oA5-67.2.10: If the Boot Manager fails to receive a ReportResp() in re-
sponse to a Report(), then the Boot Manager shall continue to retry the
Report() until either it receives a ReportResp(), the client unsubscribes, or
the Boot Manager terminates the subscription.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1350 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-67.2.11: The Boot Manager shall not terminate a subscription due to
a missing ReportResp() until after 10 minutes of retrying has occurred. If
the Boot Manager does terminate a subscription due to a missing Repor-
tResp(), it shall terminate all subscriptions for that particular destination
(LID/GID + QPN).

A5.6.7.3.3 HEARTBEAT

The Boot Manager periodically sends a BootMgtReport(Notice=Heart-
beat) to let subscribers know that the Boot Manager still exists and that
the client’s subscriptions are still valid. It is also a means for the Boot Man-
ager to detect stale subscriptions since failure for a client to respond to the
heartbeat is grounds to cancel that client’s subscriptions.

When a client subscribes for the heartbeat event, the Boot Manager
sends the client a BootMgtReport(Notice=Heartbeat) before it replies to
the subscription request. This initial heartbeat provides the client with the
maximum time until the next heartbeat (TTNH). The length of time be-
tween heartbeats is a Boot Manager policy. The client starts an expiration
timer for TTNH minutes and if the timer expires, it is an indication that the
Boot Manager is no longer functional or that the Boot Manager has can-
celled the client’s subscriptions. Thus, the client should re-subscribe or
query the SA to locate the new Boot Manager so it can subscribe. Each
time a client receives a BootMgtReport(Notice=Heartbeat), it resets its ex-
piration timer to the new TTNH value specified in the Heartbeat notice.

oA5-67.2.12: For heartbeat subscriptions, the Boot Manager shall gen-
erate a BootMgtReport(Notice=Heartbeat) to the subscriber before
sending the BootMgtGetResp(InformInfo)

oA5-67.2.13: The Boot Manager shall continue to generate BootMgtRe-
port(Notice=Heartbeat) to each subscriber within TTNH minutes after
sending the previous BootMgtReport(Notice=Heartbeat) to that sub-
scriber.

Note that the LID Range and GID in the InformInfo for a heartbeat report
is irrelevant and thus ignored by the Boot Manager. That is, the Boot Man-
ager generates a Heartbeat report to anyone subscribed for heartbeats
regardless of the GID and LID range in the InformInfo attribute.

The Heartbeat notice also has a ‘Fail-Over’ bit that indicates a new man-
ager. This is to inform the client that a standby manager has gracefully
taken over the Boot Manager responsibility. In order to ensure that the no-
tice came from a valid Boot Manager, instead of using the Report()'s re-
ciprocal path to communicate with the new Boot Manager, the client
should query the SA to locate the new Boot Manager, but it will not need
to re-subscribe.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1351 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-67.2.14: The Boot Manager shall not set the FailOver bit in a Heart-
beat notice unless the Boot Manager inherited all of the subscriptions from
the previous manager.

oA5-67.2.15: The Boot Manager shall only set the FailOver bit in the first
Heartbeat notice it sends to a client. Thus, the Boot Manager shall not set
the FailOver bit in subsequent reports to a client after it receives the Re-
portResp() from that client.

A5.6.8 INFORMINFO ATTRIBUTE

The InformInfo attribute provides information for subscribing to a class
manager for event forwarding. See 13.4.8.3 InformInfo on page 739 and
13.4.11 Event Forwarding on page 745.

A5.7 PLATFORMS USE OF BIS
A5.7.1 BIS USAGE OVERVIEW

This section describes the behavior of a booting platform that supports
BIS as a Boot Resolution Method. BIS is described in the Boot Information
Service Annex. A booting platform may support using BIS, Persistent
storage, or both as the source for boot information. The overview and op-
eration of a BIS server is described in General Operation in the Boot In-
formation Service Annex.

The BIS server returns many of the same attributes to the booting platform
as the BootManager provides.

The booting platform can access a BIS without requiring a BtA to also be
running on the booting platform. Ideally, a booting platform accessing a
BIS should also run the BtA so that the BootManager can receive Traps,
read the Notice Queue or read status and status components using Plat-
formBootInfo to stay informed of BIS related events.

The booting platform queries a BIS using the BIS class MADs as de-
scribed in the BIS Annex. The booting platform queries a BIS using the
BisQuery(BootQueryInfo) to find information records (PlatformBootInfo
and PortBootInfo) and locator records (RomRepositoryLocatorRecords,
ConsoleLocatorRecords, and OsLocatorRecords). The BIS returns the

Table 385 InformInfo

Component Access
Length
(bits)

Offset
(bits)

Description

See InformInfo in 13.4.8.3 InformInfo on page 739

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1352 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

requested attributes using BisQueryResp(*). The BisQuery(*) and
BisQueryResp(*) use the Reliable Multi-Packet Protocol.

oA5-68: If BIS is supported, the platform shall conform to the BIS Class
MADs and data structure as specified in the BIS Annex.

oA5-69: If BIS is supported and the platform queries the BIS for locator
records, then the platform shall use the locator records (RomRepository-
LocatorRecord, ConsoleLocatorRecord, and OsLocatorRecord) in the
order in which they were received from the BIS.

A booting platform that supports BIS but not the BtA defaults to using the
BIS to acquire the PlatformBootInfo and PortBootInfo attributes. If the
platform contains a BtA, then the BootManager sets these attributes and
disables the platform from acquiring them from the BIS.

A5.7.2 PLATFORMBOOTINFO SOURCE
If BIS or Persistent boot methods are supported, then the booting platform
must determine the source of the platforms booting parameters. The fac-
tory default for a booting platform is to use a BIS to obtain the Platform-
BootInfo attribute.

If the platform has a BtA, the default usage of the BIS may be altered by
the BootManager, depending on the facilities booting policy, by modifying
the PlatformBootInfoSource and PortBootInfoSource components in the
PlatformBootInfo attribute.

The booting platform tests PlatformBootInfoSource (see Table 370 on
page 1302) to determine the source of the PlatformBootInfo attribute.

oA5-70: If BIS is supported and PlatformBootInfoSource=0, then the
booting platform shall query the BIS for the PlatformBootInfo attribute.

oA5-71: When the booting platform supports both BIS and local persistent
storage, if the local PlatformBootInfoSource=1, then the booting platform
shall use the PlatformBootInfo attribute in persistent storage.

Before the booting platform first accesses a BIS, the platform might not
contain information regarding the subnet specific boot time-out values.
The booting platform must use the default values until the BIS returns the
PortBootInfo attribute.

CA5-40: If the booting platform supports BIS and the platform does not
have a persistent PlatformBootInfo attribute, then the booting platform
shall use the default values for PlatformBootInfo until it queries the BIS for
PlatformBootInfo.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1353 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.7.3 PORTBOOTINFO SOURCE
If BIS or Persistent boot methods are supported, then the booting platform
must determine the source of subnet parameters, such as time-outs lo-
cated in the PortBootInfo attribute. The factory default for a booting plat-
form is to use a BIS to obtain PortBootInfo attributes.

The booting platform tests PortBootInfoSource (see Table 370 on page
1302) to determine the source of the PortBootInfo attribute. If PortBootIn-
foSource=0 (the default value), then the booting platform shall query the
BIS for PortBootInfo. If PlatformBootInfoSource=1, then the booting plat-
form shall use the PortBootInfo attribute in persistent storage.

oA5-72: If BIS is supported and PortBootInfoSource=0, then the booting
platform shall use the BIS as the source of the PortBootInfo attribute.

oA5-73: If PortBootInfoSource=1, then the booting platform shall use
persistent storage as the source of the PortBootInfo attribute.

When the booting platform first accesses a BIS, the platform might not
contain information regarding the subnet specific boot time-out values.
The booting platform must use the default values until the BIS returns the
PortBootInfo attribute.

oA5-74: If BIS is supported and PortBootInfoSource=0, then Port-
BootInfo:BisTimeout, PortBootInfo:EndnodeTimeout, and Port-
BootInfo:InitTimeout components default values specified in Table 372
"PortBootInfo Attribute" on page 1321 shall be used.

A5.7.4 DETERMINING TO USE A BIS
A booting platform shall use the BIS as a source of booting information if:

• PlatformBootInfoSource=1 or
• PortBootInfoSource=1 or
• Any Locator Source in PlatformBootInfo in persistent storage indi-

cates BIS
oA5-75: If BIS is supported, the booting platform shall only use Platform-
BootInfoSource, PortBootInfoSource, RomRepositoryLocatorSource,
ConsoleLocatorSource, and OsLocatorSource in the PlatformBootInfo at-
tribute to determine if the BIS is used as a source for booting information.

A5.7.5 FINDING A BIS
Once the platform determines that it needs a BIS, the platform determines
the location of the BIS using the service advertisement in the SA (see
A6.3.1 Registration on page 1411). The SA is used to find the Service-
Record of a BIS for the subnet. From the ServiceRecord, the BIS Ser-

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1354 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

viceGID and partition is found. A PathRecord can be obtained from the SA
using the GID and partition from the ServiceRecord. Using the Path-
Record the BIS service is located on QP1 or redirected to another QP.
This process should be followed each time the platform boots to prevent
the platforms BIS Service Record from becoming stale.

oA5-76: If BIS is supported and the platform determines that the BIS will
be queried, then the booting platform shall:

• locate the BIS using SubnAdmGet(ServiceRecord) using only the
ServiceName of “BIS.IBTA” as described in the BIS Annex.

• fill out the PathRecord request specifying GID and partition re-
turned in the SubnAdmGet(ServiceRecord) response from the
SA.

A5.7.6 SELECTING A BIS

Once the platform determines that a BIS is to serve as a source of booting
information, then the platform determines which BIS to access. If the
booting platform is on a single subnet with multiple BISs or if the platform
is on multiple subnets with each subnet containing a BIS service, then the
platform selects a BIS to use as the source of booting information.

Any BIS can supply a platform with attributes that have platform scope
(i.e., PlatformBootInfo, RomRepositoryLocatorRecords, ConsoleLocator-
Records and OsLocatorRecords attributes).

A single BIS can also provide a platform with port specific attributes (Port-
BootInfo) for each of its ports when responding to a BootQueryInfo:Port-
GUID with BootInfoRequested=0x01. However, a BIS might not have port
information for all ports of the booting platform, and thus, the booting plat-
form may need to query another BIS (e.g., a BIS on the same subnet as
the port).

If a subnet contains multiple BISs as indicated by multiple records being
returned in the SubnAdmGet(ServiceRecord) response, then the platform
queries each BIS in order until the requested information is returned.

A5.7.7 PRIORITIZING MULTIPLE BISS

When multiple BISs exist in a subnet or a platform is on multiple subnets
each having some number of BISs, the booting platform should determine
which BIS to use as its source of booting information. The booting platform
can query the SA searching for a BIS in the BisPortPriority order.

If multiple records are returned in a SubnAdmGet(ServiceRecord) re-
sponse then multiple BISs on that port serve the booting platform.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1355 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-77: If BIS is supported, then the booting platform shall prioritize mul-
tiple BISs by using records returned by a BIS in BisPortPriority order from
highest to lowest.

oA5-78: If a subnet has multiple BIS’s then the platform will access the
BIS’s in the order in which the ServiceRecords are return from the SA.

If a BIS does not provide all of the records needed by a booting platform
then other BIS’s are queried to obtain the desired record(s).

A5.7.8 OTHER CONSIDERATIONS

oA5-79: If BIS is used to locate a ROM Repository, Console, or OS
Loader, then the platform shall only query the BIS for records that the plat-
form supports.

oA5-80: If BisQueryResp() returns PortBootInfo:NetworkBootPortPriority
= 0x0 then the platform shall not use this port for IB network booting.

oA5-81: If BisQueryResp() returns PortBootInfo:RomPortPriority = 0x0
then the booting platform shall not attempt to access the RomRepository
through this port.

oA5-82: If BisQueryResp() returns PortBootInfo:ConsolePortPriority =
0x0 then the booting platform shall not attempt to access the IB Console
through this port.

oA5-83: If BisQueryResp() returns PortBootInfo:IocPortPriority = 0x0
then the booting platform shall not attempt to boot through this port.

oA5-84: If the platform supports BIS, the BtA, and Traps, then the BtA
shall issue a StatusReport Trap (see Table 382 "Notice Details for Trap
0x0110 - StatusReport" on page 1343) to every port for failures defined in
the notice details.

oA5-85: If the platform supports BIS, the BtA, and notice queue, then the
BtA shall post a StatusReport Notice (see Table 382 "Notice Details for
Trap 0x0110 - StatusReport" on page 1343) to the notice queue for fail-
ures defined in the notice details.

A5.7.8.1 RELIABLE MULTI-PACKET PROTOCOL

oA5-86: If the platform supports BIS, then the platform shall support the
Reliable Multi-Packet Protocol specified in 13.6 Reliable Multi-Packet
Transaction Protocol on page 770.

A5.7.8.2 PORT GID TO LID RESOLUTION

Given the PortGID from the Locator Record, the booting platform queries
the SA with SubnAdmGetTable(PathRecord). The booting platform que-

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1356 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ries the SA to obtain a path to the IOC in the Locator Record. A technique
that will find all possible paths, in case some are inoperable, is to fill out
the PathRecord request specifying only the SGID of the booting platform,
the DGID equal to the portGID from the Locator Record, and all other
components “wildcarded” (ComponentMask bits set to 0) so they match
anything. Note, the SLID is “wildcarded” to account for a possible non-
zero LMC. A table of paths are returned for all paths from the booting plat-
form portGID to the portGID specified in the Locator Record.

A5.7.8.3 REPORTING FAILURES

A platform that supports a BootAgent and Traps has the ability to notify the
BootManager when unauthorized accesses occur within both the Boot
Management and BIS class MADs. This allows reporting of the unautho-
rized attempt to manipulate the booting platform so that a higher level
management entity (Administrator) can take an appropriate action.

A5.8 IB NETWORK BOOTING
A boot platform may be capable of booting over IB using the IB Network
boot described in Figure 272 ”IB Network Boot Model” on page 1279
without requiring a LAN NIC. This Annex requires that a booting platform
make the BootManager aware of the capability of using the IB Network
boot method by setting Network Boot-IB Network Model in Platform-
BootInfo:Capability in Table 370 on page 1302).

There are multiple network protocols that allow a booting platform to di-
rectly communicate with a boot server such as IP over IB (IPoIB) and
Sockets Direct Protocol (SDP). OsLocatorRecords inform the booting
platform when to attempt IB Network Boot and which IB network protocol
to use. The OsLocatorRecord also has the ability to identify the boot
server and to supply protocol specific parameters need to perform the IB
Network Boot.

A booting platform may contain multiple ports on more than one subnet.
Instead of enumerating each port, the BootManager may inform the
booting platform of the port order in which to attempt to find the IB Network
boot server by setting NetworkBootPortPriority in PortBootInfo (see Table
372 on page 1321)

A5.9 RETRY BACKOFF

When many platforms in a subnet are booting at the same time, then con-
gestion on some resources while booting may develop. A1.3.2 Retry-
Backoff Policy on page 1134 contains guidance for IB retries.

CA5-41: A booting platform shall implement the Retry Back-off Policy
specified in the I/O Annex when it fails to receive a response to any MAD
for any management class.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1357 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.10 IB BOOT PROCESS - SUMMARY

Boot Management MADs specify messages that appear on the wire and
behaviors associated with those messages. The appearance of a mes-
sage at a port implies a required action and, most likely, a response. Ad-
ditionally, the appearance of a message on the wire implies behavior of
the entity that caused the message to be emitted. Various conceptualiza-
tions are used in specifying behaviors of the booting platform. However,
the use of such conceptualizations in this Annex is purely a descriptive ar-
tifice. The conceptualizations themselves, do not convey normative re-
quirements. While some conceptualizations used in the this Annex may
suggest certain implementations, implementations are outside of the
scope of this Annex and no specific implementation is implied.

Booting over IB involves selecting Locator Records to locate a ROM Re-
pository, a Console object, and/or the OS boot loader. There are 2 sources
of Locator Records, Local-Persistent and BIS. Local-Persistent Locator
Records may be set using Boot Management. BIS is an optional service
on the IB fabric. Each time the platform boots, it uses either Local-Persis-
tent records or queries the BIS, which returns the latest set of Locator
Records for the booting platform to use.

Booting over IB includes the platform determining if the boot environment
will be extended and if device drivers will be loaded using the ROM Re-
pository. Booting also includes determining if an IB console will be used
and selecting the device or network to be used if booting over IB.

Booting platforms which support a BtA may contain non-volatile storage.
Booting platforms can optionally permit the system administrator, via the
BootManager, to update attributes that affect booting. Platforms may im-
plement a local only update policy that does not allow updates using IBA
methods. If the local policy allows a BootManager to write components,
then the R/W components of BootMgt attributes are stored in the plat-
forms non-volatile storage. A ladder diagram of a Boot Manager config-
uring the boot policy of a boot platform is shown in Figure 278. The boot
platform in this example supports an extension of the boot environment,
persistent boot, ROM locator record and OS locator record updates.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1358 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 278 Configuring the Boot Platform
A platform with invalid data in this non-volatile storage (NVRAM) might be
a platform shipped directly from the factory, a platform which has had its
entire non-volatile storage cleared, or a platform that does not contain
valid data in non-volatile storage. When a platform boots with invalid Boot
Management data in non-volatile storage then:

1) If the platform supports Local-Persistent Locator Records, then the
booting platform may wait for the BootManager to Set() Persistent
Locator Records to the platform. After being Set() the platform will
use the Persistent Locator Records to optionally load the boot envi-
ronment extension, device drivers, the Console, and the OS Boot
Loader.

 BootMgtSet(PlatformBootInfo)

BootMgtGetResp()

BootMgtGet(PlatformBootInfo:Capability) to getthe capabilities of the booting platform

BootMgtGetResp() with bits 0,9,10 and 12 set

Boot Manager

 BootMgtSet(RomRepositoryRecord)

BootMgtGetResp()

BootMgtGetResp()

 BootMgtSet(ConsoleLocatorRecord)

Extended boot env.,Persistent Rom and OS records

RomRepositoryLocatorSource=0x02 Use Persistent Rom Locator, OsRepositoryLocatorSource=0x02 Use Persistent OS Locator

 BootMgtSet(PortBootInfo)

BootMgtGetResp()

Set InitTimeout and EndNodeTimeout

Get Platforms
Capability

Set Platforms
booting policy

Set Platforms
timeout values

Set location of
RomReposi-
tory in NVRAM

Set location of
Console Loca-
tor in NVRAM

 Boot Agent

BootMgtGetResp()

 BootMgtSet(ConsoleLocatorRecord)

Set location of
OS Boot
Loader in
NVRAM

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1359 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) If the platform supports BIS, then it may use BIS Class MADs to
query the BIS. The BIS will, depending on the query, return Locator
Records for the boot environment extension, the Console, and the
OS Boot Loader. Proprietary Device Drivers that are not co-located
with the boot environment may be found in a ROM Repository image.

Other considerations are:

1) A booting platform queries the SA using SubnAdmGet(Service-
Record) to locate a BIS. The PortBootInfo(BisTimeout) value deter-
mines the minimum amount of time the booting platform should wait
for the BIS to register with the SA. If BisTimeout has not been set,
then the default value listed in the component definition should be
used.

2) If the booting platform supports both Local-Persistent and BIS boot
resolution methods, then the platform defaults to BIS only until the
Boot Management attributes are written.

3) The booting platform may optionally extend the boot environment.

4) The booting platform may optionally locate the Console.

5) The booting platform may optionally locate the OS Boot Loader. This
is optional because the BtA may be on the platform to extend the
boot environment or use the IB console, but have no need to boot
over IB.

If the booting platform contains valid persistent data in non-volatile
storage, then the platform does not wait for the BootManager to Set() boot
attribute to the platform. Here, the platform will either use Local-Persistent
and/or BIS Locator Records to locate the extended boot environment
code, the Console, or the OS Boot Loader.

Figure 280 on page 1361 describes a platform boot example that illus-
trates the steps involved in booting a platform. The boxes on the left side
of the page show that a booting platform would access the ROM Reposi-
tory, Console, and OS loader. The single box on the right shows the
common steps used by the booting platform each time the platform needs
to determine the location of a device or service. When the platform is pow-
ered on, reset, or rebooted, then the platform finds devices or services
needed to boot. In this example, the ROM Repository images are ac-
cessed first. Then the console is located followed by the OS boot loader.

The order (ROM Repository, Console, and OS loader) is determined by
the booting platform. Platforms may already contain a local copy of a con-
sole device driver used to access the console, which enables that platform
to immediately connect to the console.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1360 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ROM Repository
1) The Boot Resolution Method for the ROM Repository is selected

using ROMRepositoryLocatorSource.

a) The ROMRepositoryLocatorSource selects BIS or BIS then Lo-
cal-Persistent or Local-Persistent then BIS or none. This variabili-
ty is not shown in Figure 280 ”Platform Boot Example” on page
1361 and with the intent being if one method fails the secondary
method may be used.

2) 1) above provides the booting platform with one or more RomRepos-
itoryLocatorRecords that point to the IOU.

Using the Locator Record the platform queries the SA for a path and
connects to the ROM Repository. Connecting to the RomRepository is
shown in Figure 279. The ROM Repository protocol is detailed in
A5.12 "ROM Repository" on page 1365.

Figure 279 RomRepository Access
3) The platform then searches the ROM Repository for the desired

image(s).

4) Failures throughout the process should result in Traps being issued
(see A5.6.7 "Traps and Notice Queues" on page 1336).

Console
The Boot Resolution Method for the Console is similar to the ROM Repos-
itory except that the method is selected using ConsoleLocatorSource and
the Console protocol described in Annex A2 Console Service Protocol or
a proprietary console protocol is used.

OS Loader
The Boot Resolution Method for the OS Loader is similar to the ROM Re-
pository and Console except that the method is selected using OsLoca-
torSource and the protocol is I/O specific (e.g. SRP, IPoIB and
proprietary).

 ROM Repository request messages to read the desired image

ROM Repository response messages with

image data

CM_REQ with the well known RomRepository SID

BootingPlatform IO Unit

CM_REP

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1361 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 280 Platform Boot Example

Figure 281 is a ladder diagram illustrating the messages a booting plat-
form sends to an IOU and the IOU response. The booting platform obtains

Determine Location of the
Console Device or Service

Load Device Driver for Boot
Device

Boot Resolution

Query BIS for
Boot Locator

Records

Get local Persistent
Boot Locator Records

N

Y

Success?

BIS

Y

Persistent

Boot Resolution
Method?

Query SA for Path
Connect to Device/Service

More Records?
Success

Issue Trap

Resolution
Process

N

Enter
RomRepository, Console or OsLoader

Fail

PowerOn or Reboot

Determine Location of the
OS Loader

Determine Location of the
RomRepository to find Boot
Environment Extensions and Boot
Device Drivers

See
Resolution

Process

Boot the OS
(see)

Connect to the
Console

Connect to the
RomRepository
(see)

See
Resolution

Process

See
Resolution

Process

Figure 279

Figure 281

Figure 279

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1362 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

information about the IOC, I/O protocol and boot device from the Locator
Record stored in the persistent storage or obtained from the BIS.

Figure 281 Boot Platform to IOU Communication - Access OS
Loader

A5.11 ADDITIONALINFO

AdditionalInfo is a component of the ConsoleLocatorRecord and OsLoca-
torRecord attributes provided to a booting platform by the BIS or the Boot-
Manager.

AdditionalInfo is a 160 byte field whose content is dependent on the De-
viceType, ServiceType, and I/O protocol. This information is intended to
be passed to the device driver. This component provides information that
might help the I/O driver configure itself, configure the IOC, and/or identify
a particular I/O device or service.

The contents of the AdditionalInfo component contain multiple variable
length elements. Each element contains 3 fields. The first field, Type is a
one byte field that identifies the content of the element. The second field,
Length is a one byte field and specifies the length of the Value field. The
third field, Value contains the 'Length' number of bytes of element data.
There may be any number of elements limited only by the 160 byte size
of the overall AdditionalInfo component. The remainder of the Addition-
alInfo component is filled with 0x00.

 Booting Platform IO Unit

 CM_REQ using the SID

CM_REP

I/O protocol specific msgs to readthe OS loader or OS image

DevMgtGet(IOControllerProfile: ServiceEnries) to get the SID

DevMgtGetResp()

I/O protocol specific responses with OS

loader or OS image data

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1363 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This annex describes AdditionalInfo elements for the IBA Console and
SRP protocols.

For an IOC that supports multiple protocols, the AdditionalInfo component
can contain multiple sets of protocol specific elements. All elements be
tween two ProtocolName elements are for the protocol identified by the
preceding ProtocolName element. Thus, each ProtocolName element
identifies a new group of protocol specific elements.

A5.11.1 SRP
When using the SRP protocol, additional information is passed to the en-
tity on the booting platform (i.e. boot environment code) that loads the OS
Loader from a storage device into memory through the OsLocatorRecord
attribute provided by either the BIS or the BootManager. Table 387 spec-
ifies elements specific to the SCSI RDMA Protocol.

For an IOC that supports multiple protocols, the AdditionalInfo component
can contain multiple sets of protocol specific elements. All elements be-

Table 386 General AdditionalInfo Element Definitions

Type Field
Value

Length Field
Value Description

0x00 0x00 Marks end of elements - ignore all data following this value

0x01 variable ProtocolName in ASCII (UTF-8) - precedes any protocol specific components

0x02 variable Filename - in ASCII (UTF-8)

0x10 - 0x1F variable Device Vendor Specific

0x20-0x3F variable Protocol Specific - (see following sections for examples)

Table 387 SRP AdditionalInfo Elements

Type Field
Value

Length Field
Value (Bytes) Description

0x01 7 ProtocolName = “SRP.T10” in ASCII.

0x20 16 SCSI Initiator Port Identifier - see IB annex of the SRP specification for format.

0x21 16 SCSI Target Port Identifier - see IB annex of the SRP specification for format.

0x22 8
or
16

Logical Unit Name - format type either:
• NAA IEEE Registered - 8 bytes
• NAA IEEE Registered Extended - 16 bytes

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1364 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tween two ProtocolName elements are for the protocol identified by the
preceding ProtocolName element. Thus, each ProtocolName element
identifies a new group of protocol specific elements.

The ProtocolName for SRP is identical to the ServiceName defined by
T10 for SRP. Value types 0x20 to 0x3F are protocol specific and depend
on the ProtocolName that proceeds them.

The SCSI Initiator Port Identifier type element specifies the SRP initiator
port identifier value that the booting platform uses to access the SPR
target.

The SCSI Target Port Identifier identifies the SRP target. A OsLocator-
Record should be associated with one SRP target.

The Logical Unit Name is the name returned in the response to SCSI In-
quiry Vital Product Date Page Code 0x83, the Device Identification Page.
This name uniquely identifies the Logical Unit from every other one in the
world. The booting platform uses the Logical Unit Name to determine
which Logical Unit Number (LUN) it uses to access the boot loader. A
OsLocatorRecord should specify one Logical Unit Name in the Addition-
alInfo component. A booting platform that obtains a OsLocatorRecord for
an SRP target should:

• Check the 0x01 type element for a content match with the SRP
Service-Name of “SRP.T10”

• Use the 0x20 type element as the SCSI Initiator Port Identifier.
• Establish an SRP connection with the IOC indicated in the OsLo-

catorRecord.
• Use the 64 bit Target port extension identifier portion of the 0x21

type element to match the 64 bit extension identifier portion of the
ServiceName from the Service Entries component of IOControl-
lerProfile attribute. Use the ServiceID corresponding to the
matching ServiceName.

• Retrieve LUN information with the SCSI Report LUNs command.
• Query each LUN with SCSI Inquiry Vital Product Data Page Code

0x83 until a response with a Logical Unit Name exactly matches
the 0x22 type element. This is the boot LUN. If any of these steps
fail then disregard the OsLocatorRecord.

How the BootManager or the BIS obtains information contained in Addi-
tionalInfo is out of the scope of this Annex.

A5.11.2 CONSOLE

Additional information is intended to be passed to the entity on the booting
platform (i.e. boot environment code) that is communicating with the IB

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1365 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CSP Server. Table 388 specifies elements specific to the IB Console Ser-
vice Protocol.

For a console that supports multiple protocols, the AdditionalInfo compo-
nent can contain multiple sets of protocol specific elements. All elements
between two ProtocolName elements are for the protocol identified by the
preceding ProtocolName element. Thus, each ProtocolName element
identifies a new group of protocol specific elements.

A5.12 ROM REPOSITORY

A5.12.1 INTRODUCTION

IBA provides an optional method for managed I/O units to supply code
and/or data images to a node by supporting a ROM repository. This sec-
tion describes the wire protocol for a node to access a managed I/O unit’s
ROM repository. The ROM repository protocol provides a method for a
node to search a managed I/O unit for code images needed by the node
and download them from the repository. The protocol also provides a
method for a node to add new images to the repository, delete images
from the repository, and to modify existing images in the repository. This
section focuses on ROM repository containing boot driver images. Other
technologies provide similar functionality through the use of Option ROMs
within adapter cards. It is expected that this repository survives power cy-
cling much like Read-Only-Memory (ROM) devices, hence the term ROM
Repository.

Table 388 Console AdditionalInfo Elements

Type Field
Value

Length
(160 Bytes)

Description

0x01 0x0C ProtocolName = “Console.IBTA” in ASCII

0x20 0x08 ResumeKey - Key used in SessionResumeRequest

0x21 0x04 DeviceNum - Requested DeviceNumber

0x22 0x04 ConsoleUserID - Identifier of the console user at the CSP client requesting the session

0x23 0x08 Nickname - Short, null terminated ASCII string identifying the console user

0x24 0x40 ConsoleUsername - Long, null terminated ASCII string identifying the console user

0x25 0x0C Capability - This element contains the ConsoleCapabilityRecord as specified in the Con-
sole Annex and informs the Booting platform of the capabilities of the console service
pointed to by the Console locator record.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1366 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.2 OVERVIEW OF IOC BOOT DRIVER DOWNLOAD

The following are the normal steps in booting a platform using a driver
supplied by a managed I/O unit. The term platform refers to the combina-
tion of processes and utilities being performed regardless of whether they
are provided by the CA, a boot environment such as BIOS or IEEE 1275,
the platform vendor, or the IO driver.

1) The booting platform selects a boot IOC using either persistent or BIS
type boot records (see A5.6.3.4 "Boot Record Locator Sources" on
page 1315).

2) The booting platform sends DevMgtGet(IOControllerProfile) to the
I/O unit that contains the selected IOC and then creates compatibility
strings using the components returned in the DevMgtGetResp(IO-
ControllerProfile) as specified in section G.1.3.1.1 of the I/O Annex.

3) The booting platform selects a managed I/O unit that provides a ROM
repository. This might be the I/O unit containing the boot IOC or it
might be an I/O unit identified using one of the resolution methods
specified in A5.6.3.4 "Boot Record Locator Sources" on page 1315.

4) The booting platform searches the selected IOU’s ROM repository for
ROM image that matches selected IO controller and type of boot en-
vironment.

5) The booting platform loads boot driver image into its boot envi-
ronment.

6) Boot environment executes the boot driver image.

7) Boot driver image calls IBA services to:

a) create QPs

b) form connections

c) invoke IBA transport (Send/Receive/RDMA)

A5.12.3 ROM REPOSITORY MODEL

The ROM repository protocol supports multiple concurrent connections to
a ROM repository. The number of connections supported is an implemen-
tation option which can be as few as one (i.e. only one connection to the
ROM repository at any given time). Multiple connection support is desir-
able where many nodes depend on a single IOU’s ROM repository.

The Capabilities component of RepositoryInfoResponse message (see
Table 391 on page 1370) specifies whether or not the IOU supports mul-
tiple connections.

The main objective of defining the ROM repository is for providing IOC
drivers. IBA defines the ROM repository space that contains IOC driver

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1367 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

images (Option ROM page). This section primarily deals with the ROM re-
pository space that contains IOC driver images.

IBA does not limit the type of data that is located in the ROM repository.
An IOU may support more than one type of repository space and each re-
pository space has a unique “ROM repository ID” (see Table 394 on page
1375). Other ROM repository spaces for example, might contain micro-
code for an IOC or tabular data. These ROM repository spaces are not de-
scribed in this annex, but are left to innovation. Each ROM repository must
have an Option ROM page, however, the number of images in that page
may be zero.

Each image in the Option ROM page is described by an Image descriptor
(see Table 395 on page 1376). The information contained in an Image de-
scriptor is used to locate an IOC driver image that matches to a particular
hardware defined by the IOControllerProfile attribute. A requestor uses
compatibility string(s) (Ref. I/O Annex Section A1.2.4) specified in the
image descriptor to match the image. If there is a common driver image
for multiple types of IOCs, then the image descriptor contains multiple
compatibility strings to match the image. Image descriptor size is variable
and depends on the number of compatibility strings specified in the de-
scriptor.

Each image in the Option ROM page has a unique handle assigned by the
IOU. The image handle is specified in the image descriptor and re-
questors use the handle to access the image.

It is not required that a ROM image be from the same IO unit that contains
the IO controller. In fact, it is desirable to permit a single ROM image to
drive multiple IO controllers, on various IO units. Thus, if the target IO unit
does not provide a driver, the host may search for other ROM repositories
that contain a suitable driver. In fact, the host policy may be to discover all
ROM repositories and then select the best match between all of the option
ROM images and the target IO controller. Console and OS Locator
Records contain a DeviceDriverLocation component as a hint of which re-
pository most likely contains the best driver for a particular I/O controller.

A5.12.4 IDENTIFYING A ROM REPOSITORY

ROM repository support by a managed I/O unit is optional. An IOU indi-
cates that it contains a ROM Repository by setting the Option ROM com-
ponent in IOUnitInfo (device management) attribute. A host reads the
IOUnitInfo attribute by sending a DevMgtGet(IOUnitInfo). The IO unit re-
sponds with DevMgtGetResp(IOUnitInfo). If the Option ROM bit is set, it
means that a ROM repository exists on the IOU and the IOU has at least
one QP for the ROM repository protocol so that a requestor can establish
a connection with the IO unit and access the ROM repository.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1368 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-42: An IO unit that supports a ROM repository shall set the option
ROM bit in its IOUnitInfo attribute.

A5.12.5 ROM REPOSITORY ACCESS METHODS

ROM Repository messages use RC transport services. The requestor
sends a connection request (see Volume 1, Chapter 12) specifying the
well-known option ROM Service ID 0x0000_0000_0000_0001, defined in
the “IB Identifiers” Annex, requesting a reliable connection. An IOU may
use any of its available queue pairs to satisfy the connection request.
Once the connection is established, the requestor uses the ROM reposi-
tory protocol to read, write, modify, and delete an image in the ROM re-
pository.

ROM repository access messages are relayed strictly by Send operations
(RDMA operations are not used in either direction). Access message for-
mats (see Table 389 on page 1368) dictate that payload byte zero indi-
cates the message type, the contents of the remainder of the message
are dictated by that message type.

An IOU may allow multiple simultaneous connections using the well-
known SID. An IOU with multiple connection support (see Capabilities
component in Table 391 on page 1370) can allow simultaneous reading of
one or more images by multiple requestors.

CA5-43: An IO unit that contains a ROM repository shall provide at least
one QP supporting a reliable connection for ROM repository access.

CA5-44: An IO unit that supports ROM repository shall only accept send
messages on its ROM repository QPs.

The ROM repository protocol relies on message-level flow control sup-
ported by the hardware.

A5.12.6 ROM REPOSITORY MESSAGES

ROM repository operation codes and their corresponding message
names are as specified in Table 389 on page 1368.

Table 389 ROM Repository Operation Codes

OpCode Message Name Description

0x00 RepositoryInfoRequest Request information on the ROM repository from the IOU.
See Table 390 "RepositoryInfoRequest Message" on page
1370.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1369 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-45: An IOU that provides a ROM repository shall support ROM re-
pository messages specified in Table 389 on page 1368.

0x01 DescriptorReadRequest Request one or more image descriptors from the IOU’s ROM
repository. See Table 397 "DescriptorReadRequest mes-
sage" on page 1379.

0x02 ImageReadRequest Request image data from an IOU. See Table 399 "Imag-
eReadRequest Message" on page 1381.

0x03 ImageAddRequest Initiate an image add operation. See Table 401 "ImageAd-
dRequest Message" on page 1385.

0x04 ImageUpdateRequest Initiate an image update operation. See Table 403 "Image-
UpdateRequest Message" on page 1389.

0x05 ImageWriteRequest Write either the image descriptor or image data to a ROM
repository. See Table 405 "ImageWriteRequest Message" on
page 1392.

0x06 ImageDeleteRequest Delete an image from the repository. See Table 407
"ImageDeleteRequest Message" on page 1395

0x07 - 0x7F - Reserved.

0x80 RepositoryInfoResponse Response to RepositoryInfoRequest message. See Table
391 "RepositoryInfoResponse Message" on page 1370.

0x81 DescriptorReadResponse Response to DescriptorReadRequest message. See Table
398 "DescriptorReadResponse Message" on page 1379.

0x82 ImageReadResponse Response to ImageReadRequest message. See Table 400
"ImageReadResponse Message" on page 1382.

0x83 ImageAddResponse Response to ImageAddRequest message. SeeTable 402
"ImageAddResponse Message" on page 1386.

0x84 ImageUpdateResponse Response to ImageUpdateRequest message. See Table
404 "ImageUpdateResponse Message" on page 1391.

0x85 ImageWriteResponse Response to ImageWriteRequest message. See Table 406
"ImageWriteResponse Message" on page 1392.

0x86 ImageDeleteResponse Response to ImageDeleteRequest message. See Table 408
"ImageDeleteResponse Message" on page 1395.

0x87 - 0xFF - Reserved.

Table 389 ROM Repository Operation Codes (Continued)

OpCode Message Name Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1370 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.7 READING ROM REPOSITORY INFORMATION

CA5-46: An IOU that provides a ROM Repository shall respond to Repos-
itoryInfoRequest message as specified in Table 390 on page 1370 with a
RepositoryInfoResponse message as specified in Table 391 on page
1370.

The requestor sends a RepositoryInfoRequest message as specified in
Table 390 on page 1370 and the IOU responds with a single Repository-
InfoResponse message as specified in Table 391 on page 1370.

Table 390 RepositoryInfoRequest Message

Component Byte
Offset

Length
(Bytes)

Description

Opcode 0 1 0x00 - Request information on the ROM repository from the IOU.

Reserved 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394 on page 1375

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

MaxIdleTime 12 4 Unsigned integer value expressed in 10 millisecond intervals by the
requestor to inform an IOU the expected maximum idle time between
requests.

Table 391 RepositoryInfoResponse Message

Component Byte
Offset

Length
(Bytes)

Description

Opcode 0 1 0x80 - Response to RepositoryInfoRequest message.

Status 1 1 Transaction Status - see Table 392 on page 1372.

RepositoryID 2 2 The value from the request.

TransactionID 4 8 The value from the request.

IdleTimeOut 12 4 Unsigned integer value expressed in 10 millisecond intervals to inform
a requestor the idle time the IOU allows between requests before it
releases the connection with that requestor.

NumImages 16 4 Total number of images in the repository.

InputBufferSize 20 4 Maximum send payload the IOU can receive in a single send mes-
sage from a requestor for ROM repository access.

OutputBufferSize 24 4 Maximum send payload the IOU can send in a single send message
in response to ROM repository request messages from a requestor.

FreeSpace 28 8 Unused space in the repository.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1371 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The repository information messages provides for a mechanism to nego-
tiate idle connection time out value between a requestor and an IOU. The
requestor specifies its expected maximum idle time between requests in
the MaxIdleTime component of the RepositoryInfoRequest message and
the IOU responds with the idle time it allows by specifying the time in the
IdleTimeOut component of the RepositoryInfoResponse message.

The idle time allowed by the IOU is not required to be the same as the time
out requested by the requestor. A requestor may use the value specified
by IdleTimeOut component (see Table 391 on page 1370) to implement
some kind of keep-alive mechanism. The action taken by a requestor
when an IOU’s allowed idle time is less than what it has requested is im-
plementation specific and outside the scope of this specification. How an
IOU or a requestor decides on maximum idle time between requests for a
given connection is outside the scope of this specification.

The FreeSpace component in Table 391 on page 1370 specifies the un-
used space available in the repository page identified by the RepositoryID
component in Table 390 on page 1370.This is a snap shot of the free
space available at the time of response. When the IOU supports multiple
connections the available free space can change depending on the oper-
ations on other RCs. This component is a useful indicator in single con-
nection implementations.

A requestor accessing a ROM repository can send requests on a connec-
tion without waiting for the response to a previous request. The requestor
may post receive buffers of varying size depending on the expected re-
sponse size. For proper receive buffer usage at the requestor’s end, an
I/O unit is required to send responses to requests in the order they are re-
ceived.

CA5-47: An IOU that provides a ROM Repository shall send responses to
ROM repository requests in the order the requests are received on a given
connection.

Capabilities 32 4 Specifies the capabilities supported by the IOU.
Byte:Bit position
0:0 - IOU supports multiple ROM repository connections if this bit is

set.
0:1 - IOU supports updates in retain mode if this bit is set.
All other bits are reserved and shall be zero.

Table 391 RepositoryInfoResponse Message (Continued)

Component Byte
Offset

Length
(Bytes)

Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1372 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-48: An IOU that provides a ROM Repository shall support a min-
imum buffer size of 4096 bytes to receive ROM repository request mes-
sages.

CA5-49: An IOU that provides a ROM Repository shall support a min-
imum buffer size of 4096 bytes to send ROM repository response mes-
sages.

Data returned with error status i.e status codes other than 0x00 and 0x01
should be discarded.

An IOU returns “Illegal Request” status in the following cases:

1) Operation code specified by the Opcode component in a request is
not valid i.e. the specified opcode is not one of the request message
opcodes defined inTable 389 on page 1368.

2) The ROM repository type specified by the RepositoryID component
in a request is not supported by the IOU.

Table 392 Transaction Status Codes for All Transactions

Status Code Description

0x00 Success - Indicates that the operation has completed without error.

0x01 Success With Recovery - Indicates that the command completed successfully with
some recovery action performed. A requestor’s action upon receiving this status is
implementation specific and outside the scope of this specification.

0x02 Hardware Error - Detected a non-recoverable hardware error.

0x03 Illegal Request - Illegal parameter in request message or unknown message type.

0x04 Data Write Protect - Update prohibited.

0x05 Data Read Protect - Read prohibited.

0x06 Update In Progress - Indicates that the image is being updated. This status is returned
to prevent simultaneous updating of the same image by two requestors and/or to pre-
vent deleting of an image that is being updated.

0x07 Insufficient Space - Indicates that there is not enough space in the repository to
accommodate the new image.

0x08 Insufficient Retain space - Indicates that the IOU does not have enough space to
retain the old image while the update is in progress.

0x09 Invalid Image Handle - Image handle is invalid. An image handle can become invalid if
the corresponding image gets deleted or updated.

0x0A- 0xFF Reserved.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1373 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

3) The index number specified by the StartIndex component in a De-
scriptorReadRequest message (seeTable 397 on page 1379) is
outside the valid range. The valid range for a descriptor index number
is 0 to n-1, where n is equal to the number of images present in the
repository as specified by the NumImages component in Repository-
InfoResponse message (seeTable 391 on page 1370).

4) The size specified by the BufferSize component in a Descriptor-
ReadRequest message (seeTable 397 on page 1379) is equal to
zero.

5) The size specified by the BufferSize component in a Descriptor-
ReadRequest message (see Table 397 on page 1379) is greater than
the size specified by the OutputBufferSize component in Repository-
InfoResponse message (see Table 391 on page 1370).

6) The NumDescriptors component in a DescriptorReadRequest
message (see Table 397 on page 1379) is equal to zero.

7) An ImageReadRequest exceeds the IOU’s capacity as specified in
the OutputBufferSize component of the RepositoryInfoResponse
message (see Table 391 on page 1370). This occurs when the sum
of the ByteCount component in the ImageReadRequest message
(see Table 399 on page 1381) plus 28 bytes for the ImageRead-
Response header (i.e. the byte offset of the Data component from
Table 400 on page 1382) is greater than the specified Output-
BufferSize.

8) The ImageSize component in an ImageUpdateRequest message
(see Table 403 on page 1389) is equal to zero.

9) The DescriptorSize component in an ImageUpdateRequest message
(see Table 403 on page 1389) is equal to zero.

10) The Retain component in an ImageUpdateRequest message (see
Table 403 on page 1389) specifies a value of 0x01 and the IOU does
not support updates in retain mode (see Table 391 on page 1370,
Capabilities component).

11) The ImageSize component in an ImageAddRequest message (see
Table 401 on page 1385) is equal to zero.

12) The DescriptorSize component in an ImageAddRequest message
(see Table 401 on page 1385) is equal to zero.

13) The FinalRequest component in an ImageWriteRequest message
(see Table 405 on page 1392) specifies a value other than 0x00 and
0x01.

14) The DataType component in an ImageWriteRequest message (see
Table 405 on page 1392) specifies a value other than 0x00 and 0x01.

15) The offset specified by the ByteOffset component in an ImageWrit-
eRequest message (see Table 405 on page 1392) is greater than

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1374 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

n-1, where n is the descriptor size in bytes if the DataType specified
is equal to 0x00 or image size in bytes if the DataType specified is
equal to 0x01.

16) The sum of the values specified by the ByteOffset component and
ByteCount component in an ImageWriteRequest message (see Table
405 on page 1392) is greater than n-1, where n is the descriptor size
in bytes if the DataType specified is equal to 0x00 or image size in
bytes if the DataType specified is equal to 0x01.

17) The key specified by the AuthenticationKey component in ImageAd-
dRequest (see Table 401 on page 1385) message is an illegal key.

18) The key specified by the AuthenticationKey component in ImageUp-
dateRequest (see Table 403 on page 1389) message is an illegal
key.

19) The key specified by the AuthenticationKey component in ImageDel-
eteRequest (see Table 407 on page 1395) message is an illegal key.

CA5-50: An IOU that provides a ROM repository shall respond with “Il-
legal Request” status in all the above mentioned cases.

An IOU is not required to do a boundary check if the operation being per-
formed is an image read or descriptor read operation. An IOU may choose
not to check boundary conditions. If a check is done and fails, then the
IOU returns a status of 0x03. An IOU’s response (in the absence of
boundary check) to a read operation beyond an image boundary or de-
scriptor boundary is outside the scope of this specification.

The matrix of possible status codes in response to various request mes-
sage operation codes (see Table 389 on page 1368) is as shown inTable
393 on page 1374.

Table 393 Status Code Matrix

 Status Code
Opcode

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

0x00 X X X X

0x01 X X X X

0x02 X X X X X X

0x03 X X X X X X

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1375 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.8 IMAGE DESCRIPTOR

Each image in the Option ROM page has one image descriptor associ-
ated with it. Image descriptor contains important information about the as-
sociated image such as size of the image, state of the image, image CRC,
and information to match the image to a particular hardware and host ex-
ecution environment. Image descriptor format is as shown in Table 395 on
page 1376.

Note that the image descriptor format in Table 395 on page 1376 has been
defined primarily for image descriptors in Option ROM page. Other repos-
itory types i.e. non Option ROM pages (IOU’s vendor specific repository
spaces) might not use the same image descriptor format.

0x04 X X X X X X X X X

0x05 X X X X X X

0x06 X X X X X X

Table 393 Status Code Matrix (Continued)

 Status Code
Opcode

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

Table 394 ROM Repository IDs

Value Description

0x0000 ROM repository page containing IOC driver images.

0x0001 - 0x7FFF Reserved for future IBTA definition.

0x8000 - 0xFFFF IOU Vendor Specific - IOU vendor may support IDs in this
range to allow access to objects such as micro code or configu-
ration tables in IOUs from that vendor.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1376 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each element in the CompStrArray is 64 bytes in size and contains a vari-
able size null terminated compatibility string (see I/O Annex section 1.3.1).

Table 395 Image Descriptor Format

Component Byte
Offset

Length
(Bytes) Description

DescriptorSize 0 4 Size of the Image descriptor.

ImageState 4 1 Specifies state of the image as follows:
0x00 - Image is valid.
0x01 - Image is invalid.
0x02 - 0xFF Reserved.

Reserved1 5 3 Reserved.

ImageHandle 8 8 Handle assigned by the IOU to the image associated with
this descriptor. A requestor uses this handle to perform oper-
ations (read, update or delete) on the image.

ImageSize 16 4 Size of the image.

ImageAuthority 20 4 Specifies the organization that defines the image type and
the image content.
Byte 0 Bytes 1-3
 0x000x000000 IBTA
 0x01IEEE OUI
All other values - Reserved.

ImageType 24 4 Image type as defined by Image Authority if ImageAuthority
component contains an IEEE assigned OUI. If the Image
Authority is IBTA, then the ImageType indicates the execu-
tion environment as specified by IBTA. See Table 396 on
page 1377.

ImageVersion 28 2 Version of the image.

Reserved2 30 2 Reserved.

ImageCRC 32 4 Cyclic Redundancy Code covering all bytes in the image.
Calculation is identical to that described for Invariant CRC in
the Link Layer Chapter.

PrivateData 36 40 Vendor-defined text description and/or notes (such as build
date).

Reserved3 76 2 Reserved.

NumCompStrs 78 2 Number of compatibility strings present in the descriptor.
See I/O Annex Section 1.3.1 for information on compatibility
strings.

CompStrArray 80 64 * {NumCompStrs} Array of compatibility strings (for matching driver to hard-
ware).

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1377 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-51: The format of each compatibility string in the CompStrArray com-
ponent (see Table 395 on page 1376) of an image descriptor present in
the Option ROM page shall be as specified in Annex I/O, Table 3 compat-
ibility strings, if the image authority specified by the ImageAuthority com-
ponent in that image descriptor is IBTA (i.e. a value of 0x00000000).

The ImageAuthority component in Table 395 on page 1376 specifies the
organization that defines the image type and the image content. If the
least most significant byte (byte 0) is equal to 0x00 then the image au-
thority is IBTA. If it is equal to 0x01 then the image authority is the organi-
zation whose IEEE assigned OUI has been specified in bytes 1-3.

The association between the ImageHandle component in Table 395 on
page 1376 and its corresponding image does not change during the life
time of a given connection. The same association might not exist on a dif-
ferent connection.

Any organization that has an IEEE assigned OUI may define image types
by placing their OUI in the ImageAuthority component. In this case, that
organization defines the meaning of the ImageType values.

A5.12.9 READING AN IMAGE DESCRIPTOR

Image descriptors are indexed from 0 to n-1, where n is the total number
of image descriptors present in the repository. The total number of image
descriptors present in the repository is equal to the value returned in the
“NumImages” component of the RepositoryInfoResponse message (see
Table 391 on page 1370). Requestor reads image descriptors using index
numbers and determines from the image descriptor components, whether
or not a desired image is present in the repository.

To read a single image descriptor with a particular index, the requestor
specifies the index number in the StartIndex component and specifies a
count of one in the NumDescriptors component (see Table 397 on page
1379). To read a range of image descriptors the requestor specifies the

Table 396 IBTA Boot Image Types

Value Description

0x00 Unspecified

0x01 BIOS

0x02 EFI

0x03 IEEE 1275

0x04 PA - IODC

All others Reserved.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1378 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

index number of the starting descriptor (of the range) in the StartIndex
component and the number of descriptors to be read in the NumDescrip-
tors component.

Since the image descriptor size is variable, it is possible to have an image
descriptor that is larger in size than the output buffer size supported by an
IOU or the Input buffer size supported by a requestor.To read such an
image descriptor, the requestor sends multiple DescriptorReadRequest
messages with appropriate offset values specified in the ByteOffset com-
ponent of each request message. The requestor also specifies the max-
imum send payload size it can receive in the Buffer Size component of the
DescriptorReadRequest message. Since the requestor may not be aware
of the descriptor size (particularly when it is reading the descriptor starting
from byte0 i.e offset 0), the IOU sends as much descriptor data as it can
send without exceeding the size specified in the BufferSize component of
the request.

To prevent discontinuity in the descriptor index range, an IOU does not de-
lete image descriptors corresponding to deleted or updated images as
long as there is a connection to the ROM repository. The IOU simply
changes the ImageState component in the descriptor to “invalid” state.

CA5-52: An IOU that provides a ROM repository shall not respond with a
DescriptorReadResponse message that is larger in size than the value
specified by the BufferSize component in the DescriptorReadRequest
message.

CA5-53: An IOU that provides a ROM repository shall not change the
index number assignments of existing image descriptors (as viewed by
the requestor) as long as a given RC exists.

CA5-54: An IOU that provides a ROM Repository shall respond to De-
scriptorReadRequest message as specified in Table 397 on page 1379
with a DescriptorReadResponse message as specified in Table 398 on
page 1379.

The requestor sends DescriptorReadRequest message as specified in
Table 397 on page 1379 and the IOU responds with DescriptorRead-
Response message as specified in Table 398 on page 1379. The ladder
diagram of image descriptor read operation is as shown in Figure 282.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1379 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 397 DescriptorReadRequest message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x01- Request one or more image descriptors from the IOU’s ROM
repository.

Reserved1 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. SeeTable 394 on page 1375.

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

StartIndex 12 4 Index of the image descriptor to read or index of the first image
descriptor if reading multiple image descriptors.

ByteOffset 16 4 Specifies the byte offset from the start of the image descriptor where
the transfer starts.
The specified offset is only for the image descriptor referenced by the
StartIndex component.
Note that descriptor Byte 0 is at Offset 0x00.

NumDescriptors 20 4 Number of image descriptors to read.The starting image descriptor is
specified in the StartIndex component.

BufferSize 24 4 Specifies the buffer size allocated by the requestor to receive the
response to this request message.

Table 398 DescriptorReadResponse Message

Component Byte
Offset

Length
(Bytes) Description

MessageType 0 1 0x81- Response to DescriptorReadRequest message.

Status 1 1 Transaction Status. See Table 392 on page 1372.

RepositoryID 2 2 The value from the request.

TransactionID 4 8 The value from the request.

StartIndex 12 4 The value from the request.

ByteOffset 16 4 The value from the request.

NumDescriptors 20 4 Actual number of image descriptors sent in this message. This num-
ber includes partial descriptors if any.

Reserved1 24 4 Reserved.

ByteCount 28 4 Number of bytes sent in the Data component.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1380 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The NumDescriptors component in the DescriptorReadResponse mes-
sage (see Table 398 on page 1379) specifies actual number of image de-
scriptors returned in the Data component. This number can be less than
the number specified in the corresponding request message (seeTable
397 on page 1379), when the requested number of descriptors can’t fit in
a single response message and/or when there are not as many image de-
scriptors (starting with the StartIndex, see Table 397 on page 1379) as re-
quested by the requestor.

Figure 282 Ladder Diagram of Image Descriptor Read Operation

A5.12.10 READING AN IMAGE

A requestor selects a particular image for reading by matching one of the
IOC’s compatibility strings with one of the I/O driver’s compatibility strings
(see CompStrArray component in Table 395 on page 1376), for image de-

Data 32 {ByteCount} This component contains full or partial image descriptor data. It con-
tains tightly packed image descriptors if the IOU returns more than
one descriptor.

Table 398 DescriptorReadResponse Message (Continued)

Component Byte
Offset

Length
(Bytes) Description

DescriptorReadRequest A
DescriptorReadRequest B

DescriptorReadResponse A

 DescriptorReadResponse B

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1381 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

scriptors that have an ImageAuthority, ImageType, and ImageVersion
matching the boot environment. The requestor then uses the image
handle present in the matching descriptor to read the image.The re-
questor sends an ImageReadRequest message as specified in Table 399
on page 1381 and the IOU responds with a single ImageReadResponse
message as specified in Table 400 on page 1382. The ladder diagram of
an image read operation is as shown in Figure 283.

An image and its image handle are valid only when the ImageState com-
ponent in the corresponding image descriptor is equal to 0x00.

CA5-55: An IOU that provides a ROM Repository shall respond to an Im-
ageReadRequest message as specified in Table 399 on page 1381 with
an ImageReadResponse message as specified in Table 400 on page
1382.

CA5-56: An IOU that provides a ROM Repository shall respond with the
status “Invalid Image Handle”, if the image handle specified in a message
sent by the requestor is not a valid image handle.

An image handle becomes invalid, if the image gets deleted or updated.
When there are two or more requestors accessing the ROM Repository,
a requestor can initiate image update or image delete operation even if
that image is currently being read by other requestors. An image is inval-
idated by writing a value of 0x01 in the ImageState component of the cor-
responding image descriptor.

Table 399 ImageReadRequest Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x02 - Request image data from the IOU.

Reserved1 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394 on page 1375

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

ImageHandle 12 8 Image handle specified in the image descriptor.

ByteOffset 20 4 Specifies the byte offset from the start of the image where the transfer
starts. Byte 0 is at Offset 0x00.

ByteCount 24 4 Specifies the number of bytes of image data to transfer.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1382 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The requestor should check for under-flows by comparing the returned
byte count (ByteCount component in the ImageReadResponse message)
with the byte count requested in ImageReadRequest message.

Figure 283 Ladder Diagram of Image Read Operation

Table 400 ImageReadResponse Message

Component Byte
 Offset

Length
(Bytes) Description

Opcode 0 1 0x82 - Response to ImageReadRequest message.

Status 1 1 Transaction Status. See Table 392 on page 1372.

RepositoryID 2 2 Value from the request.

TransactionID 4 8 Value from the request.

ImageHandle 12 8 Value from the request.

ByteOffset 20 4 Value from the request.

ByteCount 24 4 Actual number of bytes returned in the data component.

Data 28 {ByteCount} Image data.

ImageReadRequest a

 ImageReadResponse a

 ImageReadRequest b ImageReadRequest c

 ImageReadResponse b

 ImageReadResponse c

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1383 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.11 ADDING AND UPDATING AN IMAGE

A requestor can modify a ROM repository by performing operations such
as adding new images to the repository, modifying (updating) images
present in the repository, and deleting images from the repository.

There are two possible modes to update an image in the repository. One
is to invalidate the existing image (make it unavailable to other requestors)
before writing the new image and the other mechanism is to retain the ex-
isting image (and make it available to other requestors) until the modified
image is written successfully. The location at which the new image is
stored in the repository is implementation specific.

The Retain component in the ImageUpdateRequest (seeTable 403 on
page 1389) message specifies which mode to use. Update support in re-
tain mode is optional and the Capabilities component in the RepositoryIn-
foResponse message (see Table 403 on page 1389) specifies whether or
not the IOU supports updates in retain mode.

The ROM repository protocol provides an authentication mechanism for
I/O units to authenticate image add, image update, and image delete op-
erations by checking the Authentications component specified in Image-
AddRequest (see Table 401 on page 1385), ImageUpdateRequest (see
Table 403 on page 1389), and ImageDeleteRequest (see Table 407 on
page 1395) messages. How a requestor obtains the authentication key is
outside the scope of this annex. An IOU is not required to authenticate
image add, image update and image delete operations. An IOU may ac-
cept any authentication key in the request message, if it does not support
authentication of the above mentioned operations.

A ROM repository supported by an IOU can be write protected. How write
protection is enabled or disabled is outside the scope of this annex. If a
repository is write protected, the IOU responds to ImageAddRequest, Im-
ageUpdateRequest, ImageWriteRequest, and ImageDeleteRequest,
messages with “Data Write Protected” (seeTable 392 on page 1372)
status.

A5.12.11.1 INITIATING AN IMAGE ADD OPERATION

A requestor initiates an image add operation by sending ImageAd-
dRequest message to the IOU as specified in Table 401 on page 1385.
The requestor specifies image size and image descriptor size in the re-
quest message. The IOU responds with ImageAddResponse message as
specified in Table 402 on page 1386.The response message contains the
write handle allocated by the IOU to add the new image and its image de-
scriptor. This write handle is unique across all connections. The requestor
uses the allocated write handle to write the new image and new image de-
scriptor as specified in A5.12.11.3 "Writing Descriptor and Image Data" on
page 1391.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1384 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Following are the steps involved in adding an image:

1) The requestor sends ImageAddRequest message (seeTable 401 on
page 1385) specifying the authentication key, image descriptor size,
and image size.

2) The IOU allocates a Write Handle36 and returns it in the response
message (see Table 402 on page 1386).

3) The requestor sends ImageWriteRequest messages (see Table 405
on page 1392) specifying the Write Handle (returned in step 2), Byte
Offset, Byte Count, etc. to write the new image descriptor and new
image.

4) The requestor informs an IOU that it has sent all the bytes of image
descriptor and image by specifying a value of 0x01 in the Final Re-
quest component (see Table 405 on page 1392).

5) When the IOU receives an ImageWriteRequest message with Final
Request component equal to 0x01, it completes the writing of new
image and descriptor. If the write is successful, then the IOU allo-
cates a new handle, updates the image descriptor with the new
handle37, and then makes the new image descriptor available for
reading.

There are two handles involved in an image add operation. The scope of
these handles during an add operation is as shown in Figure 284.

36. The IOU assigns a unique handle for adding the image.
37. The IOU assigns another unique handle for all future access.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1385 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-57: An IOU that provides a ROM Repository shall respond to an Im-
ageAddRequest message as specified in Table 401 on page 1385 with an
ImageAddResponse message as specified in Table 402 on page 1386.

CA5-58: An IOU that provides a ROM repository shall respond with the
status “Insufficient Space” (see Table 392 on page 1372) to an ImageAd-
dRequest message, if there is not enough space to store the new image
and the new descriptor.

ImageAd-
dRequest

ImageAdd-
Response

ImageWrit-
eRequest n

ImageWrit-
eRequest 1

Final ImageWrit-
eRequest

........

ImageWriteRe-
sponse to the final

request

Write Handle (1 of 2) valid New Image Handle
(2 of 2) valid

Initiation of image add operation

Writing of image descriptor and image data

IOU allocates new image handle (2 of 2), invalidates Write handle (1 of 2) and
completes writing of image descriptor and image data.

Image add operation is successful. New image handle (2 of 2) and the new
image are available to the requestors.

Figure 284 Handles Involved in an Image Add Operation

Table 401 ImageAddRequest Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x03 - Initiate an image add operation.

Reserved1 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394.

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1386 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.11.2 INITIATING AN IMAGE UPDATE

A requestor initiates an image update operation by sending ImageUpdat-
eRequest message to the IOU as specified in Table 403 on page 1389.
The IOU responds with ImageUpdateResponse message as specified
inTable 404 on page 1391.The response message contains the image
handle allocated by the IOU to update the existing image and its image
descriptor. This image handle is unique across all connections. The re-
questor uses the allocated image handle to write the new image and new
image descriptor as specified in A5.12.11.3 "Writing Descriptor and Image
Data" on page 1391.

Following are the steps involved in updating an image:

1) The requestor sends ImageUpdateRequest (see Table 403 on page
1389) message specifying the image handle38 of the image being
modified, new image size, new descriptor size, authentication key,
etc.

Reserved2 12 8 Reserved.

ImageSize 20 4 Size of the image to be added.

DescriptorSize 24 4 Size of the image descriptor.

AuthenticationKey 28 8 Key for the IOU to authenticate the add operation.

Table 401 ImageAddRequest Message (Continued)

Component Byte
Offset

Length
(Bytes) Description

Table 402 ImageAddResponse Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x83 - Response to ImageAddRequest message.

Status 1 1 Transaction Status See Table 392 on page 1372.

RepositoryID 2 2 Value from the request

TransactionID 4 8 Value from the request.

WriteHandle 12 8 Image handle allocated by the IOU to add the new image. This handle
is used by the requestor to write the new image and new descriptor.

38. Image handle of the existing image from the corresponding descriptor.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1387 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2) The IOU allocates Write Handle39 (if the update is allowed and there
are enough resources) and returns it in the response message (see
Table 404 on page 1391).The IOU invalidates the old image before
sending the response (with success status), if the requestor specifies
a value of 0x00 in the Retain component of the corresponding re-
quest (see Table 403 on page 1389).

3) The requestor then sends ImageWriteRequest messages (see Table
405 on page 1392) specifying the Write Handle (returned in step 2),
Byte Offset, Byte Count etc. to write the modified image descriptor
and modified image.

4) The requestor informs an IOU that it has sent all the bytes of image
descriptor and image by specifying a value of 0x01 in the Final Re-
quest component (see Table 405 on page 1392).

5) When the IOU receives an ImageWriteRequest message with Final-
Request component equal to 0x01, it completes the writing of mod-
ified image and descriptor. If the write is successful then the IOU
allocates a new handle40 and updates the image descriptor with the
new handle.

6) If the update is initiated in the Retain mode (see Retain component in
Table 12) then the IOU invalidates the old image by assigning a value
of 0x01 to the ImageState component in the old image descriptor.
The IOU does not delete or over-write the old image descriptor as
long as there is a connection to the ROM repository.

7) The IOU makes the new image descriptor and new image available
for reading.

Updating an image always requires writing the image descriptor as well
as the image. ImageWriteRequest message is used for writing the image
and also the image descriptor. The DataType component in the Image-
WriteRequest message (see Table 405 on page 1392) specifies whether
the Data component contains image data or descriptor data.

There are three handles involved in an image update operation. The
scope of these handles during an update operation in non retain mode is
as shown in Figure 285.

39. IOU assigns a unique handle to update the image.
40. IOU assigns another unique handle for all future access.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1388 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The scope of the handles during an update operation in retain mode is as
shown in Figure 286.

ImageUpdateRe-
quest in non-retain

mode

ImageUpdate-
Response

ImageWrit-
eRequest n

ImageWrit-
eRequest 1

Final ImageWrit-
eRequest

ImageWriteRe-
sponse to the final

request

Write Handle (2 of 3) is
valid

New Image Handle
(3 of 3) valid

Requestor initiates image update operation with the image handle (1 of 3) of the image to be
modified. IOU allocates Write Handle (2 of 3) and invalidates the old handle (1 of 3).

Writing of image descriptor and image data

IOU invalidates Write handle (2 of 3), allocates new image handle (3 of 3) and
completes writing of image descriptor and image data.

Image add operation is successful. New image handle (3 of 3) and the updated
image are available to the requestors.

Image
Handle(1 of
3) is valid.

.....

Figure 285 Handles Involved in an Image Update in Non Retain Mode

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1389 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ImageUpdateRe-
quest in retain

mode

ImageUpdate-
Response

ImageWrit-
eRequest n

ImageWrit-
eRequest 1

Final ImageWrit-
eRequest

ImageWriteRe-
sponse to the final

request

Write Handle (2 of 3) is valid New Image Handle
(3 of 3) valid

Requestor initiates image update operation with the image handle (1 of 3) of the image to be
modified. IOU allocates Write Handle (2 of 3).

Writing of image descriptor and image data

IOU invalidates Write handle (2 of 3), allocates new image handle (3 of 3),
completes writing of image descriptor and image data and invalidates image
handle of the old image (1 of 3).

Image add operation is successful. New image handle (3 of 3) and the updated
image are available to the requestors.

 Image Handle (1 of 3) is valid.

.....

Figure 286 Handles Involved in an Image Update in Retain Mode

Table 403 ImageUpdateRequest Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x04 - Initiate an image update operation.

Reserved1 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394 on page 1375

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

ImageHandle 12 8 Image handle of the image being updated as specified by the Image-
Handle component in the corresponding image descriptor.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1390 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Retain component in Table 403 on page 1389 specifies whether or
not the IOU should retain the old image (descriptor, handle and image
data for reading by other requestors) until the update process completes
successfully (good response to the final ImageWriteRequest message). A
value 0x00 in the Retain component specifies that the IOU should invali-
date the old image immediately, if the requestor is allowed to update the
old image. This is a destructive upgrade because the old image is lost
even if the upgrade fails for any reason. A value of 0x01 specifies that the
IOU should not invalidate the old image until the update completes suc-
cessfully. In this case, if the update fails for any reason, the old image is
still available and valid.

Note that the IOU lists the new image descriptor only when the update is
successful in either case.

CA5-59: An IOU that provides a ROM Repository shall respond to an Im-
ageUpdateRequest message as specified in Table 403 on page 1389 with
an ImageUpdateResponse message as specified in Table 404 on page
1391.

CA5-60: An IOU that provides a ROM Repository shall respond with the
status “Update In Progress” to an ImageUpdateRequest message, if the
image is currently being updated.

CA5-61: An IOU that provides a ROM repository shall respond with the
status “Insufficient Space” (see Table 392 on page 1372) to an ImageUp-
dateRequest message, if there is not enough space to store the new
image and the new descriptor because of the increase in size.

Reserved2 20 8 Reserved.

Retain 28 1 Specifies the update mode.
Value 0x00 - Update in non-retain mode.
Value 0x01 - Update in retain mode
Values 0x02 - 0xFF - Reserved.

Reserved3 29 3 Reserved.

ImageSize 32 4 Size of the new image.

DescriptorSize 36 4 Size of the new image descriptor.

AuthenticationKey 40 8 Key for the IOU to authenticate the update operation.

Table 403 ImageUpdateRequest Message (Continued)

Component Byte
Offset

Length
(Bytes) Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1391 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-62: An IOU that provides a ROM Repository shall respond with the
status “Insufficient Retain Space” to an ImageUpdateRequest message
with Retain component equal to 0x01, if there is not enough space to re-
tain the old image, but there is enough space to store the new image and
new descriptor without retaining the old image.

CA5-63: An IOU that provides a ROM repository shall invalidate the old
image before responding with a Success status to an ImageUpdateRe-
quest message with Retain component equal to 0x00.

A5.12.11.3 WRITING DESCRIPTOR AND IMAGE DATA

To write a new image or to update an existing image the requestor sends
ImageWriteRequest message as specified in Table 405 on page 1392 and
the IOU responds with ImageWriteResponse message as specified
inTable 406 on page 1392.

The IOU uses the Write Handle to correlate ImageWriteRequest mes-
sages with the corresponding add or update operation.

CA5-64: An IOU that provides a ROM repository shall respond to an Im-
ageWriteRequest message as specified in Table 405 on page 1392 with
an ImageWriteResponse message as specified in Table 406 on page
1392.

Table 404 ImageUpdateResponse Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x84 - Response to ImageUpdateRequest message.

Status 1 1 Transaction Status. See Table 392 on page 1372.

RepositoryID 2 2 Value from the request.

TransactionID 4 8 Value from the request.

ImageHandle 12 8 Value from the request.

WriteHandle 20 8 Image handle allocated by the IOU for the update. This handle is used
to write the descriptor and image data.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1392 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 405 ImageWriteRequest Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x05 - Write image and image descriptor data to the ROM repository.

Reserved1 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394 on page 1375

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

WriteHandle 12 8 Handle allocated for writing the image. This handle is returned in the
ImageUpdateResponse message if the operation is an update or
returned in the ImageAddResponse message if the operation is an
add operation.

FinalRequest 20 1 Specifies whether or not this is the final request message for the
image descriptor and image write operation that is currently in
progress.
Value 0x00 - This message is not the final request.
Value 0x01 - This message is the final request.
Values 0x02 - 0xFF are reserved.

DataType 21 1 Specifies whether the data contained in the Data component is
descriptor data or image data.
Value 0x00 - Descriptor data.
Value 0x01 - Image data.
Values 0x02 - 0xFF - Reserved.

Reserved2 22 2 Reserved.

ByteOffset 24 4 Specifies the byte offset from the start of the image where the transfer
starts. Byte 0 is at Offset 0x00.

ByteCount 28 4 Specifies the number of bytes of image data to transfer.

Data 32 {ByteCount} Image descriptor data or image data for writing.

Table 406 ImageWriteResponse Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x85 - Response to ImageWriteRequest message.

Status 1 1 Transaction Status. See Table 392 on page 1372.

RepositoryID 2 2 Value from the request.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1393 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-65: An IOU that provides a ROM Repository shall allocate a new
image handle and shall update the ImageHandle component in the image
descriptor before making the new or modified image available to re-
questors.

CA5-66: An IOU that provides a ROM repository shall not invalidate the
old image until the image update is successful, if the corresponding Im-
ageUpdateRequest is sent with a value of 0x01 in the Retain component.

The ladder diagrams of an image update and add operations are as
shown in Figure 287.

TransactionID 4 8 Value from the request.

WriteHandle 12 8 Value from the request.

Table 406 ImageWriteResponse Message (Continued)

Component Byte
Offset

Length
(Bytes) Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1394 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ImageUpdateRequest with
the Image Handle of the existing image

Image update operation Image add operation

ImageUpdateResponse

 with the handle allo-

cated for writing the

image

ImageWriteRequest
with descriptor data

ImageWriteRequest with image data

ImageWriteResponse

 ImageWriteResponse

 Final ImageWriteRequest
with image data

 ImageWriteResponse

ImageAddRequest

ImageAddResponse with

the handle allocated for

writing the image

ImageWriteRequest
with descriptor data

ImageWriteRequest with image data

ImageWriteResponse

 ImageWriteResponse

 Final ImageWriteRequest
with image data

 ImageWriteResponse

Figure 287 Ladder Diagram of Image Write operation

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1395 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.12.11.4 DELETING AN IMAGE

CA5-67: An IOU that provides a ROM Repository shall respond to an Im-
ageDeleteRequest message as specified in Table 407 on page 1395 with
an ImageDeleteResponse message as specified in Table 408 on
page 1395.

CA5-68: An IOU that provides a ROM repository shall respond with the
status “Update in Progress” to an ImageDeleteRequest, if the image is
currently being updated.

CA5-69: An IOU that provides a ROM repository shall set the ImageState
component to a value of 0x01 in the image descriptor corresponding to the
deleted image, if and only if, the delete operation is successful.

The IOU immediately frees up the space occupied by an image, if the
image delete operation on that image is successful. The IOU does not de-

Table 407 ImageDeleteRequest Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x06 - Delete an image from the repository.

Reserved 1 1 Reserved.

RepositoryID 2 2 Identifies the type of ROM repository. See Table 394 on page 1375

TransactionID 4 8 This value is supplied by the requestor and returned in the response.

ImageHandle 12 8 Image handle of the image to be deleted.

AuthenticationKey 20 8 Key for the IOU to authenticate the delete operation.

Table 408 ImageDeleteResponse Message

Component Byte
Offset

Length
(Bytes) Description

Opcode 0 1 0x86 - Response to ImageDeleteRequest message.

Status 1 1 Transaction Status. See Table 392 on page 1372.

RepositoryID 2 2 Value from the request.

TransactionID 4 8 Value from the request.

ImageHandle 12 8 Value from the request.

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1396 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

lete the corresponding image descriptor as long as there is a connection
to the ROM repository that is aware of that image descriptor. A connection
is assumed to be aware of an image descriptor, if the index number asso-
ciated with that image descriptor is less than the value returned in the Nu-
mImages component of a RepositoryInfoResponse message (see Table
391 on page 1370).

CA5-70: An IOU that provides a ROM repository shall not delete the
image descriptor corresponding to deleted/invalidated image as long as
there is a connection to the ROM repository that is aware of the image de-
scriptor corresponding to the deleted/invalidated image.

A5.13 COMPLIANCE SUMMARY

A5.13.1 BOOTING SPECIFICATION COMPLIANCE CATEGORIES

In order to claim compliance to the Booting Specification a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support.

Table 409 Booting Compliance Categories/Qualifiers

Category Qualifiers Description

BtA

none Minimum requirements for a BootAgent

Trap Asynchronous Event Notification

NQ Notice Queue

Info Capable of saving PlatformBootInfo and PortBootInfo attributes into non-vola-
tile storage

RomLoc Capable of saving and deleting RomRepositoryLocatorRecords into non-vola-
tile storage

ConLoc Capable of saving and deleting ConsoleLocatorRecords into non-volatile stor-
age

OsLoc Capable of saving and deleting OsLocatorRecords into non-volatile storage

Reboot Capable of rebooting the platform

BtM

none Minimum requirements for a BootManager

Subscribe BootManager supports 3rd party Trap subscriptions

PERS BootManager retains subscription information across power cycles and resets -
requires compliance with Subscribe qualifier

FAILOVER BootManager supports graceful failover to another boot manager - requires
compliance with Subscribe qualifier

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1397 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.13.2 BOOTAGENT (BTA) COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of BootAgent (BtA), a product shall meet all require-
ments specified in this section, in Section 20.12, “Optional Management
Agent Compliance Category,” on page 1116, and Section 20.14,
“Common MAD Requirements,” on page 1119, except for those state-
ments preceded by Qualifiers that the product does not support.

CA5-6: Platform scope component values - any port Page 1286
CA5-7: MAD format and use as specified in Vol 1 Page 1286
CA5-8: Status for class version if not supported Page 1288
CA5-9: Status for method if not supported Page 1289
CA5-10: Status for method/attrib comb. not supported Page 1289
CA5-11: Status for particular value if not supported Page 1289
CA5-13: RO components when processing a Set(). Page 1289
CA5-14: Support the methods/attrib listed Page 1291
CA5-15: Methods and Attributes supported Requirements Page 1292
oA5-2: RomLoc:RomRepositoryLocatorRecords readable. . . . Page 1292
oA5-4: OsLoc:OsLocatorRecords readable Page 1292
oA5-5: RomLoc: Rom Loc Record - Attribute Modifier Page 1292
oA5-6: ConLoc: Con Loc Record - Attribute Modifier Page 1292
oA5-7: OsLoc: Os Loc Record - Attribute Modifier Page 1292
CA5-16: Status when an invalid attribute ID Page 1294
CA5-17: Shall implement ClassPortInfo Page 1295
CA5-18: When BtM_KeyViolations increments Page 1296
CA5-19: BtM_KeyViolations reset . Page 1297
CA5-20: Generate a Resp() when key check succeeds Page 1298
CA5-21: Perform Key authentication . Page 1298
CA5-22: Key check fail rules . Page 1298
CA5-24: Set Key to zero on Sends . Page 1299
CA5-25: Key mechanism reset to zero at POR no NVRAM Page 1299
CA5-26: Lease period timer count down when key chk fails Page 1300

BtPlatform

none Minimum requirements for a Boot Platform

Info Capable of reading PlatformBootInfo and PortBootInfo from non-volatile stor-
age

NV Capable of reading RomRepositoryLocatorRecords, ConsoleLocatorRecords
and OsLocatorRecords from non-volatile storage

ExBE Capable of to expanding the Boot Environment using a ROM Repository

BIS Capable of using the BIS service and using BIS class attributed for booting

NWBoot Capable of booting using the IB Network model

BootOS Capable of booting the OS over the IB Network

Con Capable of using the IB attached Console

RomRepos none Minimum requirements for ROM Repository

Table 409 Booting Compliance Categories/Qualifiers (Continued)

Category Qualifiers Description

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1398 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-27: Lease period timer reset on key chk match Page 1300
CA5-28: ProtectBits set to zero when its lease expires. Page 1300
CA5-29: When Lease set to zero, the lease never expires Page 1301
CA5-30: Report Capabilities via PlatformBootInfo. Page 1310
CA5-31: R/W components in NVRAM. Page 1310
CA5-32: Status if no support of PlatformBootInfo/PortBootInfo. . Page 1310
oA5-11: RomLoc: Numb. of RomLocRecs in NVRAM Page 1311
oA5-12: ConLoc: Numb. of Con LocRecs in NVRAM. Page 1311
oA5-13: OsLoc: Numb. of OsLocRecs in NVRAM. Page 1311
CA5-34: Persistent LocatorRecords are readable. Page 1314
oA5-16: RomLoc: Save Rom Locator Records in NVRAM Page 1315
oA5-17: ConLoc: Save ConLocRecs in NVRAM Page 1315
oA5-18: OsLoc: Save OSLocator Records in NVRAM Page 1315
oA5-22: Info:Status if unsupported value Page 1317
oA5-26: RomLoc: Count ROM records in NVRAM Page 1317
oA5-27: ConLoc: Count console records in NVRAM Page 1317
oA5-28: OsLoc: Count OS records in NVRAM Page 1318
oA5-29: RomLoc: Status when AM > ROM count Page 1318
oA5-30: ConLoc: Status when AM > Console count Page 1318
oA5-31: OsLoc: Status when AM > OS count Page 1318
CA5-35: Rom locator record not initialized, Page 1318
CA5-36: Consolelocator record not initialized, Page 1318
CA5-37: OS locator record not initialized, Page 1318
oA5-32: RomLoc: Deleted Rom records cannot be reused Page 1319
oA5-33: ConLoc: Deleted Console records cannot be reused . . Page 1319
oA5-34: OsLoc: Deleted OS records cannot be reused Page 1319
oA5-36: Info: Persistently save the PortBootInfo Page 1323
oA5-37: Info: PortBootInfo has a port scope. Page 1323
oA5-46: Trap: Issue Trap on failure . Page 1326
oA5-47: NQ: Set NQ on failure . Page 1326
oA5-49: Trap: Issue Trap 0x0110 a timeout occurs Page 1326
oA5-50: NQ: Issue Trap 0x0110 a timeout occurs Page 1327
oA5-51: Reboot: Time that the last reboot started Page 1335
oA5-52: Reboot: Gracefully reboot . Page 1335
oA5-53: Reboot: Immediately reboot . Page 1335
oA5-54: Reboot: Select the source of the OS record locator. . . . Page 1335
oA5-55: Reboot: GetResp(NodeReboot) Page 1335
CA5-39.2.1:Trap fields. Page 1339
oA5-56: NQ: Notice format . Page 1340
oA5-56: Trap: Notice format . Page 1340
oA5-57: NQ: Trap Type and Number . Page 1340
oA5-57: Trap: Trap Type and Number Page 1340
oA5-58: Trap: Zero the Key on BootMgtTrap(). Page 1340
oA5-59: Trap: KeyViolation Trap. Page 1341
oA5-60: NQ: KeyViolation Trap. Page 1341
oA5-61: Trap: Issue traps to all ports . Page 1341
oA5-62: NQ: Single Notice Queue for all ports Page 1342
oA5-63: Trap: ChangeReport Trap . Page 1342
oA5-64: NQ: ChangeReport NQ . Page 1343
oA5-65: Trap: Issue StatusReport trap 0x0110. Page 1345
oA5-66: NQ: Issue StatusReport trap 0x0110. Page 1345
oA5-67: Trap: TrapRepress . Page 1346

A5.13.3 BOOTMANAGER (BTM) COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of BootManager (BtM), a product shall meet all require-
ments specified in this section, except for those statements preceded by
Qualifiers that the product does not support.

CA5-1: Subscribing to SA for trap 64. Page 1284

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1399 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-2: Reset the BtM_Key lease period Page 1285
oA5-1: Subscribe: Periodically query the notice queue Page 1285
CA5-3: Register with SA . Page 1285
CA5-4: If BtMgr cannot register with SA Page 1285
CA5-5: Renew registration lease . Page 1285
CA5-7: MAD format and use as specified in Vol 1 Page 1286
CA5-8: Status for class version if not supported Page 1288
CA5-9: Status for method if not supported Page 1289
CA5-10: Status for method/attrib comb. not supported Page 1289
CA5-11: Status for particular value if not supported Page 1289
CA5-12: Ignore Resp() component values if non-zero status . . . Page 1289
CA5-13.2.1:Rejecting subscription for policy Page 1289
CA5-23: No Resp() MADHeader:BtM_Key checking Page 1299
oA5-67.2.1:Subscribe: Generating a Report() for each trap Page 1347
oA5-67.2.2:Subscribe: Generating Report() for priveledged trap . Page 1347
oA5-67.2.3:Subscribe: Generating a Report() for Notice Queue. . Page 1347
oA5-67.2.4:Subscribe: Report Traps in order Page 1347
oA5-67.2.5:Subscribe: 1 outstanding Report() per booting node . Page 1347
oA5-67.2.6:PERS: Persistent subscriptions Page 1348
oA5-67.2.7:PERS: Storing subscription info Page 1349
oA5-67.2.8:FAILOVER: Sharing subscription w/Stby BtMgrs Page 1349
oA5-67.2.9:FAILOVER: Sharing subscription info w/Stby Mgrs . . Page 1349
oA5-67.2.10:Subscribe: Retrying Report()s. Page 1349
oA5-67.2.11:Subscribe: Subscription time-out Page 1350
oA5-67.2.12:Subscribe: Hearbeat initial notice generation Page 1350
oA5-67.2.13:Subscribe: Periodic Hearbeat notice generation. . . . Page 1350
oA5-67.2.14:Subscribe: Setting Fail-over bit in Heartbeat Page 1351
oA5-67.2.15:Subscribe: Fail-over bit in Heartbeat sent one time . Page 1351

In addition, a Boot Manager must also be compliant with the Common
MAD requirements specified in Section 20.14, “Common MAD Require-
ments,” on page 1119 and the following general management framework
requirements from Chapter 13.

C13-27.1.1:Standard common AttributeIDs and Attributes Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete . Page 741
o13-5.1.1:Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding . . . Page 745
o13-12: Obsolete . Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions. Page 745
o13-13: Obsolete . Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection Page 745
o13-14: Obsolete . Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. Page 746
o13-15: Obsolete . Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure . . . Page 746
o13-16: Obsolete . Page 747
o13-17: Obsolete . Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1400 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A5.13.4 BOOT PLATFORM (BTPLATFORM) COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of Boot Platform (BtPlatform), a product shall meet all re-
quirements specified in this section, except for those statements
preceded by Qualifiers that the product does not support.

oA5-8: NV: shall use the ROM Loc Rec in order
Page 1310

oA5-9: NV: shall use the Con Loc Rec in order Page 1311
oA5-10: NV: shall use OsLocatorRecords in order Page 1311
CA5-33: Persistent, unique BootPlatformUUID Page 1311
oA5-14: BIS: Persistent, unique BootPlatformUUID Page 1311
oA5-15: BIS: Capability to query the BIS

Page 1314
oA5-19: NV: Use RomRepositoryLocatorSource

Page 1316
oA5-20: NV: Use ConsoleLocatorSource

Page 1316
oA5-21: NV: Use OsLocatorSource .

Page 1316
oA5-23: Info: OsBootLocator=0x0F, do not IB boot

Page 1317
oA5-24: Info: Con.BootLocator=0xF, do not use IB console

Page 1317
oA5-25: Info: Rom.BootLocator=0xF,do not use RomRep

Page 1317
CA5-38: Default value of InitTimeout.

Page 1322
oA5-35: BIS: Default value of BisTimeout

Page 1323
oA5-38: BIS: ExtendBISPortPriority order

Page 1323
CA5-39: Access RomRepository through ports in order

Page 1323
oA5-39: Con:Use Locator in ConPortPriority order.

Page 1323
oA5-40: BootOS:Use Locator in OsPortPriority order.

Page 1323
oA5-41: NWBoot:Use Locator in NetworkPortPriority order

Page 1323
oA5-42: Info: InitTimeout - subnet resources operational.

Page 1323
oA5-43: BIS: BISTimeout - for BIS to become operational.

Page 1324
oA5-44: Info: EndNodeTimeout - endnode operational.

Page 1324
oA5-45: Info: Free Running Timer for timeouts.

Page 1326
oA5-48: Info: Retry MADs sent to target nodes

Page 1326
oA5-68: BIS: Platform conforms to the BIS Class MADs

Page 1352
oA5-69: BIS: Use Locator records in order - BIS

Page 1352
oA5-70: BIS: PlatformBootInfoSource=0, query the BIS

Page 1352
oA5-71: BIS: PlatformBootInfoSource=1,use NVRAM

Page 1352
CA5-40: BIS: Default values for PlatformBootInfo.

Page 1352

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1401 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA5-72: BIS: PortBootInfoSource=0 then query the BIS
Page 1353

oA5-73: BIS: PlatformBootInfoSource=1,use NVRAM
Page 1353

oA5-74: BIS:Using default port timeouts.
Page 1353

oA5-75: BIS: Shall use PlatformBootInfoSource.
Page 1353

oA5-76: BIS: Finding th BIS using the SR
Page 1354

oA5-77: BIS: Prioritizing multiple BISs .
Page 1355

oA5-78: BIS:ServiceRecords used in priority order
Page 1355

oA5-79: BIS: Query BIS with supported requests.
Page 1355

oA5-80: BIS: NetworkPortPriority=0, don’t boot from port
Page 1355

oA5-81: BIS: PortPriority= 0x0, don’t use port for Rom.
Page 1355

oA5-82: BIS: PortPriority= 0x0, don’t use port for Console.
Page 1355

oA5-83: BIS: PortPriority= 0x0, don’t use port for IOC
Page 1355

oA5-84: BIS: Traps issued when using BIS
Page 1355

oA5-85: BIS: NQs posted when using BIS
Page 1355

oA5-86: BIS: platform shall support the MPTP
Page 1355

CA5-41: Retry Back-off .
Page 1356

A5.13.5 ROM REPOSITORY COMPLIANCE CATEGORY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of ROM Repository (RomRepos), a product shall meet
all requirements specified in this section, in Section 20.12, “Optional Man-
agement Agent Compliance Category,” on page 1116, and Section 20.14,
“Common MAD Requirements,” on page 1119. This category has no op-
tional qualifiers.

CA5-42: Option ROM bit in its IOUnitInfo Page 1368
CA5-43: One QP supporting RC . Page 1368
CA5-44: Send messages only. Page 1368
CA5-45: Support ROM Repository Msg in Table. Page 1369
CA5-46: Repository information messages in Table 2/3 Page 1370
CA5-47: Responses to ROM repository requests in order Page 1371
CA5-48: Minimum buffer size of 4096 bytes to receive Page 1372
CA5-49: Minimum buffer size of 4096 bytes to send Page 1372
CA5-50: Respond with “Illegal Request” status Page 1374
CA5-51: The format of each compatible string Page 1377
CA5-52: DescriptorReadResponse - Buffer Size Page 1378
CA5-53: Index number assignments of existing image Page 1378
CA5-54: Image descriptor read messages in Table 9/10. Page 1378
CA5-55: Image read messages in Table 11/12.. Page 1381
CA5-56: Status “Invalid Image Handle”, Page 1381
CA5-57: Image add messages in Table 13/14. Page 1385
CA5-58: Status “Insufficient Space” (SeeTable 4) Page 1385
CA5-59: Image update messages in Table 15/16 Page 1390

InfiniBandTM Architecture Release 1.2 Booting Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1402 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA5-60: Status “Update In Progress” . Page 1390
CA5-61: Status “Insufficient Space” (See Table 4) Page 1390
CA5-62: Status “Insufficient Retain Space” Page 1391
CA5-63: Invalidate the old image . Page 1391
CA5-64: Image write messages in Table 17/18. Page 1391
CA5-65: New image handle component Page 1393
CA5-66: Invalidate the old image until update successful Page 1393
CA5-67: Support image delete messages in Table 19/20. Page 1395
CA5-68: Status “Update in Progress” . Page 1395
CA5-69: ImageState of 0x01 . Page 1395
CA5-70: Delete the image descriptor . Page 1396

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1403 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A6: BOOT INFORMATION SERVICE

A6.1 INTRODUCTION

This annex is a supplement to Volume 1 of the InfiniBand Architecture
Specification, herein referred to as the base document. This annex spec-
ifies a Boot Information Service. In particular, it describes how a booting
platform requests and receives boot information by defining methods, at-
tributes, and requirements on how the Boot information Service responds.

A6.1.1 GLOSSARY
The following are additional terms not found in the Volume 1 Glossary
(Chapter 2).

BIS Boot Information Service

Boot Information Record Information that provides booting parameters or describes a device or ser-
vice that a Booting Platform can use to boot its operating environment.

Boot Information Service A management agent of a server that supplies boot information records.

I/O Partition Any IB fabric partition that allows an I/O client (e.g., a host) to communi-
cate with an I/O Unit for the purpose of performing I/O operations.

Booting Platform An endnode that is booting its operating system using the IB fabric.

A6.1.2 COMPLIANCE
This annex specifies a new Compliance Category (see Chapter 20:
Volume 1 Compliance Summary on page 1072 for explanation of compli-
ance categories and qualifiers). The new category is BIS-Server.

There are no Compliance Qualifiers for BIS-Server.

Section A6.5 “Compliance Summary” on page 1434 provides a summary
of compliance statements.

A6.2 BIS OVERVIEW

This annex defines an optional management service called Boot Informa-
tion Service (BIS). A BIS is an IB management agent (i.e., GSA) that pro-
vides boot information to booting platforms, which, in the role of a General

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1404 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Service Manager (GSM), queries the BIS for boot information. Boot infor-
mation includes booting parameters as well as locator records identifying
ROM Repositories, boot devices, and console services.

In general, this annex defines the external behavior of the BIS, including
its relationship with other management entities. In particular, it defines the
methods and attributes that a booting platform uses to query the BIS and
thus retrieve its boot information. The internal behavior of the BIS is out-
side the scope of this annex.

The Booting Annex specifies a boot management class that permits a
boot manager to configure a booting platform with its booting information
with the expectation that the platform persistently stores its boot informa-
tion. As illustrated in Figure 288,the BIS is the complement to that capa-
bility where the booting platform may query the BIS each time that it boots.
Thus, the booting platform retrieves the latest set of boot information
available from the BIS, reducing the need for the boot platform to persis-
tently store boot information. The Booting Annex specifies how a booting
platform can support both BIS and persistent storage of boot information.

Whether a booting platform always uses BIS or only uses a BIS if its per-
sistent information fails is a local policy that depends on many factors in-
cluding the capability of the BIS. The BIS definition permits a broad range
of innovation ranging from a BIS that simply stores information and pro-
vides it unmodified to the booting platform, to an intelligent implementa-

QP

Boot

ROM Repository

Device, File system, etc.

Stored

QP
Environment

BootBoot
Info

Booting Platform

QP
QP
QP

QPBoot
Agent

Console

containing the Boot Loader

Management
Infrastructure

Manager

BIS

QP

Boot
Configuration
Information

Query for BIS Info

Get & Set Boot Attributes

Traps

Manual input
or learned

I/O Protocol
BIS Class MADs
Boot Management Class MADs
Implementation specific

Local
Persistent
Storage

Figure 288 Booting Framework

Legend:

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1405 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tion that responds differently based on device availability, subnet loading,
fabric failures, etc.

A6.2.1 BIS OPERATIONAL MODEL

A BIS provides boot information to booting platforms at their request. Typ-
ically the booting platform is a host trying to bootstrap (load) its operating
system, however, nothing prevents an I/O unit from using a BIS in booting
its operating environment.

The booting platform must first locate the BIS. This is accomplished by
having the BIS register with the SA via SubnAdmSet(ServiceRecord) so
that each booting platform can query its SA to find the BIS. Once the
booting platform has resolved a path to the BIS, it can query the BIS for
its boot information.

Figure 289 illustrates the relationship of a BIS to a booting platform. A
booting platform queries the BIS, which provides the booting platform with
boot information records describing devices or services needed for
booting. As illustrated, the booting platform need not query the BIS
through the same port that it uses to access boot devices. The BIS can
provide locator records describing devices accessible through any port of
the booting platform.

The BIS only provides boot information and does not provide or broker
any boot services, such as providing a boot image to the booting platform
(i.e., the booting platform does not boot through the BIS). The booting
platform uses the BIS information to locate and then establish communi-
cations directly with the devices and services as necessary (as illustrated
by the dotted lines in Figure 289).

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1406 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 289 BIS Application Model
When a booting platform queries the BIS, it provides the BIS with:

• A unique identifier (BootPlatformUUID), that uniquely identifies
the booting platform.

• Identification string (PlatformInfo) containing vital information that
is useful for identifying a new platform.

• Port identifier (PortGUID) that the BIS uses when the booting
platform requests port parameters.

• An indication of the type of boot information that the booting plat-
form wants, such as console, storage boot device, ROM Reposi-
tory for a device driver, etc. One type per request.

• An indication of the booting capabilities that the booting platform
supports.

The BIS responds with zero or more boot information records of the type
that the booting platform requested.

This specification only specifies the interface between a booting platform
and the BIS. Thus, how a BIS determines the boot information is outside
the scope of this annex. It is assumed that the BIS has some form of user
interface that permits a system administrator to configure the BIS with
boot information. In addition, the BIS might be intelligent enough to deal
with booting platforms for which it does not have specific information.

GSI

Boot
Information

Port Port

Boot Environment
Channel
Adapter

Port

BIS

IO Unit

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

TCA

Port

Channel
Adapter

Port Port

Booting Platform

Port

Console
Service

Port
Boot

Server

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1407 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.2.2 RELATIONSHIP WITH OTHER MANAGEMENT CLASSES

Naturally, there is a strong dependency on the BIS information to be con-
sistent with boot management, I/O configuration, and partition manage-
ment. How a BIS implementation obtains its data and maintains its
integrity to provide data consistent with other management classes is out-
side the scope of this annex and thus left to the innovation of the BIS
vendor. A number of possibilities exists ranging from manually configuring
the BIS to integrating the BIS with the other management services.

Architecturally, there are several relationships with other management
classes as follows.

A6.2.2.1 BOOT MANAGEMENT

Boot Management (see Booting Annex) and Boot Information Service
classes complement each other. Boot management provides the means
to manage the booting platform and set parameters that the booting plat-
form needs to locate a BIS. In fact, the booting platform can independently
access a BIS for various purposes (finding a console, finding a ROM Re-
pository, finding the OS loader) and the Boot Manager can configure the
booting platform for each of these phases. For example, a booting plat-
form can be configured to only use local persistent information to find a
ROM Repository, always use the BIS to find its console, and use the BIS
to find its the boot loader only if its local persistent information is not valid.

Since a boot manager using Boot Management class MADs is capable of
providing the same information as a BIS using BIS class MADs, the at-
tributes for both classes are aligned as follows:

• Attribute components that use the same names have the same
definition.

• There is a one to one correlation between attributes used in
BisQueryResp() and BootMgtSet() attributes. Note that some
BootMgt attributes, such as NodeReboot are not relevant for BIS
and thus have no equivalent.

• Attribute formats are consistent in that components in BisQuery-
Resp() attributes have the same offset as their equivalent R/W
component in the Boot Management attribute. Thus, code need-
ed to process a BisQueryResp() will be similar to that needed for
processing the BootMgtSet() for the equivalent attribute.

A6.2.2.2 SUBNET ADMINISTRATION

BIS uses the facilities of the Subnet Administration class to allow booting
platforms to locate a BIS. The BIS is a service that registers with the SA.
This registration provides the means for booting platforms to locate the
BIS. The SA only allows an authorized BIS to register. This is enforced by
the ServiceKey used in the service registration. How a BIS gets autho-
rized (i.e., learns its ServiceKey) is outside the scope of this annex.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1408 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.2.2.3 SUBNET MANAGEMENT

For a booting platform to use a BIS, that BIS has to share a partition with
the booting platform. There is no special P_Key for a BIS. The SM assigns
P_Keys to a node containing a BIS the same as it assigns P_Keys to any
other node. That is, normal partitioning rules apply and how partitions are
assigned is outside the scope of this document.

Additionally, BIS information needs to conform with partitions established
by the SM. Again, this is an implementation detail outside the scope of this
annex.

A6.2.2.4 DEVICE MANAGEMENT

The BIS provides information to booting platforms about I/O units and I/O
controllers. How the BIS gets its information is not specified, but attribute
components that relate to I/O units and I/O controllers conform to the De-
vice Management definition for components of the same name.

A6.2.3 CHARACTERISTICS

This section describes the characteristics of the BIS architecture.

Geographical Scope - There is no prescribed boundary for a BIS. Possi-
bilities include:

• A BIS that serves all booting platforms of the entire fabric.
• A BIS that serves all booting platforms on particular subnets (e.g.,

a different BIS for each subnet).
• A BIS that serves booting platforms in particular partitions (e.g., a

different BIS for each I/O partition).
Other possibilities exist and the various combinations are endless.

Redundancy - There may be more than one BIS serving the same set of
booting platforms. A primary reason for multiple BIS entities is redun-
dancy. See A6.4 “Booting using Boot Information Records” on page 1431
for recommendations on how a booting platform deals with more than one
BIS.

How the BIS stores its boot information, the interface for configuring and
updating that information, as well as the protocol for exchanging informa-
tion with another BIS is outside the scope of this specification. Thus, this
specification does not address coherency between redundant BIS servers
nor any mechanism to provide redundant information.

A booting platform can not assume that multiple BIS servers all return the
same information. There are other reasons for multiple BIS, such as dif-
ferent scopes (for example, a different BIS for each class of platform, for
each processor type, or for each type of OS). When there are multiple BIS

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1409 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

servers with non-overlapping scope, all but one BIS returns zero records
For example, a BIS for web servers would return zero records when que-
ried by a print server, thus the print server would need to query other BISs
until it found one that returns valid records. Of course, once the booting
platform finds the information it needs, it no longer has a need for the BIS.

In addition to redundant BIS servers. A BIS can specify multiple devices
even though the booting platform only needs a single device. A BIS pro-
vides information on devices in attributes called locator records, where
each locator record identifies a device or service the booting platform is to
use. When the BIS returns multiple locator records, it provides them in the
order it wants the booting platform to use them.

BIS Availability - The BIS is a service for the multitude of booting plat-
forms in the fabric. As such, at subnet initialization, booting platforms must
wait for the BIS to become active. There are a number of factors that con-
tribute to the latency of a BIS becoming available.

• The BIS must wait for the SM to configure switches, create path
records, and set the BIS port's state to active;

• The platform that hosts the BIS must boot its OS and load the BIS
application;

• The BIS must initialize and register with the SA as the BIS ser-
vice.

These steps can take significant time and hence all booting platforms
need to know how long to wait for the BIS. For this purpose, there is the
PortBootInfo:BisTimeout value which can be set by default, set locally, or
set by the BootManager.

Response Time - As per chapter 13, a BIS has to respond to a request
within the timeout period specified in ClassPortInfo:RespTimeValue. The
booting platform uses this timeout for determining if the request or re-
sponse is lost. Thus, this time should indicate the worst case processing
time for the BIS. However, there might be situations where the BIS can not
respond immediately (for example, when a booting platform is not known
to the BIS and the BIS needs to consult other sources before taking ac-
tion).

The BIS may send KeepAlive packets (see A6.3.4.2.2 “Keep Alive
Packets” on page 1417) until it determines how to respond. If the BIS has
the capability to respond with KeepAlive packets, it should provide a
means for the system administrator to disable that feature or limit the time
that the BIS waits (continues sending KeepAlive) before it responds to the
booting platform.

The KeepAlive packets inform the booting platform that the BIS needs
more time before sending a final response. A booting platform is not re-

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1410 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

quired to wait for a final response. For instance, the booting platform can
try another BIS or alternate resolution method.

Restricting Information - A BIS should not provide information to a
booting platform about another node (such as an I/O unit) for which those
two nodes do not share a common partition. Such information would be
useless and it is undesirable for nodes to know about other nodes outside
their assigned partitions. One way to accomplish this is for the BIS to val-
idate that a path exists by querying the SA for path records between those
two nodes. However this query will only work if the BIS shares a partition
with each node for which it is requesting the path (they do not need to be
the same partition). A BIS might periodically perform the validation or reg-
ister with the SA to be informed if partition assignments change.

A6.3 BIS CLASS SPECIFICATION

This section specifies the Boot Information Service management class
methods and attributes, operating requirements for a BIS, and interaction
between a BIS and the subnet manager’s subnet administration agent
(SA). The various BIS relationships are illustrated in Figure 290.

CA6-1: A BIS is a management agent and shall conform to the require-
ments for the Application Specific Management Agent (AMA) qualifier of
the Optional Management Agent (OMA) compliance category as specified
in section 20.12 Optional Management Agent Compliance Category on
page 1116 and the Common MAD Header compliance category require-
ments specified in section 20.14 Common MAD Requirements on page
1119.

In particular, this requires conformance to the MAD format and use as
specified in 13.4 Management Datagrams.

Figure 290 BIS Components & Interfaces

SASubnet Administration

Boot Information Service (BIS)

S
ub

ne
t/A

dm
 C

la
ss

BIS Class

Boot Info Query

Boot

SA Registration

Booting Platform 2Information

Booting Platform n

Booting Platform 1

o
o

o

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1411 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.1 REGISTRATION

BIS is a service for distributing boot information. A BIS may be imple-
mented on any IBA node. The BIS registers as a subnet service with the
SA using SubnAdmSet(ServiceRecord).

CA6-2: The BIS shall register with the SA via the SubnAdmSet(Service-
Record) using the Null ServiceID (0x0000_0000_0000_0000) and <Ser-
viceName>=”BIS.IBTA”, null terminated (i.e., the 9th and subsequent
characters are 0x00). If the BIS is configured for multiple partitions, it shall
register once for each partition.

The values for the other ServiceRecord parameters are implementation
dependent.

For the BIS to register with the SA requires that the BIS supply the appro-
priate ServiceKey at the time it registers, updates, or modifies the Service-
Record (see Chapter 15). The ServiceKey is the means for the SA to
authenticate the BIS and protect against a rogue or invalid BIS. How a BIS
gets configured with its ServiceKey is an implementation detail outside the
scope of this annex. It is very important that a BIS takes appropriate steps
to protect its service key and guard it such that other programs can not
discover its value.

Normally, a BIS will not receive requests until after it has registered. How
a BIS responds if it receives requests before it registers is undefined.

The BIS is responsible for periodically renewing its lease with the SA to
prevent the SA from dropping its ServiceRecord from the SA database
(see 15.2.5.14 ServiceRecord on page 895, and “15.2.5.14.3 Service-
Lease on page 898).

CA6-3: The BIS shall renew its registration lease by reregistering with the
SA before its service lease expires.

A booting platform queries the SA to get the ServiceRecord of the BIS and
uses the ServiceGID from the ServiceRecord to query the SA for Path-
Records to the BIS. Booting platforms ignore the ServiceID in the Service-
Record because it does not need to resolve the ServiceID to a QP. The
booting platform initially sends BIS class MADs to the GSI (i.e., QP1) of
the port identified by the ServiceGID. If the BIS uses a different QP, then
the GSI redirects the MAD to that QP.

A6.3.2 BIS QUERY OPERATION

The query methods (see A6.3.4.2 “Query Methods” on page 1415) permit
a booting platform to query the BIS for boot information records. The con-
tent of the response depends on the source of the query and the content

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1412 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of the query, that is, different booting platforms receive different informa-
tion and the booting platform asks for a particular type of information.

A booting platform makes a query by sending a BisQuery() to the BIS. The
query provides information identifying the booting platform, the capabili-
ties of the booting platform, and the information the booting platform de-
sires. A booting platform will query the BIS several times if it needs more
than one type of information. For example, once to find a ROM Repository
to extend its boot environment, then to locate a console, again to locate
its boot device, and finally to locate a ROM Repository containing device
drivers for the boot device.

The BIS uses the information provided in the query to generate a BisQue-
ryResp() with boot information specific for that particular platform. Which
components of the query that the BIS chooses for its filter criteria is imple-
mentation dependent, except that the BIS responds with zero or more
records of the type requested by the booting platform.

The query methods permit the requester to submit a single query and the
BIS to respond with a set of boot information records. The response may
require more capacity for data than that provided by a single MAD. Thus
the BIS query response uses the Reliable Multi-Packet Protocol (RMPP)
specified in Chapter 13 for segmentation and reassembly of datastreams.

The attributes obtained by a BIS class query are records of boot informa-
tion. Each boot information record is exactly 192 bytes, so each response
MAD packet contains exactly one record. The BIS may return more than
one record, all of the same type, and the AttributeID in the MAD header
specifies which record type is being returned. Thus, each packet of a
multi-packet response specifies the same attribute type. An example is a
BIS returning four records identifying four boot devices. If the booting plat-
form needs console and boot devices, it makes two queries, one for con-
sole and one for boot devices.

When a BIS responds with multiple Boot Information Records, it provides
records in the order of preference (i.e., higher preference returned before
lesser preference).

The BIS identifies a booting platform by the BootPlatformUUID compo-
nent in the BisQuery(BootQueryInfo). When a platform is first introduced
into the fabric, the BIS may not have locator records associated with the
booting platform's BootPlatformUUID and might respond with (a) a status
indicating no matching records, (b) a response that starts an install pro-
cess, or (c) a Keep-Alive status while it acquires the information. After the
BIS has been configured, the BIS is able to respond to a BisQuery() with
a BisQueryResp() containing appropriate locator records. From this point
forward, the BIS associates that BootPlatformUUID with that platform's lo-
cator records.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1413 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.3 BIS DATA FORMATS

Figure 291 shows the structure of the BIS management datagram. The
datagram conforms to the MAD definition as specified in Chapter 13.

CA6-4: A BIS shall use the format specified in section A6.3.3 when
sending and receiving BIS class MADs.

Table 410 defines the components of the BIS class datagram.

Bytes Components

0 - 23 Common MAD Header (24 bytes as per 13.4.2 Management Datagram Format on page 718)

24-35 RMPP Header (12 bytes as per 13.6.2.1 RMPP Header on page 772)

36-63 reserved

64-255
AttributeData (192 bytes)

Figure 291 BIS MAD Structure

Table 410 BIS MAD Components

Component Offset
(Bytes) Length Description

BaseVersion 0 8 bits Version of management datagram base format. Value is set to 1

MgmtClass 1 8 bits Management class - set to 0x12 for BIS class

ClassVersion 2 8 bits Version field. Value is set to 1.

BisMethod 3 8 bits Method and R-Bit, as defined in A6.3.4 BIS Methods on page 1415.

Status 4 16 bits see A6.3.3.2 BIS Status Values on page 1414

ClassSpecific 6 16 bits not used. Shall be set to 0.

TransactionID 8 64 bits Transaction specific identifier as per base MAD definition in 13.4.6.4
TransactionID usage on page 731

AttributeID 16 16 bits Specifies the attribute in the AttributeData or the attribute to include in the
reply, as per the Table 413 on page 1417 and Table 414 on page 1418.

reserved 18 16 bits reserved.

AttributeModifier 20 32 bits Identifies a particular instance of an attribute as per Table 413 on page
1417.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1414 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.3.1 RESERVED FIELDS

Chapter 13 requires components indicated as “reserved” to be set to zero
in request messages. In response messages, a reserved field is either left
unmodified if using the request for the response, or is set to zero. The re-
cipient of a MAD ignores reserved fields.

A6.3.3.2 BIS STATUS VALUES

If the BIS rejects a request because it is too busy, it may respond with the
appropriate response method setting MAD_Header:Status bit 0.

Bits 8-15 of the MAD_Header:Status field provide class specific definition
for additional status encoded as follows:

CA6-5: If there are no records for a BisQueryResp(), the BIS shall set the
MAD_Header:Status.BIS_Status in the BisQueryResp() to indicate no
matching records and the AttributeData is undefined.

CA6-6: If the BIS receives a request (R bit = 0) with a ClassVersion other
than 1, it shall respond by returning the request MAD with the R bit set to
1 and Status bits 2-4 set to the value of 1 (001b).

CA6-7: If the BIS receives a request with an unknown Method, it shall re-
spond by returning the request MAD with the R bit set to 1 and setting
Status bits 2-4 to the value of 2 (010b).

RMPP_Header 24 12
bytes

Reliable Multi-Packet Protocol header as per 13.6.2.1 RMPP Header on
page 772.

reserved 36 28
bytes

reserved

AttributeData 64 192
bytes

Data field used for operations as specified by Attribute definitions.

Table 410 BIS MAD Components (Continued)

Table 411 BIS MAD Status Field Components

Component Name Bits Meaning

BIS_Status 8-11 An enumerated value as follows:
0 = normal
1 = No records matching query
2 = Multi-packet request (RMPPType>0) invalid
all other values reserved

reserved 12-15 reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1415 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA6-8: If the BIS receives a request with an unsupported Method/at-
tribute combination, it shall respond by returning the request MAD with the
R bit set to 1 and setting Status bits 2-4 to the value of 3 (011b).

CA6-9: If the BIS receives a request with an invalid value in any class spe-
cific MAD header component or any attribute component, it shall respond
by returning the request MAD with the R bit set to 1 and setting Status bits
2-4 to the value of 7 (111b).

A6.3.4 BIS METHODS

CA6-10: A BIS shall support the BIS methods described in Table 412.

A6.3.4.1 COMMON METHODS
BisGet(), BisSet(), and BisGetResp() methods are common methods (Get,
Set, GetResp) specified in Chapter 13.

For these methods, the RMPP components (i.e., bytes 28-35) of the MAD
are not used and thus filled with zeroes.

A6.3.4.2 QUERY METHODS

The BisQuery() and BisQueryResp() methods provide a mechanism for a
booting platform to query the BIS for boot information records. The Query
operation is illustrated in Figure 292. The content of the attribute that the
booting platform supplies in the query request determines which attribute
type the BIS returns in the query responses.

The BisQuery() is a single packet. Therefore, the RMPP_Header compo-
nents (i.e., bytes 28-35) of the MAD are not used and thus filled with ze-

Table 412 BIS Methods

Method Name Typea Value Description

BisGet() S 0x01 Request (read) an attribute.

BisSet() S 0x02 Request a set (write) of an attribute. This method is only used if the
BIS supports vender traps or vender specific attributes.

BisGetResp() S 0x81 The response from a BisGet() or BisSet().

BisQuery() S 0x12 Requests (reads) all of the instances of the specified attribute that
match the information supplied in the request.

BisQueryResp() M 0x92 The response from a BisQuery() request using the Reliable Multi-
Packet Protocol.

a. The “Type” column specifies if the method support multiple packets as follows:
[S] supports only single packets
[M] supports multiple packets using the Reliable Multi-Packet Protocol (see A6.3.4.2.1 “Multi-Packet Transaction” on
page 1416).

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1416 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

roes. The QueryResp() method uses the Reliable Multi-Packet Protocol
(RMPP) defined in Section 13.6 Reliable Multi-Packet Transaction Pro-
tocol on page 770 and further specified in A6.3.4.2.1 Multi-Packet Trans-
action on page 1416.

The attributes for the BisQueryResp() method are padded to 192 bytes
such that each MAD provides one attribute record (i.e., one boot informa-
tion record).

A6.3.4.2.1 MULTI-PACKET TRANSACTION
The BIS QueryResp method uses the Reliable Multi-Packet Protocol
specified in 13.6 Reliable Multi-Packet Transaction Protocol on page 770
with the following class specific requirements.

CA6-11: A BIS shall implement the Reliable Multi-Packet Protocol for
BisQueryResp() as per 13.6 Reliable Multi-Packet Transaction Protocol
on page 770.

CA6-12: The BIS shall not send more than “Window component” number
of packets before it receives an Ack from the requester. The Window value
in each ACK determines the maximum number of subsequent packets the
BIS is allowed to send.

CA6-13: If the BIS receives a BisGet(), BisSet(), or BisQuery() request in-
dicating a multi-packet request (i.e., RMPPType not zero), then the BIS
shall respond by returning the MAD with the R bit set to 1 and setting
BIS_Status bits (MAD_Header:Status bits 8::11) to the value of 2 (Multi-
packet request invalid).

BisQuery()

BisQueryResp()

Booting platform sends
BisQuery() to BIS
indicating what
information it wants

Figure 292 Query Operation

BIS responds with
QueryResp()
containing one or
more packets

Booting
Platform BIS

Single Packet

Seg#=1

Seg#=2

Seg#=3

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1417 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.4.2.2 KEEP ALIVE PACKETS

The KeepAlive value in the RMPPType component identifies a KeepAlive
packet.

Operation is as specified in 13.6 Reliable Multi-Packet Transaction Pro-
tocol on page 770. The BIS sets this value in a query response to request
the recipient re-initialize its transaction response timer (see A6.3.4.3: Lost
Messages).

AttributeData in a KeepAlive packet is indeterminate.

A6.3.4.3 LOST MESSAGES

The ClassPortInfo attribute provides a time-out value (see 13.4.8.1 Class-
PortInfo on page 734) used in conjunction with BIS requests. Because
BIS messages use unreliable datagram service, it is possible that a re-
quest or its response might be lost. If the querying node does not receive
a response within the time specified, it resends the original request.

Where a response is a multi-packet segmented response, the segments
are sent in order and identified by the SegmentNumber field. If the initiator
detects that it missed one of the response packets, it can immediately re-
quest retransmission starting with the missing packet by sending a Re-
Send request (ReSend value in the RMPPType field), specifying the
missing packet in the SegmentNumber field. The BIS starts resending the
response starting with the indicated packet.

A6.3.5 ATTRIBUTES

Table 413 BIS Attributes

Attribute Name Attribute
ID

Attribute
Modifier Description

ClassPortInfo 0x0001 0x00000000 Class Info as per base MAD definition. This annex specifies BIS
ClassVersion =1

BootQueryInfo 0x0080 0x00000000 Specifies information the BIS uses for Boot Information filter criteria

PlatformBootInfo 0x0020 0x00000000 Specifies platform-wide booting parameters

PortBootInfo 0x0021 0x00000000 Specifies port specific booting parameters

RomRepositoryLocator-
Record

0x0030 0x00000000 Identifies an I/O unit that contains a ROM Repository

ConsoleLocatorRecord 0x0031 0x00000000 Supplies information describing a console service

OsLocatorRecord 0x0032 0x00000000 Supplies information describing a boot loader

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1418 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 414 associates BIS attributes with methods.

CA6-14: A BIS shall support BIS method/attributes combinations identi-
fied in Table 414.

A6.3.5.1 CLASSPORTINFO

The ClassPortInfo attribute as defined in Chapter 13 has the following
class specific information and definitions:

• ClassVersion: This is version 1 of the BIS class specification. The
ClassVersion field shall be set to 0x01.

• CapabilityMask 8-15 = reserved, set to 0 and ignored
A6.3.5.2 BOOTQUERYINFO ATTRIBUTE

The BootQueryInfo attribute is used in a BisQuery() and supplies informa-
tion needed for the BIS to filter its boot information and produce boot in-
formation records. The BootQueryInfo attribute has the format specified in
Table 415.

Table 414 BIS Attribute / Method Map

Method:
Attribute

Get /
GetResp

Set /
GetResp Query Query

Resp

ClassPortInfo x x

BootQueryInfo x

PlatformBootInfo x

PortBootInfo x

RomRepositoryLocatorRecord x

ConsoleLocatorRecord x

OsLocatorRecord x

Table 415 BootQueryInfo Attribute

Component Name Offset
(bits) Length Description

BootPlatformUUID 0 128 bits A 128-bit universally unique identifier (UUID) as defined by ISO/IEC 11578 that
uniquely identifies the booting platform.

PortGUID 128 64 bits Port GUID of booting platform’s port for which the booting platform is request-
ing information (see considerations below and section A6.3.5.4: PortBootInfo
Attribute)

reserved 192 64 bits reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1419 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

BootSupport 256 32 bits Identifies the capability of the booting platform.
Bit specific: 0=no support, 1=supported.
• bit 0 - Extend Boot Environment - boot environment can load code from a

ROM Repository to extend the boot environment and/or BootAgent capabil-
ity.

• bit 1 - Proprietary Driver Load: the boot environment can load proprietary
device drivers from a ROM Repository.

• bit 2 - IB Console Protocol - The boot environment supports the IB Console
protocol. This implies that the booting platform does not need to load (or
already has loaded) an IB Console device driver from a ROM Repository.

• bit 3 - Proprietary Console Protocol - The boot environment supports a pro-
prietary console protocol. If bit 1 is set, the platform can load a console
driver (including an IB Console driver). If bit 1is not set, this bit means that
the booting platform has another source for console protocols.

• bit 4-SRP Storage Protocol- The boot environment supports the SRP proto-
col. This implies that the booting platform does not need to load (or already
has loaded) an SRP device driver from a ROM Repository.

• bit 5 - Proprietary Storage Protocol - The boot environment supports a pro-
prietary storage protocol. If bit 1 is set, the platform can load a storage
driver (including an SRP driver). If bit 1is not set, this bit means that the
booting platform has another source for storage protocols.

• bit 6 - Network Boot: IB Network Model - The boot environment supports a
network boot protocol without using a LAN NIC (e.g., using IPoIB).

• bit 7 - Network Boot: IB NIC Model - The boot environment supports net-
work boot using a LAN NIC attached to the IB fabric.

• all other bits reserved.

BootInfoRequested 288 8 bits Indicates what boot information the booting platform wants.
 • 0x00 - PlatformBootInfo
 • 0x01 - PortBootInfo
 • 0x02 - RomRepositoryLocatorRecords to extend the boot environment
 • 0x03 - RomRepositoryLocatorRecords for device drivers
 • 0x04 - ConsoleLocatorRecords
 • 0x10 - Install Program
 Boot platform is requesting OsLocatorRecords describing the source for

an OS installation program. This permits a booting platform to explicitly
request an install.

 • 0x11 - Boot Loader
 Boot platform is requesting OsLocatorRecords describing the source of a

boot loader. The BIS returns zero or more OsLocatorRecords, each
describing the source for an OS boot loader or the source of an installation
program.

 • 0x12 - Boot Loader Destination
 Boot platform is requesting OsLocatorRecords describing the destination

for an OS boot loader (typically used by an installation program to deter-
mine where to install the OS boot loader).

 all other values reserved

Table 415 BootQueryInfo Attribute (Continued)

Component Name Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1420 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.5.2.1 BOOTINFOREQUESTED

The BIS returns the attribute specified in the BootInfoRequested compo-
nent. For a PlatformBootInfo query, the BIS returns at most one Platform-
BootInfo record. For a PortBootInfo query, the BIS returns at most one
PortBootInfo record for the port identified in the PortGUID component. For
the other BootInfoRequested types, the BIS might return multiple boot in-
formation records, one for each device or service for that particular re-
quest. Each Query Response packet of a multi-packet response contains
one boot information record. For example, if there are 2 consoles and 3
storage devices that the BIS will provide to the booting platform, a 0x04 -
“ConsoleLocatorRecord” query would return 2 MADs each containing a
ConsoleLocatorRecord attribute and a 0x11 - “Boot Loader” query would
return 3 MADs each containing an OsLocatorRecord attribute.

When trying to load its OS, a booting platform typically requests 0x11-
“Boot Loader” and the BIS returns zero or more OsLocatorRecords that
identify an OS boot loader or a boot loader that loads an installation pro-
gram. If the BIS knows that this in a new platform and wants to start the
install process, then it can return one or more OsLocatorRecords identi-
fying an Install Program. Otherwise, the BIS would return one or more
OsLocatorRecords that each describe a source for the platform’s OS Boot
Loader. The BIS may choose to return combinations of OsLocator-
Records (both OS boot loader source and installation program source).
For example, the BIS might return two OsLocatorRecords, the first de-
scribing a disk drive and the second describing the source of an OS Install
Program. If the booting platform detects a failure in the first source, such
as failing to find a valid boot sector on the disk or detects that the OS was
not installed, then it proceeds to the next OsLocatorRecord and thus in-
stalls the OS. If it does find a valid OS boot loader, i.e., the installation was
successful, then the booting platform boots the OS from the first OsLoca-
torRecord and does not use the second.

A booting platform can specify a BootInfoRequested component of 0x10
- “Install Program” when it knows it wants to perform an OS install. During
the installation, the Install Program can query the BIS, specifying a BootIn-

reserved 296 24 bits reserved

PlatformInfo 320 1024 bits
(128-Bytes)

A TLV encoded component containing multiple packed elements as described
in A6.3.5.2.5 “PlatformInfo” on page 1422

reserved 1344 192 bits
(24 Bytes)

reserved

Table 415 BootQueryInfo Attribute (Continued)

Component Name Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1421 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

foRequested component of 0x12 - “Boot Loader Destination”, to get a list
of destinations where the Install Program can place the OS Boot Loader.

A point of clarification concerning the use of RomRepositoryLocator-
Records: There are two phases in extending the capabilities of the booting
platform and thus two encodes for requesting RomRepositoryLocator-
Records.

• One phase is in extending the boot environment, such as loading up-
dated or extended code. It is possible that a platform only contains a
minimal amount of boot code, which simply locates a ROM Reposito-
ry and loads the remainder of the boot environment from it. In this
case, the booting platform is looking for platform specific or boot envi-
ronment specific code stored in the ROM Repository. This phase oc-
curs prior to the booting platform requesting any OsLocatorRecords.

• The second phase is when the booting platform is processing a loca-
tor record and that record identifies an I/O protocol for which the
booting platform needs to load a driver. In this case, the platform is
looking for a specific I/O driver. Refer to the I/O Annex for driver
matching rules.

To permit platform code and device driver code to reside in different ROM
Repositories, there are two encodes to indicate for which phase the
booting platform is requesting a ROM Repository.

A6.3.5.2.2 BOOTPLATFORMUUID

CA6-15: A BIS shall only return attributes for the platform identified by
BootPlatformUUID component.

How a BIS manages its boot information and filters it is outside the scope
of this annex. However, an implementer might want to consider the fol-
lowing issues.

The BIS identifies a booting platform by its BootPlatformUUID. The 128-
bit UUID was selected over a 64-bit GUID (EUI-64) because it can be gen-
erated easily by software, which decouples the boot environment from
any particular hardware. For example, it removes the necessity for a hard-
ware serial number to be machine readable. Software generation is also
advantageous for retrofit and field upgrades in machines that are not spe-
cifically designed for InfiniBand. A BIS does not need to interpret the Boot-
PlatformUUID, but rather uses it as an opaque value to match with locator
records assigned to that BootPlatformUUID.

As a matter of policy, a BIS may associate the BootPlatformUUID with a
set of physical GUIDs (such as Node GUIDs, Port GUIDs, Module GUIDs,
etc.) and validate with the SA that the platform making the request has the
same physical attributes each time it receives a query. Detecting a dif-
ferent physical GUID indicates either the requesting platform has physi-

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1422 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cally changed, or that the platform is not who it claims to be. How the BIS
determines which is the case, and what actions the BIS takes is an imple-
mentation policy.

A6.3.5.2.3 PORTGUID

When a BIS returns locator records, they identify devices that the booting
platform needs, independent of which port the booting platform uses to
query the BIS. That is, a booting platform attempts to locate the device
through each of its ports, until it finds a suitable path. However, when the
target has multiple ports, the PortGID that the BIS returns in the locator
record could be a function of the PortGUID component that the booting
platform specifies in the BisQuery(). The expectation is that the booting
platform identifies the first port it intends to use and, unless the BIS has
specific topology information, the BIS ignores the PortGUID component.

When the booting platform requests PortBootInfo, the BIS returns the at-
tribute for the booting platform’ s port specified in the PortGUID compo-
nent of the BisQuery(). The BIS responds with a
MAD_Header:Status.BIS_Status = 1:”No records matching query” when it
does not have the information for the specified port. When the BIS does
return a PortBootInfo record, the record’s RomPortPriority, ConsolePortP-
riority, IocPortPriority, and NetworkBootPortPriority components indicate if
and how the booting platform uses the specified port for booting. The
Booting Annex describes how the booting platform uses those priorities.

A6.3.5.2.4 BOOTSUPPORT

The BootQueryInfo:BootSupport component is provided as supplemental
information and there is no requirement that BIS use that information. It
could be useful when the BIS does not recognize the UUID. The BIS may
use this information in determining the status and content of the BisQue-
ryResp().

A6.3.5.2.5 PLATFORMINFO

The BootQueryInfo:PlatformInfo component specifies booting related
characteristics of the booting platform. This information is useful when the
booting platform is unknown to the BIS, such as when a new platform is
added to the fabric, and thus the BIS can not associate the booting plat-
form with a prior set of locator records.

The PlatformInfo component contains multiple elements, where each ele-
ment is a platform characteristic (see Table 416, “PlatformInfo Elements,”
on page 1424). The elements in PlatformInfo allow the BIS to identify the
booting platform to the system administrator or automatically invoke an in-
stall process based on the content of the elements. Other possibilities in-
clude using the information to validate the requestor and for reporting
changes to the System Administrator.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1423 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The BootQueryInfo:BootPlatformUUID is the primary component that a
BIS uses to identify a booting platform and the PlatformInfo component is
intended as supplemental information to identify those characteristics of a
booting platform that may influence the set of locator records selected for
the booting platform.

Elements in PlatformInfo are in TLV format. The first byte is the Type, the
second byte is the Length (number of bytes in the value string), and the
remainder of the element is the value string, in UTF-8 format. Type codes
are specified in Table 416. The PlatformInfo component contains a vari-
able number of variable length elements and is terminated with the null
value (0x00). All bytes after the termination byte should also be null bytes.

Each respective booting platform vendor is responsible for defining its
own value string definition. For instance the Platform vendor defines
unique values for each of its products and firmware vendor defines unique
values for each of its products. An element with a Length of zero means
that the booting platform does not know the value for that element.

The recommended practice is for the booting platform to order elements
by their Type value, lowest to highest.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1424 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 416 PlatformInfo Elements

Type
Value

Length
Value

Description
(All strings are in UTF-8 and the content of each element is vendor specific)

0x00 0x00 Marks end of elements - ignore remainder of component data following this Type code

0x01 variable Platform Vendor Name String
This string provides the name of the vendor that manufactured the booting platform.

0x02 variable Platform Vendor Model/Type String
This string provides the model and type of the booting platform.

0x03 variable Platform Serial Number String
This string provides the name of the serial number of the booting platform.

0x04 variable Firmware Vendor Name String
This string provides the name of the firmware vendor that manufactured the boot envi-
ronment code (e.g., BIOS vendor.).

0x05 variable Firmware Version String
This string provides the version of the firmware code.

0x06 variable CPU Vendor Name String
This string provides the name of the CPU vendor

0x07 variable CPU Vendor Version String
This string provides the CPU version, stepping, etc.

0x08 variable Platform Name String
This string provides the local name assigned the booting platform - usually assigned by
the System Administrator to identify the platform by name.

0x09 variable OS Name String
This string provides the name of the preferred Operating System.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1425 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.5.3 PLATFORMBOOTINFO ATTRIBUTE

The PlatformBootInfo attribute is a subset of the R/W components of the
BootMgt:PlatformBootInfo attribute (see Booting Annex) and supplies the
booting platform with platform-wide booting parameters.

CA6-16: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x00 - PlatformBootInfo) with a BisQueryResp(Platform-
BootInfo) containing at most one PlatformBootInfo record as specified in
Table 417.

Table 417 PLATFORMBOOTINFO Attribute

Component Name Offset
(bits) Length Description

reserved 0 36-bits reserved

RomRepositoryLocator-
Source

36 4-bits This component indicates how and in what order the booting platform
locates a ROM Repository to extend its boot environment.
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - No ROM Repository for expansion.

ConsoleLocatorSource 40 4-bits This component indicates how and in what order the booting platform
locates a Console.
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - No Console.

OsLocatorSource 44 4-bits This component indicates how and in what order the booting platform
locates an IOC, device or server containing its operating system boot
loader storage and network booting:
 • 0x0 - BIS Only
 • 0x1 - BIS then Persistent
 • 0x2 - Persistent Only
 • 0x3 - Persistent then BIS
 • 0xF - Disable/No IB boot}

reserved 48 186-
Bytes

reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1426 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.5.4 PORTBOOTINFO ATTRIBUTE

The PortBootInfo attribute is identical to the R/W components of the
BootMgt:PortBootInfo attribute and supplies the booting platform with
port-specific booting parameters for the port identified in the query.

Table 418 PORTBOOTINFO Attribute

Component Name Offset
(bits) Length Description

BISPortPriority 0 2-bits This component indicates the port’s priority for locating a BIS.
 • 11b is the highest priority
 • 01b is the lowest priority
 • 00b indicates that the port should not be used to locate a BIS.

RomPortPriority 2 2-bits This component indicates the priority of this port when attempting to locate
a ROM repository.
 • 11b is the highest priority
 • 01b is the lowest priority
 • 00b indicates that the port should not be used to locate a ROM reposi-

tory.

ConsolePortPriority 4 2-bits This component indicates the priority of this port when attempting to locate
a console.
 • 11b is the highest priority
 • 01b is the lowest priority
 • 00b indicates that the port should not be used to locate a console.

IocPortPriority 6 2-bits This component indicates the priority of this port when attempting to locate
an I/O unit (I/O Controller).
 • 11b is the highest priority
 • 01b is the lowest priority
 • 00b indicates that the port should not be used to locate an I/O unit.

NetworkBootPortPriority 8 2-bits This component indicates the priority of this port when attempting an IB
network boot.
 • 11b is the highest priority
 • 01b is the lowest priority
 • 00b indicates that the port should not be used for IB Network Boot.

reserved 10 22-bits reserved

InitTimeout 32 16-bits The time (100 mSec increments) from Power On Reset that the booting
platform allows for subnet resources (e.g., I/O units) to become operational.

BisTimeout 48 16-bits The time (100 mSec increments) from Power On Reset that the booting
platform allows for the BIS to become operational.

EndNodeTimeout 64 16-bits Specifies the maximum amount of time (in 100 mSec increments) that an
end node takes to become operational and thus respond to MADs. Timer
starts when the booting platform first sends a MAD to the particular node.
This component accounts for target nodes that are in a power-down state
and are awakened as a result of the booting platform sending MADs to it.

reserved 80 182-
Bytes

reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1427 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA6-17: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x01 - PortBootInfo) with a BisQueryResp(PortBootInfo) con-
taining at most one PortBootInfo record as specified in Table 418.

A6.3.5.5 ROMREPOSITORYLOCATORRECORD ATTRIBUTE

The RomRepositoryLocatorRecord attribute used in the BisQueryResp()
provides a boot information record identifying an I/O unit containing a
ROM Repository and has the format specified in Table 419. The At-
tributeID in the MAD header indicates that the AttributeData contains a
RomRepositoryLocatorRecord record.

The RomRepositoryLocatorRecord attribute is identical to the R/W com-
ponents of the BootMgt:RomRepository attribute.

CA6-18: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x02 - RomRepositoryLocatorRecords to extend the boot envi-
ronment or 0x03 - RomRepositoryLocatorRecords for device drivers) with
a BisQueryResp(RomRepositoryLocatorRecord) as specified in Table
419.

A6.3.5.6 CONSOLELOCATORRECORD ATTRIBUTE

The ConsoleLocatorRecord attribute used in the BisQueryResp() pro-
vides a boot information record for a console service and has the format
specified in Table 420. The AttributeID in the MAD header indicates that
the AttributeData contains a ConsoleLocatorRecord attribute. Note that IB
Console Protocol (see Console Annex) supports both console server pro-
cesses and console devices.

Table 419 ROMREPOSITORYLOCATORRECORD Attribute

Component Name Offset
(bits) Length Description

reserved 0 16-Bytes reserved

PortGID 128 16-Bytes Port GID of the I/O unit.

reserved 256 160-
Bytes

reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1428 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA6-19: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x04 - ConsoleLocatorRecords) with a BisQueryResp(Console-
LocatorRecord) as specified in Table 420.

Table 420 ConsoleLocatorRecord Attribute

Component Name Offset
(bits) Length Description

reserved 0 8-bits reserved

Device-Service 8 1-bit Indicates if this record describes a Console IOC or Console Server Process
 • 0b = this record describes a console IOC
 • 1b = this record describes a console server process

DeviceDriverLocation 9 2-bits Specifies the search order to locate a Device Driver for a Console IOC that
supports a proprietary device driver.
 • 00b = Search only the ROM Repository in the same IOU as the IOC.
 • 01b = First search the ROM Repository in the same IOU as the IOC, then

try ROM Repository records.
 • 10b = First search ROM Repositories pointed to by RomRepository

records, then try the ROM Repository on the same IOU as the IOC.
 • 11b = Search only ROM Repositories pointed to by the RomRepository

Records.

reserved 11 5-bits reserved

Protocol 16 8-bits The console protocol to use (see A6.3.5.8 Protocol Field on page 1430):
 • 0x00 - unknown
otherwise bit specific where:
 • bit 0 - proprietary protocol
 • bit 1 - IBTA Console protocol (refer to Console Annex)
 • bits 2-6 are reserved
 • bit 7 -Use any ProtocolName specified by a ProtocolName element in the

AdditionalInfo component.

reserved 24 5-Bytes reserved

IocGUID-SID 64 8-Bytes GUID of the I/O controller or ServiceID of the service depending on setting of
the Device-Service field
 • If Device-Service = 0b (console IOC), then this is the IocGUID.
 • If Device-Service = 1b (server process), then this is the ServiceID. A ser-

vice ID other than the IB CSP ServiceID indicates a proprietary console
protocol

PortGID 128 16-
Bytes

Port GID for the console service.

AdditionalInfo 256 160-
Bytes

Console protocol specific data in Type-Length-Value (TLV) format see Booting
Annex for definitions

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1429 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A6.3.5.7 OSLOCATORRECORD ATTRIBUTE

The OsLocatorRecord attribute used in the BisQueryResp() provides a
boot information record for boot device such as a storage device or a net-
work interface adapter, and has the format specified in Table 421. The At-
tributeID in the MAD header indicates that the AttributeData contains an
OsLocatorRecord attribute.

Table 421 OsLocatorRecord Attribute

Component Name Offset
(bits) Length Description

BootMethod 0 8-bits Boot Method
 • 0x01 = Storage (attribute specifies IOC to use)
 • 0x02 = Network (attribute specifies IOC to use)
 • 0x03 = Proprietary (attribute specifies IOC)
 • 0x04 = IB Network boot (attribute specifies IB boot server, if needed)
all other values reserved

reserved 8 1-bit reserved

DeviceDriverLocation 9 2-bits Specifies the search order to locate a Device Driver for an IOC.
 • 00b = Search only the ROM Repository in the same IOU as the IOC.
 • 01b = First search the ROM Repository in the same IOU as the IOC, then

try ROM Repository records.
 • 10b = First search ROM Repositories pointed to by RomRepository

records, then try the ROM Repository on the same IOU as the IOC.
 • 11b = Search only ROM Repositories pointed to by the RomRepository

Records.

RecordType 11 2-bit Indicates the purpose of this record
 • 00b = this record describes a source for a boot loader that loads an instal-

lation program which can install an OS for the booting platform.
 • 01b = this record describes a source for the booting platform’s OS boot

loader
 • 10b = this record describes a destination where an installation program

can install an OS boot loader. A booting platform should not attempt to use
an OsLocatorRecord with RecordType=10b as the source for its boot
loader.

 • 11b = this record describes a destination where an installation program
can or has installed an OS boot loader. A booting platform can attempt to
boot from this location. An installation program can install an OS boot
loader at this location.

reserved 12 3-bits reserved

Protocol 16 8-bits The IOC protocol to use (see A6.3.5.8 Protocol Field on page 1430):
 • 0x00 - unknown
otherwise bit specific as described in Table 422, “Protocol Component Bit Defi-
nitions,” on page 1431)

reserved 24 5-Bytes reserved

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1430 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA6-20: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x10 - Install Program) with a BisQueryResp(OsLocatorRecord)
as specified in Table 421 and the RecordType component of any record
returned shall be 00b.

CA6-21: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x11 - Boot Loader) with a BisQueryResp(OsLocatorRecord) as
specified in Table 421 and the RecordType component of any record re-
turned shall be 00b, 01b, or 11b.

CA6-22: A BIS shall respond to a BisQuery(BootQueryInfo:BootInfoRe-
quested=0x12 - Boot Loader Destination) with a BisQueryResp(OsLoca-
torRecord) as specified in Table 421 and the RecordType component of
any record returned shall be 10b or 11b.

A6.3.5.8 PROTOCOL FIELD

Locator records contains a Protocol component that the BIS uses to
specify which protocols the booting platform can use with the specified de-
vice. This field is bit specific (i.e., each bit represents a protocol). When a
device supports more than one protocol, the BIS can indicate a prefer-
ence by returning multiple records, each with a different Protocol value. If
the BIS sets more than one bit, it means that the booting platform may use
any of the indicated protocols. A value of zero means that the BIS does
not know which protocols the device supports. In this case the booting
platform determines which protocol to use.

IocGUID-SID 64 8-Bytes GUID of the I/O controller or SID of the Boot Service (a SID value of zero
means unknown or not used).

PortGID 128 16-
Bytes

Port GID of the I/O unit or the Boot Service (a value of zero means unknown or
not used).

AdditionalInfo 256 160-
Bytes

I/O protocol specific data in Type-Length-Value (TLV) format, refer to Booting
Annex for definition and content.

Table 421 OsLocatorRecord Attribute (Continued)

Component Name Offset
(bits) Length Description

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1431 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For OsLocatorRecords, Protocols are dependant on the BootMethod
component as specified in are Table 422.

When bit 7 is set, the booting platform looks in the AdditionalInfo compo-
nent of the OSLocatorRecord for ProtocolName elements to determine
which I/O protocols it can use.

A6.4 BOOTING USING BOOT INFORMATION RECORDS

This section specifies the recommended practices and considerations for
a booting platform that uses a BIS to derive boot information. This annex
only specifies requirements on the BIS. See the Booting Annex for re-
quirements on a booting platform.

A6.4.1 OVERVIEW

The booting platform uses the services of the subnet manager’s subnet
administration agent to identify and locate a BIS and then queries the BIS
for boot information. In each query the booting platform specifies which
type of information it wants and can ask for one of the following:

• boot parameters for the platform (PlatformBootInfo);

• boot parameters for a particular port (PortBootInfo);

• location of ROM Repositories (RomRepositoryLocatorRecords)
that contains code to extend the boot environment or that contain
device drivers;

• the location of a console (ConsoleLocatorRecords);

• the location of a boot loader (OsLocatorRecords).

If a booting platform needs multiple types of information, it queries the BIS
multiple times. For each query, the BIS returns the requested information.

Table 422 Protocol Component Bit Definitions

Boot Method

Bit
01

Storage

02
LAN Network

Boot

03
Proprietary

04
IB Network

Boot

0 proprietary proprietary proprietary proprietary

1 SRP reserved reserved IPoIB

2-6 reserved

7 Use any ProtocolName specified by a ProtocolName element in the
AdditionalInfo component.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1432 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The booting platform queries the BIS (as specified in A6.3.5.2 “BootQue-
ryInfo Attribute” on page 1418) to get its boot information records. When
responding to a query for the location of a ROM Repository, Console, or
Boot Loader, the BIS may return multiple records using the Reliable Multi-
Packet Protocol. The booting platform assumes the BIS returns the
records in the order of priority (primary device/service first). Records are
returned as a part of multi-packet response such that the booting platform
can detect and request retransmission of missed records. The BIS might
also respond with a KeepAlive status when it needs more time to process
the query. This is useful for when the BIS needs to poll the fabric or query
other data repositories.

A6.4.2 GENERAL OPERATION

The following is an example of how a booting platform can use the Boot
Information Service stated in relative order.

1) Each BIS registers itself with the SA using the
SubnAdmSet(ServiceRecord) method with ServiceName =
“BIS.IBTA” null terminated (i.e., the 9th a subsequent characters are
0x00). The SA ServiceRecord lease will remove stale entries after
the lease expires (see Chapter 15). However, a booting platform
should be able to deal with a stale ServiceRecord for a BIS that is no
longer in service (i.e., the SA might return zero path records from the
booting platform to the BIS or the BIS does not respond).

2) Since each port of a booting platform might be on a different subnet
and/or each port may belong to a different set of partitions, the
booting platform should treat each of its ports as if it is independent
from the others. Thus, the booting platform selects a port and all sub-
sequent operations (i.e., the following steps) are performed through
that port. Note that the Booting Annex provides the means for a
booting platform to be configured with BIS port priorities that identify
which order the booting platform attempts to use its ports to locate a
BIS.

3) The booting platform uses SubnAdmTableGet(ServiceRecord)
method to query the SA and retrieve a list of all the BIS agents (i.e.,
ServiceName = “BIS.IBTA“) for all of its partitions (i.e., wildcards the
ServiceP_Key component in the request) and selects one. When the
booting platform finds multiple BIS servers, it should attempt to use
them in the order that the SA returns the Service Records.

4) The booting platform queries the SA to get the path record for the se-
lected BIS using the SubnAdmTableGet(PathRecord) with DGID =
the GID from the service record. From this information the booting
platform selects a path and is now able to send messages to the GSI
of the selected BIS.

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1433 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

5) The booting platform queries the BIS using the
BisQuery(BootQueryInfo) message described in A6.3.4.2 Query
Methods on page 1415. The booting platform makes a separate
query (i.e., a single packet request) for each type of information it
wants in any order it wants to request it. By setting the appropriate
value in the BootInfoRequested component, the booting platform can
request one of the following:

a) A PlatformBootInfo record specifying platform booting parameters

b) A PortBootInfo record specifying booting parameters for the spec-
ified port

c) ConsoleLocatorRecords specifying a console

d) RomRepositoryLocatorRecords for ROM Repositories for extend-
ing the booting platform’s boot environment

e) RomRepositoryLocatorRecords for ROM Repositories containing
device drivers

f) OsLocatorRecords for boot devices (storage, Network Interface
Controllers, etc.) or Network Boot information that the booting
platform uses to locate and load a boot loader.

6) The BIS may redirect a query to a dedicated QP, which might be on
another port. The BIS does this by responding with a
BisGetResp(ClassPortInfo) specifying the redirection information
(see section 13.5 MAD Processing on page 749). For this case the
booting platform resubmits the query to the redirected port. Redi-
rection can come at anytime. All subsequent queries should be to the
redirected port.

7) In certain cases, the BIS may need more time to process boot in-
quiries, and thus it responds with a KeepAlive status. This response
is useful when the BIS information is stale or the BIS needs to val-
idate the requestor and thus the BIS takes an action that requires ad-
ditional time (such as querying a configuration manager, etc.). A
booting platform is not required to wait and thus the amount of time it
does wait is a policy of the booting platform.

8) The BIS eventually responds with boot information records for the
particular request (or the platform times out and jumps to step 10).

9) The booting platform attempts booting using the appropriate pro-
tocols, loading proprietary drivers as necessary. The ports that the
booting platform uses to access the ROM Repository, Console, and
boot loader are determined by the appropriate PortBootInfo priority
values.

10) If no suitable boot devices or services are found, the booting platform
might take one or more of the following actions, not necessarily in this
order:

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1434 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a) Query the next BIS (return to step 4)

b) Repeat the process for the next port (return to step 3)

c) Periodically query the SA looking for a new BIS ServiceRecord
(return to step 3) and repeat the process. If no new BIS, then retry
each BIS. This covers the case of a new BIS registering and also
a current BIS being updated with new information.

d) Report an error to the console

e) Send a Trap to the Boot Manager

f) Stall and await operator assistance

g) Continue with another boot resolution method (see Booting An-
nex).

A6.5 COMPLIANCE SUMMARY

This annex specifies a new Compliance Category (see Chapter 20:
Volume 1 Compliance Summary on page 1072 for explanation of compli-
ance categories and qualifiers). The new category is BIS-Server. There
are no Compliance Qualifiers.

In order to claim compliance to the InfiniBand Architecture Specification
for the Compliance Category of BIS-Server, a product shall meet all re-
quirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support (currently there are
no optional compliance qualifiers for this category).

CA6-1: Conform to Management Model Page 1410
CA6-2: Register with SA . Page 1411
CA6-3: Renew registration lease . Page 1411
CA6-4: MAD format . Page 1413
CA6-5: Response for No Matching Records Page 1414
CA6-6: Response to unsupported class version Page 1414
CA6-7: Response to unknown method Page 1414
CA6-8: Response to unsupported attribute Page 1415
CA6-9: Response to invalid parameter Page 1415
CA6-10: BIS methods . Page 1415
CA6-11: Multi-packet protocol . Page 1416
CA6-12: Response window size . Page 1416
CA6-13: Multi-packet request rejection . Page 1416
CA6-14: BIS attributes . Page 1418
CA6-15: Filter on BootPlatformUUID. Page 1421
CA6-16: BisQuery response for PlatformBootInfo. Page 1425
CA6-17: BisQuery response for PortBootInfo Page 1427
CA6-18: BisQuery response for Rom Repository Page 1427
CA6-19: BisQuery response for Console Page 1428
CA6-20: Response for Install Source Locator Records. Page 1430
CA6-21: Response for Boot Loader Locator Records. Page 1430
CA6-22: Response for Boot Loader Destination Records. Page 1430

In addition, a BIS must also be compliant with the general management
framework requirements from Chapter 13 specified in Section 20.12, “Op-

InfiniBandTM Architecture Release 1.2 Boot Information Service October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1435 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tional Management Agent Compliance Category,” on page 1116 and
Section 20.14, “Common MAD Requirements,” on page 1119.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1436 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A7: CONFIGURATION MANAGEMENT

A7.1 INTRODUCTION

This annex and Annex A8: Device Management defines the framework for
managing I/O units and assigning I/O Unit resources to client platforms.
The Device Management annex specifies the Device Management class
and the requirements for an I/O unit to support Device Management. This
annex describes the overall configuration management framework, spec-
ifies the Device Administration Class, and specifies the requirements for
a configuration management application that configures the I/O Unit (i.e.,
the Device Manager) and administers privileged configuration information
to client platforms (i.e., Device Administrator). The combination of the De-
vice Manager and Device Administrator is referred to as a Configuration
Manager.

This Annex:

• Explains the framework for managing the resources of an I/O unit
(i.e., I/O service objects) and assignment of those resources to
hosts (i.e. client platforms). The overall objective is to facilitate
multiple hosts sharing the same I/O unit. In this annex, a host that
is assigned I/O resources is referred to as a client platform.

• Specifies the role of a configuration manager, which performs two
main functions. It is a Device Manager (DM) that uses Device
Management (DevMgt) class MADs (see Annex A8: Device Man-
agement) to configure I/O units and it is a Device Administrator
(DA) that uses Device Administration (DevAdm) class MADs
(specified in this annex) to provide hosts with I/O configuration in-
formation and to coordinate I/O events (such as diagnostics and
hot plug),

• Defines the Device Administration management class, which
specifies the management interface (messages, methods, and at-
tributes) between Client Platforms and the DA.

I/O units are capable of providing I/O service to multiple clients. However,
it is desirable to control which I/O resources each client is permitted to
use. IB partitioning enforces isolation among systems sharing an Infini-
Band fabric, but does not provide for partitioning of the resources within a
node. Device Management in conjunction with Device Administration and
Communication Management (CM; see chapter 12) together extend the
IB Architecture to provide enforceable assignment of I/O resources to
multiple clients.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1437 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The Device Management class provides the means to configure an I/O
unit to specify which client platforms are permitted to access which I/O
services (by associating access keys with a set of I/O service objects).
The Device Administration class provides the means for client platforms
to get information (such as access keys) that enables those platforms to
use allocated services and to be notified about events that affect their use
of those resources.

A7.1.1 GLOSSARY

The following terms are in addition to the terms in Volume 1 Chapter 2:
Glossary on page 69.

Active Configuration Man-
agement

The usage model where there is a Device Manager that configures I/O
Units with access rights for Service Clients and thus restricts which clients
can see and use certain I/O resources. Also see Passive Configuration
Management. Device Management in conjunction with Device Adminis-
tration and Communication Management together provide enforceable
assignment of I/O resources to multiple clients.

Active Device Management Another term for Active Configuration Management.

Client_Key A key that a client passes to the I/O Unit in CM and DevMgt MADs. The
I/O Unit allows the client to access service objects based on the record in
the Client Pool Table that matches this key.

Client Platform A platform (one or more channel adapters under common control) that
hosts one or more Service Clients. Also see Figure 293 ”Configuration
Management Usage Model” on page 1443.

Client Pool Table A table in an I/O Unit that specifies the access rights of each client. Each
record specifies the list of service objects that a client is allowed to access
and specifies the I/O Unit CA resources, such as number of QPs, the
client may consume. Each record is identified by a unique Client_Key and
specifies the Supervisor_Key of the Client Platform that is permitted to
modify the record.

Configuration Group The set of I/O Units that are managed by the same Device Manager and
the set of Client Platforms that are permitted to use those I/O Units.

Configuration Management The act of configuring I/O Units to control which Service Clients may ac-
cess which of the IOU’s services and administering configuration informa-
tion to client platforms. See Device Management and Device
Administration.

Configuration Manager A manager that provides the Device Manager and Device Administrator
for a Configuration Group.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1438 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DA Device Administrator

DevAdm Device Administration class

Device Administration An IB management class for administering information about I/O Units to
Client Platforms.

Device Administrator A function of the Configuration Manager that administers configuration in-
formation to Client Platforms.

Device Management An IB management class for obtaining information about an I/O Unit’s re-
sources, configuring the I/O unit, and for managing diagnostics.

Device Management Agent An IB management agent in an I/O Unit that implements the Device Man-
agement class protocol. It provides information about the I/O Unit’s I/O re-
sources, can invoke diagnostics, and reports diagnostic results.

Device Manager An IB manager that configures an I/O Unit by setting the I/O unit’s Device
Management class attributes via the I/O Unit’s Device Management Agent
using DevMgt class MADs. As a class manager, it provides the means for
3rd parties to subscribe for DevMgt class event reports (i.e. Trap for-
warding). It also oversees I/O module hot plug and diagnostic sessions.

DM Device Manager

DevMgt Device Management class

DevMgt Agent Device Management Agent

Host See Client Platform

IOC I/O Controller

I/O Client A function or process on a Client Platform that uses an I/O service pro-
vided by an I/O Unit (i.e., the user of one or more I/O Service Objects).

I/O Controller A process or circuit of an I/O Unit that provides access to one or more I/O
Service Objects.

I/O Device An overloaded term that usually refers to an I/O Unit, an I/O Controller, an
I/O Service Object, or a Protocol Object. In this annex it refers to any phys-
ical or logical I/O component that an I/O Controller accesses on behalf of
an I/O Client, see Figure 308 ”Model for an I/O Unit” on page 1515 of
Annex A8: Device Management. An example of an I/O Device is a SCSI
disk drive behind a SCSI I/O Controller.

I/O Management Applica-
tion

A process running in a Client Platform41 that accesses an I/O Manage-
ment Object to create, configure, or destroy I/O Service Objects and/or set

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1439 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

I/O protocol-specific parameters. Also see Figure 309 ”I/O Components
and Relationships” on page 1517 of Annex A8: Device Management.

I/O Management Object A type of Service Object provided by an I/O Unit used to configure I/O Ser-
vice Objects and I/O Protocol-specific parameters. Not to be confused
with an IB Management Agent, the DevMgt class advertises the existence
of vendor supplied management objects that do not use the IB manage-
ment framework (i.e., do not use GMPs and QP1). Also see Figure 309
”I/O Components and Relationships” on page 1517 of Annex A8: Device
Management.

I/O Management Protocol The protocol between an I/O Management Application and an I/O Man-
agement Object, typically to manage I/O configuration such as installing
I/O Controllers or creating, destroying, and configuring Service Objects.
I/O Management Protocols are outside the scope of this annex, except
that DevMgt advertises the I/O Management Protocols supported by an
I/O Unit and its I/O Controllers.

I/O Module A permanent or removable subassembly of an I/O Unit that contains one
or more I/O Controllers. An I/O module is different from an IB module in
that it does not contain the channel adapter.

I/O Partition Any partition used to perform I/O. An I/O partition is defined as the set of
Client Platforms and I/O Units that share the same P_Key value for the
purpose of supporting I/O operation. An I/O partition exists by virtue of the
SM assigning to an I/O Unit, a P_Key value that permits a Client Platform
to access that I/O Unit. IBA requires a Client Platform to be a member of
one of the I/O Unit’s I/O partitions in order to use the I/O Unit.

I/O Port An overloaded term, in this annex it refers to a physical attachment to an
I/O fabric, for example a Fibre Channel port.

I/O Protocol The protocol between an I/O Client and an I/O Service Object to invoke
I/O operation and perform I/O transactions. I/O Protocols are outside the
scope of this annex, except that DevMgt identifies the I/O Protocols sup-
ported by an I/O Unit (i.e., its I/O Controllers).

IORM I/O Resource Manager

I/O Resource Manager A management function in a Client Platform that manages I/O resources
for that platform. Also known as the platform’s Supervisor. The Device Ad-
ministrator provides each IORM with a Supervisor_Key. The IOU allows

41. Typically, management applications run from an administrator’s machine.
For the purpose of accessing the I/O management object in the IOU, the
machine is considered a client because Device Management provides the
means for the Device Manager to configure which nodes may access specific
I/O management objects.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1440 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

the IORM access to DevMgt attributes based on the records that matches
this key. An IORM uses the key to read its Platform Pool Table record and
to modify the Client Pool Table records assigned to that platform to further
control which IOU resources each of its clients may access.

I/O Service Object A type of Service Object provided by an I/O Controller that permits an I/O
Client to access a set of I/O functions or I/O Devices via an I/O Protocol
(see Figure 309 ”I/O Components and Relationships” on page 1517 of
Annex A8: Device Management). Each I/O Service Object uses a different
set of QPs. That is, an I/O client uses a different channel to access each
service object.

IOU I/O Unit

I/O Unit A node that implements a Device Management Agent. It normally con-
tains one or more I/O Controllers and provides I/O service.

Passive Configuration Man-
agement

A usage model where there is not a Device Manager that configures I/O
Units. Management uses only partitions (P_Keys) to control which nodes
may access an I/O unit and thus see and use its I/O resources. For pas-
sive management, if a node has access to an I/O Unit, then any I/O Client
on that node has access to all I/O resources provided by that I/O unit. Also
see Active Configuration Management.

Passive Device Manage-
ment

Another term for Passive Configuration Management.

Platform Pool Table A table of records in an I/O Unit where each record specifies the access
rights of a Client Platform (i.e., list of service objects that each platform is
allowed to access and specifies the I/O Unit CA resources, such as
number of QPs, the platform may consume). Each record is identified by
a unique Supervisor_Key.

Protocol Object A logical I/O entity that is accessible through an I/O Service Object. The
means to discover and address a protocol object is I/O Protocol specific.
An example of a Protocol Object is a SCSI logical unit, which is distin-
guished by its SCSI logical unit number (LUN) in the SCSI protocol
packet. Protocol Objects are outside the scope of Devmgt. That is, I/O cli-
ents use DevMgt to identify I/O Service Objects and then communicate
with each I/O Service Object via its I/O Protocol to identify and address
Protocol Objects.

Service Client An entity such as an I/O Client or I/O Management Application that com-
municates with a Service Object, usually for the purpose of performing I/O
operations or configuring the I/O service.

Service Object An addressable entity in an I/O Unit, such as an I/O Service Object or I/O
Management Object, that provides some type of service to a Service

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1441 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Client. Thus, it is a port through which a client can access Protocol Ob-
jects or manage I/O devices. The characteristics of a Service Object is
that it consumes at least one QP and it does not share its QPs with other
Service Objects. That is, Service Objects are addressed via their QPs.

Supervisor The entity on a Client Platform (a.k.a. I/O Resource Manager or IORM)
that manages I/O clients on that platform.

Supervisor_Key A key a supervisor (i.e., the IORM of a Client Platform) passes to an I/O
Unit that the I/O unit compares to keys in the I/O unit’s Platform Pool
Table. The I/O unit allows the IORM access to DevMgt attributes based on
the record that matches this key. IORMs use the key to read its Platform
Pool Table record and to modify Client Pool Table records associated with
that Supervisor_Key to further control which I/O unit resources each of its
clients may access.

A7.1.2 COMPLIANCE

This annex specifies compliance requirements for a configuration man-
ager (Device Manager and its Device Administrator) and for client plat-
forms.

This annex specifies two new Compliance Categories (see Chapter 20:
Volume 1 Compliance Summary on page 1072 for explanation of compli-
ance categories and qualifiers). The new categories are:

• Configuration Manager - the application that provides the Device
Manager and the Device Administrator for a configuration group)

• Client Platform - a platform that uses an I/O units’s resources.
There are two Compliance Qualifiers for the Configuration Manager cate-
gory and no Compliance Qualifiers for the Client Platform category. The
compliance categories for Configuration Managers are:

• PERS - The manager persistently saves client contexts such as
subscriptions and diagnostic sessions across reset, restarts, and
power cycles.

• FAILOVER - The manager supports graceful failover such that if
the manager fails and a standby manager takes over, the new
manager inherits the client context (subscriptions and diagnostic
sessions) from the old manager.

Section A7.7 Compliance on page 1503 provides a summary of compli-
ance statements.

A7.2 OVERVIEW

When an IOU can be accessed by multiple client platforms, there is a
need for a management entity (i.e., a Configuration Manager) that admin-

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1442 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

isters assignment of service objects to the various client platforms and co-
ordinates actions that might impact the client platforms, such as invoking
diagnostics and hot plugging an I/O module.

Assignment of IOUs to client platforms is not a one to one relationship and
needs to take into consideration sharing aspects. An IOU is considered
shared when more than one client platform has access to that IOU’s re-
sources.

[Editorial Note:For the simple case, each client platform is a host
platform running an operating system that supports multiple clients which
initiate I/O transactions, but in elaborate I/O architectures, an IOU could
also be an initiator of I/O requests to another IOU, and therefore, for the
purpose of managing the relationships between those IOUs, the initiating
IOU is considered a client platform. Thus, Device Management / Device
Administration controls the client platform / IOU relationship and any
node that needs access to an IOU’s service object is considered a client
platform.

To enable graceful sharing of an IOU between independent client plat-
forms, a Configuration Manager becomes necessary and it:

a) Acts as the central class manager for DevMgt agents of IOUs in
the configuration manager's configuration group.

b) Provides each client platform with information necessary for that
platform to locate and use I/O services by passing out lists of
IOUs and access keys to each client platform

c) Provides a central service for maintaining I/O assignment infor-
mation and:

iii) Provides centralized control for approving a Diagnostic Ses-
sion.

iv) Provides I/O module Hot Plug/Removal notification to affected
clients

v) Performs I/O resource polling functions that would otherwise
be replicated by each client platform

The Configuration Manager in conjunction with the Device Management
Agent provides:

• Individually assigning each service object of an IOU to one or
more client platforms.

• Notifying client platforms about configuration changes and config-
uration events.

• Mechanism for graceful insertion and removal of I/O-Modules
(hot plug and hot swap).

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1443 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Coordination of diagnostics.
• An efficient scalable means for client platforms to discover appli-

cable IOUs and to query for configuration information.
• The means for client platforms to discover IOUs on other subnets.

A7.2.1 OBJECTIVE

The goals of the configuration management framework are:

• Provide the means for a Configuration Manager to allocate I/O re-
sources by configuring each IOU, specifying which service ob-
jects and associated resources that each client platform may use.

• Allow each client platform’s OS the ability to allocate those re-
sources to clients within that platform, specifying which subset of
those service objects and resources each client may use.

• Enforce allocations such that client platforms and their clients
cannot consume resources for which they are not authorized.

• Coordinate events that affect multiple client platforms.

A7.2.2 USAGE MODEL

The Configuration Manager is an InfiniBand management facility that
manages relationships between client platforms and I/O resources within
a managed IOU. It is composed of a Device Manager (DM) and a Device
Administrator (DA), which are described as two separate entities as a
matter of architectural convenience (see Figure 293 on page 1443).

Figure 293 Configuration Management Usage Model

DevMgt Class

Device
Manager

Device
Management

Agent
IORM

DevM
gt ClassDe

vA
dm

 C
la

ss

Other
parties

DevMgt Class

Dev
Mgt

 C
las

s

I/O Unit

Configuration Management

Client Platform

Clients Service
Objects

De
vM

gt
 C

la
ss

Tr
ap

 su
bs

cr
ipt

ion
,

cr
ea

te
 di

ag
no

sti
c

se
ss

ion
s.

Manage clients’ access
rights, get service object
info, perform diagnostics.

, P
er

fo
rm

 d
ia

gn
os

tic
s.

M
anage platform

s’

access rights, P
riv

ile
ge

d
In

fo

Device
Administration Trap subscription,

create diagnostic
sessions.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1444 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA is the complement to the DM. The DM uses DevMgt class
MADs42 to configure each IOU with information describing which plat-
forms may access which service objects. It does this by setting Platform
Pool Table records in each IOU (one record per client platform), identified
by a unique supervisor key). Each Platform Pool Table record specifies
which service objects and I/O resources the platform may use.

.

Before a client platform can query the DA, the platform's I/O resource
Manager (IORM) must first login to the DA so that the DA can validate the
client platform and assign it a RequesterID. The IORM uses that Reques-
terID in subsequent DevAdm MADs.

The IORM may then query the DA for information about IOUs it is per-
mitted to use using DevAdm MADs. The IORM is a privileged process on
a client platform that uses a special privileged Q_Key to query the DA for
privileged information about I/O resources for that platform. Specifically,
the DA provides the IORM with a list of IOUs and Supervisor_Keys. The
Supervisor_Key authorizes the IORM to access the IOU and read that
platform’s Platform Pool Table record (to learn which resources it may
use) and to configure IOU Client Pool Table records assigned to that plat-

42. The DevMgt Annex describes all of the DevMgt attributes including the
communication between clients and the Device Manager for trap subscriptions
and forwarding (requirements for trap forwarding are specified in this annex).

Figure 294 Configuration Management Functions and Relationships

SASubnet Administration

Configuration Mgt

Subnet Evt Sub and
Notification

S
ub

ne
t/A

dm
 C

la
ss

DevAdm Class

Client Platform

IOC

I/O Unit

DevMgt Agent

DevMgt Class

D
ev

M
gt

 C
la

ss

IOC

Configuration Query

DevMgt Evt Sub
and Notification

DevMgt Trap Handler ClassPortInfo
Traps

IOC Profile
IOUnitInfo

Configuration

DevMgt Class
IORM

Service Records
Protocol Records

Application

Pool Tables

DIAG SESSION

Config Evt Sub
and Notification

ServObj

ServObj

ServObj

D
A

D
M

Diagnostic
Coordination

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1445 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

form. Each Client Pool Table record is identified by a Client_Key and
specifies which of the resources assigned to the platform that a client
using that Client_Key is allowed to use.

The IORM then distributes client keys to its clients as necessary. Each
client uses its client key to access the IOU using DevMgt MADs to read
information about service objects associated with that client key. The
client also uses that key when creating a connection with the service ob-
ject. Refer to the Device Management Annex for details on how the IORM
uses its supervisor key and provisions an IOU with client access privi-
leges.

It is important that only the platform’s IORM, and not the platform’s clients,
have access to the platform’s supervisor key. Thus, DevAdm uses a spe-
cial privileged Q_Key. Since the OS controls who can use privileged
Q_Keys, the OS has the means to prevent its clients from querying the DA
to learn privileged information. In addition, the DA validates the identity of
the client platform before providing that platform with any configuration in-
formation (see A7.6.3.4 "LogIn" on page 1491) and only provides informa-
tion for that platform.

The DA also coordinates events such as I/O module hot-plug/removal and
diagnostics with client platforms that are assigned service objects affected
by those events. The DA notifies affected clients via Event Subscription
and Notification, and the response from the clients determine whether the
DM continues with the hot plug or diagnostic session.

In addition, the DM provides an interface (using DevMgt MADs) that is
used by both client platforms and other managers to subscribe to DevMgt
class traps and to create diagnostic sessions. Thus, client platforms and
other managers use DevMgt class to access the DM function of the Con-
figuration Manager.

A7.2.3 CONFIGURATION MANAGEMENT APPLICATION

A configuration manager consists of a DM and its associated DA. The De-
vice Management class provides mechanisms (methods and attributes)
for a DM to configure IOUs and the means for client platforms to query the
IOU about those service objects that the DM had configured for that plat-
form (see Annex A8: Device Management).

The Device Administration class provides mechanisms (methods and at-
tributes) to enable an IORM to query the DA to retrieve supervisor keys
and for the DA to report configuration changes to the IORM.

A7.2.3.1 PASSIVE MANAGEMENT

It is not always necessary to have a Configuration Manager (i.e., a DM
and DA). The term “Passive Configuration Management” refers to a fabric

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1446 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

designed to function without a configuration manager. Passive manage-
ment is typical in a subnet where each IOU is dedicated to a single client
platform (example: each IOU configured for a single partition containing a
single client platform) or where all clients in that partition have equal ac-
cess to all of the IOU’s resources. Except for the most trusted environ-
ments, a Configuration Manager is needed when IOUs are shared among
multiple clients. For passive configuration management, DevMgt class de-
faults (i.e., KeyInfo:ProtectBits) allow any client platform that can access
an IOU (i.e., has the proper P_Key) to access to all of the IOU’s Device
Management information and I/O resources.

A7.2.3.2 ACTIVE MANAGEMENT

For active device management there is a configuration manager that pro-
vides a DM and a DA.

In general, a DA:
• Provides each IORM with a list of its IOUs and supervisor keys.
• Notifies client platforms when IOUs, IOCs, or service objects come

on-line or go off-line.
• Notifies client platforms about changes in configuration.
• Manages hot plug events - notifying client platforms when one or

more I/O Controllers are to be removed.
• Notifies client platforms about diagnostic sessions.
And Client Platforms and other managers use the DM to:
• Register for and receive reports of IOU generated DevMgt Traps.
• Request a diagnostic session with an IOU.

A7.2.3.3 MULTIPLE MANAGERS

Configuration Management supports the concept of multiple configuration
managers for the following reasons.

• Segregated resources - when a fabric is divided into two or more
independent configuration groups, each group will have its own
logical Configuration Manager, independent of the other groups
as illustrated in Figure 295 on page 1447.

• Redundancy - standby Configuration Managers monitor active
managers, ready to takeover in case of failure as illustrated in
Figure 296 on page 1448. Only the active DM registers with the
SA, so a client platform does not see standby Configuration Man-
agers.

• Distributed management - for large fabrics, having multiple De-
vice Managers help balance the workload. In this case, the dis-
crete managers cooperate to form a single logical Device
Manager. This means that two clients of the same configuration
group might not see the same DM / DA as illustrated in Figure
297 on page 1448.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1447 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A client platform (IORM, I/O client, I/O management application) might
see multiple DMs (one for each partition) if it belongs to multiple groups
(e.g., ‘Client Platform n’ in Figure 295). Since a DM might register for mul-
tiple partitions, it is possible for a client platform that only belongs to a
single configuration group to get multiple ServiceRecords for the same
DM when it queries the SA to locate the DM. When a client platform does
get multiple ServiceRecords, it can query each DM for the DAInfo attribute
and the ConfigGroupID in the DAInfo Attributes will indicate which DMs
serve different configuration groups.

Client
Platform

IOU

Configuration
Group 1

Partition x

Client
Platform

Client
Platform

Configuration
Manager B
DA DM

Configuration
Manager C
DA DM

Configuration
Manager A
DA DM

Client
Platform

Client
Platform

Client
Platform n

Client
Platform

Client
Platform

IOU

IOUIOU

IOUIOU

IOUIOU

IOUIOU

IOUIOU

Configuration
Group 2

Partition y

Configuration
Group 3

Partition z

Figure 295 Multiple Configuration Group Example

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1448 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 296 Standby Configuration Manager Example

Configuration
Manager

Client
Platform

IOU

Configuration
Group

IOU

IOUIOU

IOU IOU

IOU

Client
Platform

Client
Platform

DA DM

Standby
Configuration

Manager

Client
Platform

Client
Platform

Client
Platform

Client
Platform

Client
Platform

Client
Platform

IOU

IOU

IOU

IOU

IOU

IOU

IOU IOU

Figure 297 Distributed Configuration Manager

Configuration Management Application
Node A

Client
Platform

IOU

Configuration
Group

IOU

IOUIOU

IOU IOU

IOU

Client
Platform

Client
Platform

DA DM DA DMDA DM

Client
Platform

Client
Platform

Client
Platform

Client
Platform

Client
Platform

Client
Platform

IOU

IOU

IOU

IOU

IOU

IOU

IOU IOU

Node B Node C

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1449 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Unlike the SM/SA, there does not need to be a DM/DA per subnet. That
is, one configuration manager can handle multiple subnets. However, it
might be desirable to provide a configuration manager per subnet. For ex-
ample, each DM/DA in Figure 297 might serve a different subnet. In this
case, each DM would register [via SubnAdmSet(ServiceRegistration)] on
its own subnet and directly manage the IOUs on its own subnet, with the
understanding that all the DM/DAs coordinate privately and appear as a
single configuration manager. Thus, a client platform queries its DA to lo-
cate all of its I/O resources, even if those IOUs are on a different subnet.

A7.3 CONFIGURATION MANAGEMENT OPERATIONAL MODEL

The Configuration Manager is a management facility that appears as a
service (i.e., the DA) to client platforms and as a class manager (i.e., the
DM) for DevMgt Agents as illustrated in Figure 298 on page 1449. Each
client platform is able to access IOUs directly using DevMgt class MADs.
However, it is the Configuration Manager (i.e., the DM) that has the re-
sponsibility and the authority (by way of the Manager_Key) to initially con-
figure the IOU and assign resources to client platforms. And it is the DA
that provides client platforms with the keys that they need to manage the
resources assigned to the client platform.

Configuration
Management
Application
(DA + DM)

IO Unit

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

DevMgt Agent
IO Unit

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

DevMgt Agent

Client
Platform

IO Unit

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

IO
 C

on
tr

ol
le

r

DevMgt Agent

Client
Platform

Client
Platform

Configuration

DevMgt &
DevAdm class

DevMgt class

Figure 298 Configuration Management Operational

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1450 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Configuration management provides the means to manage the sharing of
service objects and other IOU resources by client platforms. The Config-
uration Manager performs common maintenance functions to build and
maintain its configuration information, thus providing client platforms with
a single interface (the DA) for acquiring information about IOUs. Each
platform’s IORM has privileged access to that platform’s configuration in-
formation and supervises that platform’s I/O operation by directly config-
uring client pools on each IOU and providing its clients with the
information they need to directly access the IOU’s services.

A Configuration Manager reduces resource management complexity by
providing client platforms with a central facility that handles event notifica-
tion and coordination as follows.

• The DM provides subscription service that allows client platforms
to subscribe for DevMgt Traps.

• The DM provides the interface for requesting a diagnostic session
with an IOU.

• The DA provides a notification service that informs client plat-
forms about configuration changes, I/O module hot plug/removal
events, and diagnostic sessions.

• Together, the DM & DA provide coordination for I/O management
actions such as I/O module hot plug/removal and system configu-
ration change.

• The Configuration Manager reduces management traffic by pro-
viding a central agent that performs polling functions that other-
wise would have to be performed by each client platform. For
example, the Configuration Manager detects when IOUs or IOCs
come on-line and report those events to client platforms.

A7.4 CONFIGURATION MANAGEMENT CHARACTERISTICS

A7.4.1 CONFIGURATION DOMAIN

1) The term ‘configuration group’ denotes the set of IOUs assigned to
a Configuration Manager. Thus, by definition a Configuration Man-
ager manages exactly one configuration group. This term is used for
describing the scope of responsibility for a Configuration Manager.

2) An IOU belongs to only one configuration group, the one that sets the
IOU’s Manager_Key. This is necessary because IOU traps can only
be sent to one destination (i.e., one DM). For the case where an IOU
has multiple ports, each port is capable of sending traps to a different
DM. However, those DMs need to cooperate in some fashion for in-
formation to be accurate. Cooperating DMs are, for all practical pur-
poses, one logical DM.

3) Each configuration group is identified by a ConfigGroupID.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1451 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

4) A Client Platform may have access to multiple configuration groups
as permitted by the client platform’s P_Key table. That is, it could see
multiple Device Managers, each managing a different configuration
group. It might also see multiple managers serving the same configu-
ration group.

5) If an IOU is not in the Configuration Manager’s configuration group,
the default policy is that the Configuration Manager does not auto-
matically acquire it, since that IOU might already be a member of an-
other configuration group. How an IOU gets added to a Configuration
Manager’s configuration group is outside the scope of this annex.

6) Logically, there is only one DM and DA for a particular configuration
group. There may be standby managers and/or the functionality
might be distributed. However, client platforms are not aware of
standby managers.

A7.4.2 PARTITION USAGE

7) The proper partitioning must be in place which allows the IORM to
communicate with the Configuration Manager, the Configuration
Manager to communicate with the IOU, and the client to commu-
nicate with the IOU.

8) For the purpose of explaining the architecture, an ‘I/O partition’ is
defined as the set of client platforms and IOUs that share the same
P_Key value for the purpose of supporting I/O operation. Either the
client platforms or the IOUs (or both) have full membership capability
as defined by the most significant bit of their assigned P_Key value.
Thus, an I/O partition exists by virtue of the SM assigning the same
P_Key value to an IOU and a host.

9) A single Configuration Manager may manage I/O resources for mul-
tiple I/O partitions and the Configuration Manager does not need to
be a member of each I/O partition. For example, there could be one
partition where the Configuration Manager has full membership and
each IOU has limited membership as determined by the most signif-
icant bit of the P_Key. The purpose of this partition is communication
between the DM and the DevMgt Agent and not for I/O. Of course,
IOUs that support Device Management should provide multiple en-
tries in its P_Key tables (one for the Configuration Manager and one
for each I/O partition). Otherwise, the Configuration Manager would
need to be a member of each I/O partition.

10) The partition that a client platform uses to access the DA does not
need to be a partition that the platform uses to access IOUs. For ex-
ample, there could be one partition where the DA has full mem-
bership and each client platform has limited membership as
determined by the most significant bit of the P_Key. This could be the
same partition that the DM uses to communicate with DevMgt
Agents.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1452 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

11) There can be multiple paths because of partitioning. When more than
one I/O partition exists between a client platform and an IOU, se-
lection resides with the client platform, and may be governed by path
information provided by the SA.

12) The Configuration Manager obeys partition rules. This does not
prevent the Device Manager from forwarding information such as no-
tices using a different partition, but the Configuration Manager does
verify that a subscribing platform is permitted access as per Chapter
13 “Management Model” section 13.4 “Management Datagrams”
subsection titled “Event Forwarding”.

A7.4.3 SA USAGE

13) The DM registers with the SA so that client platforms and other man-
agers can locate the Configuration Manager.

14) The DA uses SA services to detect IOUs that come on-line so it can
report those events to client platforms. It also monitors traps from
IOUs to detect IOCs that come on-line so it can report those events to
client platforms.

A7.4.4 MANAGER INTERACTION

15) How a Configuration Manager stores its data and the communication
between an active and a standby manager is outside the scope of
this specification. It is expected that a single vendor provides both the
active and standby managers for a particular configuration group.

16) This annex does not specify the protocol between standby and active
managers, nor does it specify how a master DM is elected. It is ex-
pected that a single vendor provides both the active and standby
managers for a particular configuration group.

17) The Configuration Management framework does provide for multiple
independent Configuration Managers, each serving a different config-
uration group. Communication between Configuration Managers that
serve different configuration groups is not necessary.

A7.5 CONFIGURATION MANAGEMENT OPERATION

Configuration management is an IB management application that an ad-
ministrator uses to manage which I/O resources may be used by which
client platforms as illustrated in Figure 294 "Configuration Management
Functions and Relationships" on page 1444.

The Configuration Manager interacts with the SubnAdm (SA) agent of the
SM, with DevMgt class agents of IOUs under its control, and with the client
platforms which it serves.

Typically, a Configuration Manager uses SA services to detect IOUs
coming on-line and uses IOU traps to discover IOCs coming on-line, noti-
fying client platforms appropriately.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1453 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This section specifies the overall operation for the Configuration Manager.
The following section (A7.6 "DevAdm Class Definition" on page 1471)
specifies the wire level protocol for the DA portion of the Configuration
Manager and Annex A8: Device Management specifies the wire level pro-
tocol for the DM portion of the Configuration Manager.

A7.5.1 INTERACTION WITH SUBNET MANAGER

Configuration Management complements subnet management, but the
Configuration Manager is not necessarily collocated with the SM or SA. In
fact, there may be multiple Configuration Managers per subnet and a
single Configuration Manager can span several subnets.

The I/O partitions, partitions used for client platform to DA communica-
tions, and partitions used for DM to IOU communications are subject to
subnet management policy. For example, there might be one partition that
all client platforms use to access the DM / DA, or perhaps a different par-
tition per client platform. One use of partitioning would be a single partition
dedicated for configuration management where the DM / DA has full
membership (as per the P_Key msb) and all client platforms and IOUs are
limited members and thus can only communicate with the DM / DA (not
each other). Additionally, assignment of I/O resources to client platforms
requires appropriate I/O partitions.

Thus, Configuration Management is dependant on partitioning created by
the SM. How a Configuration Manager coordinates partition usage with
the SM is outside the scope of this document.

A7.5.2 INITIALIZATION AND SA REGISTRATION

The configuration management framework supports multiple Configura-
tion Managers per subnet. Each Configuration Manager registers with the
SA so that client platforms and interested parties can locate it.

The DM function of the Configuration Manager registers with the SA via
the SubnAdmSet(ServiceRecord) as specified in 15.2.5.14 Service-
Record on page 895, to advertises it’s location. Client Platforms and Inter-
ested parties that choose to subscribe to DevMgtTraps can find DMs by
querying the SA. The client can then query the DM to get the Config-
GroupID and the address of the DA.

The DM uses the well-known management Q_Key 8001_0000. Thus, any
agent on any node allowed to use that Q_Key can subscribe with the DM
for DevMgt traps. Once a client platform locates the DM, it can send a
DevMgtGet(DAInfo) to the DM to get the address (LID/GID/QPN) of the
DA. The DA uses the special Q_Key 8001_0001, which is reserved for DA
to IORM communications. The OS should only permit the IORM to use
this Q_Key, so that only the IORM can communicate with the DA on behalf
of that platform.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1454 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-1: A DA shall not respond to DevAdm MADs that do not use the
special DevAdm Q_Key.

If redundant managers exist, they are expected to be provided by the
same vendor. Thus, the protocol that redundant managers use to validate
that they serve the same configuration group, how they elect a master,
and how they coordinate and maintain consistency is outside the scope of
this document.

CA7-2: A Device Manager shall register its services with the SA via Sub-
nAdmSet(ServiceRecord) using the ServiceName “DeviceManager.IBTA”
prior to sending a DevMgtSet(KeyInfo) to a DevMgt agent. See 15.2.5.14
ServiceRecord on page 895 and Service Names in Annex A3 “Application
Specific Identifiers”. If the Device Manager is configured for multiple par-
titions, it shall register once for each partition.

If the SA rejects a Device Manager’s registration, it means that the Device
Manager is not authorized to operate on that subnet.

CA7-3: If the SA rejects a Device Manager’s SubnAdmSet(Service-
Record), the Device Manager shall not send DevMgtSet(KeyInfo) to any
IOUs on that subnet.

The Device Manager is responsible for periodically renewing its lease with
the SA to prevent the SA from dropping its Service Records
(see15.2.5.14.3 ServiceLease on page 898).

CA7-4: The Device Manager shall renew its registration lease by reregis-
tering with the SA before its service lease expires.

When the configuration management application is distributed over mul-
tiple nodes (i.e., distributed management), only one node registers as a
Device Manager per partition per subnet. That node can distribute the
workload by using MAD redirection if desired.

A standby Device Manager that transitions to active should register itself
with the SA and remove the old registration.

A7.5.3 COHERENCY BETWEEN CONFIGURATION MANAGERS

A Configuration Manager establishes DevMgt ownership of an IOU by set-
ting the IOU’s Manager_Key via a DevMgtSet(KeyInfo). If the Configura-
tion Manager is unable to set the Manager_Key it means that another
manager has ownership. There are a number of reasons for such a situ-
ation and this annex does not address how to remedy this situation other
than suggesting that the Configuration Manager report the conflict
through a user or management interface. Such an interface is outside the
scope of this specification.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1455 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-5: When two DMs have the same ConfigGroupID, they shall work in
unison and provide the same information and service to a client platform
as if they were two different ports of the same DM.

CA7-6: If the DM is not able to establish control of an IOU by setting the
IOU’s Manager_Key, then the Configuration Manager shall not include the
IOU or any information regarding the IOU in any communication with client
platforms.

CA7-7: Should a DM be elected master DM, its DA shall also be implicitly
elected master. If a DM ceases to be master, its DA shall cease to be
master.

CA7-8: Should a DM cease being the Master DM (e.g., transitions from
master DM to standby DM), it shall reject DevMgtGet() requests using
MAD Header Status [8:15] = 'NotMasterDM' and cease sending DevMgt-
TrapRepress() and DevMgtReport() messages.

CA7-9: Should a DA cease being the Master DA (e.g., transitions from
master DA to standby DA), it shall reject DevAdmGet() requests using
MAD Header Status [8:11] = 'Not Master DA' and cease sending DevAd-
mReports()s.

For distributed management, multiple Device Managers may attempt to
access the same IOU. Access to that IOU should be serialized to prevent
race conditions and integrity issues that result when multiple Device Man-
agers are reading and writing attributes at the same time. One way to
achieve atomic access is by the Device Manager temporarily changing
the KeyInfo:Manager_Key before it performs any other DevMgtSet()s and
then change it back when it is done. Thus, if a Device Manager is not able
to change the key, it means that another manager performing an update.

A7.5.4 ACTIVE VS. PASSIVE CONFIGURATION MANAGEMENT

For environments that do not contain a Configuration Manager (i.e., no
DM / DA), a client platform needs to be able to discover and use IOUs
(passive management). When a DM /DA is present (active management),
a client platform cannot arbitrarily use IOUs. If the client platform deter-
mines that there is no DM, then it can use IOUs that have the IOUnit-
Info:IsActivelyManaged bit set to zero. This bit is automatically set when
the DM sets the IOU’s Manager_Key to a non-zero value.

CA7-10: A Client Platform shall not access a service object unless either
a DM / DA has assigned that service object to the client platform or the
IOU’s IOUnitInfo:IsActivelyManaged bit is zero.

Only the SM and DM should have access to an IOU prior to the DM setting
the IOU’s Manager_Key and configuring the IOU’s pool tables. Otherwise,

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1456 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

there could be a potential race condition where a client platform emerges
before the Configuration Manager, incorrectly determines that an IOU is
not actively managed, and thus attempts to use IOUs. In an ideal subnet,
the SM does not configure an IOU with I/O partitions until after the DM
configures the IOU. This prevents a client platform from seeing un-man-
aged IOUs, and thus prevents conflicts.

Because coordination between SM and the Configuration Manager is not
guaranteed, a Client Platform should wait for a sufficient time interval be-
fore using an IOU. For passive management, it is desirable that the in-
terval be extremely small and for active management, it is desirable the
interval be extremely large. Thus, such a parameter is subject to local
policy. It is recommended that a client platform persistently remember if a
DM / DA previously existed and set its time-out accordingly.

A system administrator should be able to add new equipment to a subnet
with minimal risk and without requiring the system administrator to con-
figure the equipment before installing it. Thus, the factory default timeout
for determining passive management mode should be long.

CA7-11: The factory default time that a client platform waits before it de-
termines passive management and starts to use IOUs shall be no less
than 2 minutes.

A7.5.5 DEVICE MANAGER OPERATION

The DM uses DevMgt class MADs (methods and attributes) to set and re-
trieve IOU DevMgt information. The DM communicates with the DevMgt
agent by sending a DevMgtSet() or a DevMgtGet() to the DevMgt agent
and the DevMgt agent responds with a DevMgtGetResp(). The DevMgt
agent also sends DevMgtTrap()s to the Device Manager repeating each
trap until the Device Manager responds with a DevMgtTrapRepress().

CA7-12: DevMgt class datagrams shall conform to the MAD format and
use as specified in 13.4 Management Datagrams on page 717 and further
specified in Annex A8: Device Management Figure 316 Device Manage-
ment MAD Format on page 1530 and Table 447 Device Management
MAD Fields on page 1531.

CA7-13: The datagrams for the DevMgt and DevAdm class shall conform
to the Common MAD requirements as specified in 20.14 “Common Mad
Requirements”.

CA7-14: A DM shall respond to MADHeader:ClassVersion values as per
Annex A8: Device Management Table 448 "Class Version" on page 1532

CA7-15: The DM shall not check the MADHeader:Access_Key in any re-
ceived DevMgt class MAD.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1457 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

One way for a Configuration Manager to determine if a DevMgt agent re-
sides on an IOU is to query the SA using SubnAdminGet(PortInfoRecord)
for any port on the IOU. By inspecting the CapabilityMask:IsDeviceMan-
agementSupported in the PortInfoRecord query returned by the SA, the
Configuration Manager determines if the DevMgt agent exists. If so, the
Device Manager can determine if the DevMgt agent supports Traps or No-
tices by testing if DevMgtGetResp(ClassPortInfo:CapabilityMask(0)) = 1b
and DevMgtGetResp(ClassPortInfo:CapabilityMask(1)) = 1b respectively.
Note that version 2 of Device Management requires DevMgt Agents to
support Traps. Traps allow the DevMgt agent to notify the Device Man-
ager of events such as security violations and changes to the IOU’s I/O
capability.

Third parties can register to receive DevMgt Management Traps by is-
suing a DevMgtSet(InformInfo) to the Device Manager (see 13.4.3.8 “In-
forminfo”). When a trap event occurs on the IOU, the IOU sends a
DevMgtTrap(Notice) to the Device Manager. The Device Manager for-
wards the Trap to the third party through the DevMgtReport(Notice). For
more information on DevMgt Management Traps see the DevMgt Annex.

A Device Manager supervises diagnostic sessions. Clients and other
management programs have to request a diagnostic session by sending
a DevMgtSet(DiagSession) to the DM. If the DM approves, the DA notifies
the affected clients and then DM sets up the diagnostic session with the
IOU by sending a DevMgtSet(DiagSession) to the IOU. The diagnostic ini-
tiator invokes the diagnostics by sending DevMgt MADs directly to the
IOU. When the diagnostic initiator finishes testing, it terminates the ses-
sion by sending a DevMgtSet(DiagSession) to the DM, which terminates
the session by sending a DevMgtSet(DiagSession) to the IOU and then
the DA notifies client platforms that the testing has ended via IOC On-Line
reports (see A7.5.9 Diagnostics on page 1468 for details).

A7.5.6 PROTECTING THE MANAGER_KEY

By definition, when a node sets the Manager_Key in an IOU, it becomes
the DM. Once the node becomes the DM controlling an IOU it has the re-
sponsibility to periodically access the IOU so that the IOU knows that the
DM is active and has not failed. The IOU’s Manager_Key lease period is
the mechanism to allow another DM to take control in case the current DM
fails.

A Device Manager sets the IOU’s KeyInfo:ProtectBits to protect against
others learning the IOU’s KeyInfo:Manager_Key. However, these bits are
subject to being reset if the Manager_Key lease period expires, which
could allow unauthorized access. A DevMgt agent resets its lease period
timer when it receives a MAD with KeyType=DM and a valid MAD-
Header:Access_Key. Thus, a Device Manager can protect against unau-
thorized access by sending each of its DevMgt agents a DevMgt MAD

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1458 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

with a valid MADHeader:Access_Key before the DevMgt agent's
Manager_Key lease period expires.

CA7-16: When a Device Manager sets a non-zero KeyInfo:Manager_Key
and non-zero KeyInfo:ProtectBits in an IOU, the Device Manager shall
continuously reset the lease period counter by sending a DevMgt MAD
with MADHeader:Access_Key equal to the IOU’s KeyInfo:Manager_Key
at an interval less than the lease period.

A7.5.7 I/O UNIT TRAP FORWARDING

Device Management uses the event reporting framework defined in
chapter 13 (see 13.4.9 Traps, 13.4.10 Notice Queue, and 13.4.11 Event
Forwarding).

A7.5.7.1 CONFIGURING IOUS FOR TRAPS

The DM configures each IOU in its configuration group so that the IOU
sends DevMgt class traps to the DM. It does this by setting the TrapGID,
TrapTC, Trap FL, TrapHL, TrapLID, TrapQP, TrapQ_Key, TrapSL, and
TrapP_Key components in the DevMgtSet(ClassPortInfo) of at least one
port of each IOU.

CA7-17: The Device Manager shall set the ClassPortInfo Trap compo-
nents of the DevMgt Agent for each IOU in its configuration group such
that the DevMgt agent sends DevMgtTrap()s to the Device Manager.

CA7-18: When a Device Manager receives DevMgtTrap(), it shall re-
spond with a DevMgtTrapRepress().

A7.5.7.2 TRAP SUBSCRIPTION / REPORTING

A node may subscribe for DevMgt Trap forwarding by issuing a
DevMgtSet(InformInfo) to the DM. The LID Range and GID in the Inform-
Info attribute indicates for which IOU the client is interested in receiving
Report()s. Note that when subscribing and unsubscribing for the Heart-
beat, the GID and LID Range components in the InformInfo is irrelevant
and thus the client should set GID, LIDRangeBegin, LIDRangeEnd to
zero, 0xFFFF, & zero respectively and the DA shall ignore those compo-
nents.

When the DM receives a DevMgtTrap(), it forwards the trap to subscribed
parties via the DevMgtReport(Notice) with the exception of traps listed in
Table 423: Privileged Traps. Traps in Table 423 are considered private
and must not be forwarded except as indicated in the table.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1459 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-19: When a Device Manager receives a DevMgtTrap() not listed in
Table 423 "Privileged Traps", it shall generate a DevMgtReport() to all par-
ties that have subscribed with the Device Manager for that notice if a GID
of the IOU matches the InformInfo:GID or the IOU has a LID that falls in
the range of the InformInfo: LIDRangeBegin – LIDRangeEnd.

CA7-20: When a Device Manager receives a DevMgtTrap() listed in Table
423 "Privileged Traps", it shall only generate a DevMgtReport() as de-
scribed in the table.

CA7-20.2.1: If the Device Manager rejects a DevMgtSet(InformInfo) be-
cause it does not permit subscription to that trap, it shall reject the request
using MAD Status [8:15] = ‘PolicyReject’.

Because DevMgt Agents are required to support Traps, the Device Man-
ager is not required to poll notice queues, and does not generate
DevMgtReport()s for Notices it reads from a notice queue.

CA7-21: The Device Manager shall not generate DevMgtReport()s for
Notices it reads from a notice queue.

The sequence of message exchanges for trap subscription mechanism is
shown in Figure 299 and Figure 300.

Table 423 Privileged Traps

Trap Trap

DiagSessionState This trap contains the DiagToken and is considered private. The DM shall only
send the DevMgtReport() to the node that initiated the Diag Session.

MgrKeyViolation,
SupvKeyViolation,
Client Violation,
DiagToken Violation,
DiagSession Violation

These security traps contain information which might be considered sensitive
(such as invalid keys and DiagTokens). The DM may restrict which nodes
receive the DevMgtReport() and/or may zero the key/DiagToken compo-
nent in the Notice attribute. The DM policy can be on a trap by trap basis. If
a node attempts to subscribe to one of these traps individually and the DM
policy is not to forward the trap to that node, then the DM rejects the
DevMgtSet(InformInfo) with MAD Status [8:15] = ‘PolicyReject’. However,
the DM accepts a subscription for ‘TrapNumber=0xFFFF’ regardless of
whether it forwards these traps.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1460 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The manager reports traps in the order that it receives them from the IOU.
When the manager receives multiple traps from the same IOU, it delivers
them one at a time in the order that the traps were received and waits for
a ReportResp() from the client before delivering the next Report().

CA7-22: A DM shall report Traps from an IOU in the order it receives the
traps. However, the DM is not required to maintain ordering of traps from
different IOUs.

CA7-23: A DM shall only have one DevMgtReport() outstanding per sub-
scriber per IOU. That is, the DM shall wait for a DevMgtReportResp() be-
fore sending a subsequent DevMgtReport() for another trap from the
same IOU.

[Editorial Note:A Class Version 2 DM does not forward Class Version 1
Traps. If a client desires to subscribe for Class Version 1 Traps, it can issue
a Class Version 1 DevMgtSet(InformInfo) to the DM. If the DM does not
support Class Version 1, it rejects the request with ‘MAD Status 2:4 = 001
- Bad version’ (version not supported).]

I/O UnitDevice
Manager3rd Party

DevMgtSet(InformInfo)

DevMgtGetResp(InformInfo)

Figure 299 Trap Subscription

IO Unit

DevMgtReport(Notice)

DevMgtReportResp()

DevMgtTrap()

DevMgtTrapRepress()

Device
Manager

3rd Party

Figure 300 Trap Forwarding

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1461 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.5.7.3 SUBSCRIPTION INTEGRITY

Clients depend on receiving Report()s whenever an IOU generates a trap
and thus depend on the DM reporting traps to subscribers. However, there
are a number of events that can cause a subscription to be destroyed
where the client might not be aware that its subscriptions were destroyed.

• DM reset - In the event that the DM is reset, subscriptions can be
lost. It is recommended that the DM retain subscription informa-
tion in persistent storage, such that subscriptions survive power
cycles and DM resets. A client can subscribe with the SA for Trap
64/65 ‘Port In/Out of Service’ to detect when the node on which
the DM resides is reset. The client can also subscribe with the
DM for the Heartbeat notice (see A7.5.7.5 "Heartbeat" on page
1463), so it can detect when the DM disappears or ceases to
function. Successful reception of the heartbeat indicates that the
DM is alive and that the client’s subscriptions are still valid.

• DM failover - In the event that the active DM fails and another DM
takes over, subscriptions with the old DM might not be carried
over to the new DM. For graceful failover, the active DM should
provide subscription information to standby DMs before replying
to a subscription request. A client can subscribe with the SA for
Trap 65 ‘Port Out of Service’ to detect when the node on which
the DM resides goes down and subsequently query the SA to lo-
cate the new DM. If the client subscribed with the DM for the
Heartbeat notice (see A7.5.7.5 "Heartbeat" on page 1463), the
heartbeat can indicate graceful failover. Successful reception of
the heartbeat indicates that the new DM inherited the client’s sub-
scriptions.

• Temporary path disruptions can make a client unreachable, which
might result in the DM timing-out and removing the client’s sub-
scriptions. Both the client and the manager can subscribe to SA
trap 65 to detect such a condition (assuming that the SM detects
the path failure). Again, the client can subscribe with the DM for
the Heartbeat notice (see A7.5.7.5 "Heartbeat" on page 1463), so
it can detect when the DM drops its subscriptions. Successful re-
ception of the heartbeat indicates that the client’s subscriptions
are still valid.

oA7-1: If the Device Manager supports Persistent Context (i.e. sets the
IsContextPersistent bit in DevMgtGetResp(ClassPortInfo) to 1), it shall re-
tain subscriptions across power cycles (i.e., use subscription information
stored in non-volatile storage) and shall also retain information about cur-
rent Diag Sessions.

oA7-2: If the DM supports Persistent Context (i.e. sets the IsContextPer-
sistent bit in DevMgtGetResp(ClassPortInfo) to 1), it shall save subscrip-

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1462 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

tion information in non-volatile storage before responding to the
DevAdmSet(InformInfo).

oA7-3: If the Device Manager supports Graceful Failover (i.e., sets the
GracefulFailover bit in DevAdmGetResp(ClassPortInfo) to 1), it shall
share subscription information with all standby Device Managers for that
same configuration group provided by that same vendor. This includes
supplying Standby DMs with subscription information when the standby
manager comes on-line and updating standby DMs when subscription in-
formation changes. It also includes sharing Diag Session information.

oA7-4: If the DM supports Graceful Failover (i.e., sets the Graceful-
Failover bit in DevMgtGetResp(ClassPortInfo) to 1), it shall make sub-
scription information known to all standby DMs for that same configuration
group provided by that same vendor before responding to the
DevMgtSet(InformInfo).

A7.5.7.4 SUBSCRIPTION TIMEOUT
When a subscribed node fails or resets, it does not always have the
chance to unsubscribe. For the express purpose of limiting the number of
retries and the size of the DM’s subscribers list over long periods of time,
clients that become unreachable by the DM or otherwise leave the fabric
for any reason will have their subscription terminated by the DM. However
the DM needs to be able to distinguish between subscribers that are tem-
porarily unreachable verses those that have gone away.

When the DM receives a trap, it sends a DevMgtReport() to each sub-
scriber and waits for a DevMgtReportResp(). If it fails to receive the re-
sponse, it resends the DevMgtReport(). The minimum amount of time the
DM waits before re-sending is specified in the InformInfo attribute. The
DM should implement the Retry-Backoff Policy specified in Annex A1 sec-
tion A1.3.2 between successive attempts to limit the number of retries
when trying to reach an unreachable node. If after 10 minutes the sub-
scriber has not responded, the DM may terminate the retry and cancel all
of the subscriptions for that client.

CA7-24: If the DM fails to receive a ReportResp() in response to a Re-
port(), then the DM shall continue to retry the Report() until either it re-
ceives a ReportResp(), the client unsubscribes, or the DM terminates the
subscription.

CA7-25: The DM shall not terminate a subscription due to a missing Re-
portResp() until after 10 minutes of retrying has occurred. If the DM does
terminate a subscription due to a missing ReportResp(), it shall terminate
all subscriptions for that particular destination (LID/GID + QPN).

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1463 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.5.7.5 HEARTBEAT

The DM periodically sends a DevMgtReport(Notice=Heartbeat) to let sub-
scribers know that the DM still exists and that the client’s subscriptions are
still valid. It is also a means for the DM to detect stale subscriptions since
failure for a client to respond to the heartbeat is grounds to cancel that
client’s subscriptions.

When a client subscribes for the heartbeat event, the DM sends the client
a DevMgtReport(Notice=Heartbeat)43 before it replies to the subscription
request. This initial heartbeat provides the client with the maximum time
until the next heartbeat (TTNH). The length of time between heartbeats is
a DM policy. The client starts an expiration timer for TTNH minutes and if
the timer expires, it is an indication that the DM is no longer functional or
that the DM has cancelled the client’s subscriptions. Thus, the client
should re-subscribe or query the SA to locate the new DM so it can sub-
scribe. Each time a client receives a DevMgtReport(Notice=Heartbeat), it
resets its expiration timer to the new TTNH value specified in the Heart-
beat notice.

CA7-26: For heartbeat subscriptions, the DM shall generate a DevMgtRe-
port(Notice=Heartbeat) to the subscriber before sending the DevMgtGe-
tResp(InformInfo)

CA7-27: The DM shall continue to generate DevMgtReport(No-
tice=Heartbeat) to each subscriber within TTNH minutes after sending
the previous DevMgtReport(Notice=Heartbeat).

Note that the LID Range and GID in the InformInfo for a heartbeat report
is irrelevant and thus ignored by the DM. That is, the DM generates a
Heartbeat report to anyone subscribed for heartbeats regardless of the
GID and LID range.

The Heartbeat notice also has a ‘Fail-Over’ bit that indicates a new man-
ager. This is to inform the client that a standby manager has gracefully
taken over the DM responsibility. In order to ensure that the notice came
from a valid DM, instead of using the Report()'s reciprocal path to commu-
nicate with the new DM, the client should query the SA to locate the new
DM, but it will not need to re-subscribe.

CA7-28: The DM shall not set the FailOver bit in a Heartbeat notice unless
the DM inherited all of the subscriptions from the previous manager.

CA7-29: The DM shall only set the FailOver bit in the first Heartbeat notice
it sends to a client. Thus, the DM shall not set the FailOver bit in subse-
quent reports to a client after it receives the ReportResp() from that client.

43. For details of the heartbeat notice see Annex A8: Device Management
section A8.3.3.2.5 "Heartbeat Notice" on page 1552.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1464 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.5.8 GRACEFUL HOT REMOVAL

The IOU perspective of graceful removal of an I/O-Module44 is specified
in Annex A8: Device Management section A8.6 "IOC Graceful Hot Re-
moval" on page 1618. Removal can be initiated either by the IOU (Figure
301 on page 1464), such as an operator pushing a release button, or by
the configuration manager (Figure 302 on page 1464), such as an admin-
istrator requesting the removal via the configuration manager. Graceful re-
fers to the fact that the DA notifies client platforms affected45 by the
removal prior to indicating “OK to Remove”.

44. Note that this section addresses removal of an I/O module from an IOU
where the IOU’s Channel Adapter and Device Management Agent remain
functional. The case of removing an IOU including its channel adapter is
covered under BaseBorad Management as specified in Volume 2.
45. An affected client is a client platform that has registered with the DA and has
access to one or more of the module’s service objects.

IO UnitDA / DM

DevAdmReportResp()

Client
Platforms

DevMgtTrap(IomRemoval)

DevMgtSet(set SW_CTR=1)

DevMgtTrapRepress()
DevAdmReport(RemovalReq) DevMgtSet(set SW_RTR=1)

Figure 301 IOU Initiated Removal Process

Figure 302 SW Initiated Removal Process

IO UnitDA / DM

DevAdmReportResp()

Client
Platforms

DevMgtSet(set SW_CTR=1)

DevMgtSet(set SW_RTR=1)DevAdmReport(RemovalReq)

RemoveRequest

*unspecified
interface

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1465 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

For each I/O module, there are 2 bits in the IOU that the DM controls to
facilitate graceful hot removal - see Annex A8: Device Management sec-
tion A8.3.3.9 "SlotControlStatus" on page 1570. They are SW_RTR (soft-
ware request-to-remove) and SW_CTR (software clear-to-remove). In
addition, the module’s IOU_RTR bit indicates to the DM that the IOU has
initiated the removal request for that I/O module.

Before the DM assigns any of an IOU’s service objects to a client (i.e., cre-
ates or modifies platform pool table records), the DM clears both the
SW_RTR and SW_CTR bits to 0 for all I/O modules, indicating that the
modules are in use. This also turns the I/O module’s Status LED on indi-
cating that the module is in-use. Until the DM does this, the module’s
Status LED is off, indicating that it is “OK to Remove”. The DM modifies
these bits via the DevMgtSet(SlotControlStatus:RemovalControl) as
specified in the Device Management Annex.

CA7-30: The DM shall clear the SlotControlStatus.SW_RTR bit and the
SW_CTR bit of each I/O module of an IOU before it assigns any of the ser-
vice objects associated with that I/O module to a client platform. Note than
an I/O module might contain multiple IOCs, thus this pertains to all service
objects of all IOCs associated46 with the I/O module.

For the case that the request is coming from the IOU (e.g., operator
pressing the I/O module’s removal button), the DevMgt agent sets
IOU_RTR for the affected module and then forms and sends a DevMgt-
Trap(IomRemoval) out each port where the port’s ClassPortInfo trap infor-
mation has been set (see A7.6.1.2.9 Removal Requested Notification on
page 1477). On setting the IOU_RTR, the DevMgt agent blinks the
module’s Status LED.

Upon receipt of a DevMgtTrap that indicates IOU_RTR is set, the DM is-
sues a DevMgtSet(SlotControlStatus:RemovalControl=0x02) which in-
structs the IOU to set the SW_RTR bit to 1b. The DevMgtSet() acts as an
acknowledgement to the setting of IOU_RTR. The DA notifies the affected
clients via the DevAdmReport(RemovalReq) and collects the necessary
responses via the DevAdmReportResp(RemovalReq).

CA7-31: The Configuration Manager shall examine DevMgtTrap()s and
shall send a DevMgtSet(SlotControlStatus:RemovalControl=Set
SW_RTR to one) to the IOU when it receives a DevMgtTrap(IomRe-
moval).

For the case that the DM initiates the removal, the DM issues a
DevMgtSet(SlotControlStatus:RemovalControl=0x02 - ‘Set SW_RTR to
one’) for the affected I/O module in conjunction with notifying and col-

46. Any IOC with an IOControllerProfile:SlotNumber equal to the I/O module’s
slot number.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1466 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

lecting the necessary responses from the affected clients. The Removal-
Control value of 0x02 instructs the DevMgt agent to indicate the
“transition” condition through the blinking of the I/O module’s Status LED.

Regardless of whether the IOU or the configuration manager generated
the removal request, the DM sets the SlotControlStatus:RemovalCon-
trol.SW_RTR bit of the I/O-Module to 1 via a DevMgtSet(SlotControl-
Status:RemovalControl=Set SW_RTR to one). This clears the trap
condition (if it was IOU initiated) and starts the LED blinking as a physical
indication that the removal approval process is in progress. The DA also
issues a DevAdmReport(RemovalReq) to any client platform that has
subscribed for removal events and had been assigned a service object
that will be affected by the removal.

CA7-32: The Configuration Manager shall initiate the removal process
(i.e., sends DevAdmReport(RemovalReq) to subscribed client platforms)
when it sends a DevMgtSet(SlotControlStatus:RemovalControl.Set
SW_RTR to one) to the IOU.

CA7-33: The DA shall issue a DevAdmReport(RemovalReq) to each
client platform that has been assigned a service object that will be affected
by the removal, if the client platform subscribed for Removal reports and
if a GID of the IOU matches the InformInfo:GID or the IOU has a LID that
falls in the range of the InformInfo: LIDRangeBegin – LIDRangeEnd (see
Table 437 DevAdm LID Range Interpretation on page 1491).

An IORM can register for Removal reports via the DevAdmSet(Login) or
a DevAdmSet(Informinfo). Refer to A7.6.3.4 LogIn on page 1491 and
A7.6.3.3 InformInfo on page 1490.

The DevAdmReport(RemovalReq) sent to a client platform indicates the
IOCs that are affected by the removal that have one or more service ob-
jects assigned to that client platform. Each DevAdmReport(RemovalReq)
can specify up to 16 IOCs and if there are more than 16 affected IOCs for
that client platform, then the DA issues multiple announcements to that
client platform.

CA7-34: The DevAdmReport(RemovalReq) shall only list IOCs which
have service objects listed in a PlatformPoolRecord for which the client
platform has been given the Supervisor_Key or listed in a ClientPool-
Record for which the client platform has been given the Client_Key.

Each client platform responds with a DevAdmReportResp(RemovalReq)
for each DevAdmReport(RemovalReq) it receives to acknowledge receipt
of the report and to accept, reject, or request more time. Based on these
responses the Configuration Manager decides whether to approve, delay,
or cancel the removal process.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1467 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In the DevAdmReport(RemovalReq), the DA indicates the severity of the
removal request by setting the RemovePriority field, which indicates if it is
a:

• Graceful Removal - any IORM may terminate the removal pro-
cess by rejecting the request, or may request more time so it can
stop using the resource before it approves the request. An IORM
indicates approval, rejection, or delay via setting the Acknowl-
edge component in the DevAdmReportResp(RemovalReq).

• Forced Removal - IORM cannot reject the request, but may re-
quest more time in order to stop using the resource before it ap-
proves the request.

• Immediate Removal - IORM cannot reject nor delay the removal
process. The removal continues after the DA has notified all the
affected clients.

• Critical Removal - removal already approved, thus, the DevAd-
mReport(RemovalReq) is just a notice sent after the OK-to-Re-
move was issued.

For Graceful and Forced after all of the affected client platforms have ac-
cepted, or for Immediate or Critical, the DM continues the removal pro-
cess by setting the I/O module’s SW_CTR bit to 1. This indicates that the
I/O module is no longer in use and turns the Status LED off indicating that
it is “OK to Remove”.

However, if the Configuration Manager decides to terminate the removal
process, the DM issues a DevMgtSet(SlotControlStatus:RemovalCon-
trol=0x01) to clear the SW_RTR and IOU_RTR bits and the DA sends an
IOC On-Line notice to the set of client platforms to which it sent the Re-
movalReq report.

If the DA does not receive a DevAdmReportResp() from each client plat-
form within the time identified by that platform’s DevAdmSet(InformInfo),
the DA repeats the DevAdmReport() to that platform. If a client platform
responds with an Acknowledge value = WAIT and the RemovePriority
component of the RemovalRequest attribute permits, then the DA re-
sends the DevAdmReport(RemovalRequest) to each client that indicated
WAIT until that client has approved. The amount of time the DA should
wait before resending is indicated in the DevAdmReportResp.

The exact behavior of the Configuration Manager, as well as its control ac-
tions with the I/O-Module being removed is not specified if, for example,
the DA does not receive all the anticipated responses back from the client
platforms within a reasonable amount of time (Configuration Management
policy).

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1468 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note that as per the Device Management Annex, if the Configuration Man-
ager fails to respond to the IOU in a timely fashion, hardware time-outs
might override and permit the removal anyway.

A7.5.9 DIAGNOSTICS

The configuration management framework provides for a Diagnostic Ap-
plication to notify and obtain permission from multiple users of an IOU,
such that the users participate in determining if a diagnostic can be run at
that time. The actual Diagnostics that are run are outside the scope of this
Annex and are normally vendor specific.

A7.5.9.1 DIAGNOSTIC FRAMEWORK

As illustrated in Figure 303, the diagnostic framework provides the means
for a diagnostic application located on any node to request a diagnostic
session. This request is sent to the DM [step 1]. The manager validates
the request, and if the source is authorized to perform diagnostics, the DA
informs the client platforms that will be affected by the diagnostics [steps
2,3]. If the client platforms agree, the manager establishes a diagnostic
session with the IOU [step 4], and then informs the diagnostic application
that it may proceed [step 5].

The diagnostic application performs diagnostics directly with the IOU [step
6] and when it is done running diagnostics, it releases the session by in-
forming the DM [step 7]. The DM cancels the IOU’s diagnostic session [8]
and then the DA notifies the affected clients that the I/O resources are
back on-line [9].

Steps 1,4,5,6,7, and 8 are performed under the DevMgt class and are de-
fined in Annex A8: Device Management. Steps 2,3, and 9 are performed
under DevAdm class and are defined in this annex.

6. Perform Diagnostics

Configuration
Management

DM / DA

Device
Management

Agent

IORMs

4. Diag Enable

Diagnostic
Application

1.
DIA

G S
es

sio
n R

eq
ue

st

IOU

Management Node Client Platforms

Figure 303 Diagnostic Usage Model

DevAdm Class
DevMgt Class 2.Diag Notice

3. Response

5.
Diag

 A
pp

rov
al

7.
Diag

 R
ele

as
e

9. IOC On-Line Notice

8. Diag Disable

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1469 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA7-5: If the DM supports Persistent Context (i.e. sets the IsContextPer-
sistent bit in DevMgtGetResp(ClassPortInfo) to 1), it shall save Diag Ses-
sion information in non-volatile storage before sending the
DevAdmGetResp(DiagSession).

oA7-6: If the DM supports Graceful Failover (i.e., sets the Graceful-
Failover bit in DevMgtGetResp(ClassPortInfo) to 1), it shall make Diag
Session information known to all standby DMs for that same configuration
group provided by that same vendor before responding to the
DevMgtSet(DiagSession).

CA7-35: Before the DM enables a diagnostic session (i.e., sends the
DevMgtSet(DiagSession) to the IOU creating a diag token), the DA shall
issue a DevAdmReport(DiagNotice) to each client platform that has been
assigned a service object that could be affected by the diagnostic testing
(as per the DiagSession:DiagScope), only if the client platform registered
for Diagnostic Notification and if a GID of the IOU matches the Inform-
Info:GID or the IOU has a LID that falls in the range of the InformInfo:
LIDRangeBegin – LIDRangeEnd.

An IORM can register for Diagnostic Notification via the De-
vAdmSet(Login) or a DevAdmSet(Informinfo). Refer to A7.6.3.4 LogIn on
page 1491 and A7.6.3.3 InformInfo on page 1490.

The DevAdmReport(DiagNotice) indicates all of the affected IOCs that are
assigned to that client platform. Each DevAdmReport(DiagNotice) can
specify up to 16 IOCs and if there are more than 16 IOCs affected, then
the DA issues multiple announcements to that client platform.

CA7-36: The DevAdmReport(DiagNotice) shall only list IOCs which have
service objects listed in a PlatformPoolRecord for which the client platform
has been given the Supervisor_Key or listed in a ClientPoolRecord for
which the client platform has been given the Client_Key.

The Diag Notice [step 2] provides the means for the manager to indicate
the priority of the diagnostics and the response to the Diag Notice [step 3]
allows the client platform to reject or delay the start of the diagnostic ses-
sion.

A7.5.9.2 VERSION 1 DIAGNOSTICS

The diagnostic framework assumes that IOUs have a Device Manage-
ment Agent implementing Device Management Class version 2. Many of
the features for supporting sharing of IOUs were added in version 2 and
are not available in DevMgt class version 1. Therefore, a DM is not able
to arbitrate and control diagnostic sessions for IOUs that only implement
DevMgt class version 1.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1470 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When the DM receives a DIAG Session Request that targets an IOU that
only supports version 1, the DM rejects the request with MAD Status = ‘In-
compatibleVersion’ (see Annex A8: Device Management section A8.3.1.2
on page 1535). This serves as an indication to the diagnostic application
that the IOU implements a down-level DevMgt Agent. It is possible for the
diagnostic application to perform diagnostics directly with the IOU under
the bounds of DevMgt class version 1 as per Chapter 16 Section 16.3.4.

CA7-37: A DM shall reject a DIAG Session Request for an IOU that does
not support DevMgt class version 2 with a status code of 0x41 - ‘Incom-
patibleVersion’.

Typically, operation under class version 1 assumed that either (a) parti-
tioning would only permit one client platform to access an IOU and that di-
agnostic testing would be executed from that client platform, or (b) client
platforms sharing an IOU would coordinate by an unspecified means. Fur-
thermore, the client platform acted as a manager and configured the IOU
to send traps directly to the client platform. Note that there was only one
generic trap defined for version 1 (i.e., the Ready-to-Test trap).

The diagnostic application should not attempt to configure the IOU to send
traps to the diagnostic application, but rather poll the IOU for the Test-
Ready state. Thus, if a client platform does configure a version 1 IOU to
send traps to the client platform, then the client platform will be notified of
the diagnostic (if the IOU supports traps).

A7.5.9.3 7.5.9.3 DIAGNOSTICS UNDER PASSIVE MANAGEMENT

Typically, operation under Passive Management assumes that either (a)
partitioning would only permit one client platform to access an IOU and
that diagnostic testing will be executed from that client platform, or (b)
client platforms sharing an IOU will coordinate by an unspecified means.
Operation under passive management does not provide the degree of
protection and notification that active management provides.

The diagnostic framework assumes there is a DM that arbitrates Diag
Sessions. However, for passive management, there is no DM to arbitrate,
control diagnostic sessions, or distribute traps. Instead, the diagnostic ap-
plication must establish the Diag Session directly with the IOU by sending
the DevMgtSet(DiagSession) to the IOU the same as a DM would. The di-
agnostic application should not attempt to configure the IOU to send traps
to the diagnostic application, but rather poll the IOU for the DiagSession-
Status via the DevMgtGet(DiagSession).

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1471 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.6 DEVADM CLASS DEFINITION

This section describes the DevAdm class methods & attributes, operation
of the DA, and relationships between the DA and other IBA management
entities. Refer to the Device Management Annex for specification of De-
vice Management class.

A7.6.1 OPERATION

Client platforms query the DA using DevAdm class MADs. The DA pro-
vides client platforms with information about IOUs and with the supervisor
key that the platform uses to configure the IOU.

Client Platforms may subscribe for event notification from the DA. These
events include configuration changes such as IOUs and IOCs coming on-
line. Methods to subscribe and un-subscribe for traps are facilitated by the
DevAdm class using the DevAdmSet(InformInfo) method in Volume 1
Chapter 13 and further defined below.

The DA responsibilities include:

• Providing the IORM within client platforms with configuration in-
formation such as list of IOUs, supervisor keys, and client keys.

• Subscribing with the Subnet Administration for IOU arrival and re-
moval events so it can notify client platforms when I/O services
come on-line.

• Monitoring DevMgt traps to detect resource changes so it can no-
tify client platforms when I/O services come on-line.

• Allowing client platforms to subscribe for reports of configuration
related events, such as I/O services coming on-line and configu-
ration changes.

• Notifying client platforms and coordinating responses for events
such as:
• IO-Module (one or more IOCs) removal requests
• Diagnostic session requests

A7.6.1.1 QUERY

The DevAdm query subsystem permits the IORM of a client platform to
query the DA for:

• a list of IOUs that have service objects assigned to the client plat-
form.

• the Supervisor_Key for each IOU that the IORM uses to find and
configure Client Pool Table records allocated to that client plat-
form.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1472 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• a list of Client_Keys for each IOU that the IORM may use to sub-
divide resources.

The MAD header of a DevAdm MAD contains a RequesterID that identi-
fies the client platform. Before a client platform can submit a query to the
DA, it must perform a LOGIN to the DA to obtain its RequesterID. The
LOGIN provides the means for the DA to validate the identity of the
client platform and then assign it a RequesterID so that the DA does
not have to validate every query.

The query subsystem allows the requester to submit a single request and
the DA responds with a set of attribute records. The response may require
more capacity for data than that provided by a single MAD. Thus, DevAdm
uses the Reliable Multi-Packet Protocol (RMPP) as specified in Chapter
13.

The attributes obtained by the query are in effect records of attributes from
the configuration information, filtered for the requesting platform. Actual
implementation of internal data structures and how the DA gets configured
are outside the scope of this specification.

CA7-38: When a DA receives a DevAdmGet() for an attribute identified as
RMPP in Table 428 DevAdm Attribute / Method Map on page 1486, the
DevAdmGetResp() shall only contain records for that requester as identi-
fied by the RequesterID. If the RequesterID is not valid (i.e., was not as-
signed, is no longer in use, or is the default RequesterID), the DA shall
return zero records and a status of Invalid RequesterID.

If an IORM has a query rejected for invalid RequesterID, it needs to per-
form a login to acquire a valid RequesterID.

A7.6.1.2 EVENT NOTIFICATION SUBSYSTEM

Device Administration provides an event-notification subsystem that noti-
fies subscribed client platforms about:

• Configuration Change - generates a notice when a change is
made to the configuration information that the DA provides to the
client platform.

• Resource Allocation Change - generates a notice when the DM
makes a change to an IOU’s pool table record (i.e., adds or re-
moves service objects or changes the resources that the client
may consume).

• IOU On-line Status Change - monitors subnet to detect when an
IOU appears or disappears and generates IOC On-line and IOC
Off-line reports.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1473 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• IOC On-line Status Change - monitors DevMgt traps for IO Con-
troller Change and Slot Status Change notices and generates
IOC On-line and IOC Off-line reports if an IOC’s on-line status
changes.

• Removal Requested - reports when an I/O module is to be re-
moved (graceful hot plug).

• Diagnostic Session Requested - reports when a diagnostics
are to be performed.

The DA generates event reports via the DevAdmReport() when it detects
or generates any of these conditions.

Each client platform may subscribe for any of these DevAdm notifications.
When the DA detects any of these conditions, it generates a DevAdmRe-
port() to subscribed client platforms. The DevAdmReport() uses different
attributes depending on what is being reported. The AttributeID in the De-
vAdmReport() identifies the type of attribute used in the report.

A7.6.1.2.1 EVENT SUBSCRIPTION

A client platform subscribes with the DA for event notification by issuing a
DevAdmSet(InformInfo) to the DA as follows:

The InformInfo.Subscribe value indicates the nature of the subscription -
A value of 1 to subscribe and 0 to un-subscribe. If successful, the DA will
report subscribed events to the subscriber via a DevAdmReport() MAD.
The GID and LID Range in the InformInfo attribute identifies for which
IOUs the client wants reports. Note that when subscribing and unsub-
scribing for the Heartbeat, the InformInfo GID and LID Range is irrelevant
and thus the client should set the GID, LIDRangeBegin, LIDRangeEnd in
the DevAdmSet(InformInfo) to zero, 0xFFFF, and zero respectively and
the DA shall ignore these components.

The sequence of message exchanges for event subscription mechanism
is shown in Figure 304.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1474 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 304 Event Subscription
A Configuration Manager maintains information concerning which service
objects may be accessed by which client platforms (assuming that proper
partitions exist). An administrator establishes endnode partition member-
ships through the SM. The Configuration Manager can query the Sub-
nAdm agent (SA) of the SM to validate partition usage (i.e., validate that
a path exists between the client and the IOU).

A7.6.1.2.2 EVENT REPORTING

When the DA detects or generates a DevAdm event, it generates a De-
vAdmReport() to subscribed client platforms. The DevAdmReport() uses
different attributes depending on what is being reported. The AttributeID
in the DevAdmReport() identifies the type of attribute used in the report.
The Removal Requested notification uses the RemovalReq attribute, the
Diagnostic notification uses the DiagNotice attribute, the Reset notifica-
tion uses the ResetNotice attribute, and the others use the Notice at-
tribute. See A7.6.3.2 "Notice" on page 1487 for a list DA generated notice
attributes. Diagnostic, Removal Requested, and Reset notification report
attributes are as per A7.6.3.7 "RemovalReq" on page 1497, A7.6.3.8 "Di-
agNotice" on page 1499, and A7.6.3.9 "ResetNotice" on page 1501.

The client responds to the DevAdmReport() with a DevAdmReportResp().

CA7-39: A subscribed client platform shall respond with a DevAdmRepor-
tResp() each time it receives a DevAdmReport(). The response shall be
within the time frame specified in the DevAdmSet(InformInfo).

If the DA does not receive the DevAdmReportResp() from a client, it re-
peats the DevAdmReport() to that client.

A7.6.1.2.3 SUBSCRIPTION INTEGRITY

Client platforms depend on receiving Report()s about configuration
changes and thus depend on the DA reporting configuration events to

IOU/
NodeDA

Client
Platform

DevAdmSet(InformInfo)

DevAdmGetResp(InformInfo)

DA Event Subscription

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1475 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

subscribed clients. However, there are a number of situations that can
cause a subscription to be destroyed where the client might not be aware
that its subscriptions were destroyed. The situations and considerations
described in A7.5.7.3 Subscription Integrity also apply to DevAdm sub-
scriptions. Thus, DevAdm also has a Heartbeat notice (see A7.6.1.2.12
"Heartbeat" on page 1478).

oA7-7: If the DA supports Persistent Context (i.e. sets the IsContextPer-
sistent bit in DevAdmGetResp(ClassPortInfo) to 1), it shall retain sub-
scriptions across power cycles (i.e., use subscription information stored in
non-volatile storage).

oA7-8: If the DA supports Graceful Failover (i.e., sets the Graceful-
Failover bit in DevAdmGetResp(ClassPortInfo) to 1), it shall share LogIn
and subscription information with all standby DAs for that configuration
group provided by that same vendor. This includes supplying Standby
DAs with LogIn and subscription information when they come on-line and
updating standby DAs when LogIn and subscription information changes.

A7.6.1.2.4 SUBSCRIPTION TIMEOUT:

When an event occurs, the DA sends a DevAdmReport() to each sub-
scribed client platform and waits for a DevAdmReportResp(). If it fails to
receive the response, it resends the DevAdmReport(). The minimum
amount of time the DA waits before re-sending is specified in the Inform-
Info attribute. For resending the report, the DA should implement the
Retry-Backoff Policy specified in Annex A1 section A1.3.2 and if after 10
minutes the client platform has not responded, the DA may terminate the
retry and cancel all of the subscriptions for that client.

CA7-40: If the DA fails to receive a ReportResp() in response to a Re-
port(), then the DA shall continue to retry the Report() until either it re-
ceives a ReportResp(), the client unsubscribes, or the DA terminates the
subscription.

CA7-41: The DA shall not terminate a subscription due to a missing Re-
portResp() until after 10 minutes of retrying has occurred. If the DA does
terminate a subscription due to a missing ReportResp(), it shall terminate
all subscriptions for that particular destination (LID/GID + QPN).

A7.6.1.2.5 CONFIGURATION CHANGE NOTIFICATION

A configuration change notification results because the DM creates a Pool
Table record in an IOU and then assigns that record to the client platform
(i.e., provides the client platform with the Supervisor_Key or Client_Key).

When a client platform comes on-line it queries the DA to get a list of IOUs
and Supervisor_Keys. When that list changes, the DA informs the client

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1476 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

by issuing a Configuration Change notice to the client platform, if the client
subscribes for the Configuration Change Notification.

CA7-42: The DA shall generate a DevAdmReport(Notice=Configuration
Change) to a subscribed client platform anytime that an S_KeyInfo at-
tribute record is added or removed from the list of records that would be
returned in response to a DevAdmGet(S_KeyInfo) from that platform if a
GID of the IOU in the S_KeyInfo attribute matches the InformInfo:GID or
that IOU has a LID that falls in the range of the InformInfo: LIDRange-
Begin – LIDRangeEnd.

CA7-43: The DA shall generate a DevAdmReport(Notice=Configuration
Change) to a subscribed client platform anytime that a C_KeyInfo at-
tribute record is added or removed from the list of records that would be
returned in response to a DevAdmGet(C_KeyInfo) from that platform if a
GID of the IOU in the C_KeyInfo attribute matches the InformInfo:GID or
that IOU has a LID that falls in the range of the InformInfo: LIDRange-
Begin – LIDRangeEnd.

A7.6.1.2.6 IOC ON-LINE NOTIFICATION

The DA generates an IOC on-line notification when it detects an IOU
coming on-line or an IOC in an on-line IOU coming on-line.

CA7-44: The DA shall detect when IOUs in its configuration group come
on-line by subscribing with the SA for SubnAdm Trap 64.

The DM configures IOUs to send DevMgt traps to the Configuration Man-
ager. When the Configuration Manager receives a DevMgt Trap, it deter-
mines the exact nature of the change, updates its information base as
needed, and generates the necessary event notifications.

CA7-45: The DA shall inspect DevMgt Traps for IO Controller Change no-
tices and Slot Status Change notices to detect IOCs coming on-line and
going off-line.

CA7-46: The DA shall generate a DevAdmReport(Notice=IOC On-line) to
subscribed client platforms when it detects the presence (coming on-line)
of each IOC that contains service objects assigned to the client platform
(i.e., service object is listed in the Platform Pool Table or Client Pool Table
record for which the client has the Supervisor_Key or Client_Key) and if a
GID of the IOU matches the InformInfo:GID or the IOU has a LID that falls
in the range of the InformInfo: LIDRangeBegin – LIDRangeEnd.

A7.6.1.2.7 IOC OFF-LINE NOTIFICATION

CA7-47: The DA shall detect when IOUs in its configuration group go off-
line by subscribing with the SA for SubnAdm Trap 65.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1477 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

As per CA7-45: on page 1476 the DA inspects DevMgt Traps to detect
IOCs coming on-line and going off-line.

CA7-48: The DA shall generate a DevAdmReport(Notice=IOC Off-line)
to subscribed client platforms anytime that it detects that an IOC that con-
tains service objects assigned to the client platform (i.e., service object is
listed in the Platform Pool Table or Client Pool Table record for which the
client has the Supervisor_Key or Client_Key) went off-line when a GID of
the IOU matches the InformInfo:GID or the IOU has a LID that falls in the
range of the InformInfo: LIDRangeBegin – LIDRangeEnd.

A7.6.1.2.8 RESOURCE ALLOCATION CHANGE NOTIFICATION

The DA generates a Resource Allocation Change notification when the
DM modifies an IOU’s pool table record changing which service objects a
client platform may use or changing the IOU resources that the client plat-
form is allowed to consume. The DA does not send the report until the DM
completes the IOU configuration update - i.e., receives a successful re-
sponse to the DevMgtSet() as illustrated in Figure 305.

Figure 305 Event Notification for Resource Allocation Change

CA7-49: The DA shall generate a DevAdmReport(Notice=Resource Al-
location Change) to each subscribed client platform anytime that the DM
modifies one or more platform pool table records or client pool table
records for that client platform (i.e., the client platform has been given the
Supervisor_Key or Client_Key for the pool table record) and if a GID of the
IOU matches the InformInfo:GID or the IOU has a LID that falls in the
range of the InformInfo: LIDRangeBegin – LIDRangeEnd.

A7.6.1.2.9 REMOVAL REQUESTED NOTIFICATION

The DA generates a Removal Requested notification when it initiates an
I/O module removal or receives a removal request from the IOU. The re-
moval requested notification DevAdmReport() does not use the Notice at-
tribute. Rather the DevAdmReport() for this event uses the RemovalReq

Client
Platform IO UnitDA/DM

DevAdmReport(Notice)

DevAdmReportResp()

DevMgtGetResp()

DevMgtSet()

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1478 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

attribute (as indicated in the MAD’s AttributeID field). See A7.5.8
"Graceful Hot Removal" on page 1464 for details.

CA7-50: The DA shall inspect DevMgt Traps to detect I/O module removal
requests (i.e., a hot plug removal request).

The DA generates a DevAdmReport(RemovalReq) to client platforms
subscribed for the Removal Request event as per A7.5.8 "Graceful Hot
Removal" on page 1464.

A7.6.1.2.10 DIAGNOSTIC NOTIFICATION

The DA generates the Diagnostic Notification event when a diagnostic ap-
plication requests a diagnostic session that would impact the client plat-
form’s I/O operation. The Diagnostic Notification does not use the Notice
attribute. Rather the DevAdmReport() for this event uses the DiagNotice
attribute, which is indicated in the DevAdmReport’s AttributeID field. See
A7.5.9 "Diagnostics" on page 1468 for details.

The DA generates a DevAdmReport(DiagNotice) to client platforms sub-
scribed for the Diagnostic event as per A7.5.9.1 "Diagnostic Framework"
on page 1468.

A7.6.1.2.11 RESET NOTIFICATION

The DA generates the Reset Notification event before it issues a
DevMgtSet(Reset) to an IOU that would impact the client platform’s I/O
operation. The Reset Notification does not use the Notice attribute. Rather
the DevAdmReport() for this event uses the ResetNotice attribute, which
is indicated in the DevAdmReport’s AttributeID field. See A7.6.3.9 "Reset-
Notice" on page 1501 for details.

A7.6.1.2.12 HEARTBEAT

The DA periodically sends a DevAdmReport(Notice=Heartbeat) to let
subscribed client platforms know that the DA still exists and that the plat-
form’s subscriptions are still valid. It is also a means for the DA to detect
stale subscriptions since failure for a platform to respond to the heartbeat
is grounds to cancel all subscriptions for that platform.

When a client subscribes for the heartbeat event, the DA immediately
sends it a DevAdmReport(Notice=Heartbeat). This initial heartbeat pro-
vides the client with the time until the next heartbeat (TTNH). The length
of time between heartbeats is a DA policy. The client starts an expiration
timer for TTNH minutes and if the timer expires, it is an indication that the
DA is no longer functional or that the DA has cancelled the platform’s sub-
scriptions. Thus, the client platform should re-subscribe (in the case of
subscription cancellation). If the DA does not respond, then the client
should query the SA to locate the new DM (in case the manager reset or

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1479 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

a standby manager has taken over) and query the new DM to locate the
DA so it can login and subscribe.

Each time a client receives a DevAdmReport(Notice=Heartbeat), it resets
its expiration timer to the new TTNH timeout value specified in the Heart-
beat notice. The Heartbeat notice also has a bit that indicates a new man-
ager. This is to inform the client that a standby manager has gracefully
taken over the DM / DA responsibility. The client will need to query the SA
to locate the new DM and query the new DM to locate the DA, but it will
not need to login nor re-subscribe.

IORMs can subscribe for the Heartbeat notice either explicitly via De-
vAdmSet(Informinfo) or implicitly as a result of DevAdmSet(Login).

CA7-51: For explicit heartbeat subscriptions, the DA shall generate a De-
vAdmReport(Notice=Heartbeat) to the subscribed client platform before
sending the DevAdmGetResp(InformInfo)

CA7-52: .For implicit heartbeat subscriptions, the DA shall generate a De-
vAdmReport(Notice=Heartbeat) to the subscribed client platform before
sending the DevAdmGetResp(LogIn).

CA7-53: The DA shall continue to generate DevAdmReport(No-
tice=Heartbeat) to each subscribed client platform within TTNH minutes
after sending the previous DevAdmReport(Notice=Heartbeat).

CA7-54: The DA shall not set the FailOver bit in a Heartbeat notice unless
the DA inherited all of the subscriptions from the previous manager.

CA7-55: The DM shall only set the FailOver bit in the first Heartbeat notice
it sends to a client. Thus, the DM shall not set the FailOver bit in subse-
quent reports to a client after it receives the ReportResp() from that client.

Note that the LID Range and GID in the subscription [i.e., from the De-
vAdmSet(InformInfo)] for a heartbeat notice is irrelevant and thus ignored
by the DA. That is, the DA sends the heartbeat to all clients who sub-
scribed for the Heartbeat regardless of the GID and LID Range in the In-
formInfo.

A7.6.2 DEVADM MESSAGE FORMAT

Figure 306 shows the structure of a DevAdm datagram. The DA sends
and receives datagrams using an Unreliable Datagram QP, that is deter-
mined via the CM:SIDR_REQ protocol. The datagrams conform to the
MAD definition as specified in Volume 1 Chapter 13

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1480 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

CA7-56: A DA and IORM shall send and receive DevAdm class MADs
that conform to the format specified in Figure 306 DevAdm MAD Format
and Table 424 Device Administration MAD Fields.

Table 424 defines the fields in the DevAdm datagram.

Figure 306 DevAdm MAD Format

Offset Byte 0 Byte 1 Byte 2 Byte 3

0 Common MAD Header

...

20

24 RMPP Header

...

32

36 RequesterID

40

44 reserved

...

56

60 reserved ComponentMask

64 DevAdm Data

...

252

Table 424 Device Administration MAD Fields

Fielda Length Description

Common MAD
Header

24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on page
718. MgtClass=0x10, ClassVersion=1.

RMPP Header 12 bytes RMPP header as described in 13.4.2 Management Datagram Format on page 718. Also
refer to A7.6.2.4 RMPP Header on page 1482

RequesterID 8 bytes A value assigned by the DA to identify the requester. Default value is zero. See
A7.6.2.5 RequesterID on page 1483 and A7.6.3.4 LogIn on page 1491.

reserved 16 bytes reserved

reserved 2 bytes reserved

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1481 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.6.2.1 RESERVED FIELDS

Fields indicated as “reserved” shall be set to zero in request messages.
In response messages, a reserved field may be left unmodified if using the
request for the response, or may be set to zero. A reserved field shall be
ignored on receipt.

CA7-57: Fields indicated as “reserved” shall be set to zero in request
messages. In response messages, a reserved field shall either be left un-
modified, if using the request for the response, or shall be set to zero.

CA7-58: The recipient of a DevAdm class MAD shall ignore reserved
fields.

A7.6.2.2 DEVADM STATUS VALUES

Chapter 13 defines bits 0-7 of the MAD Header.Status field and leaves bits
8-15 for additional class specific status. They are encoded as follows:

CA7-59: If the DA accepts a DevAdmGet() as a valid request, it shall set
the MAD Header Status to zero in the DevAdmGetResp().

CA7-60: If the DA rejects a DevAdmGet(), it shall set the MAD Header
Status in the DevAdmGetResp() to reflect the reason for the rejection.

ComponentMask 2 bytes Indicates which attribute components in the DevAdmGet() are to be used for the query.
Refer to A7.6.2.6 Component Mask on page 1484

DevMgt Data 192 bytes 192 bytes of DevAdm payload. The structure and content depends upon the Method,
Attribute, and Attribute Modifier fields in the MAD header.

a. The term ‘MAD header’ refers to all fields except the DevAdm Data field

Table 424 Device Administration MAD Fields (Continued)

Fielda Length Description

Table 425 DevAdm MAD Status Field Values

Name Bits Meaning

DA_ERR_CODE 8-11 An enumerated value as follows:
0x0 = normal
0x1 = RequesterID is invalid
0x2 = Supplied request or update is invalid
0x3 = Insufficient privilege or policy violation
0x4 = Not Master DA
all other values reserved

RESERVED 12-15 reserved for future definition

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1482 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.6.2.3 METHODS

CA7-61: A DA shall support the DevAdm methods described in Table 426.

DevAdmGet(), DevAdmSet(), DevAdmGetResp(), DevAdmReport(), &
DevAdmReportResp() methods are common methods specified in
Volume 1 Chapter 13 (see Get, Set, GetResp, Report, & ReportResp in
section 13.4.5).

The DevAdmSet(InformInfo), DevAdmGetResp(InformInfo), DevAdmRe-
port(), & DevAdmReportResp() methods are used to subscribe to and re-
port DevAdm events. The DevAdmReport() & DevAdmReportResp()
typically use the Notice attribute (A7.6.3.2 “Notice” on page 1487). How-
ever, for reporting the IO-Module removal process, the RemovalReq at-
tribute is used in the DevAdmReport() & DevAdmReportResp() as per
A7.5.8 “Graceful Hot Removal” on page 1464. For reporting Diagnostic,
the DiagNotice attribute is used in the DevAdmReport() & DevAdmRepor-
tResp(). For reporting IOU/IOC Reset, the ResetNotice attribute is used in
the DevAdmReport() & DevAdmReportResp().

A7.6.2.4 RMPP HEADER

DevAdm uses the Reliable Multi-Packet Protocol as described in Section
13.6 “Reliable Multi-Packet Transaction Protocol”. This protocol allows
the initiator to make a single query which returns more information than
can be transferred in a single packet. For example, an IORM can make a
single request for S_KeyInfo attributes and have the DA return all of the
records for that particular client platform. The response includes multiple
DevAdmGetResp(S_KeyInfo) packets if necessary. Only the method/at-
tribute combinations listed as ‘RMPP’ in Table 428 "DevAdm Attribute /
Method Map" on page 1486 use the Reliable Multi-Packet Protocol and
thus have multi-packet responses. DevAdmGet() requests are always
single packets.

CA7-62: A DA shall implement Reliable Multi-Packet Protocol as de-
scribed in Section 13.6 “Reliable Multi-Packet Transaction Protocol.

Table 426 DevAdm Methods

Method Type Value Description

DevAdmGet() 0x01 Request (read) an attribute.

DevAdmSet() 0x02 Request a set (write) of an attribute.

DevAdmGetResp() 0x81 The response from a DevAdmGet or DevAdmSet.

DevAdmReport() 0x06 Forward a subscribed event.

DevAdmReportResp() 0x86 Reply to a DevAdmReport.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1483 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-63: A DA shall not respond with more than one packet for method/at-
tribute combinations not listed as ‘RMPP’ in Table 428 "DevAdm Attribute
/ Method Map" on page 1486.

CA7-64: A DA shall reject a request that contains more than one packet.

A7.6.2.5 REQUESTERID
Since it is possible that a client platform might use multiple ports and be-
cause a port’s LID/GID can subsequently change, depending on LID/GID
alone for identifying the platform is not sufficient, thus the DA provides
each client platform with a RequesterID, which the client platform uses in
future requests.

RequesterID serves as an authorization tool. When the DA encounters a
new client platform, it validates the client platform and assigns it a Re-
questerID as follows:

• When a client platform initializes, it uses the default MADHeader:Re-
questerID value of zero and performs a LOGIN (i.e., sends a De-
vAdmSet(LogIn) to the DA. In the response, the DA provides a
unique RequesterID that the client platform uses in the MADHead-
er:RequesterID of subsequent DevAdm queries (see A7.6.3.4 "Log-
In" on page 1491).

• When the DA receives a DevAdmSet(LogIn), it validates the client
platform. At a minimum the DA relates the LID/GID in the request to a
specific platform and determines the access rights for that platform.
Note that the DA can issue a SubnAdmGet(NodeInfo) to the SA to
get the NodeGUID for that platform.

CA7-65: The DA shall identify a client platform by its NodeGUID.

CA7-66: The DA shall validate a client’s NodeGUID by querying the SA
before sending the DevAdmGetResp(LogIn).

CA7-67: Generation of RequesterIDs shall not be sequential or predict-
able, in order to make it difficult for a client to guess the RequesterID of
another node.

The DA uses the RequesterID to validate DevAdm class requests that it
receives.

CA7-68: A DA shall reject a DevAdmGet() containing an invalid Reques-
terID (see CA7-38: on page 1472).

The use of the default RequesterID by a client platform is only permitted
for reading the ClassPortInfo, performing a login, and responding to a De-
vAdmReport(). The DA uses the default RequesterID in DevAdmRe-
port()s to allow reports to be sent to clients that don’t need to know the

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1484 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

platforms’s RequesterID. The fact that the IORM used the RequesterID to
perform the subscription and the DevAdmReportResp() contains the
TransactionID is sufficient protection.

CA7-69: A DA shall only allow the default MADHeader:RequesterID value
of zero in DevAdmGet(ClassPortInfo), DevAdmSet(LogIn), and DevAdm-
ReportResp() MADs.

CA7-70: A DA shall use the default MADHeader:RequesterID value of
zero in DevAdmReport() MADs that it generates.

It’s possible that the information a DA returns in response to a query de-
pends on the state of the client platform (e.g., pre-boot or post boot) and
the platform’s OS. For example, a booting platform might only be given in-
formation about devices necessary to boot the OS, but when the OS takes
control, it is given information about additional resources. Since this infor-
mation can be determined as part of the login process, the RequesterID
can function as a data versioning key. When there is a context change, the
client platform performs another login. If the DA detects changes (such as
a change in the platform’s purpose or permissions), it can invalidate the
platform’s old RequesterID, forcing the client platform to perform another
login and get a new RequesterID.

A7.6.2.6 COMPONENT MASK

The ComponentMask in the MAD header is used in queries for attributes
supporting RMPP (see Table 428 DevAdm Attribute / Method Map on
page 1486). The ComponentMask allows the initiator to indicate which
components in the query (i.e., the DevAdmGet request) that the DA uses
in determining which records to return. Each bit corresponds to an at-
tribute component as specified in each attribute’s definition in A7.6.3: At-
tributes. If that bit is set to zero, the DA ignores that component when
selecting which attributes to return. When the bit is one, the DA only re-
turns records that have that component matching the value supplied in the
request. For example, a DevAdmGet(C_KeyInfo) with component mask
bits for IouGUID and Supv_Key set to one will return all records matching
the IouGUID and Supv_Key values supplied in the attribute in the DevAd-
mGet(C_KeyInfo) query.

CA7-71: The DA shall ignore MADHeader:ComponentMask in MADs not
indicated as ‘RMPP’ in Table 428 "DevAdm Attribute / Method Map" on
page 1486

CA7-72: The DA shall ignore MADHeader:ComponentMask bits that are
not defined in the attribute’s definition in A7.6.3: Attributes

CA7-73: For method/attribute combinations marked ‘RMPP’ in Table 428
DevAdm Attribute / Method Map on page 1486, the DA shall only return

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1485 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

attribute records matching the components indicated by the request’s
MADHeader:ComponentMask field.

CA7-74: The DA shall set the MADHeader:ComponentMask in the re-
sponse to the same value as in the request, except that any Component-
Mask bits not supported (i.e., not defined for the attribute) shall be set to
zero. This requires that the MADHeader:ComponentMask in responses to
non RMPP method/attributes combinations is always returned as zero.

A7.6.2.7 LOST MESSAGES

The DevAdm ClassPortInfo attribute provides a time-out value (RespTi-
meValue) to be used in conjunction with DevAdm requests. Because De-
vAdm messages use unreliable datagram service, it is possible that a
request or its response may be lost. If the requester does not receive a
response within the time allotted47, it resends the original request.

Where a response is a multi-packet segmented response, the segments
are sent in order and identified by the SegmentNumber field. If the initiator
detects that it missed one of the response packets, it can immediately re-
quest retransmission starting with the missing packet by resubmitting the
original request with original RequesterID, setting the ReSend Request bit
in the FragmentFlag field, and specifying the missing packet in the Seg-
mentNumber field. The DA starts resending the response starting with the
indicated packet using the window value specified in the Resend Request.

A7.6.3 ATTRIBUTES

Table 427 lists attributes for the DevAdm class MADs

47. Note that the requester must also consider fabric round trip delays.

Table 427 DevAdm Attributes

Attribute Name Attribute
ID

Attribute
Modifier Description

ClassPortInfo 0x0001 0x00000000 Class Info as per base MAD definition. This document specifies
DevAdm ClassVersion =1

Notice 0x0002 0x00000000 Fabricated Trap/Notice information generated by the DA.

InformInfo 0x0003 0x00000000 Subscription information as per common MAD attribute definitions in
Chapter 13.

LogIn 0x0011 0x00000000 Provides information about the Client Platform so the DA can assign
a RequesterID.

S_KeyInfo 0x0012 0x00000000 Request for list of IOU’s and associated Supervisor_Keys.

C_KeyInfo 0x0013 0x00000000 Request for list of Client_Keys.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1486 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 428 associates DevAdm class attributes with methods.

A7.6.3.1 CLASSPORTINFO

The ClassPortInfo attribute is defined in Volume 1 Chapter 13 and has the
following class specific information and definitions:

• ClassVersion: This is version 1 of the DevAdm class specifica-
tion. The ClassVersion field shall be set to 0x01.

• CapabilityMask component is defined in Table 429 on page 1487.

RemovalReq 0x0021 0x00000000 Notifies client platform about IOCs affected by a requested removal of
an I/O module.

DiagNotice 0x0022 0x00000000 Notifies client platforms affected by a requested diagnostic.

Table 427 DevAdm Attributes (Continued)

Attribute Name Attribute
ID

Attribute
Modifier Description

Table 428 DevAdm Attribute / Method Map

Attribute
Get /

GetRespa

a. SP designates single packet request/response. RMPP
designates that the method/attribute uses Reliable Multiple Packet
Protocol. Note that the DevAdmGet() is always a single packet that
can result in a multiple packet response.

Set /
GetResp

Report /
ReptResp

ClassPortInfo SP

Notice SP

InformInfo SP

LogIn SP

S_KeyInfo RMPP

C_KeyInfo RMPP

RemovalReq SP

DiagNotice SP

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1487 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

A7.6.3.2 NOTICE

The DA uses the Notice attribute in most reports it sends to subscribed
client platforms (see below for exceptions). The Notice attribute is defined
in Volume 1 Chapter 13 section 13.4.8.2. Note that the DevAdmSet(In-
formInfo) permits a client platform to subscribe to notices about any IOU
in the configuration group. In addition to notice attributes, DevAdm also
defines additional attributes that are used in DevAdmReport() MADs (see
A7.6.3.7 "RemovalReq" on page 1497 and A7.6.3.8 "DiagNotice" on page
1499).

DevAdm notices are fabricated and fall into two categories - Proxy Traps
and Manager Events. A proxy trap is one that is generated on behalf of an
IOU, in which case the notice identifies the IOU. A Manager Event is not
associated with an IOU.

Table 429 Device Administration ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734.
Note that bits 0 and 1 are not meaningful for a manager and thus
are set to zero and ignored.

8-13 reserved reserved

14 GracefulFailover This bit indicates if the DA shares subscription information with
standby mangers. A value of 1 indicates that subscriptions are
retained across fail-overs. Requirements for setting this bit are
specified in section A7.6.1.2.3 Subscription Integrity on page
1474 and A7.6.3.4 LogIn.

15 IsContextPersistent This bit indicates if the DA persistently stores Login context and
subscription information. A value of 1 indicates that subscriptions
and login context are retained across reset, restarts, and power
cycles. Requirements for setting this bit are specified in
A7.6.1.2.3 Subscription Integrity, A7.6.3.3 InformInfo, and
A7.6.3.4 LogIn.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1488 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Unless otherwise specified, components for generic Notice attributes
(listed in Table 431 on page 1488) shall be set as per Table 430 on page
1488:

Table 430 Notice Component Values

Component Component Value

IsGeneric 1 (Generic)

Type as per Table 431

ProducerType 4 (Class Manager)

TrapNumber as per Table 431

IssuerLID • For Proxy Traps - A LID of the subject IOU.
• For Manager Events - the base LID of the port emitting the Report()

message.

NoticeToggle 0 as per 13.4.8.2 Notice on page 737

Notice Count 0 as per 13.4.8.2 Notice on page 737

DataDetails as per Table 431

IssuerGID GID of port specified by IssuerLID

Table 431 Generic DevAdm Events
Trap

Number Name P/Ma Type DataDetails

0 Removal Requested P 1-urgent n/a - the Removal Requested notification does not use
the Notice Attribute. It is included here because this
event needs a trap number and type so client platforms
can subscribe for the notification.

1 Diagnostic Notification P 1-urgent n/a - the Diagnostic Notification does not use the Notice
Attribute. It is included here because this event needs a
trap number and type so client platforms can subscribe
for the notification.

2 Configuration Change P 4-informational As specified in Table 432

3 IOC On-line P 4-informational As specified in Table 433

4 IOC Off-line P 4-informational As specified in Table 434

5 Resource Allocation
Change

P 4-informational As specified in Table 435

7 Heartbeat M 4-informational As specified in Table 436

8 Reset Notification P 1-urgent n/a - the Reset Notification does not use the Notice
Attribute. It is included here because this event needs a
trap number and type so client platforms can subscribe
for the notification.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1489 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DataDetails field of a Notice attribute consists of 54 Bytes that are
class and trap specific.

A7.6.3.2.1 CONFIGURATION CHANGE

The DataDetails field for the Configuration Change Notice is defined in
Table 432.

A7.6.3.2.2 IOC ON-LINE

The DataDetails field for the IOC On-line Notice is defined in Table 433.

A7.6.3.2.3 IOC OFF-LINE

The DataDetails field for the IOC Off-line Notice is defined in Table 434.

a. P/M indicates if (P) Proxy Trap or (M) Manager Event.

Table 432 Configuration Change Notice DataDetails

Component Lengtha

a. remaining space reserved - set to zero and ignored

Description

reserved 64 bits reserved

IouGUID 64 bits I/O Unit’s Channel Adapter GUID

Table 433 IOC On-line Notice DataDetails

Component Lengtha

a. remaining space reserved - set to zero and ignored

Description

reserved 64 bits reserved

IouGUID 64 bits I/O Unit’s Channel Adapter GUID

IocGUID 64 bits I/O Controller GUID

SlotNumber 8 bits Slot number of the I/O module containing the IOC

Table 434 IOC Off-line Notice DataDetails

Component Lengtha

a. remaining space reserved - set to zero and ignored

Description

reserved 64 bits reserved

IouGUID 64 bits I/O Unit’s Channel Adapter GUID

IocGUID 64 bits I/O Controller GUID

SlotNumber 8 bits Slot number of the I/O module containing the IOC -
zero if not known

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1490 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.6.3.2.4 RESOURCE ALLOCATION CHANGE

The DataDetails field for the Resource Allocation Change Notice is de-
fined in Table 435.

A7.6.3.2.5 HEARTBEAT

The DataDetails field of a Heartbeat Notice attribute is defined in Table
436.

A7.6.3.3 INFORMINFO

A client platform uses the InformInfo attribute to subscribe for configura-
tion event notification.

The InformInfo attribute is defined in Volume 1 Chapter 13. Normally,
LidRangeBegin and LIDRangeEnd identify the port generating a trap.
However, the DA does not forward traps but rather creates configuration
events that relate to specific IOUs. Thus, for DevAdm class subscription,
the LID range specifies the IOUs involved.

Table 435 Resource Allocation Change Notice DataDetails

Component Lengtha

a. remaining space reserved - set to zero and ignored

Description

reserved 64 bits reserved

IouGUID 64 bits I/O Unit’s Channel Adapter GUID

Table 436 Heartbeat Notice DataDetails

Component Lengtha

a. remaining space reserved - set to zero and ignored

Description

TTNH 12 bits Time till next heartbeat - specifies the number of
minutes before the DM will send another Heartbeat
notice. If more that this time elapses, it is an indica-
tion that the DA has terminated the subscription.

reserved 4 bits reserved

Fail-over 1 When this bit is set to one, it indicates that a
standby manager has taken-over. The client plat-
form should query the SA to locate the new DM.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1491 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Since the LID range specifies the source LID, which must be in the unicast
LID range (0x0001 - 0xBFFF), LidRangeBegin and LIDRangeEnd have
class specific interpretation as specified in Table 437.

oA7-9: If the DA supports Persistent Context (i.e. sets the IsContextPer-
sistent bit in DevAdmGetResp(ClassPortInfo) to 1), it shall save subscrip-
tion information in non-volatile storage before responding to a
DevAdmSet(InformInfo).

oA7-10: If the DA supports Graceful Failover (i.e., sets the Graceful-
Failover bit in DevAdmGetResp(ClassPortInfo) to 1), it shall make sub-
scription information known to all standby DAs for that same configuration
group provided by that same vendor before responding to the De-
vAdmSet(InformInfo).

A7.6.3.4 LOGIN

A client platform sends DevAdmSet(LogIn) to get its RequesterID and/or
to invalidate previous context between the platform and the DA (see
A7.6.2.5 "RequesterID" on page 1483). The DA uses the LID/GID in the
MAD and R/W information in the LogIn attribute to validate who the re-
quester is and responds back with the LogIn attribute specifying the Re-
questerID that the platform uses in subsequent queries. As part of a Login,
the client platform can request that the DA invalidate all previous event
subscriptions made by that platform.

Table 437 DevAdm LID Range Interpretation

LIDRangeBegin LIDRangeEnd Description

0x0000 any invalid

0x0001
through
0xBFFF

0x0000 and
LIDRangeBegin

through
0xBFFF

events relating to an IOU managed by the
DA/DM that has a LID in the specified LID
Range for which the client is assigned a ser-
vice object.

0xC000 thru
FFFE

any invalid

any 0xC000 thru
0xFFFF

invalid

0xFFFF any events relating to any IOU managed by the
DA/DM for which the client is assigned a ser-
vice object and for events not related to an
IOU (e.g. Heartbeat).

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1492 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

See A7.6.2.5 "RequesterID" on page 1483 for requirements on issuing
RequesterID. The DA ignores the MADHeader:RequesterID when it re-
ceives a DevAdmSet(LogIn) and uses the LID/GID from the MAD to vali-
date who the requester is by getting its NodeGUID from the SA. The Login
attribute’s PlatformName, OSName, and BootStage components provides
the DA a means to distinguish between different uses of that platform and
also as an aid in identifying the platform to an administrator when the plat-
form is not known to the DA. How the DA uses these components is sub-
ject to DA policy.

Table 438 LogIn Attribute

Component Access Offset
(bits) Length Description

RequesterID R/W 0 8 bytes The value that the client platform uses in MAD-
Header:RequesterID of DevAdm queries.

PlatformName R/W 64 64
Bytes

Indicates the name assigned to the client platform.
UTF-8 encoded, null-terminated character string
(e.g., “WebServer1”). Value of all zeros indicates
unknown or not assigned.

OSName R/W 576 32
Bytes

Indicates the client platform’s operating system.
UTF-8 encoded, null-terminated character string.
Value of all zeros indicates unknown or not
assigned.

BootStage R/W 832 2 bits Indicates the current boot stage of the platform
00 - Pre-boot
01 - OS booting (OS and Pre-boot environments

both exist)
10 - OS fully operational (No pre-boot environment)

reserved RO 834 2 bits reserved

ContextChange R/W 836 4 bits Controls if the DA invalidates existing Request-
erIDs and subscriptions made by the client platform
as per Table 439 "Context Change" on page 1493

ImplicitSubscription R/W 840 8 bits Client sets appropriate bits to automatically sub-
scribe to the indicated event.
bit 0 - Removal Request events
bit 1 - Diagnostic events
bit 2 - Configuration Change events
bit 3 - IOC On-line events
bit 4 - IOC Off-line events
bit 5 - Resource Allocation Change events
bit 6 -
bit 7 - Heartbeat

reserved RO 848 688 reserved

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1493 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A platform normally issues a new login after the platform is reset, when
information in the LogIn attribute (PlatformName, OSName, or BootStage
component) changes48, after it receives a response with a status of invalid
RequesterID, or after the operating environment changes (such as the
transition from BIOS to OS control) to establish a new context with the DA.

When a client platform initializes, the BIOS, OS, etc., does not necessarily
know if context that the previous instantiation of the platform established
with the DA is still valid, so the client-platform is able to set the Contex-
tChange component controlling how the DA flushes old context for that
platform.

A node that knows it is leaving the fabric (e.g., being put to sleep) can de-
stroy its subscriptions by sending a DevAdmSet(LogIn) with context = 0x4
(or 0x5 to invalidate its RequesterID). When the node awakes, it sends a

48. An example is a platform that changes from a web server to a backup server
at midnight and changes back to a web server at 6 AM.

Table 439 Context Change
Bit Action3 2 1 0

x x x 0 DA does not invalidate any RequesterID.

x x x 1 DA invalidates the RequesterID specified in this attribute (i.e.,
Login:RequesterID) - if Login:RequesterID=zero, then the DA invali-
dates all RequesterIDs for this platform.

x x 0 x DA responds with zero in Login:RequesterID component. DA does
not generate any new requester IDs.

x x 1 x DA responds with current RequesterID in Login:RequesterID - DA will
generate a new RequesterID if one does not exist or it had been
invalided.

0 0 x x DA does not invalidate or modify any subscriptions.

0 1 x x DA invalidates all subscriptions for the RequesterID specified in
Login:RequesterID - if Login:RequesterID=zero, then the DA invali-
dates all subscriptions for all RequesterIDs for this platform.

1 0 x x IORM inherits subscriptions for the RequesterID specified in
Login:RequesterID, if Login:RequesterID=zero, then it inherits all sub-
scriptions of all RequesterIDs for this platform. This means the DA
modifies those subscriptions such that the Report()’s LRH:DLID,
LRH:SL, BTH:P_Key, BTH:DestinationQP, DETH:Q_Key, GRH:DGID,
GRH:FlowLabel, GRH:TClass, and GRH:HopLmt will be the same
values as the values in the DevAdmGetResp(Login).

1 1 x x invalid, DA rejects a Set() with this value.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1494 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DevAdmSet(LogIn) with context = 0x2 to get its RequesterID and, if de-
sired, make implicit subscriptions.

CA7-75: The DA shall reject a DevAdmSet(LogIn) that specifies a
Login:RequesterID component not valid for the client platform as deter-
mined by the platform’s NodeGUID (see CA7-65: and CA7-66: on page
1483).

CA7-76: Upon receipt of a DevAdmSet(LOGIN) with a ContextChange
value that invalidates RequesterID, the DA shall reject subsequent De-
vAdm MADs that use the invalidated ReqesterID(s).

A client platform uses the Login:RequesterID returned in the DevAdmGe-
tResp(LogIn) in the MADHeader:RequesterID in all subsequent DevAdm
MADs.

CA7-77: A client platform shall only use the default RequesterID in De-
vAdmGet(ClassPortInfo), DevAdmSet(LogIn), and DevAdmReportResp()
MADs.

The ImplicitSubscription component provides a shortcut for the client plat-
form to subscribe with the DA for reports. When the client sets the implicit
subscription, the DA treats it as receiving an InformInfo for the specified
notices. The DevAdmReport()s will be sent to the same destination as the
DevAdmGetResp(Login). That is, the values for LRH:DLID, LRH:SL,
BTH:P_Key, BTH:DestinationQP, DETH:Q_Key, GRH:DGID, GRH:Flow-
Label, GRH:TClass, and GRH:HopLmt are inherited from the values in the
DevAdmGetResp(Login). The implicit scope is “all IOUs“ (i.e., LIDRange-
Begin=0xFFFF).

oA7-11: If the DA supports Persistent Context (i.e. sets the IsContextPer-
sistent bit in DevAdmGetResp(ClassPortInfo) to 1), it shall save/update
Login information in non-volatile storage before responding to a De-
vAdmSet(LogIn).

oA7-12: If the DA supports Graceful Failover (i.e., sets the Graceful-
Failover bit in DevAdmGetResp(ClassPortInfo) to 1), it shall make LogIn
information known to all standby DAs for that same configuration group
provided by that same vendor before responding to a DevAdmSet(LogIn).

A7.6.3.5 S_KEYINFO

The DA responds to DevAdmGet(S_KeyInfo) with a DevAdmGet-
Resp(S_KeyInfo). As per CA7-38: on page 1472 the DA only provides
records for the requesting node as identified by the MADHeader:Reques-
terID49. There may be multiple packets per response.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1495 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each attribute record returned by the DA specifies an IOU and the
Supervisor_Key that the client platform uses to manage client pools on
that IOU.

Normally, the DA should use the same Supervisor_Key on all IOUs. How-
ever, there are times when that is not possible, thus the client platform
should be prepared to use multiple keys. It is also possible that a client
platform has multiple Supervisor_Keys on the same IOU (i.e., can receive
multiple S_KeyInfo attribute records specifying the same IOU with a dif-
ferent Supv_Key and different SKey_Name. The manager may wish to
provide different Supv_Keys based upon the current function of the plat-
form (e.g. Development and Test, versus using the system as a failover
for production.) The SKey_Name allows the supervisor to select the ap-
propriate Supv_Key from the set of all those returned.

A7.6.3.6 C_KEYINFO

The DA responds to DevAdmGet(C_KeyInfo) with a DevAdmGet-
Resp(C_KeyInfo). As per CA7-38: on page 1472 the DA only provides
records for the requesting node as identified by the MADHeader:Reques-
terID50. There may be multiple packets per response.

49. When the IORM performs a LOGIN, the DA determines the IORM’s Node
GUID and assigns it a unique RequesterID, which the IORM specifies in the
MAD Header of all its queries. The DA uses the RequesterID to authenticate the
query and associate the request to a particular host platform.

Table 440 S_KeyInfo Attribute

CMska
(bit)

Component Access Offset Length Description

0 IouGUID RO 0 8 bytes Node GUID of the IOU

1 Supv_Key RO 64 8 bytes Supervisor_Key that the client platform uses in any
DevMgt MADs to that IOU.

- ClientKeyCount RO 640 2 bytes The number of C_KeyInfo records that will be
returned for a DevAdmGet(C_KeyInfo) query that
contains this IocGUID and Supv_Key.

- reserved 656 14
bytes

reserved - not used

2 SKey_Name RO 128 64
bytes

A name associated with the Supervisor_Key

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only
records that match the corresponding component value in the query. Only components with CMsk bit numbers
assigned can be specified.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1496 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each attribute record returned by the DA specifies a Client_Key that the
client platform can use for the specified IOU and the Supervisor_Key the
platform’ IORM uses to manage the ClientPoolRecord assigned that
Client_Key.

Note that a Client_Key may be valid on more than one IOU, but it might
not be valid on all IOUs. Thus, it is possible for the client platform to be
given a different set of Clent_Keys for each IOU.

50. When the IORM performs a LOGIN, the DA determines the IORM’s Node
GUID and assigns it a unique RequesterID, which the IORM specifies in the
MAD Header of all its queries. The DA uses the RequesterID to authenticate the
query and associate the request to a particular host platform.

Table 441 C_KeyInfo Attribute

CMska
(bit) Component Access Offset Length Description

0 IouGUID RO 0 8 bytes Node GUID of the IOU

1 Supv_Key RO 64 8 bytes Supervisor_Key that the client platform uses in any
DevMgt MADs to that IOU.

2 Client_Key RO 128 8 bytes Client_Key that a client uses in any DevMgt MADs
to that IOU.

reserved RO 192 8 bytes reserved - not used

3 ClientKey_Name RO 256 64
bytes

A name associated with the Client_Key

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only
records that match the corresponding component value in the query. Only components with CMsk bit numbers
assigned can be specified.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1497 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.6.3.7 REMOVALREQ

The DA uses the DevAdmReport(RemovalReq) to report the removal pro-
cess to client platforms affected by the removal of an I/O module (see
A7.5.8 "Graceful Hot Removal" on page 1464).

Table 442 RemovalReq Attribute

Component Access Offset Length Description

IouGUID RO 0 8 bytes The CA GUID of the IOU containing the I/O module
being removed.

RemovePriority RO 64 4 bits See Table 443 on page 1499

Acknowledge R/W 68 4 bits In the DevAdmReportResp():
0=OK to remove
1=REJECT, critical resource, etc.
2=WAIT, need time to acquiesce operation

In the DevAdmReport(), this field is set to zero and
ignored

WaitDelay R/W 72 8 bits Set to zero in the DevAdmReport() and when the
IORM responds with an Acknowledge value of WAIT,
the IORM sets this component to the number if milli-
seconds that the DA should wait before it resends the
request. For each Report() the IORM may request
more time.

reserved RO 80 22 bytes reserved

IocGUID1 RO 256 8 bytes IOC GUID of an affected IOC.

IocGUID2 RO 320 8 bytes GUID of an affected IOC (or zero if no more IOCs,
means IocGUID3 through IocGUID16 are also zero)a

IocGUID3 RO 384 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID4 RO 448 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID5 RO 512 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID6 RO 576 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID7 RO 640 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID8 RO 704 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID9 RO 768 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID10 RO 832 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID11 RO 896 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID12 RO 960 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID13 RO 1024 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID14 RO 1088 8 bytes GUID of an affected IOC (or zero if no more IOCs)

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1498 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA sends a DevAdmReport(RemovalReq) to the IORM of each af-
fected client platform setting the RemovePriority component to inform the
IORM what options the IORM has to reject or delay the removal (see Table
443). The Acknowledge component identifies the willingness of the IORM
to accept the removal. Acknowledge and WaitDelay are the only compo-
nents that the IORM may modify when it returns the attribute in the De-
vAdmReportResp(RemovalReq).

The DA sets the Acknowledge component to zero and if RemovePriority
permits, the IORM may change it in the response to reject the removal or
request more time. See RemovePriority component above and Table 443
for IORM options in responding to the DevAdmReport(). If the IORM indi-
cates WAIT, then the IORM also sets the WaitDelay component to tell the
DA how long it should wait before asking again. If the client needs more
than 255 msec, it sets WaitDelay to 0xFF. The DA continues to send a De-
vAdmReport() until the client indicates OK to remove (or reject).

Each report can identify up to 16 IOCs affected by the removal. When
there are more than 16 the DA sends multiple reports. If an IocGUID is
zero, the client platform may ignore the following IocGUIDs.

IocGUID15 RO 1152 8 bytes GUID of an affected IOC (or zero if no more IOCs)

IocGUID16 RO 1216 8 bytes GUID of an affected IOC (or zero if no more IOCs)

reserved32 RO 1280 32 bytes reserved

a. If an IocGUID is zero, it means there are no more IOCs in the list and the client platform may ignore the
remaining IocGUIDs (i.e., ignore IocGUID components following the first zero IocGUID).

Table 442 RemovalReq Attribute (Continued)

Component Access Offset Length Description

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1499 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A RemovalReq can have one of the following priorities.

The architecture permits I/O module removal requests to be initiated by
the IOU (see DevMgt Annex) or initiated via the Configuration Manager.
The criteria for the Configuration Manager initiating a remove and how the
DA determines the RemovePriority is a Configuration Manager policy out-
side the scope of this document. See A7.6.1.2.4 "Subscription Timeout:"
on page 1475 for how the DA determines that a client platform is not re-
sponding. How the DA reacts to non-responding clients is a DA policy.

A7.6.3.8 DIAGNOTICE

The DA uses the DevAdmReport(DiagNotice) to report that a diagnostic
session has been requested (see A7.5.9 "Diagnostics" on page 1468).

Table 443 Removal/Diagnostic/Reset Priority

Value Description

0h Graceful - if a client platform responds negatively to the notice, the DA
cancels the removal/diagnostic/reset operation.

1h Forced - Client Platforms are not allowed to reject the removal/diagnos-
tic/reset, but may respond with WAIT status. The amount of time that the
DA will permit a client platform to delay the action is a DA policy.

2h Immediate - Client Platforms are not allowed to reject or delay the
removal/diagnostic/reset - i.e., the DA ignores the Acknowledge compo-
nent in the response. The amount of time that the DA attempts to contact
a client platform before performing the action is a DA policy.

3h Critical - The configuration manager issues the removal/diagnostic/reset
command without waiting for acknowledgment from client platforms. The
DA sends this notice to inform the client platforms of the action, but this
report may come after the fact - i.e., the DA ignores the Acknowledge
component in the response.

Table 444 DiagNotice Attribute

Component Access Offset
(bits)

Length
(bits) Description

IouGUID RO 0 64 The CA GUID of the IOU being tested.

DiagPriority RO 64 4 See Table 443 on page 1499

Acknowledge R/W 68 4 In the DevAdmReportResp():
0h=OK to perform diagnostics
1h=REJECT, critical resource, etc.
2h=WAIT, need time to acquiesce operation

In the DevAdmReport(), this field is set to zero and ignored

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1500 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA uses this attribute to inform hosts that a diagnostic session has
been requested.

WaitDelay R/W 72 8 bits Set to zero in the DevAdmReport() and when the IORM responds
with an Acknowledge value of WAIT, the IORM sets this component to
the number if milliseconds that the DA should wait before it resends
the request. For each Report() the IORM may request more time.

reserved RO 80 48 reserved

DiagSeverity RO 128 4 Specifics the maximum severity level for a diagnostic test
• 0x0 - Non-Intrusive - does not impact I/O performance
• 0x1 - I/O performance reduced to 90%
• 0x2 - I/O performance reduced to 80%
• 0x3 - I/O performance reduced to 70%
• 0x4 - I/O performance reduced to 60%
• 0x5 - I/O performance reduced to 50%
• 0x6 - I/O performance reduced to 40%
• 0x7 - I/O performance reduced to 30%
• 0x8 - I/O performance reduced to 20%
• 0x9 - I/O performance reduced to 10%
• 0xA - No I/O Service during diagnostics - connections remain
• 0xF - No I/O Service - Connections terminated
• other values reserved

DiagScope RO 132 4 Specifies the scope of the objects that can be affected by diagnostic
testing using this token:
0x0 - Entire IOU: The diagnostics can affect all I/O objects of all IOCs.
0x1 - reserved.
0x2 - I/O Controllers: The diagnostics can affect all I/O objects of the

IOCs listed in the ObjectList component.
0x3 - Service Objects: The diagnostics can affect the I/O objects listed

in the ObjectList component.
other values reserved

reserved RO 136 104 reserved

ObjectListCount RO 240 16 Specifies the number of objects in ObjectList. When DiagScope is
‘Entire IOU’ then this value is zero. The max value allowed is 24 for
IOCs and 12 for Service Objects.

ObjectList RO 256 varies Specifies the list of objects that can be impacted by a diagnostic test-
ing. The content of this component is based on DiagScope and
ObjectListCount:
• Entire IOU: no data (this field size is zero)
• I/O Controllers: List of IocGUIDs - thus the length of this component

is 8n Bytes where n = ObjectList Count.
• Service Objects: List of IocGUID+ServiceObjectID tuples - thus the

length of this component is 16n Bytes where n = ObjectListCount

Table 444 DiagNotice Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1501 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA sends a DevAdmReport(DiagNotice) to the IORM of each af-
fected client platform setting the DiagPriority component to inform the
IORM what options the IORM has to reject or delay the diagnostic session
(see Table 443). The Acknowledge component identifies the willingness
of the IORM to accept the diagnostic session. Acknowledge and Wait-
Delay are the only components that the IORM may modify when it returns
the attribute in the DevAdmReportResp(DiagNotice).

The DA sets the Acknowledge component to zero and the IORM may
change it in the response to reject the session or request more time (if Di-
agPriority permits). See DiagPriority component above and Table 443 on
page 1499 for IORM options in responding to the DevAdmReport(DiagNo-
tice). If the IORM indicates WAIT, then the IORM also sets the WaitDelay
component to tell the DA how long it should wait before asking again. If
the client needs more than 255 msec, it sets WaitDelay to 0xFF. The DA
continues to send a DevAdmReport() until the IORM indicates ‘OK to per-
form diagnostics’ (or reject).

Most of the information comes from the DevMgtSet(DiagSession). The
DA only lists devices that are assigned51 to the client platform and are
listed in the DiagSession ObjectList. If the DiagSession lists I/O modules,
then the DA has to convert the module list to a list of IOCs. If the DiagSes-
sion specifies more IOCs or Service Objects than will fit in the DiagNotice
attribute, the DA sends multiple single packet Report(DiagNotice) MADs.

A7.6.3.9 RESETNOTICE

The DA uses the DevAdmReport(ResetNotice) to inform IORMs before it
issues a reset to an IOU. The reset can be for a specific IOC or the entire
IOU.

51. Assigned means the IOC or Service Object is listed in a Platform Pool Table
record or in a Client Pool Table record for which the DA has provided the IORM
a Supervisor_Key or Client_Key.

Table 445 ResetNotice Attribute

Component Access Offset
(bits)

Length
(bits) Description

IouGUID RO 0 64 The CA GUID of the IOU being reset or the IOU containing the IOC
being reset.

ResetPriority RO 64 4 See Table 443 on page 1499

Acknowledge R/W 68 4 In the DevAdmReportResp():
0h=OK to perform Reset
1h=REJECT, critical resource, etc.
2h=WAIT, need time to acquiesce operation

In the DevAdmReport(), this field is set to zero and ignored

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1502 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA uses this attribute to inform hosts that it will issue a Reset to the
specified IOU. The DA only sends the DevAdmReport(ResetNotice) to
IORMs that will be affected52 by the reset and have subscribed for the Re-
setNotice.

CA7-78: Before the DM sends a DevMgtSet(Reset) to an IOU, the DA
shall issue a DevAdmReport(ResetNotice) to each client platform that sat-
isfies the following requirements (a) the platform has been assigned a ser-
vice object that will be affected by the reset, (b) the client platform
subscribed for Reset Notification, and (c) a GID of the IOU matches the
InformInfo:GID or the IOU has a LID that falls in the range of the Inform-
Info: LIDRangeBegin – LIDRangeEnd.

CA7-79: The DA shall not issue a DevAdmReport(ResetNotice) to a client
platform unless at least one of the affected IOCs’ service objects are listed
in a PlatformPoolRecord for which the client platform has been given the
Supervisor_Key or listed in a ClientPoolRecord for which the client plat-
form has been given the Client_Key.

WaitDelay R/W 72 8 bits Set to zero in the DevAdmReport() and if the IORM responds with an
Acknowledge value of WAIT, the IORM sets this component to the
number if milliseconds that the DA should wait before it resends the
request. For each DevAdmReport() the IORM may request more time.

reserved RO 80 48 reserved

ResetType RO 128 4 Reset Type that will be specified in the DevMgtSet(Reset) to the IOU.
 • 0b - Graceful Reset - Shutdown and Reset. The IOU/IOC com-

pletes outstanding commands, closes files etc., then resets.
 • 1b - Immediate Reset - The IOU will perform the reset immedi-

ately.

ResetScope RO 132 2 Scope of reset that will be specified in the DevMgtSet(Reset) to the
IOU.
00 - default (IOU determines scope of reset)
01 - Reset only software
10 - Reset only hardware
11 - Reset both hardware and software

reserved RO 136 104 reserved

IocGUID RO 240 16 Specifies the IOC GUID of the IOC that will be reset. A value of zero
indicates that the entire IOU will be reset.

Table 445 ResetNotice Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

52. Affected means the IOC is listed in a Platform Pool Table record or in a
Client Pool Table record for that client platform.

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1503 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DA sends a DevAdmReport(ResetNotice) to the IORM of each af-
fected client platform setting the ResetPriority component to inform the
IORM what options the IORM has to reject or delay the Reset (see Table
443). The Acknowledge component in the response identifies the willing-
ness of the IORM to accept the Reset. Acknowledge and WaitDelay are
the only components that the IORM may modify when it returns the at-
tribute in the DevAdmReportResp(ResetNotice).

The DA sets the Acknowledge component to zero and the IORM may
change it in the response to reject the Reset or request more time (if Re-
setPriority permits). See ResetPriority component above and Table 443
on page 1499 for IORM options in responding to the DevAdmReport(Re-
setNotice). If the IORM indicates WAIT, then the IORM also sets the Wait-
Delay component to tell the DA how long it should wait before asking
again. If the client needs more than 255 msec, it sets WaitDelay to 0xFF.
The DA continues to send a DevAdmReport() until the IORM indicates OK
to Reset (or reject).

A7.7 COMPLIANCE

In order to claim compliance to Configuration Management a product shall
meet all requirements specified in this section,

A7.7.1 COMPLIANCE CATEGORIES

This annex specifies two compliance categories: Configuration Manager
and I/O Client. The Device Management Annex specifies the require-
ments for an I/O unit.

In order to claim compliance to Configuration Management a product shall
meet all requirements specified in this section, except for those state-
ments preceded by Qualifiers that the product does not support.

Table 446 Configuration Management Compliance Categories/Qualifiers

Category Qualifiers Description

CFM

none Minimum requirements for a Configuration Manager

PERS Requirements for a manager that persistently saves client contexts such as
subscriptions and diagnostic sessions across reset, restarts, and power cycles.

FAILOVER
Requirements for a manager that supports graceful failover such that if the
manager fails and a standby manager takes over, the new manager inherits the
client context (subscriptions and diagnostic sessions) from the old manager.

Client
Platform none

Minimum requirements for client platforms

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1504 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A7.7.2 CONFIGURATION MANAGER COMPLIANCE SUMMARY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of Configuration Manager, a product shall provide a De-
vice Manager and Device Administrator that meet all requirements
specified in this section and in A7.7.4 "Common Management Require-
ments" on page 1506.

CA7-1: Special Q_Key required . Page 1454
CA7-2: Register with the SA . Page 1454
CA7-3: When SA rejects the Device Manager Page 1454
CA7-4: Renew SA registration lease . Page 1454
CA7-5: DMs with same ConfigGroupID work in unison Page 1455
CA7-6: Claiming IOUs . Page 1455
CA7-7: DM and DA paired,. Page 1455
CA7-8: Ceasing being the Master DM . Page 1455
CA7-9: Ceasing being the Master DA . Page 1455
CA7-12: DevMgt MADs conform to DevMgt format Page 1456
CA7-13: Datagrams Follow Common MAD Use Page 1456
CA7-14: Response to the MADHeader:ClassVersion Page 1456
CA7-15: No MADHeader:BtM_Key checking . Page 1456
CA7-16: Reset the BtM_Key lease period . Page 1458
CA7-17: Configure IOU Trap info . Page 1458
CA7-18: Generating a DevMgtTrapRepresst() Page 1458
CA7-19: Generating a DevMgtReport() for each trap. Page 1459
CA7-20: Generating a DevMgtReport() for priveledged traps Page 1459
CA7-20.2.1:Rejecting subscription for policy . Page 1459
CA7-21: Generating a DevMgtReport() for NQ illegal Page 1459
CA7-22: Report Traps in order . Page 1460
CA7-23: Only 1 outstanding Report() per IOU . Page 1460
oA7-1: PERS: DM persistent subscriptions . Page 1461
oA7-2: PERS: DM storing subscription info . Page 1461
oA7-3: FAILOVER: DM Sharing subscription w/Stby DMs Page 1462
oA7-4: FAILOVER: Sharing subscription info w/Stby DMs Page 1462
CA7-24: DA retrying Report()s . Page 1462
CA7-25: DA subscription time-out . Page 1462
CA7-26: DM Hearbeat initial notice generation (explicit) Page 1463
CA7-27: Periodic DM Hearbeat notice generation Page 1463
CA7-28: DM setting Fail-over bit in Heartbeat . Page 1463
CA7-29: DM Fail-over bit in Heartbeat sent one time. Page 1463
CA7-30: Claiming I/O Modules. Page 1465
CA7-31: Response to a Removal Trap. Page 1465
CA7-32: Initiating the Removal Process. Page 1466
CA7-33: Processing a Removal event . Page 1466
CA7-34: IOCs listed in a Removal Notice . Page 1466
oA7-5: PERS: DM storing Diag Session info . Page 1469
oA7-6: FAILOVER: Sharing Diag Session info w/Stby DMs Page 1469
CA7-35: Processing a Diagnostic event. Page 1469
CA7-36: IOCs listed in a Diag report . Page 1469
CA7-37: DIAG Session invalid DevMgt class version 1 Page 1470
CA7-38: Filtering on RequesterID . Page 1472
oA7-7: PERS: DA persistent subscriptions . Page 1475
oA7-8: FAILOVER: DA Sharing subscription info w/Stby DAs. Page 1475

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1505 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-40: DA retrying Report()s . Page 1475
CA7-41: DA subscription time-out . Page 1475
CA7-42: Reporting configuration changes (S_KeyInfo) Page 1476
CA7-43: Reporting configuration changes (C_KeyInfo) Page 1476
CA7-44: Detecting IOUs coming on-line . Page 1476
CA7-45: Detecting IOCs comming on-line . Page 1476
CA7-46: Reporting IOCs on-line. Page 1476
CA7-47: Detecting IOUs going off-line . Page 1476
CA7-48: Reporting IOCs off-line. Page 1477
CA7-49: Resource Allocation Change notification Page 1477
CA7-50: Detecting hot plug removal request . Page 1478
CA7-51: DA Hearbeat initial notice generation (explicit) Page 1479
CA7-52: DA Hearbeat initial notice generation (implicit) Page 1479
CA7-53: Periodic DA Hearbeat notice generation Page 1479
CA7-54: DA Setting Failover in Heartbeat . Page 1479
CA7-55: DA Fail-over bit in Heartbeat sent one time Page 1479
CA7-56: DevAdm MADs conform to specified format Page 1480
CA7-57: Reserved field set to zero/unmodified Page 1481
CA7-58: Reserved fields shall be ignored . Page 1481
CA7-59: MAD Header valid Status. . Page 1481
CA7-60: MAD Header reject Status.. Page 1481
CA7-61: Required Methods . Page 1482
CA7-62: Reliable Multi-Packet Protocol . Page 1482
CA7-63: Invalid RMPP types . Page 1483
CA7-64: Reject requests that contain more than one packet Page 1483
CA7-65: Identify a platform by its GUID . Page 1483
CA7-66: Login Validation . Page 1483
CA7-67: Non-sequential RequesterID . Page 1483
CA7-68: Reject a DevAdmGet() with an invalid RequesterID. Page 1483
CA7-69: Deafult RequesterID acceptance . Page 1484
CA7-70: Use the default MADHeader:RequesterID Page 1484
CA7-71: Ignore ComponentMask in non-RMPP MADs Page 1484
CA7-72: Ignore ComponentMask bits that are not defined Page 1484
CA7-73: Filtering on ComponentMask . Page 1484
CA7-74: ComponentMask in the response . Page 1485
oA7-9: PERS: DA persistent subscriptions . Page 1491
oA7-10: FAILOVER: DA Sharing subscription info w/Stby DAs. Page 1491
CA7-75: Reject inappropriate RequesterID . Page 1494
CA7-76: Invalidated RequesterIDs. Page 1494
oA7-11: PERS: DA saving LogIn info . Page 1494
oA7-12: FAILOVER: DA Sharing Login info w/Stby managers Page 1494
CA7-78: Processing a IOU/IOC reset. Page 1502
CA7-79: ResetNotice only sent to affected clients Page 1502
CA8-1: Datagrams conform to DevMgt format Page 1530
CA8-2: Datagrams Follow Common MAD Use Page 1531
CA8-3: Response to the MADHeader:ClassVersion Page 1532

A7.7.3 I/O CLIENT COMPLIANCE SUMMARY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of I/O Client, a product shall meet all requirements spec-
ified in this section and in A7.7.4 "Common Management Requirements"
on page 1506.

CA7-10: Using IOU service objects . Page 1455

InfiniBandTM Architecture Release 1.2 Configuration Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1506 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA7-11: Waits before deciding passive management Page 1456

CA7-12: DevMgt MADs conform to DevMgt format Page 1456

CA7-13: Datagrams Follow Common MAD Use Page 1456

CA7-39: Response to a DevAdmReport() . Page 1474

CA7-56: DevAdm MADs conform to specified format Page 1480

CA7-57: Reserved field set to zero/unmodified Page 1481

CA7-58: Reserved fields ignored . Page 1481

CA7-77: Using the default RequesterID . Page 1494

A7.7.4 COMMON MANAGEMENT REQUIREMENTS

All managers and agents must be compliant with the Common MAD re-
quirements specified is 20.14 and the following general management
framework requirements from Chapter 13.

C13-27.1.1:Standard common AttributeIDs and Attributes Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete . Page 741
o13-5.1.1:Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding . . . Page 745
o13-12: Obsolete . Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions. Page 745
o13-13: Obsolete . Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection Page 745
o13-14: Obsolete . Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. Page 746
o13-15: Obsolete . Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure . . . Page 746
o13-16: Obsolete . Page 747
o13-17: Obsolete . Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1507 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A8: DEVICE MANAGEMENT

A8.1 INTRODUCTION

This annex in conjunction with Annex A7: Configuration Management de-
fines the framework for managing I/O units and assigning I/O Unit re-
sources to client platforms. This annex specifies the Device Management
class and the requirements for an I/O unit to support Device Management
(i.e., requirements for the Device Management Agent). The Configuration
Management annex describes the overall configuration management
framework, specifies the Device Administration Class, and specifies the
requirements for a configuration management application that configures
the I/O Unit (i.e., the Device Manager) and administers privileged config-
uration information to client platforms (i.e., the Device Administrator).

This annex specifies an enhanced Device Management class for man-
aging I/O resources of an I/O unit and thus this annex specifies version 2
of the Device Management class which supersedes version 1 specified in
Chapter 16 section 16.3.

The Device Management (DevMgt) class provides the means to manage
an I/O unit and its I/O services. This class specifies formats for Device
Management packets and the protocol for sending and receiving those
packets between two IB endnodes, typically between an HCA of a client
platform and a TCA of an I/O unit and between an HCA of the Device Man-
ager and an I/O unit. To facilitate this, a managed I/O unit provides a
DevMgt Agent that manages I/O unit attributes and configuration informa-
tion.

I/O units are capable of providing I/O service to multiple clients. IB parti-
tioning enforces isolation among systems sharing an InfiniBand fabric, but
does not provide partitioning of the resources within a node. Device Man-
agement in conjunction with Device Administration (the service used to
administer configuration information, see Annex A7: Configuration Man-
agement), and Communication Management (CM; see Chapter 12i) to-
gether extend the IB Architecture to provide enforceable assignment of
I/O resources to multiple clients.

This annex describes the mechanism for a Device Manager to configure
the IOU with the information necessary for the I/O unit to limit and control
access to its services and resources on a client by client basis, thus en-
abling multiple platforms to use separate I/O devices located in the same
I/O unit without interfering with one another.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1508 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This annex defines the wire-level interface to the DevMgt Agent and a
wire-level protocol that provides a way to discover I/O service objects,
configure those objects for particular clients, and provide information to
clients necessary for those clients to access their service objects. The
DevMgt class also provides a means for clients to invoke and manage di-
agnostics.

Support for Device Management is optional (i.e., not all nodes contain a
DevMgt agent). A node that contains a DevMgt agent is considered a
managed I/O unit. This annex addresses managed I/O units and the enti-
ties that access them.

A8.1.1 GLOSSARY

Annex A7: Configuration Management defines additional glossary terms
used in this annex.

A8.1.2 COMPLIANCE

This annex specifies a new Compliance Category. See Chapter 20:
Volume 1 Compliance Summary on page 1072 for explanation of compli-
ance categories and qualifiers. The new category is DevMgt Agent.

The Compliance Qualifiers for DevMgt Agent are:

• V1: Backward compatibility with class version 1.
• HOT: Hot plug/removal of I/O modules
Section A8.9 Compliance on page 1625 provides a summary of compli-
ance statements for a DevMgt Agent.

A8.1.3 GOALS AND OBJECTIVES

This annex revises Device Management as follows:

1) Enhanced Device Management for enterprise class I/O

• Separates definition of I/O subassembly module from I/O control-
ler and allows multiple IOCs per subassembly slot.

• Adds support for hot removal of I/O subassemblies
• Allows I/O units and I/O controllers to support multiple protocols.

These protocols include management protocols as well as I/O
protocols.

• Provides a means to identify a range of protocol versions sup-
ported.

• Object oriented - adds the notion of service objects and provides
for their identification, identification of their properties, protocols
and protocol properties, and the ServiceIDs for accessing service
objects.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1509 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Provides clearer separation between I/O objects, their protocol,
and the information needed to access the I/O object.

• Adds Vendor ID and Description information to IOUnitInfo.
• Removes fields that were not applicable.

2) Aligns DevMgt with configuration management.

• Provides enforceable control of resources within an I/O unit
where multiple clients share the same I/O unit.

• Supports both passive and active configuration management
models

3) Supports both simple and elaborate I/O Unit implementations

The bounds and limitations of this annex are:

1) Managing & configuring I/O devices behind the IOC, such as LUN
mapping and other I/O protocol-specific attributes are the responsi-
bility of I/O management protocols and are outside the scope of De-
vice Management. However, Device Management does provide the
means to advertise which I/O management protocols the IOU/IOC
supports.

2) DevMgt does not mandate how I/O devices are mapped to I/O
service objects. The relationship can be physical, logical, or virtual.
For example:

a) Secondary I/O ports could be mapped as I/O Service Objects; for
this case, the client uses one channel (or one set of channels) to
access all I/O devices accessible through that port.

b) Each I/O device attached to the secondary fabric could be
mapped as an I/O Service Object; for this case, the client uses
one channel (or a set of channels) for each I/O device - that is
each I/O device has its own QP (or set of QPs).

c) There could be virtual and logical service objects (one to many,
many to one, and many to many mappings between I/O service
objects and I/O devices).

A8.2 OVERVIEW

The primary goals of Device Management (DevMgt) are to provide infor-
mation about an I/O Unit (IOU) and its service objects and to provide en-
forceable access of service objects by client platforms. A service object is
a port through which a client can access or manage I/O devices. Thus,
each service object has its own set of QPs.

A8.2.1 USAGE MODEL

Device Management is used by a number of different entities. These in-
clude the Device Manager (DM), I/O resource manager (IORM), I/O client,

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1510 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

and I/O management application (see Figure 307 ”Device Management
Usage Model” on page 1510 and Figure 309 ”I/O Components and Rela-
tionships” on page 1517).

Device Management provides the means for a DM to provision IOU re-
sources and allocate them on a per client platform basis. This provides the
client platform’s IORM the ability to subdivide IOU resources allocated to
that platform to individual clients based on OS policy.

A8.2.1.1 DEVICE MANAGER (DM)

The Device Management class provides mechanisms (methods and at-
tributes) to enable a DM to set and retrieve I/O device specific information
from I/O units.

A DM is a management entity that sets Device Management attributes of
an I/O unit (i.e., sends a DevMgtSet() to a DevMgt agent). Only the DM
has access to all of the IOU’s attributes. To enforce this, Device Manage-
ment class provides a Device Manager’s key (Manager_Key) that restricts
DevMgtSet() operations for certain attributes to authorized managers, i.e.,
those who know the Manager_Key.

The manager key allows the DM to create Platform Resource Pools and
Client Resource Pools. These pools are referred to as Platform Pool Table
Records and Client Pool Table Records.The DM uses a Platform Pool
Record to specify which resources a particular platform may use and the
platform’s IORM uses Client Pool Records to assign those resources to
individual clients.

DevMgt Class

Device
Manager

Device
Management

Agent
IORM

DevM
gt ClassDe

vA
dm

 C
la

ss

Other
parties

DevMgt Class

Dev
Mgt

 C
las

s
I/O Unit

Configuration Management

Client Platform

Figure 307 Device Management Usage Model

Device
Administration

Clients Service
Objects

Trap subscription,
create diagnostic

sessions.

De
vM

gt
 C

la
ss

Tr
ap

 su
bs

cr
ipt

ion
,

cre
at

e d
iag

no
sti

c

se
ss

ion
s.

Manage clients’ access
rights, get service object
info, perform diagnostics.

, P
er

fo
rm

 d
ia

gn
os

tic
s.

M
anage platform

s’

access rights, P
riv

ile
ge

d
In

fo

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1511 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Each Platform Resource Pool (i.e., Platform Pool Record) is identified by
a unique Supervisor_Key and each Client Resource Pool (i.e., Client Pool
Record) is identified by a unique Client_Key. The manager associates
each client pool to a specific Supervisor_Key. The manager provides the
Supervisor_Key to the specific client platform (i.e., the platform’s IORM).
This permits an IORM with the correct Supervisor_Key to assign IOU re-
sources specified in that Platform Pool Record to client resource pools.
When the IORM passes a Client_key to one of its clients, that key enables
the client to access the I/O resources specified by that client pool record.

Management applications and I/O clients also access IOU information via
DevMgt class MADs (i.e., read attributes) but the DM and the IORM are
the only ones that may program the IOU. This programming specifies
which service object a client may see and use.

It is not always necessary to have a DM. “Passive configuration manage-
ment” is the term used when a fabric is designed to function without a DM.
Passive configuration management is typical in a subnet where each IOU
is dedicated to a single client platform (i.e., each IOU configured for a
single partition containing one I/O client platform) or where all clients in
that partition have equal access to all of the IOU’s resources. Except for
the most trusted environments, a DM is needed when IOUs are divided
among multiple clients.

In general, a Device Manager:

• Uses DevMgt to learn what I/O service objects are available, so they
can be assigned to client platforms. DevMgt supplies the DM with in-
formation about service objects, such as number clients the service
object supports as well as the number and type of QPs that an I/O
object uses to communicate with a client.

• Uses DevMgt to configure each IOU as to which client platforms are
authorized to see and use which service objects.

• Configure IOUs to send DevMgt traps to the DM. The DM forwards
those traps to nodes that have subscribed for them.

• Controls Diagnostic Sessions on each IOU, including the ability to re-
set the IOU and I/O controllers.

In contrast, for passive device management, any client platform that can
access an I/O unit (i.e., is assigned a common P_Key) has complete ac-
cess to all of the IOU’s Device Management information and I/O re-
sources.

An IOU defaults to passive configuration management mode, but is
placed in active configuration management mode by virtue of a DM setting
the IOU’s Manager_Key and programming the IOU’s pool tables.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1512 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Client Platforms and other managers use Device Management to sub-
scribe to the DM to receive reports when IOUs generate Device Manage-
ment Traps and to establish (via the DM) a Diagnostic Session so it can
invoke diagnostics on an IOU or IOC. Note that the diagnostic application
requests a diagnostic session via the DM, but preforms diagnostics di-
rectly with the IOU.

The Device Management framework supports the concept of multiple
DMs but for an IOU, there is only one logical DM. That is, the one that
knows the IOU’s Manager’s key. Thus, an IOU does not distinguish be-
tween DMs and accepts any MAD containing the proper Manager_Key as
coming from an authorized DM. The DM programs each of the IOU’s ports
where to send traps. Even though each port’s ClassPortInfo can specify a
different trap destination, a valid TrapRepress() received on any port re-
presses that trap for all ports.

A8.2.1.2 I/O RESOURCE MANAGER

An I/O Resource Manager (IORM) is the component of an operating
system that supervises I/O resources for that platform. An IORM uses De-
vAdm class (see Configuration Management Annex) to query the Device
Administrator associated with the DM to learn the platform’s Supervisor
Key and list of IOUs. It then queries the IOU using DevMgt to discover
which I/O resources (i.e., I/O service objects) are available to that platform
and characteristics about them that enables the IORM to load an I/O
driver that executes the appropriate I/O protocol (see “I/O Drivers” in
Annex A1).

An IOU uses the Supervisor_Key to distinguish between IORMs and ac-
cepts any MAD containing a valid Supervisor_Key as coming from that
client platform.

When an IORM sends DevMgtGet()s to an IOU, it provides its
Supervisor_Key, and the information that the IOU returns is dependent on
how the DM configured the platform pool record that has that
Supervisor_Key.

The IORM, as the node’s supervisor, can discover how many Client Pool
Records are assigned to the client platform, and can configure them spec-
ifying which service objects and the resources (such as the number of
QPs) that a client using that Client_Key is permitted to consume.

A8.2.1.3 I/O CLIENT

An I/O client is the entity that actually communicates with an I/O object
using an I/O protocol. The IOU has Client Pool Records to manage what
a client can see and use. Each Client Pool Record has a unique
Client_Key and is assigned to a particular platform. The platform’s IORM
configures Client Pool Records to specify client access rights that deter-

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1513 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

mine which service objects a client using that Client_Key can see and ac-
cess, and then makes the Client_Key known to the client.

An IOU uses the Client_Key to distinguish between clients and accepts
any MAD containing a valid Client_Key as coming from that client.

When an I/O client sends DevMgtGet()s to an IOU, it provides its
Client_Key, and the information that the IOU returns is dependent on how
the IORM configured the Client Pool Record that has that Client_Key.

The I/O client uses DevMgt to find connection parameters, such as the
ServiceID, that it needs to establish communication (i.e., establish RC,
UC, RD, and/or UD channels) with the service object. Once the I/O client
establishes communications, it uses those channels to exchange I/O pro-
tocol packets with the I/O service object.

The client uses its Client_Key when setting up channels (e.g., passing its
Client_Key in CM MADs or in an I/O protocol specific login sequence after
the channel is established). The CM, DevMgt Agent, and Service Objects
work together to enforce the I/O access rights of a client by searching for
the Client_Key in the Client Pool Table. If the Client_Key is found, then
that record specifies the resources for the client. The CM denies the con-
nection (e.g., CM:REJ) if the Client_Key is not found, the client is not au-
thorized for the service object, or making the connection would cause a
maximum allocation level to be exceeded.

A8.2.1.4 I/O MANAGEMENT APPLICATION

An I/O management application is an entity that manages I/O properties
of an I/O unit (such as to create, configure, destroy I/O service objects).
The system administrator might wish to run such an application from its
own machine rather than from the machine that is actually using the I/O
services.

In addition to the IB management framework (which provides for vendor
defined management classes using MADs), Device Management archi-
tecture provides for management protocols that don’t use Vendor MADS.

Device Management architecture supports these additional management
protocols because some IOCs, such as a RAID controller, may require ex-
tended management, where an I/O management application communi-
cates with a management service object using a specific I/O management
protocol to configure I/O device specific operation.

Device Management provides the means to advertise if an IOU or IOC
supports a particular I/O management protocol. For each supported I/O
management protocol, there will be a service object that identifies the I/O
management protocol and provides connection information, such as the

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1514 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ServiceID, that the management application uses to establish communi-
cations with that service object. The management application, as a client,
is provided with a Client_Key and can only send DevMgtGet()s to the
IOU’s DevMgt Agent (that is, DevMgtSet()s are not permitted). The infor-
mation that the IOU returns is dependent on how the Client Pool Record
that has that Client_Key has been configured.

In addition, the IOU uses the Client_Key to validate that the client is au-
thorized to access that management service object, such as requiring the
management application to pass the key when creating a channel (e.g., in
the CM message) or in a management protocol specific login sequence
after the channel is created. Thus, the DM controls which nodes may per-
form I/O management using pool tables just like it does for controlling I/O
service objects.

A8.2.2 I/O UNIT MODEL

This section explains the I/O unit service model on which Device Manage-
ment is based.

An I/O unit contains one or more I/O controllers and associated service
objects.

• An I/O Controller (IOC) is a circuit and/or process of an IOU that
provides I/O service. That is, an IOC provides one or more I/O
service objects.

• A Service Object refers to an instance of service that is ad-
dressed by its QPs (i.e., a client uses a different channel to com-
municate with each service object).

• I/O devices, such as disk drives, can be presented as individual
service objects (i.e., each with its own QP) or as protocol objects
behind a service object.

• Service objects that perform I/O are referred to as I/O service ob-
jects.

• Management agents on the IOU used to configure I/O service ob-
jects are also represented as service objects. They are referred to
as I/O management service objects.

Although this annex uses language implying that an IOU “contains” IOCs,
this annex does not specify packaging requirements. Thus, how IOCs are
connected to an IOU is an implementation detail outside the scope of the
architecture. Figure 308 Model for an I/O Unit on page 1515 provides the
architectural and connection model for an IOU, consisting of a CA and one
or more IOCs.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1515 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

An IOU attaches to the fabric via a CA. For I/O operation, the CA receives
packets from the fabric and delivers complete, valid IBA messages to ser-
vice objects, and vice-versa. The service object is then responsible for ex-
ecuting I/O requests contained in those messages, such as network
sends and receives or disk reads and writes over a device-specific inter-
face such as Ethernet, Parallel SCSI, Fibre Channel, or a proprietary in-
terconnect.

The Device Management Agent is an IB management agent (as defined
in Chapter 13) that resides behind the CA (i.e., behind the GSI) and inter-
faces with the IOU and its IOCs to manage I/O specific information. This
annex focuses on the infrastructure, related methods, data formats, and
attributes to support IOU/IOC management over the fabric. It uses the
management framework specified in Chapter 13 to send and receive
DevMgt packets to/from the DevMgt agent, but does not define the imple-
mentation-specific mechanisms necessary to translate MADs into a
format that the IOU and IOCs understand, nor does it define how that data
is delivered and retrieved from the IOU and IOCs.

The InfiniBand architecture is based on message passing. For an IOU and
its service objects, the messages generally fall into three categories:
fabric configuration, unit management/configuration, and I/O transaction:

Figure 308 Model for an I/O Unit

Fa
br

ic

I/O Unit

SM
I

G
SI

TCA
M

essage and
D

ata Services*

I/O Controller

I/O Controller

I/O Controller

I/O Ports and
I/O Devices* such as QPs and verbs

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1516 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) Fabric configuration messages are processed by the Subnet Man-
agement Agent (SMA) and are defined in Chapter 14: Subnet Man-
agement on page 794. They are not discussed in this Annex.

2) Messages specific to configuring and managing I/O properties of an
I/O unit fall into two categories:

a) Generic DevMgt messages used to describe the IOU, IOC, and
service objects, to control access to DevMgt information, and to
perform diagnostics. These messages are received through the
General Services Interface (GSI) and are described in this annex.

b) Implementation-specific I/O management messages used to cre-
ate, configure, and destroy service objects. While implementa-
tion-specific management could use vendor class MADs and/or
private vendor attributes, DevMgt also supports the notion of im-
plementation-specific management outside the IB management
framework. These messages are sent from I/O management ap-
plications to I/O management service objects of the IOU/IOC. The
definition of these messages are outside the scope of this docu-
ment. However, DevMgt provides the means to identify I/O man-
agement objects, the management protocol, and obtain
information that permits a management application to create
channels to those I/O management objects. In this annex, I/O
management objects mean those implemented outside the IB
management framework.

3) I/O transaction messages used for I/O transactions (such as disk
reads and writes). I/O transaction messages include those messages
used by an I/O client to request I/O services from a service object,
messages containing user or application data, and messages used
by the service object to provide a completion notification (ending
status) to the requester. Definition of these messages are also
outside the scope of this document. However, DevMgt provides the
means to identify I/O service objects, their I/O protocol, and infor-
mation that permits an I/O client to create channels to the service ob-
jects.

A8.2.3 DEVICE MANAGEMENT MODEL

Figure 309 I/O Components and Relationships on page 1517 illustrates
the relationships between the various entities and elements involved in
I/O operations and management.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1517 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Figure 309 illustrates that the Device Manager, I/O management applica-
tions, and client platforms access the DevMgt Agent via DevMgt MADs
(blue dashed line). I/O management applications create channels to I/O
management service objects (red line) that carry I/O management pro-
tocol messages and I/O clients create channels to I/O service objects
(green heavy line) that carry I/O protocol messages.

Typically, an I/O client establishes a single channel with a service object.
However, Device Management does not prohibit using multiple channels.

The set of protocol objects shown to the left behind an I/O service object
illustrates that further division of services beyond the I/O service object is
a function of the I/O protocol. An example of an I/O service object and its

Figure 309 I/O Components and Relationships

I/O Unit

Q PQP

Set of
Protocol
O bjects

Client P latform

Client P latform

M gt Platform

IOC

I/O
Client

Q P

IO C

I/O Service
Object

I/O Service
Object

QP
QP
QP

I/O Service
Object

Q P

Q PI/O
Client

I/O
Client

QP

Q P

Q P
QP

Q P

QP

I/O M gt
Appl

Set of
Protocol
O bjects

Set of
Protocol
O bjects

I/O M gt
ObjectQ P QP

I/O
Managem ent

Protocol

Dev
M gt AgtQP1

I/O
Resource
M anager

Q P

DevM gt
MADs

I/O Protocol

IO RM Q P

Q P

Service Objects

Fabric
M anagem ent

Device
M anager Q P

I/O m anagem ent
Device M anagem ent

I/O operation

(e.g., SCSI Target Port)
(e.g., SCSI LUNs)

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1518 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

protocol objects is a SCSI target port and its logical units. The difference
between service objects and protocol objects are that service objects are
discovered via Device Management (blue dashed line) and accessed via
their QPs (green heavy line), while protocol objects are discovered and
addressed via the I/O protocol over the channels provided by those QPs
(green heavy lines). Thus, the service object is a port through which a
client can access protocol objects.

Device Management encompasses several categories of management.

• Authority - provides for authentication, protection, and configura-
tion of the I/O unit by a DM.

• Device Information - Provides the Device Manager, management
applications, and I/O clients with information about the IOU and
the services provided by each IOC. This includes information
about the I/O protocols and management protocols supported by
the IOU and each IOC.

• Device Assignment - provides the means for a DM to configure
client access rights to I/O objects.

• Device Diagnostics - provides the means to control the execution
of diagnostics on various components of an I/O unit and report
their results.

• Physical hot plug management - DevMgt supports the concept of
physical subassemblies (I/O modules) which house IOCs and al-
low them to be inserted and removed from the I/O unit. The archi-
tecture supports up to 256 I/O module slots per IOU with any
number of IOCs per slot and any number of service objects per
IOC.

A8.2.3.1 AUTHORITY

The DevMgt class provides for both passive and active device manage-
ment models. Passive management refers to only using partitions to limit
access to an IOU, while clients in that partition share access to all of the
IOU’s resources. Thus, a DM is not necessary for passive management.
Passive management is generally appropriate when an IOU is assigned
to a single client platform (e.g., all ports of the IOU are configured for a
single partition and there is only one client platform performing I/O that is
a member of that partition). It is also appropriate when it is acceptable for
all clients to have access rights to all of the IOU’s service objects.

Active management refers to the presence of a DM, which takes charge
of the IOU and configures the IOU as to which clients may access which
service objects. Active device management is valuable where multiple
client platforms need access to a particular IOU, but not the same service
objects. Active device management can prevent one platform from dis-
turbing or impacting the ability of other clients to perform I/O by restricting
an I/O object so it can be accessed only by critical clients.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1519 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

To facilitate active management, DevMgt class provides for a Device Man-
ager’s Key that can be set by the Device Manager. Only a manager with
the correct key is able to set critical DevMgt attributes. This includes the
ability to set trap info in ClassPortInfo, create /modify Supervisor_Keys
and Client_Keys, assign resources to platform pools, and create diag-
nostic sessions.

The default settings for a DevMgt agent enable passive management.
This means that the IOU is not protected (i.e. Manager_Key=0) and any
node in the IOU’s partitions can access any of the IOU’s service objects.
Configuring an IOU for active management implies setting the agent’s
Manager_Key to a non-zero value. As long as management sets the
Manager_Key before programming the IOU’s I/O partitions, client plat-
forms will only see IOUs that are actively managed. Thus, when an IOU
comes on-line, the subnet manager should insure that the IOU’s DevMgt
Agent is configured before assigning P_Keys to the IOU.

A8.2.3.2 DEVICE INFORMATION

A primary purpose of DevMgt is to enable communication between clients
and their service objects and prevent a client from accessing a service ob-
ject for which it is not configured. This allows enterprise class IOUs to sup-
port multiple clients and provides a standard architected method of
enforcing which clients may access which I/O Objects.

• I/O management applications can discover I/O management ob-
jects. A management application uses DevMgt to discover if the
IOU/IOC supports its management protocol, and if so, uses
DevMgt information to connect to the I/O management object. Via
that channel, the management application performs I/O-specific
and device-specific management functions such as creating, de-
stroying, or configuring I/O service objects. Thus, DevMgt pro-
vides the means for the IOU and IOC to advertise the presence of
I/O management objects, identify the I/O management protocol,
and provides information necessary for an I/O management ap-
plication to access the appropriate management object.

• IORMs and I/O clients discover I/O service objects and associat-
ed properties. DevMgt provides the means to discover I/O service
objects, identify the I/O protocols they support, and retrieve the
information (such as Service ID) necessary for the client to ac-
cess the object.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1520 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DevMgt uses a hierarchy of informa-
tion in managing device information
as illustrated in Figure 310.

The IOU is the parent object that has
one or more IOCs. Each IOC can sup-
port multiple protocols and can have
multiple service objects that are ac-
cessible by one or more of these pro-
tocols.

DevMgt defines a number of at-
tributes that describe the IOU, the
IOCs, protocols, service objects and
the channels for accessing the ser-
vice objects. In the figure, attributes
are shown next to its associated ob-
ject illustrating the relationship.

• There is an IOUnitInfo attribute that provides information about
the IOU in general and indicates the number of I/O modules (i.e.,
number and status of slots in the IOU). The IOU can provide an
optional ProductInfo attribute that supplies additional product
specific information about the IOU.

• The IOControllerProfile attribute provides information about an
IOC. There is one attribute record for each IOC. An IOC is identi-
fied by its IocGUID. The IOC can provide an optional ProductInfo
attribute that supplies additional product specific information
about the IOC.

• The ProtocolRecord attribute specifies the characteristics of an
I/O service protocol or an I/O management protocol. For each
protocol that an IOC supports, there is one ProtocolRecord at-
tribute. A protocol can be identified by its protocol name or its pro-
tocol ID.

• The ServiceRecord attribute provides the ServiceID a client
needs for communicating with a service object via a specific pro-
tocol. A service object is uniquely identified by the combination of
its IocGUID plus its ServiceObjectID. There is at least one Ser-
viceRecord attribute record for each service object and can be
more if the service object supports multiple protocols.

IOU

Service
Object

IOCs

Protocols

IOUnitInfo,
ProductInfo

IOControllerProfile,
ProductInfo

ServiceRecord

ProtocolRecord

Figure 310 Data Hierarchy

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1521 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.2.3.3 DEVICE ASSIGNMENT

Device Management provides the means for
a DM to configure the IOU as to which plat-
forms may access which service objects and
limit certain IOU resources (such as IOU
QPs) that the platforms may consume. It
also allows the platform’s supervisor to allo-
cate those resources to particular clients.

The IOU asserts access control at two
levels. One is the ability to restrict certain
Device Management information to speci-
fied supervisors and clients. The other is to
restrict access to the service to only those
clients that have been permitted access.
That is, allowing a client to make a connec-
tion with the service object only if the client
resource pool with that client’s Client_Key
specifies the service object and the client
has not exceeded its IOU-QP allotment.

A8.2.3.3.1 RESOURCE ALLOCATION

The IOU maintains a table of platform pool records. Each PlatformPool-
Record specifies the set of service objects that the platform may use and
the resources (such as number of IOU QPs) that the platform may con-
sume. Each record is identified by a unique Supervisor_Key. Only the DM
can modify a PlatformPoolRecord. Once the platform knows its
Supervisor_Key, it can read its PlatformPoolRecord to learn of its re-
sources.

The IOU also maintains a table of client pool records. Each ClientPool-
Record specifies the set of service objects that the client may use and the
resources (such as number of IOU QPs) that the client may consume.
Each record is identified by a unique Client_Key. The record also specifies
the Supervisor_Key of the platform that may modify the client pool. Only
the DM can create a ClientPoolRecord, change the Client_Key and
change the Supervisor_Key. The supervisor may modify a ClientPool-
Record, but can only assign resources allocated to the platform by the
platform’s PlatformPoolRecord.

When a client attempts to make a connection with a service object, the
DevMgt agent only permits the connection if the ClientPoolRecord indi-
cates that the client is authorized to access the service object and the
client has not exceeded its authorized resources.

A Client learns its Client_Key from its IORM. An IORM learns its
Supervisor_Key from the DA associated with the DM. For passive man-

IOU

Service
Object

IOCs

Protocols

KeyInfo
IouResourceInfo

PlatformPoolRecord,
ClientPoolRecord,

Figure 311 Device
Assignment Attributes

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1522 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

agement (when there is no DM), the platform uses the default
Supervisor_Key value of zero. Note that a node that boots different oper-
ating systems or boots up for different purposes might be given a different
Supervisor_Key for each OS or each purpose, such that the
Supervisor_Key controls which I/O resources the node may access.

The DevMgt Agent uses the Access_Key in the MAD header to determine
which resources that the requestor is allowed to access and thus what in-
formation that the DevMgt Agent returns.

A8.2.3.3.2 QP ALLOCATION

The concept is that the DM assigns resources to platforms (such as re-
serving a number of IOU QPs for a platform and limiting the maximum
number of IOU QPs the platform may use) and then the platform’s super-
visor assigns those resources to clients (within the bounds of the re-
sources the DM assigned to the platform). See A8.4 Resource Allocation
Framework on page 1606 for details.

The IOU’s QPs are represented as a general pool of QPs which can be
reserved for client platforms or available on a ‘first come’ basis. The DM
specifies a minimum (Platform QPmin) and a maximum (Platform QPmax)
number of IOU QPs for each client platform as illustrated in Figure 318 Al-
locating Resource Pools on page 1607. QPmin represents the number of
QPs reserved for that platform. When the DM increases a platform’s
QPmin, the number of Free QPs in the general pool decreases and the
number reserved increase. Thus, a portion of the general pool becomes
reserved for specific platforms. FREE QPs are available to platforms on a
first come first served basis as long as the platform has not reached its
maximum limit.

A supervisor allocates QPs from its platform pool to client pools by spec-
ifying a minimum (Client QPmin) and a maximum (Client QPmax) number
of IOU QPs for each client. The Client QPmin specifies QPs reserved for
that client and the total number of QPs reserved for its clients cannot ex-
ceed the Platform QPmin (i.e., the number of QPs reserved for the plat-
form).

As a client makes connections, the IOU uses QPs from the appropriate
client pool. When a client has consumed all of the reserved QPs in its
client pool (i.e., ClientQPmin), it may continue to consume additional QPs
only if there are excess QPs available and the client pool has not reached
its maximum limit. Thus, if the platform has un-allocated QPs (i.e., sum of
clients QPmin is less than the platform’s QPmin), then clients consume
the platform’s un-allocated QPs until they are exhausted. Once all the
platform’s un-allocated QPs are used, the clients may continue to con-
sume available QPs from the general pool as long as the client’s pool and
the platform’s pool have not reached their maximum limits. This means

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1523 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

that the number of reserved QPs plus additional QPs is less than QPmax
both at a client level and at the platform level.

A8.2.3.3.3 SHARED POOLS

The architecture supports the notion of shared “resource pools”. This con-
cept is useful when there are more client platforms than PlatformPool-
Records. The DM can configure a platform pool as shared and lock the
associated ClientPoolRecords. This permits the same Supervisor_Key to
be used by multiple platforms and prohibits those platforms from modi-
fying the ClientPoolRecords. Those supervisors simply provide the
Client_Key to one of its clients and all of the clients with that Client_Key
may access the service object(s). The DM should create an individual Cli-
entPoolRecord for each service object of a shared pool, so that the super-
visors can control which of its clients use which service objects.

A8.2.3.3.4 CLIENT IDENTIFICATION AND DEFAULT POOLS

DevMgt MADs contain an Access_Key component, where the DM, super-
visor, or client specifies its Manager_Key, Supervisor_Key, or Client_Key
respectively. The DevMgt Agent uses the Access_Key to validate the re-
questor.

Clients also use Communication Management to establish communica-
tion and thus consume QPs. However, CM MADs do not contain an equiv-
alent key component. Most I/O protocols require some form of validation,
where client information is passed to the service object for validation.
Some protocols pass the equivalent of the Client_Key in the PrivateData
field of the CM MADs. Others pass the equivalent of the Client_Key over
the connection, but before the client is allowed to access the service ob-
ject (e.g., some form of Login). Because I/O protocols already have archi-
tected ways of passing this type information, this annex does not specify
how the information is passed.

Since not all I/O protocols validate who the client is, there is a CMValida-
tion bit in the ServiceRecord that identifies if the ServiceObject validates
Client_Key when the client creates a connection (see A8.3.3.7.1 CM Val-
idatation on page 1567 for more details).

• For the case where the service object does have the ability to vali-
date, the service object uses the key passed to it by the client to de-
termine which Client Pool to use in order to determine if the
connection should be made.

• For the case where the service object does not have the ability to val-
idate, it has no way to know the client’s client_Key, and thus the DM
needs to specify which client pool is used for connections to that ser-
vice object. To do this the DM can set the DefaultPool bit in a Client-
PoolRecord to indicate that record defines a special “Default Pool” for
the service objects listed in that record’s ServiceObjList.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1524 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Typically, the DM creates a default pool for each service object that does
not set the CMValidation bit. That Client_Key is not given to supervisors
nor clients. Rather the DM includes the service object in the PlatformPool-
Record for each platform that is authorized to use that service object. The
only difference is that when clients connect to the service object, they do
not consume QPs from their own client pool, but rather the service object
consumes QPs from the DefaultPool (if available).

When the CMValidation bit is not set, Device Management still provides
protection against unauthorized access because the platform (and its cli-
ents) cannot access the service record unless the service object is listed
in the PlatformPoolRecord. Thus, the ServiceID can only be learned by an
authorized client and since the client needs the ServiceID to make the
connection, connections can only be made by authorized clients.

The CMValidation bit not being set only means that because the IOU
cannot identify individual clients when making connections, those service
objects use a default client pool, which limits the number of QPs all clients
together may consume. Thus, the DM is not able to prevent one client
from hogging all of those QPs. This does not effect QPs reserved for cli-
ents using services objects that do validate.

A8.2.3.3.5 PASSIVE MANAGEMENT

For passive management, the IOU defaults to a single shared Platform
Pool record with Supervisor_Key=0, that includes all service objects, has
a QPmin of 0, and a QPmax equal to or greater than the number of QPs
in the general pool. This gives each platform full access to all of the IOU’s
information and service objects. The IOU also provides a set of Client
Pools, one for each service object. Each Client Pools has a unique
Client_Key arbitrarily chosen by the DevMgt agent.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1525 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.2.3.4 PHYSICAL MANAGEMENT

A8.2.3.4.1 MODULAR SUBASSEMBLIES

Because I/O units might be built with modular
subassemblies (I/O modules) that can be
added or removed, Device Management pro-
vides the means to identify which IOCs are as-
sociated with an I/O module and the means to
gracefully remove or replace I/O modules.

Each I/O module houses one or more IOCs.
Removal of an I/O module means removal of
all of the associated IOCs. Before an I/O
module can be removed, I/O clients using
those IOCs need to cease I/O operations. De-
vice Management provides the means to iden-
tify which IOCs are associated with each I/O
module, defines a trap for the IOU to request
the removal of an I/O module, the means for
the DM to signal that it is OK to remove
module power and remove the module.

Each I/O module is represented by a slot number and the IOController-
Profile for each IOC identifies the slot to which the IOC is associated. The
IOUnitInfo attribute specifies the number of slots and indicates if each slot
is populated or not. The IOControllerProfile indicates with which slot the
IOC is associated so that if an I/O module needs to be removed, powered
down, or reset, the DM can determine which IOCs will be affected.

A8.2.3.4.2 GRACEFUL HOT REMOVAL

The IOU provides a SlotControlStatus attribute (one record for each slot)
which provides the DM with the status of each slot and the means for the
DM to control that I/O module’s removal state.

Removable I/O modules contain a Remove switch, a Status LED that is
normally ON when the module is in use, and an Attention LED. When an
operator engages the Remove switch, the DevMgt Agent starts blinking
the Status LED and sends a trap to the DM. When the DM receives the
trap, the DA associated with the DM notifies the affected clients (see
A7.5.8: Graceful Hot Removal in Annex A7:). When the clients notify the
device manger that they have ceased their I/O operation, the DM signals
the IOU that it is ok to remove the I/O module and the IOU turns off the
Status LED as an indication that the operator can safely remove the
module. The DM can cancel the removal process, in which case the IOU
turns the Status LED ON instead of OFF.

IOU

Service
Object

IOCs

Protocols

IOUnitInfo,
SlotControlStatus

IOControllerProfile

Figure 312 Physical
Management Attributes

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1526 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM can initiate the removal process, causing the Status LED to start
blinking without having an operator engage the removal switch - the rest
of the process remains the same.

The DM can also control the Attention LED causing it to turn on, off, or
blink.

A8.2.3.4.3 I/O MODULE EXAMPLES

Figure 313 provides an example of an IOU containing 6 permanent IOCs
in one non-plugable I/O module. The IOUnitInfo attribute indicates one
slot and 6 IOCs. Thus, there will be 6 IOControllerProfile records, each in-
dicating the IOC is in slot 0. Because there are no removable slots, there
are no SlotControlStatus attribute records.

Figure 314 provides an example of an IOU containing 6 IOCs distributed
between 3 I/O modules (1 permanent and 2 removable). The IOUnitInfo
attribute indicates 3 slots and 6 IOCs. Thus, there will be 6 IOController-
Profile records, each indicating its associated slot. Because there are 2
removable slots, there are 2 SlotControlStatus attribute records. The DM
writes the SlotControlStatus records to control the hot plug status of the
removable modules.

Figure 313 Example of IOU with Permanent IOCs

IO U w ith 6 P e rm an e n t IO C sE xa m p le 1

M a x S lo ts
= 1

S lo t L is t =
0 x1 , 0 xF ... 0 x F

IO C C o u n t
= 6Io U n itIn fo

Io C o n tro lle rP ro file R ec o rds

S lo t N u m be r= 0
S lo t N u m be r= 0

S lo t N u m be r= 0
S lo t N u m be r= 0
S lo t N u m be r= 0
S lo t N u m be r= 0

G ro u pe d in to o n e lo g ic a l s lo t s in c e a ll IO C s a re p e rm a ne n t

0 x1 = S lo t e x is ts a n d m od u le p res en t
0 xF = S lo t d o e s n o t e x is t

S lo tC o n tro lS ta tu s R ec o rds = 0

Io c G U ID 3

Io c G U ID 5

Io c G U ID 1

Io c G U ID 2

Io c G U ID 4

Io c G U ID 6 ..
..
..
..
..
..

IO U E n c lo s u re

P e rm a n en t IO U /IO C s

D e v M g tG e t(S lo tC o n tro lS ta tu s) re sp o n se re tu rn s S ta tu s= x0 2 , n o m a tch to in d ica te a ll IO C s a re p e rm a n e n t

C A
+

D e vM g t
A g e n t

S lo t 0
IO C 1 IO C 4 IO C 3

IO C 6 IO C 2 IO C 5

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1527 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.2.3.5 DEVICE DIAGNOSTICS

As illustrated in Figure 315, the diagnostic framework provides the means
for a diagnostic application to request a diagnostic session. This request
is sent to the DM [step 1]. The manager validates the request, and if the
source is authorized to perform diagnostics, the manager informs client
platforms that will be affected by the diagnostics [steps 2,3]. establishes a
diagnostic session with the IOU [step 4], and then informs the diagnostic
application that it may proceed [step 5].

The diagnostic application performs diagnostics directly with the IOU [step
6] and when it is done running diagnostics, it releases the session by in-
forming the manager [step 7]. The manager cancels the IOU’s diagnostic
session [step 8] and then notifies the affected clients that the I/O re-
sources are back on-line [step 9].

Slot
Num = 1

Removal
Control =

Module
Status =

Attn
Control =

Attn LED
State =

Slot
Num = 2

Removal
Control =

Module
Status =

Attn
Control =

Attn LED
State =

Example 2

Max Slots
= 3

Slot List =
0x1 0x1 0x1 0xF .. 0xF

IOC Count
= 6IoUnitInfo

IoControllerProfile Records

Slot Number= 1
Slot Number= 1

Slot Number= 1
Slot Number= 2
Slot Number= 0
Slot Number= 0

3 slots

0x1 = Slot exists and module present
0xF = Slot does not exist

SlotControlStatus Records

IocGUID4

IocGUID5

IocGUID3

IocGUID2

IocGUID1

IocGUID0 ..
..
..
..
..
..

IOU with 1 Permanent Module w/2 IOCs
plus 2 Removable Modules (1-w/3 IOCs & 1-w/1 IOC)

S
lot 0 IOC0

S
lot 1

S
lot 2

IOC1

IOC3

IOC4

IOC5
IOC2

One record per removable slot

CA
+

DevMgt
Agent

IOU Enclosure

Permanent IOCs

Removable IOCs

Slot with Removable Module

Figure 314 Example of IOU with Removable Modules

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1528 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Steps 1,4,5,6,7, and 8 are performed under the DevMgt class and are de-
fined in this annex. Steps 2,3, and 9 are performed under DevAdm class
and are defined in Annex A7: Configuration Management.

In the initial session request [step 1] the diagnostic application indicates
the severity and scope of the diagnostics. The manager uses the scope
to determine which I/O clients to notify. The request also establishes a
lease period for the session and the means to renew the lease if more time
is needed.

The session setup [step 4] establishes the parameters for the diagnostic
testing including severity and scope, and establishes the Token that the
diagnostic application uses in diagnostic requests [step 6] to validate that
it is authorized to perform diagnostics. The IOU rejects any diagnostic
tests that violate the parameters of the diagnostic session.

Because it may take time for the IOU to prepare for diagnostic testing, the
IOU replies immediately to the Diagnostic Session request and then
sends a trap when it is prepare to perform diagnostics. That trap is passed
on to the diagnostic application to indicate that the application may invoke
diagnostic tests. The application invokes tests to be executed once or run
continuously.

A8.2.4 LEVELS OF ACCESS

There are several levels of access to Device Management attributes.

Some attributes are available to anyone that can access the IOU.

All attributes are available to the DM and certain attributes are only acces-
sible by the DM. The DevMgt Agent uses the Access_Key and KeyType

6. Perform Diagnostics

Device /
Configuration

Manager

Device
Management

Agent

IORMs

4. DIag Enable

Diagnostic
Application

1.
DIA

G R
eq

ue
st

IOU

Management Node Client Platforms

Figure 315 Diagnostic Usage Model

DevAdm Class
DevMgt Class 2.Diag Notice

3. Response

5.
Diag

 A
pp

rov
al

7.
Diag

 R
ele

as
e

9. IOC On-Line Notice

8. DIag Disable

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1529 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

components in the MAD header to validate if a MAD comes from a valid
DM (i.e., passes DevMgt key check), a supervisor, or a client.

Some attributes are available to the DM and specific supervisors. For ex-
ample, the PlatformPoolRecord can only be accessed by the DM and the
supervisor that the DM specifies in the PlatformPoolRecord.

Some attributes are only available to the DM, specific platform supervi-
sors, and configured clients. For example, in addition to the DM:

• A ClientPoolRecord can only be read by the specific client and
the client’s supervisor, which may also write the record.

• ServiceRecords are restricted to clients and supervisors that
have a corresponding ClientPoolRecord or PlatformPoolRecord
specifying the ServiceObject (see below).

• ProtocolRecords and IOControllerProfile attributes are limited to
clients and supervisors that have a corresponding ClientPool-
Record or PlatformPoolRecord specifying a ServiceObject of that
IOC (see below).

The DM, using the PlatformPoolRecord attribute, programs the IOU with
Supervisor_Keys, and using the ClientPoolRecord attribute, programs the
IOU with Client_Keys.

A supervisor (IORM) must get its key from the DM. With the
Supervisor_Key, the IORM can learn and the Client_Keys for its platform.
Thus, clients get their keys from their IORM.

For a KeyType of Supervisor or Client, the DevMgt Agent matches the
Access_Key in the MAD header to a corresponding PlatformPoolRecord
or ClientPoolRecord respectively, which specifies the access rights.

• When a client requests attributes about service objects, the DevMgt
Agent only returns records for service objects specified in the Client-
PoolRecord with that Client_Key.

• When a supervisor requests attributes about service objects, the
DevMgt Agent only returns records for service objects specified in the
PlatformPoolRecord with that Supervisor_Key.

Some attributes are only available to the DM and specific diagnostic ap-
plications. For example:

• A DiagSession attribute can only be read by the DM and a diag-
nostic application with a valid DiagToken.

• TestDeviceOnce and TestDeviceLoop can only be set by the DM
or a diagnostic application with a valid DiagToken.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1530 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM, using the DiagSession attribute, programs the IOU with DiagTo-
kens. A diagnostic application must get its DiagToken from the DM. With
the DiagToken, the diagnostic application is able to invoke diagnostics,
but only on the objects the DM specifies in the DiagSession attribute.

For a KeyType of DiagToken, the DevMgt Agent matches the Access_Key
in the MAD header to a corresponding DiagSession record, which speci-
fies the access rights.

A8.3 DEVICE MGT MAD SPECIFICATION

A8.3.1 MAD FORMAT

CA8-1: The datagrams for the DevMgt class shall conform to the MAD
format and use as specified in 13.4 Management Datagrams on page 717 and fur-
ther specified in Figure 316 Device Management MAD Format on page
1530 and Table 447 Device Management MAD Fields on page 1531
below.

.

Figure 316 Device Management MAD Format

Offset Byte 0 Byte 1 Byte 2 Byte 3

0 Common MAD Header

...

20

24 RMPP Header

...

32

36 Access_Key

40

44 KeyType reserved

48
Reserved

52

56

60 Change_ID ComponentMask

64 DevMgt Data

...

252

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1531 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-2: The datagrams for the DevMgt class shall conform to the
Common MAD requirements as specified in 20.14 “Common Mad Re-
quirements”.

A8.3.1.1 CLASS VERSION

Class version 2 provides significant enhancements over class version 1.
Class version is indicated in two places. One is the ClassVersion field in
the MAD header and the other is the ClassVersion component in the
ClassPortInfo attribute. The following rules apply to IOUs and DMs sup-
porting Class Version 2 as the highest version supported.

Table 447 Device Management MAD Fields

Fielda Length Description

Common MAD
Header

24 bytes Common MAD Header as described in 13.4.2 Management Datagram Format on page
718. MgtClass=0x06, ClassVersion=2

RMPP Header 12 bytes RMPP header as described in 13.4.2 Management Datagram Format on page 718

Access_Key 8 bytes Manager key, supervisor key, client key, or diagnostic token - a value that the DevMgt
Agent uses to validate the source of certain management operations as described in
A8.3.3.12 KeyInfo on page 1576. and A8.3.1.4.3 Client_Key on page 1537. A node uses
the default value of zero unless it has been configured otherwise.

KeyType 1 byte A value that specifies the nature of the sender and indicates they type of key provided in
the Access_Key component.
• 0x00 = Client or DevMgt Agent
• 0x01 = Supervisor
• 0x02 = DM
• 0x03 = Diagnostic Token

reserved 15 bytes reserved

Change_ID 2 bytes Count that indicates when one or more read-only components in an attributes has
changed. It is incremented, with rollover, by any change to a Read-Only component of
IOUnitInfo, IOControllerProfile, ProtocolRecord, ServiceRecord, ProductInfo, or IouRe-
sourceInfo attributes. Multiple changes to the same attribute should not result in multiple
increments, while changes to multiple attributes should result in an increment for each
attribute record modified, added, or deleted.

ComponentMask 2 bytes Indicates which attribute components in the DevMgtGet() are to be used for the query.
Refer to A8.3.1.5 Component Mask on page 1538

DevMgt Data 192 bytes 192 bytes of DevMgt payload. The structure and content depends upon the Method,
Attribute, and Attribute Modifier fields in the MAD header.

a. The term ‘MAD header’ refers to all fields except the DevMgt Data field

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1532 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-3: A DevMgt Agent and DM shall respond to MADHeader:ClassVer-
sion values as per Table 448: Class Version

A8.3.1.1.1 BACKWARD COMPATIBILITY

Class version 1 does not have the facilities for enforcement of device as-
signment and access control that is provided in class version 2. De-
pending on the environment and whether the IOU is being shared by
multiple hosts, it may or may not be advantageous for an IOU to support
class version 1. A primary concern is to prevent class version 1 from being
a means for hosts to circumvent the protection provided by class version
2 while providing the ability for the IOU to function when hosts only sup-
port class version 1.

When all hosts support class version 2 or higher, there might be no need
for an IOU to support class version 1. Thus, IOUs are not required to sup-
port multiple Class Versions, but for those that do, this annex defines the

Table 448 Class Version

Received
MADHeader:
ClassVersion

Method/Attribute Actiona
Response

MADHeader:
ClassVersion

ClassPortInfo:
ClassVersion

0 or >2 Get(ClassPortInfo) respond 2 2

0 or >2 Set(ClassPortInfo) reject 2 n/a

0 or >2 other than Get/Set ClassPortInfo reject 2 n/a

2 Get(ClassPortInfo)
Set(ClassPortInfo)

respond 2 2

2 other than Get/Set ClassPortInfo respond 2 n/a

1 Get(ClassPortInfo) respond 1 2

1 Set(ClassPortInfo) - if class ver-
sion 1 supported

Conditional 1 2

1 other than Get/Set ClassPortInfo
- if class version 1 supported

Conditional 1 n/a

1 all except Get(ClassPortInfo)
- when class version 1 not sup-
ported

reject 1 n/a

a. Note that there are other reasons why a MAD is rejected independent of the Class Version. Reject means
report Status(4:2)=001 “Either the base version, or the class version, or the combination of the two is not
supported”. Conditional means that the KeyInfo:BackwardCompatibilityLevel component determines if the
IOU responds or rejects the MAD (see Table 449 DevMgt Backward Compatibility on page 1534) and DM
policy determines how the DM responds.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1533 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

means to identify if the IOU does support ClassVersion 1 and a means for
the DM to configure how the IOU responds to ClassVersion 1 MADs.

A8.3.1.1.2 BACKWARD COMPATIBILITY LEVEL

There is an ‘IsBackwardCompatibilitySupported’ bit in the version 2 Class-
PortInfo Capability component that indicates if the DevMgt Agent supports
class version 1.

There are three levels of backward compatibility for an IOU that supports
class version 1 & 2 and the DM selects the level via the KeyInfo attribute.
The levels are:

• No_v1_Access: The DevMgt Agent rejects all ClassVersion 1
MADs as ‘version not supported’. This is the only possibility for
IOUs that do not support ClassVersion 1.

• Full_v1_Access: The DevMgt Agent processes ClassVersion 1
MADs without any filtering of information based on ClassVersion
2 configuration. This is the default for IOUs that support Class-
Version 1, so they will function in a ClassVersion 1 environment
that does not have a DM.

• Programmed_v1_Access: The DM uses a ClassVersion 2 Client
Pool Table record to limit what information can be obtained via
ClassVersion 1 MADs. This level allows the DM to program the
IOU as to which service objects are accessible to hosts that use
ClassVersion 1.

For ‘Programmed_v1_Access’, there is a V1ClientKey component in the
KeyInfo attribute that the DM sets to indicate which Client Pool Table de-
fines the service objects accessible via class version 1 MADs. When the
DevMgt Agent receives a ClassVersion 1 request, it treats the request as
if it included a Client Access Key with this value. Thus, the client pool table
record whose Client_Key matches V1ClientKey (a.k.a. the
Ver1ClientPoolRecord) determines which service objects that any host
using ClassVersion 1 can access and it also limits the resources (QPs,
SLs, etc.) that all ClassVersion 1 hosts (together as a group) may con-
sume.

Table 449: DevMgt Backward Compatibility specifies how the DevMgt
Agent responds to ClassVersion 1 DevMgt MADs per the different Back-
wardCompatibilityLevel settings.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1534 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.1.1.3 BACKWARD COMPATIBILITY REQUIREMENTS

CA8-4: If the DevMgt Agents sets the IsBackwardCompatibilitySupported
bit in ClassPortInfo, then the agent shall support all Backward Compati-
bility Levels (No_v1_Access, Full_v1_Access, and Programmed
_v1_Access).

CA8-5: If the DevMgt Agents does not set the IsBackwardCompatibili-
tySupported bit in ClassPortInfo, then it shall only support the
‘No_v1_Access’ Backward Compatibility Level. Thus, it shall ignore the
BackwardCompatibilityLevel component in a DevMgtSet(KeyInfo) and al-
ways return a value of ‘No_v1_Access’ for the KeyInfo:BackwardCompat-
ibilityLevel component.

Table 449 DevMgt Backward Compatibility

ClassVersion 1
Attribute Namea

I/O Unit’s Backward Compatibility Level Settingb

No_v1_Access Full_v1_Access Programmed _v1_Access

ClassPortInfo Get() only - reject set() as ‘ver-
sion not supported’

Get/Set() Get() only - reject set() as ‘ver-
sion not supported’

Notice no ClassVersion 1 traps v1 traps no ClassVersion 1 traps

IOUnitInfo Reject Get() - controller list includes all
IOCs

Get() - controller list only
includes IOCs listed in
Ver1ClientPoolRecord

IOControllerProfile Reject Get() - any IOCs Get() - only for IOCs listed in
Ver1ClientPoolRecord

ServiceEntries Reject Get() - any service object Get() - only includes Service
Objects listed in
Ver1ClientPoolRecord

DiagnosticTimeout Reject Get() Reject

PrepareToTest Reject Get/Set() Reject

TestDeviceOnce Reject Set() Reject

TestDeviceLoop Reject Set() Reject

DiagCode Reject Get() Get()

VendorSpecific Reject Get() Reject

a. This table describes how a DevMgt Agent that supports class version 2 responds to class version 1 requests depending on how
the DM had programmed the agent’s BackwardCompatibilityLevel. Since the attribute in the response must match the version, any
response must use version 1 attribute formats.
b. Reject means respond with Status bits 4:2 =1; “Bad version. Either the base version, or the class version, or the combination of
the two is not supported”.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1535 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-6: If KeyInfo:BackwardCompatibilityLevel is ‘No_v1_Access’ and the
DevMgt Agent receives a ClassVersion 1 DevMgt MAD, it shall reject the
MAD with Status bits 4:2 =001b; “Bad version. Either the base version, or
the class version, or the combination of the two is not supported”.

oA8-1: If BackwardCompatibilityLevel is set to ‘Full_v1_Access’ and the
DevMgt Agent receives a ClassVersion 1 DevMgt MAD, the agent shall
respond as per Table 449: DevMgt Backward Compatibility using attribute
formats defined in Section 16.3.

[Editorial Note:When the IOU is configured for ‘Full_v1_Access’, pool
tables do not provide enforceable assignment of I/O resources to clients
because any client could use version 1 DevMgt MADs to bypass the
enforcement.]

oA8-2: If BackwardCompatibilityLevel is set to ‘Programmed
_v1_Access’ and the DevMgt Agent receives a ClassVersion 1 DevMgt
MAD, the agent shall respond as per Table 449: DevMgt Backward Com-
patibility, using attribute formats defined in Section 16.3, but shall only
provide information permitted by the ClientPoolRecord whose Client_Key
matches the KeyInfo:Ver1ClientKey.

A8.3.1.2 STATUS FIELD

The Status field is described in 13.4.7 Status Field on page 731. Class-
specific bits are defined in Table 450: Device Management Status Field.

Table 450 Device Management Status Field

Bits
[8:15] Name Meaning

0x00 Operational no additional status

0x01 IocErrorDetected IOC not responding or in a failed state

0x02 NoMatchingRecord The query did not result is a match

0x04 TableFull Cannot create record because table capacity has been reached

0x80 GeneralFailure IOU General Failure

0x10 InvalidDiagObject Object not part of DiagSession:DiagScope

0x11 DiagSeverityLimit Test exceeds DiagSession:DiagSeverity level

0x12 InvalidDiagTest Test is undefined or not supported (TestType +TestTargetType +
VendorSpecific)

0x40 NotMasterDM This is not the master DM

0x41 IncompatibleVersion The requested operation is not valid due to the class version of
the target IOU.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1536 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.1.3 RMPP HEADER

DevMgt uses the Reliable Multi-Packet Protocol as described in Section
13.6 “Reliable Multi-Packet Transaction Protocol”. This protocol allows
the initiator to make a single query which returns more information than
can be transferred in a single packet. For example, an IORM can make a
single request for IOControllerProfile attributes and have the DevMgt
agent return all of the IOControllerProfile records. The response includes
multiple DevMgtGetResp(IOControllerProfile) packets if necessary. Only
the method/attribute combinations listed as ‘RMPP’ in Table 453, “DevMgt
Agent Attribute / Method Map,” on page 1542 use the Reliable Multi-
Packet Protocol and thus have multi-packet responses. DevMgtGet() re-
quests are always single packets.

CA8-7: A DevMgt agent shall implement Reliable Multi-Packet Protocol
as described in Section 13.6 “Reliable Multi-Packet Transaction Protocol.

CA8-8: A DevMgt agent shall not respond with more than one packet for
method/attribute combinations not listed as ‘RMPP’ in Table 453, “DevMgt
Agent Attribute / Method Map,” on page 1542.

CA8-9: A DevMgt agent shall reject a request that contains more than one
packet except for a DevMgtSet() for an attribute listed as RMPP in the
DevMgtSet() column of Table 453 on page 1542.

A8.3.1.4 ACCESS_KEY AND KEYTYPE

The Access_Key and KeyType components in the MAD:Header are used
to validate the source of the MAD. The KeyType component indicates if
the MAD is from a client, supervisor, DM, or diagnostic program and the
Access_Key component provides the Client_Key, Supervisor_Key,
Manager_Key, or DiagToken respectively.

The Access_Key validates the requestor’s level of access. The RAL and
WAL columns of Table 453 on page 1542 specifies the access level per-
mitted for each attribute. Some attributes can only be read or set by the
DM, which can get and set all attributes. A supervisor is only allowed to
get and set certain records of certain attributes, and a client can only get
a subset of its supervisor records.

The DevMgt Agent always specifies a MADHeader:Access_Key value of
zero in DevMgt MADs it sends.

0x42 PolicyReject Rejected because of Device Manager Policy

Table 450 Device Management Status Field (Continued)

Bits
[8:15] Name Meaning

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1537 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-10: The DevMgt agent shall set the MADHeader:Access_Key com-
ponent to zero when generating a DevMgtTrap().

CA8-11: The DevMgt agent shall set the MADHeader:Access_Key com-
ponent to zero when sending a DevMgtGetResp().

CA8-12: The DevMgt agent shall ignore the value of the MAD-
Header:Access_Key component in a DevMgtTrapRepress().

Note that the DevMgt agent validates a TrapRepress() by the Transac-
tionID and Notice attribute content, which is only known by the recipient
of the trap, which was set in ClassPortInfo by the DM.

A8.3.1.4.1 MANAGER_KEY

The IOU’s Manager_Key is set by the DM to prevent others from modi-
fying the configuration of the IOU (i.e., the IOU only accepts a
DevMgtSet() from a manager with the correct Manager_Key, a supervisor
with a correct Supervisor_Key, or a diagnostic application with the correct
Diag Token).

A DM sets an IOU’s Manager_Key and other manager key related param-
eters via the DevMgtSet(KeyInfo). See A8.3.3.12 KeyInfo on page 1576
for details on how the DevMgt agent uses the Manager_Key.

• The DevMgt agent only accepts DevMgtSet()s that contain a valid
MADHeader:Access_Key (i.e., KeyType = Manager and
Access_Key matches the key set via the KeyInfo attribute, Key-
Type = Supervisor and Access_Key matches a Supervisor_Key
set by the DM, or KeyType = DiagToken and Access_Key match-
es a currently active DiagToken set by the DM).

• The DevMgt Agent also uses the MADHeader:Access_Key to
validate if a DevMgtGet() came from a valid DM.

A8.3.1.4.2 SUPERVISOR_KEY

The Supervisor_Key identifies the privileged user on a particular client
platform (i.e., the platform’s IORM) that may configure that platform’s
client resource pools. A DM sets Supervisor_Keys in platform pool table
records and client pool table records. The platform pool table record lists
the service objects that the platform is permitted to use. The DevMgt
Agent limits a supervisor’s access to reading its own platform pool table
record, to reading and writing its own client pool table records, and
reading information about IOCs and service objects that the platform is
permitted to use.

A8.3.1.4.3 CLIENT_KEY

Each client pool record has a Client_Key which identifies the client that is
permitted to use the listed service objects and specified resources

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1538 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

(Number of QPs, client priority, service levels, etc.). The DevMgt Agent
limits a client’s access to getting its own client pool table record and infor-
mation about IOCs and service objects that the client is permitted to use.

A8.3.1.4.4 DIAGTOKEN

The DM programs the IOU with a Diagnostic Token (DiagToken) speci-
fying the scope and severity level of diagnostics that may be performed
using that token. The manager provides the diagnostic program with that
token. The diagnostic program specifies the DiagToken in diagnostic re-
quests that it sends to the IOU to validate that the program is authorized
to perform the diagnostics. When the DevMgt Agent receives a Set() for a
diagnostic attribute, the agent validates that the DiagToken in the MAD
matches a valid DiagToken and that the request is within the scope spec-
ified by that token.

CA8-13: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Diagnostic Token the MAD specifies an attribute that
does not have a value of ‘D’ or ‘A’ in the respective RAL or WAL column
of Table 7 on page 43, then the DevMgt agent shall reject the MAD.

A8.3.1.5 COMPONENT MASK

The ComponentMask in the MAD header is used in queries for attributes
supporting RMPP (see Table 453 DevMgt Agent Attribute / Method Map
on page 1542). The ComponentMask allows the initiator to indicate which
components in the query (i.e., the DevMgtGet request) that the DevMgt
agent uses in determining which records to return. Each bit corresponds
to an attribute component as specified in each attribute’s definition in
A8.3.3: Attributes. If that bit is set to zero, the DevMgt agent ignores that
component when selecting which attributes to return. When the bit is one,
the DevMgt agent only returns records that have that component
matching the value supplied in the request. For example, a
DevMgtGet(ProtocolRecord) with component mask bits for Category,
OrgID, and Protocol set to one will return all protocol records matching the
Category, OrgID, and Protocol values supplied in the attribute in the
DevMgtGet(ProtocolRecord) query.

CA8-14: The DevMgt agent shall ignore ComponentMask in MADs not in-
dicated as ‘RMPP’ in Table 453, “DevMgt Agent Attribute / Method Map,”
on page 1542

CA8-15: The DevMgt agent shall ignore ComponentMask bits that are not
defined in the attribute’s definition in Section 8.3.3, “Attributes,” on
page 1540

CA8-16: For method/attribute combinations marked ‘RMPP’ in Table 453,
“DevMgt Agent Attribute / Method Map,” on page 1542, the DevMgt agent

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1539 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

shall only return attribute records matching the components indicated by
the ComponentMask in the request.

CA8-17: The DevMgt agent shall set the ComponentMask in the re-
sponse to the same value as in the request, except that any Component-
Mask bits not supported (i.e., not defined for the attribute in this version)
shall be set to zero. This requires that the ComponentMask in responses
to non RMPP method/attributes combinations is always returned as zero.

A8.3.2 METHODS

Each MAD specifies a Method and an Attribute type. Common methods
are defined in Chapter 13. Table 451 Device Management Methods on
page 1539 specifies the common methods used by Device Management.

Device Management attributes are listed in Table 452 Device Manage-
ment Attributes on page 1540. Table 453 DevMgt Agent Attribute / Method
Map on page 1542 specifies which attributes are valid with which methods
for a DevMgt agent. Table 454 DM Attribute / Method Map on page 1543
specifies which attributes are valid with which methods for a DM. The
format of each attribute is defined in the subsections of A8.3.3 Attributes
on page 1540.

The DevMgt Agent initially receives MADs through the GSI, which is an
unreliable datagram service. The actual access QP and DLID may be re-
directed by the GSI.

Table 451 Device Management Methods

Method Type Value Description

DevMgtGet() 0x01 Request (read) DevMgt class attributes such as IOU information, IOC profiles, or ser-
vice objects be returned. The response is a DevMgtGetResp().

DevMgtSet() 0x02 Request (write) an attribute to be set. The response is a DevMgtGetResp().

DevMgtGetResp() 0x81 Response to a DevMgtGet() or DevMgtSet() request.

DevMgtTrap() 0x05 Unsolicited datagram sent to the DM. Contains the Notice attribute as defined in
A8.3.3.2 Notice on page 1545 to identify the trap.

DevMgtTrapRepress() 0x07 Cancel repetition of notification.

DevMgtReport() 0x06 Forward an event to an entity that previously subscribed for it

DevMgtReportResp() 0x86 Reply to a DevMgtReport()

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1540 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3 ATTRIBUTES

This section specifies the format of the attributes used for managing the
IOU.

Device Management attributes are listed in Table 452 Device Manage-
ment Attributes on page 1540.

Table 453 DevMgt Agent Attribute / Method Map on page 1542 specifies
which attributes are valid with which methods for a DevMgt agent, identi-
fies which are required to be supported, and specifies which method/at-
tribute combination can be multi-packet. It also indicates if the attribute
can only be accessed by the DM, by configured clients, or by anyone.

Table 452 Device Management Attributes

Attribute Name Attribute
IDa Scopeb Description

ClassPortInfo
page 1544

0x0001 Port Provides information about the DevMgt Agent and allows the DM to program
where the DevMgt Agent sends traps. See A8.3.3.1 ClassPortInfo on page
1544

Notice
page 1545

0x0002 IOU Provides Trap details. See A8.3.3.2 Notice on page 1545

InformInfo
page 1557

0x0003 DM Attribute for interested parties to subscribe with the DM for DevMgt Traps.

IOUnitInfo
page 1559

0x0010 IOU Information about the IOU and lists status of subassembly slots. Each IOU may
support up to 255 subassemblies. Each subassembly can have an unlimited
number of IOCs and each IOC can have 216 service objects.

IOControllerProfile
page 1561

0x0011 IOU IOC Profile Information. Note: Attribute Modifier no longer identifies the IOC.
The IOU maintains a table of IOControllerProfile records. The ComponentMask
may be used to request a particular IOControllerProfile record or a particular
set of IOControllerProfile records. If all IOControllerProfile records are needed,
the requester sets the component mask to zero.

ServiceEntries 0x0012 n/a The ServiceEntries attribute has been replaced by the ServiceRecord attribute
and is no longer used

DA Info
page 1558

0x0013 DM Provides the address of the Device Administrator

ServiceRecord
page 1564

0x0014 IOU Specifies a Service ID for communicating with a service object. The IOU main-
tains a table of ServiceRecords for the IOU and all its IOCs. The Component-
Mask may be used to request a particular ServiceRecord or a particular set of
ServiceRecords, or set to zero to request all records.

ProtocolRecord
page 1568

0x0015 IOU Specifies a protocol (management protocol or I/O protocol) supported by the
IOU. The ComponentMask may be used to request a particular protocol record
or a particular set of protocol records, or set to zero to request all records.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1541 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SlotControlStatus
page 1570

0x0016 IOU Get()s and Set()s information pertaining to the removal state of a subassembly.
The ComponentMask may be used to request a particular SlotControlStatus or
a particular set of SlotControlStatus records, or set to zero to request SlotCon-
trolStatus on all slots.

KeyInfo
page 1576

0x0017 IOU Information pertaining to the Manager_Key used to check received DevMgt
class MADs

Reset
page 1573

0x0018 IOU Used to reset the IOU or an IOC

ProductInfo
page 1574

0x0019 IOU Provides product specific information about the IOU or an IOC.

reserved 0x001A-
0x001F

n/a reserved

DiagnosticTimeout
page 1602

0x0020 IOU Provides the maximum time for completion of diagnostic test. Tests not com-
pleting within this period may indicate device failure.

PrepareToTest 0x0021 n/a The ‘PrepareToTest’ attribute has been replaced by the DiagSession attribute
and is no longer used

TestDeviceOnce
page 1603

0x0022 IOU A DevMgtSet() of this attribute instructs the IOU to initiate the diagnostic test
specified in the attribute and run it once.

TestDeviceLoop
page 1604

0x0023 IOU A DevMgtSet() of this attribute instructs the IOU to initiate the diagnostic test
specified in the attribute and run it continuously in a loop.

DiagCode
page 1605

0x0024 IOU Vendor-specific diagnostic information for the device specified in the attribute.

DiagSession
page 1598

0x0025 IOU /
DM

A DevMgtSet() of this attribute sent to the DM requests a diagnostic session.
When sent to the IOU by the DM, instructs the IOU to prepare the object(s)
specified by the attribute for diagnostic testing.

reserved 0x0026 -
0x003F

n/a reserved

IouResourceInfo
page 1582

0x0040 IOU Specifies resource capabilities of the IOU.

PlatformPoolRecord
page 1585

0x0041 IOU Permits the DM to specify which service objects and resources a platform may
use.

Table 452 Device Management Attributes (Continued)

Attribute Name Attribute
IDa Scopeb Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1542 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ClientPoolRecord
page 1591

0x0042 IOU Permits the platforms’ supervisor to specify which of service objects and
resources a client may use.

KeyChange
page 1597

0x0043 IOU Changes a Client_Key or Supervisor_Key’

reserved 0x0044-
0xFEFF

n/a reserved

Vendor-specific 0xFF00-
0xFFFF

vendor
defined

Vendor-unique attribute values may be defined to deliver specific test instruc-
tions.

a. Attribute Modifier field is not used and therefore is set to zero. Vendor-Specific attributes may use Attribute Modifiers.
b. Scope identifies whether each port has its own set of that attribute (i.e., Port scope) or the IOU maintains a single set of that
attribute accessible via any of its ports (i.e., IOU scope).

For IOU scope, a DevMgtSet() on any port changes the attribute content for all ports such that a DevMgtGet() on any port returns
the same information.

For Port scope, a DevMgtSet() on one port does not change the attribute content for other ports.
For DM scope, if the DM uses multiple QPs to receive DevMgtSet()s, the DM treats the requests as if they came to the same QP

regardless of whether they come through the same port or not.

Table 452 Device Management Attributes (Continued)

Attribute Name Attribute
IDa Scopeb Description

Table 453 DevMgt Agent Attribute / Method Mapa

Attribute Name RALb WALc DevMgtGet()d DevMgtSet()d DevMgtTrap() TrapRepress()

ClassPortInfo A M yes yes

Notice M A yes yes yes yes

IOUnitInfo A - yes

IOControllerProfile MSCD - RMPP

ServiceRecord MSC - RMPP

ProtocolRecord MSC - RMPP

SlotControlStatus A M RMPP yes

ProductInfo A - RMPP

KeyInfo A M yes yes

Reset A M yes yes

IouResourceInfo M M RMPP yes

PlatformPoolRecord MS M RMPP yes

ClientPoolRecord MSC MS RMPP yes

KeyChange M yes

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1543 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The attributes are requested and returned through the GSI, which is an
unreliable datagram service. The actual access QP and DLID may be re-
directed by the GSI.

In addition to the MADs that the DM sends to DevMgt Agents, the DM is
required to support additional Method-Attribute combinations. Table 454
DM Attribute / Method Map on page 1543 specifies which attributes are
valid with which methods for a DM and identifies which are required to be
supported.

The DM registers with the SA using SubAdmSet(ServiceRecord). The QP
the manager uses to receive these manager MADs can be learned via a
CM:SIDR_REQ using the ServiceID specified in the SA:ServiceRecord.
The QP is an unreliable datagram service.

DiagnosticTimeout A - yes

DiagSession MD M RMPP yes

TestDeviceOnce - MD yes

TestDeviceLoop - MD yes

DiagCode A - yes
a. Combinations in <Bold Italic> are required to be supported by all DevMgt agents.
b. Read Access Level - RAL identifies who the DevMgt Agent allows to read the attribute. A=all, M=DM, S=configured

supervisors, C=configured clients (see A8.4.2 Filtering Information on page 1608), D=Diagnostic program.
c. Write Access Level - The WAL identifies who the DevMgt Agent allows to write the attribute.
d. RMPP designates that the method/attribute uses Reliable Multiple Packet Protocol. Note that the DevMgtGet() is a
single packet that can result in a multiple packet response.

Table 453 DevMgt Agent Attribute / Method Mapa (Continued)

Attribute Name RALb WALc DevMgtGet()d DevMgtSet()d DevMgtTrap() TrapRepress()

Table 454 DM Attribute / Method Mapa

a. Combinations in <Bold Italic> are required to be supported by a DM.

Attribute Name DevMgtGet() DevMgtSet() DevMgtReport()

ClassPortInfo yes

InformInfo yes

Notice yes

DA Info yes

DiagSession yes yes

ProductInfo yes

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1544 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.1 CLASSPORTINFO

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. The CapabilityMask component provides for class-specific bits which
are defined in Table 455: Device Management Agent ClassPortInfo:Capa-
bilityMask and Table 456: Device Manager ClassPortInfo:CapabilityMask.

Table 455 Device Management Agent ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734.

8 reserved reserved

9 IsManager_KeyNonVolatile Indicates if DevMgt Agent preserves its Manager_Key across
power cycles.
• 1b = Manager_Key saved in non-volatile storage
• 0b = Manager_Key not saved in non-volatile storage

10 NonVolatileAttributes Indicates if DevMgt Agent preserves R/W components of all
attributes across power cycles.
• 1b = Attributes saved in non-volatile storage
• 0b = Attributes not saved in non-volatile storage

11 GracefulHotPlug Indicates if DevMgt Agent supports graceful hot plug
• 1b = Graceful hot plug supported
• 0b = Graceful hot plug not supported

12 IsBackwardCompatibili-
tySupported

When set indicates that the DevMgt agent supports multiple
Class Versions (i.e., v1 and v2). Requirements for setting this bit
are specified in A8.3.1.1.3: Backward Compatibility Require-
ments.

13-15 - reserved

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1545 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Device Managers have different capabilities than Device Management
Agents. Thus, Table 456 specifies CapabilityMask bits for a DM.

A8.3.3.2 NOTICE

The Notice attribute is described in 13.4.8.2 Notice on page 737. It is used
for generic traps as specified in Table 457: Notices for Device Manage-
ment Traps.

Trap datagrams are described in 13.4.9 Traps on page 741.

CA8-18: When the DevMgt agent generates a trap, then that trap shall be
issued from all ports that have a non-zero ClassPortInfo:TrapLID.

CA8-19: Upon receipt of a valid TrapRepress() MAD and independent of
the MADHeader:Access_Key, the DevMgt agent shall cease sending the
trap which matches the trap identified by the TrapRepress() MAD. A trap
being repeatedly sent matches a trap identified in a TrapRepress() MAD
when both MADHeader:TransactionID in the trap MAD matches MAD-
Header:TransactionID in the TrapRepress MAD and the Notice attribute
in the trap MAD matches the Notice attribute in the TrapRepress().

A DevMgtTrap() conveys a Notice attribute and the Notice attribute con-
tains a DataDetails component, which provides trap specific information.
Thus, Device Management defines the DataDetails for each type of trap.

Table 456 Device Manager ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734.
Note that bits 0 and 1 are not meaningful for a class manager and
thus are set to zero and ignored.

8-13 reserved reserved

14 GracefulFailover This bit indicates if the DM shares subscription and DIag Session
information with standby mangers. A value of 1 indicates that the
DA retains subscriptions and DIag Session information across
fail-overs. Requirements for setting this bit are specified in Annex
A7: Configuration Management in sections A7.5.7.3 Subscription
Integrity on page 1461 and A7.5.9.1 Diagnostic Framework on
page 1468.

15 IsContextPersistent This bit indicates if the DM persistently stores subscription and
DIag Session information such that subscriptions are retained
across reset, restarts, and power cycles. Requirements for set-
ting this bit are specified in Annex A7: Configuration Manage-
ment in sections A7.5.7.3 Subscription Integrity on page 1461
and A7.5.9.1 Diagnostic Framework on page 1468.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1546 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

In each DataDetails definition there is a LostTrap bit. This bit is used to
signal when the IOU had to stop sending a trap before receiving a
DevMgtTrapRepress(). The premise is that the DevMgt Agent has a trap
queue of limited depth (one or more outstanding traps). When a new trap
is generated, it is placed at the tail of the trap queue and the trap at the
head of the queue is repeated until the DevMgt Agent receives a matching
DevMgtTrapRepress(). The matching trap is then discarded and then next
trap in the queue is sent immediately and repeated until a matching
DevMgtTrapRepress is received.

If the trap queue is full and a new trap is generated, the DevMgt Agent dis-
cards the trap at the head of the trap queue, adds the new trap to the tail
of the trap queue, sets the LostTrap bit in trap at the head of the queue
and immediately starts sending that trap.

There could be other reasons why a trap is discarded before it is acknowl-
edged. It is the DevMgt Agent’s responsibility to set the LostTrap bit in the
first trap sent after the discarded trap would have been sent. If the dis-
carded trap is the only trap in the queue, then the agent should fabricate
a Status Report trap with StatusType = 0x01 (Trap Queue Flushed) and
the LostTrap bit set to indicate the lost trap.

There might be other events that could cause the agent to prematurely
discard one or more traps. When there is at least one trap to be reported
and a condition occurs in which the DevMgt Agent discards all of the traps,
then the DevMgt Agent generates a StatusReport trap with a StatusType
of 0x01 and the LostTrap bit set. This will inform the Device Manager and
subscribed clients that one or more traps may have been lost.

Unless otherwise specified, Notice attribute components for Notices spec-
ified in Table 457 shall be set as follows:

1) IsGeneric = 1 (Generic)

2) Type - as per Table 457

3) ProducerType = 1 (Channel Adapter)

4) TrapNumber - as per Table 457

5) IssuerLID - as per 13.4.8.2 Notice on page 737

6) NoticeToggle = 0 as per 13.4.8.2 Notice on page 737

7) Notice Count = 0 as per 13.4.8.2 Notice on page 737

8) DataDetails - as per Table 457

9) IssuerGID=0 as per 13.4.8.2 Notice on page 737

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1547 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-20: A DevMgt agent shall use the layouts for the DataDetails com-
ponent specified in A8.3.3.2: Notice for corresponding Traps. Fields shall
be filled with the information corresponding to the description of a given
trap.

Table 457 Notices for Device Management Traps

Name Type Number DataDetails (padded to 432 bits)

MgrKeyViolation Security 0x0000 Reports an Access_Key violation as per Table 458 Notice 0x0000
DataDetails [MgrKey Violation] on page 1548

SupvKeyViolation Security 0x0001 Reports an Access_Key violation as per Table 459 Notice 0x0001
DataDetails [SupvKey Violation] on page 1549

Client Violation Security 0x0002 Reports an Access_Key violation as per Table 460 Notice 0x0002
DataDetails [Client Violation] on page 1550

DiagToken Violation Security 0x0003 Reports the use of an invalid DiagToken as per Table 461 Notice
0x0003 DataDetails [DiagToken Violation] on page 1551

Heartbeat Informational 0x0007 Indicates that the DM is still active as per Table 462 Notice 0x0007
DataDetails [Heartbeat] on page 1552

StatusReport Informational 0x0008 Status change as per Table 463 Notice 0x0008 DataDetails [Status-
Report] on page 1552

IO Controller
Change

Informational 0x0010 IOC with <IocGUID> has been <ACTION = added, deleted, or modi-
fied> as per Table 464 Notice 0x0010 DataDetails [IO Controller
Change] on page 1553

Service Object
Change

Informational 0x0011 ServiceRecord with for <IocGUID> with <ServiceObjectID> has been
<ACTION = added, deleted, or modified> as per Table 465 Notice
0x0011 DataDetails [ServiceRecord Change] on page 1554

Slot Status Change Informational 0x0018 Status of I/O module with <SlotNumber> has changed to <SlotStatus>
as per Table 466 Notice 0x0018 DataDetails [Slot Status Change] on
page 1555

IomRemoval Informational 0x0020 Request to remove I/O module <SlotNumber> as per Table 467
Notice 0x0020 DataDetails [IomRemoval] on page 1555

ReadyToTest Informational 0x0202 The ReadyToTest notice (514) has been replaced with the DiagSes-
sionState notice and is no longer used

DiagSessionState Informational 0x0801 Diagnostic session <DiagToken> readiness is <DiagSessionStatus>,
where DiagSessionStatus is the same as would have been returned
by a DevMgtGetResp(DiagSession) for that DiagToken as per Table
468 Notice 0x0801 DataDetails [DiagSessionState] on page 1556.

DiagSession Viola-
tion

Security 0x0802 Reports a diagnostic violation as per Table 469 Notice 0x0802 Data-
Details [DiagSession Violation] on page 1556

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1548 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.1 MGRKEY VIOLATION NOTICE

The IOU uses the MgrKey Violation notice to inform the DM that a it re-
ceived a DevMgt MAD with an invalid Manager_Key.

CA8-21: The DevMgt agent shall create the MgrKey Violation notice as
specified in Table 458 and issue the Trap from every port when it detects
a Manager_Key mismatch as per A8.3.3.12 KeyInfo on page 1576.

A8.3.3.2.2 SUPVKEY VIOLATION NOTICE

The IOU uses the SupvKey Violation notice to inform the DM that a it re-
ceived a DevMgt MAD with an invalid Supervisor_Key (MADHeader:Key-

Table 458 Notice 0x0000 DataDetails [MgrKey Violation]

Field Offset
(bits)

Length
(bits) Description

reserved 0 8 reserved

Method 8 8 Method used in MAD that caused the violation

AttributeID 16 16 AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64 Port GUID of the port receiving the violation

OffendingPortGid 96 128 Requestor port GID from the MAD that caused the
violation

OffendingLIDADDR 224 16 SLID used in MAD that caused the violation

reserved 240 16 reserved

QP 256 24 Source Queue Pair from the MAD that caused the
violation

reserved 280 8 reserved

Manager_Key 288 64 MADHeader:Access_Key from the MAD that
caused the violation

Timestamp 352 48 Timestamp when violation was detected. The for-
mat of the timestamp is the number of milliseconds
since 1/1/70 00:00am
Zero indicates Timestamp not supported

reserved 400 31 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1549 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Type = Supervisor and no PlatformPoolRecord with a Supervisor_Key
matching MADHeader:Access_Key).

CA8-22: The DevMgt agent shall create the SupvKey Violation notice as
specified in Table 459 and issue the trap to every port when it detects an
invalid Supervisor_Key as per A8.4.2 Filtering Information on page 1608.

Table 459 Notice 0x0001 DataDetails [SupvKey Violation]

Field Offset
(bits)

Length
(bits) Description

reserved 0 8 reserved

Method 8 8 Method used in MAD that caused the violation

AttributeID 16 16 AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64 Port GUID of the port receiving the violation

OffendingPortGid 96 128 Requestor port GID from the MAD that caused the
violation

OffendingLIDADDR 224 16 SLID used in MAD that caused the violation

reserved 240 16 reserved

QP 256 24 Source Queue Pair from the MAD that caused the
violation

reserved 280 8 reserved

Supervisor_Key 288 64 MADHeader:Access_Key from the MAD that
caused the violation

Timestamp 352 48 Timestamp when violation was detected. The for-
mat of the timestamp is the number of milliseconds
since 1/1/70 00:00am
Zero indicates Timestamp not supported

reserved 400 31 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1550 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.3 CLIENT VIOLATION NOTICE

The IOU uses the Client Violation notice to inform the DM that a it received
a DevMgt MAD or a CM MAD with an invalid Client_Key.

CA8-23: The DevMgt agent shall create the Client Violation notice as
specified in Table 460 and issue the Trap from every port when it detects
a Client_Key mismatch as per A8.4.2 Filtering Information on page 1608.

CA8-24: The DevMgt agent shall create the Client Violation notice as
specified in Table 458 and issue the Trap from every port when it detects
a Client_Key mismatch as per A8.4.3 Restricting Access on page 1610.

Table 460 Notice 0x0002 DataDetails [Client Violation]

Field Offset
(bits)

Length
(bits) Description

MADClass 0 8 MgmtClass value used in MAD that caused the vio-
lation - indicates if DevMgt or CM MAD.

Method 8 8 Method used in MAD that caused the violation

AttributeID 16 16 AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64 Port GUID of the port receiving the violation

OffendingPortGid 96 128 Requestor port GID from the MAD that caused the
violation. Zero indicates that the MAD did not con-
tain a GRH.

OffendingLIDADDR 224 16 SLID used in MAD that caused the violation

reserved 240 16 reserved

QP 256 24 Source Queue Pair from the MAD that caused the
violation

reserved 280 8 reserved

Client_Key 288 64 MADHeader:Access_Key from the DevMgt MAD or
the PrivateData:Client_Key from the CM MAD that
caused the violation.

Timestamp 352 48 Timestamp when violation was detected. The for-
mat of the timestamp is the number of milliseconds
since 1/1/70 00:00am
Zero indicates Timestamp not supported

reserved 400 31 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1551 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.4 DIAGTOKEN VIOLATION NOTICE

The IOU uses the DiagToken Violation notice to inform the DM that a it re-
ceived a DevMgt MAD with an invalid DiagToken.

CA8-25: The DevMgt agent shall create the DiagToken Violation notice as
specified in Table 461 and issue the Trap from every port when it receives
a MAD with KeyType = DiagToken but the Access_Key does not match
DiagToken of a current Diagnostic Session as per A8.3.3.17 DiagSession
on page 1598.

Table 461 Notice 0x0003 DataDetails [DiagToken Violation]

Field Offset
(bits)

Length
(bits) Description

reserved 0 8 reserved

Method 8 8 Method used in MAD that caused the violation

AttributeID 16 16 AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64 Port GUID of the port receiving the violation

OffendingPortGid 96 128 Requestor port GID from the MAD that caused the
violation. Zero indicates that the MAD did not con-
tain a GRH.

OffendingLIDADDR 224 16 SLID used in MAD that caused the violation

reserved 240 16 reserved

QP 256 24 Source Queue Pair from the MAD that caused the
violation

reserved 280 8 reserved

DiagToken 288 64 MADHeader:Access_Key from the DevMgt MAD
that caused the violation.

Timestamp 352 48 Timestamp when violation was detected. The for-
mat of the timestamp is the number of milliseconds
since 1/1/70 00:00am
Zero indicates Timestamp not supported

reserved 400 31 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1552 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.5 HEARTBEAT NOTICE

This notice is not generated by the IOU, it is generated by a DM in a
DevMgtReport() to inform subscribed clients that the DM is still opera-
tional.

See Configuration Management Annex A7.5.7.5 Heartbeat on page 1463
for requirements on generating the Heartbeat notice.

A8.3.3.2.6 STATUSREPORT NOTICE

This notice is generated by the IOU to inform the Device Manager and
subscribed clients that there was a change in operational status. Currently
this trap is only used to indicate that all outstanding traps have been dis-
carded prior to receiving an acknowledge.

Table 462 Notice 0x0007 DataDetails [Heartbeat]

Field Offset
(bits)

Length
(bits) Description

TTNH 0 12 Time till next heartbeat - specifies the number of
minutes before the DM will send another Heartbeat
notice. If more that this time elapses, it is an indica-
tion that the DA has terminated the subscription.

reserved 12 4

Fail-over 16 1 When this bit is set to one it indicates that a standby
manager has taken-over. The client platform should
query the SA to locate the new DM.

reserved 17

reserved 431 1 The LostTrap bit is not used since this notice is not
sent in a Trap().

Table 463 Notice 0x0008 DataDetails [StatusReport]

Field Offset
(bits)

Length
(bits) Description

ReportType 0 8 Report Type
• 0x01 = Trap Queue Flushed
all other values reserved

reserved 0 423 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set. It is always set when ReportType =
”Trap Queue Flushed”.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1553 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

See Section 8.3.3.2 on page 1545 for requirements on generating the
Status Report notice.

A8.3.3.2.7 IOC CHANGE NOTICE

The IOU uses the IO Controller Change Notice to inform the DM that an
IOC has been installed, removed, or modified.

CA8-26: The DevMgt agent shall create the IO Controller Change notice
as specified in Table 465 and issue the Trap from every port when an IO-
ControllerProfile attribute record is added, deleted, or modified, unless the
change is the result of a Slot Change reported by a Slot Status Change
Notice.

Table 464 Notice 0x0010 DataDetails [IO Controller Change]

Field Offset
(bits)

Length
(bits) Description

IocGUID 0 64 IOC GUID from IOControllerProfile attribute

reserved 64 64 reserved

ACTION 128 2 Attribute action:
• 00b = deleted
• 01b = modified - includes adding/removing/modify-

ing attributes (e.g., Protocol records) for more than
one of its Service Objects

• 10b = reserved
• 11b = added

reserved 130 301 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1554 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.8 SERVICERECORD CHANGE NOTICE

The IOU uses the ServiceRecord Change notice to inform the DM that a
ServiceRecord has been created, destroyed, or modified

CA8-27: The DevMgt agent shall create the ServiceRecord Change no-
tice as specified in Table 465 and issue the Trap from every port when a
ServiceRecord attribute is added, deleted, or modified, unless the change
is result of a Slot Change reported by a Slot Change notice or an IOC
change reported by an IO Controller Change notice.

Table 465 Notice 0x0011 DataDetails [ServiceRecord Change]

Field Offset
(bits)

Length
(bits) Description

IocGUID 0 64 IOC GUID from ServiceRecord attribute

ServiceObjectID 64 64 Service Object ID from ServiceRecord attribute

ACTION 128 2 Attribute action:
• 00b = object deleted
• 01b = modified (includes adding/removing/modify-

ing Protocol records associated with the Service-
Record).

• 10b = reserved
• 11b = object added

reserved 130 301 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1555 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.9 SLOT STATUS CHANGE NOTICE

The IOU uses the Slot Status Change Notice to inform the DM that an I/O
module has been installed or removed.

CA8-28: The DevMgt agent shall create the Slot Status Change notice as
specified in Table 466 and issue the Trap from every port when its IOUnit-
Info:SlotList changes.

A8.3.3.2.10 IOM REMOVAL NOTICE

The IOU uses the IomRemoval notice to inform the DM that a local action
is requesting removal of an I/O module. This implies removal of one or
more IOCs.

oA8-3: The DevMgt agent shall create the IomRemoval notice as speci-
fied in Table 467 and issue the Trap from every port when an I/O module’s
SlotControlStatus:ModuleStatus.IOU_RTR bit transitions from 0 to 1. See
A8.6 IOC Graceful Hot Removal on page 1618.

Table 466 Notice 0x0018 DataDetails [Slot Status Change]

Field Offset
(bits)

Length
(bits) Description

SlotNumber 0 8 Slot Number of I/O module

us 8 4 Slot status - as per IOUnitInfo:SlotList.

reserved 12 419 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

Table 467 Notice 0x0020 DataDetails [IomRemoval]

Field Offset
(bits)

Length
(bits) Description

SlotNumber 0 8 I/O module slot number

reserved 8 423 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1556 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.2.11 DIAGSESSIONSTATE NOTICE

The IOU uses this Notice to inform the DM that the Diagnostic Session
has changed (e.g., is ready for diagnostic testing). The DM also uses it in
a DevMgtReport() to inform the diagnostic program whether it can pro-
ceed.

See A8.5.2 Preparing for Diagnostic Tests on page 1617 for requirements
on generating this Trap.

A8.3.3.2.12 DIAG SESSION VIOLATION NOTICE

The IOU uses this Notice to inform the DM of an invalid diagnostic re-
quest.

Table 468 Notice 0x0801 DataDetails [DiagSessionState]

Field Offset
(bits)

Length
(bits) Description

DiagToken 0 64 Specifies the Diagnostic Session

DiagSessionStatus 64 4 Diagnostic Readiness status as per the DiagSession
attribute status defined in A8.3.3.17 DiagSession on
page 1598.

reserved 68 363 reserved - set to zero

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

Table 469 Notice 0x0802 DataDetails [DiagSession Violation]

Field Offset
(bits)

Length
(bits) Description

Violation 0 8 Violation
0x00 - Test exceeds DiagSeverity level
0x01 - Service Object outside of scope
0x02 - IOC outside of scope
0x03 - I/O module outside of scope
0x04 - Service Object does not exist
0x05 - IOC does not exist
0x06 - I/O module does not exist

Method 8 8 Method used in MAD that caused the violation

AttributeID 16 16 AttributeID used in MAD that caused the violation

ViolatedPortGUID 32 64 Port GUID of the port receiving the violation

OffendingPortGid 96 128 Requestor port GID from the MAD that caused the
violation. Zero indicates that the MAD did not con-
tain a GRH.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1557 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-29: The DevMgt agent shall create the DiagSession Violation notice
as specified in Table 469 and issue the Trap from every port when it de-
tects a Diagnostic Session violation.

A Diagnostic Session violation is defined as receiving a
DevMgtSet(TestDeviceOnce) or DevMgtSet(TestDeviceLoop) specifying
a test device not listed in the Diagnostic Session’s scope or specifying a
test that violates the Diagnostic Session’s DiagSeverity. See A8.3.3.17 Di-
agSession on page 1598 and A8.5.3 Invoking Diagnostic Tests on page
1617 for requirements on generating this Trap. Note that an invalid Diag-
Token is reported via the DiagToken Violation Notice on page 1551.

A8.3.3.3 INFORMINFO

The InformInfo attribute is specified in 13.4.8.3 InformInfo on page 739. It
is used in a DevMgtSet() sent to the DM by interested parties to register
for (subscribe to) DevMgt Traps.

The InformInfo attribute provides information for subscribing to a class
manager for event forwarding. See 13.4.8.3 InformInfo on page 739 and
13.4.11 Event Forwarding on page 745.

OffendingLIDADDR 224 16 SLID used in MAD that caused the violation

reserved 240 16 reserved

QP 256 24 Source Queue Pair from the MAD that caused the
violation

reserved 280 8 reserved

DiagToken 288 64 MADHeader:Access_Key from the DevMgt MAD
that caused the violation.

Timestamp 352 48 Timestamp when violation was detected. The for-
mat of the timestamp is the number of milliseconds
since 1/1/70 00:00am
Zero indicates Timestamp not supported

reserved 400 31 reserved

LostTrap 431 1 This bit is set when the IOU had to discard a Trap
without receiving a TrapRepress() for it. The bit is
reset when the IOU receive a valid TrapRepress()
with this bit set.

Table 469 Notice 0x0802 DataDetails [DiagSession Violation] (Continued)

Field Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1558 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.4 DA INFO

This attribute provides the address of the DA and general information
about the DM/DA. Client platforms send a DevMgtGet(DAInfo) to the DM
to learn the address of the Device Administrator associated with the DM.
The client can also use this attribute to distinguish between multiple in-
stances of the same manager and managers for different configuration
groups.

The DA_GID, DA_LID, and DA_QPN specifies the address where a client
platform sends DevAdm MADs.

The ConfigGroupID is a 128-bit UUID created by the configuration man-
agement application to identify the configuration group. When there are
multiple managers that serve the same configuration group (i.e., distrib-
uted management application) they all report the same ConfigGroupID.
Thus, a client platform can quickly determine which DM/DAs serve which
configuration groups by sending a DevMgtGet(DAInfo) to each DM.

Table 470 DAInfo Attribute

Component Access Offset
(bits)

Length
(bits) Description

DA_GID RO 0 128 GID of the Port where the clients sends DevAdm MADs

DA_LID RO 128 32 LID of the Port where the clients sends DevAdm MADs

reserved RO 160 8 reserved

DA_QPN RO 168 24 Destination QP where the clients sends DevAdm MADs

reserved RO 192 64 reserved

ConfigGroupID RO 256 128 A 128-bit universally unique identifier (UUID) as defined by
ISO/IEC 11578 that uniquely identifies the configuration group.

ConfigGroup-
Name

RO 384 256 Null terminated UTF-8 string that specifies the name for the con-
figuration group.

DevMgtVerHigh RO 640 8 Indicates the highest Device Management ClassVersion that this
manager supports

DevMgtVerLow RO 648 8 Indicates the lowest Device Management ClassVersion that this
manager supports

DevAdmVerHigh RO 656 8 Indicates the highest Device Administration ClassVersion that
this manager supports

DevAdmVerLow RO 664 8 Indicates the lowest Device Administration ClassVersion that this
manager supports

reserved RO 672 864 reserved

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1559 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When a client sees multiple DMs with the same ConfigGroupID, it means
that it will receive the same information from each one and thus only
needs to query and subscribe to one of them.That is, each SA registration
indicates a different path to the same logical DM (e.g., different port,
P_Key, etc.).

The ConfigGroupName specifies a human readable name (if any) that a
system administer assigned to the configuration group. The default value
of all zeros indicates that a name has not been assigned.

The DevMgtVerHigh, DevMgtVerLow, DevAdmVerHigh, DevAdmVerLow
specifies the highest and lowest versions of The DevMgt class and De-
vAdm class that the DM/DA supports.

A8.3.3.5 IOUNITINFO

A DM uses DevMgtGet(IOUintInfo) to learn detailed information about the
IOU, such as the IOU vendor, the number of I/O subassembly modules
and their physical status, the number of IOCs, the number of protocol
records, service objects, and service records, the number of QPs, and the
number of resource pools. An IORM uses this attribute to discover if the
IOU contains an option ROM, which could provide I/O drivers.

There is one IOUnitInfo record and thus the DevMgt agent ignores the
ComponentMask and RMPP header and returns a single DevMgtGet-
Resp(IOUnitInfo) MAD.

Table 471 IOUnitInfo Attribute

Component Access Offset
(bits)

Length
(bits) Description

reserved RO 0 16 reserved - Change_ID moved to MAD header.

MaxSlots RO 16 8 Number of actual slots in SlotList. Slots refer to I/O modules that
reside behind the channel adapter and contain IOCs. Modules
may be permanent or plugable. A value of zero indicates 256.

IsActivelyMan-
aged

RO 24 1 Indicates if the IOU is actively managed. The IOU sets this bit to
1 when the IOU’s Manager_Key (see KeyInfo attribute) is set to a
non-zero value.

reserved RO 25 6 reserved

OptionROM RO 31 1 Indicates presence of Option ROM. 1 = Present; 0 = Absent.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1560 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SlotList RO 32 1024 A series of 4-bit nibbles with each representing an IOU subas-
sembly. Each 4-bit nibble can take the following values:
• 0x0 = module not installed or not available (i.e., not powered

up)
• 0x1 = present and available
• 0x2-0xE = reserved
• 0xF = slot does not exist
Bits 7-4 of the first byte (lowest offset) represent slot 0, bits 3-0
represent slot 1, bits 7-4 of the second byte represent slot 2, bits
3-0 represent slot 3, and so on to slot 255.

IouVendorID RO 1056 24 I/O unit vendor ID, IEEE format for Organization Unique ID (OUI).
Bits are in canonical order.

reserved RO 1080 8 reserved

ProductID RO 1088 32 A number assigned by the vendor to identify the type of IOU.

IouVersion RO 1120 16 A number assigned by the vendor to identify the IOU version.

IocCounta RO 1136 16 Number of I/O controllers present and thus the number of IOCon-
trollerProfile Records that the DevMgt Agent will return if it
receives an IOControllerProfile query with ComponentMask=0
(i.e., IocGUID=any, SlotNumber=any, etc.), see Section 8.3.3.6,
“IOControllerProfile,” on page 1561.

IouProtocolRe-
cordCounta

RO 1152 16 Number of Protocol Records that the DevMgt Agent will return if it
receives a Protocol query for IocGUID=0 (all other Component-
Mask bits=0), see Section 8.3.3.8, “ProtocolRecord,” on
page 1568. This is the number of management protocols associ-
ated specifically with the IOU (rather than a particular IOC).

TotalProtocolRe-
cordCounta

RO 1168 16 Total number of Protocol Records that the DevMgt Agent will
return if it receives a Protocol query with ComponentMask=0
(IocGUID=any, ServiceName=any, etc.), see Section 8.3.3.8,
“ProtocolRecord,” on page 1568.

IouServiceRe-
cordCounta

RO 1184 16 Number of IOU ServiceRecords that the DevMgt Agent will return
if it receives a ServiceRecord query for IocGUID=0 (all other
ComponentMask bits=0), see Section 8.3.3.7, “ServiceRecord,”
on page 1564. This is the number of management services asso-
ciated specifically with the IOU (rather than a particular IOC).

ServiceRecord-
Counta

RO 1200 16 Number of ServiceRecords that the DevMgt Agent will return if it
receives a ServiceRecord query with ComponentMask=0 (i.e.,
IocGUID=any, ServiceName=any, etc.), see Section 8.3.3.7,
“ServiceRecord,” on page 1564.

reserved RO 1216 320 reserved

a. For the case where the actual count exceeds the maximum value of 0xFFFF, the DevMgt agent reports the maximum
value. Thus, the value 0xFFFF indicates ‘0xFFFF or more’.

Table 471 IOUnitInfo Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1561 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The previous DevMgt class version supported a one-to-one relationship
between IOCs and subassembly slots. This version supports a many-to-
one relationship. That is, an I/O subassembly module can contain multiple
IOCs. The IOUnitInfo attribute contains information on the number of sub-
assembly modules the I/O unit can support (IOUnitInfo:MaxSlots). The
IOUnitInfo:SlotList has an entry for every possible “slot”. I/O module slots
may be physical or logical and those modules can be removable or per-
manent. Each entry in the SlotList component shows whether the corre-
sponding subassembly is present. An IOU that does not have physical
subassemblies has the option of reporting one subassembly and asso-
ciate all IOCs to it (preferred) or could report one subassembly for each
IOC (legacy - as per class version 1).

SlotNumber of an I/O module refers to its logical position in the Slot list.
IOCs are associated with slots but are primarily identified by their Io-
cGUID. The SlotNumber helps the DM identify which IOCs are associated
with a physical module, especially when the module is removed, replaced,
or relocated. Note that replacement of a module could be with IOCs of the
same type or a completely different type.

A8.3.3.6 IOCONTROLLERPROFILE

The IOControllerProfile attribute (as defined in Table 472 IOControllerPro-
file on page 1562) provides detailed information about an I/O controller.
An I/O Controller represents a circuit or process on the IOU that provides
I/O service. The IOControllerProfile attribute enables a host to identify the
vendor of the IOC and load the appropriate vendor supplied I/O driver.
Note that in order to allow an IOC to support multiple I/O protocols, as well
as management protocols, the I/O protocol information has been removed
from the IOControllerProfile (previous version) and made available via
ProtocolRecord attributes. The information in ProtocolRecords enables
the IORM to identify the appropriate generic I/O driver and the information
in the IOControllerProfile attribute enables the host to identify the appro-
priate vender supplied I/O driver. Refer to Annex A1: I/O Infrastructure on
page 1121 for driver matching rules.

There is one IOControllerProfile record for each IOC and the IocGUID
uniquely identifies the IOC. This attribute provides details of each IOC
such as its IocGUID, its vendor, product ID, product revision levels, and
other information that is specific to a given IOC but common to all of the
service objects provided by that IOC.

IOControllerProfile information aids a DM in allocating the IOU’s
resources to various clients and the SlotNumber associates the IOC with
a particular I/O subassembly for graceful hot removal. The IOController-
Profile also provides a common way for an IORM to determine the char-
acteristics of IOCs.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1562 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Additional information about the controller is specified in ProductInfo, Pro-
tocolRecord, and ServiceRecord attribute records associated with the
IOC (i.e., records with that IOC’s IocGUID). A ProtocolRecord specifies a
protocol that the IOC supports. ServiceRecords identify instances of ser-
vices and correlate services with their ServiceIDs so a client may estab-
lish a channel to communicate with the service object.

Table 472 IOControllerProfile

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

0 IocGUID RO 0 64 An EUI-64 GUID used to uniquely identify the control-
ler. This could be the same GIUD as the TCA’s Node
GUID if there is only one controller using that GUID.

1 VendorID RO 64 24 I/O controller vendor ID, IEEE OUI format

2 SlotNumber RO 88 8 Identifies which I/O module (Slot Number in the
IOUnitInfo:SlotList) to which this IOC is associated.

- IocDeviceID RO 96 32 A number assigned by the IOC vendor to identify the
type of controller. This can be used by an Operating
System to select a device driver (see Annex A1: I/O
Infrastructure on page 1121).

- Device Version RO 128 16 A number assigned by the IOC vendor to identify the
device version (see A1.2.4.1 Matching an I/O Con-
troller with an I/O Device Driver on page 1125).

- reserved RO 144 16 reserved

- Subsystem VendorID RO 160 24 IEEE OUI of the vendor of the module, if any, in
which the I/O controller resides in IEEE format; other-
wise zero (see A1.2.4.1 Matching an I/O Controller
with an I/O Device Driver on page 1125).

- reserved RO 184 8 reserved

- SubsystemID RO 192 32 A number assigned by the subsystem vendor identi-
fying the type of module where the controller resides
(see A1.2.4.1 Matching an I/O Controller with an I/O
Device Driver on page 1125).

- IocServiceRecordCountb RO 424 16 Number of ServiceRecords that the DevMgt Agent
will return for a ServiceRecord query matching this
IOC’s IocGUID (all other ComponentMask bits=0),
see A8.3.3.7 ServiceRecord on page 1564. This
includes records for IOC I/O management objects as
well as I/O service objects.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1563 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

There are different ways to request IOControllerProfiles. Three examples
(by IocGUID, by SlotNumber, and a wildcard request that returns all IO-
ControllerProfiles) are provided below. The requestor will receive one or
more response packets containing zero or more records via the RMPP
protocol.

• Wildcard Query

For a wildcard query, the initiator sets the ComponentMask to
0x0000 in the DevMgtGet(IOControllerProfile). The DevMgt agent
returns an IOControllerProfile for each IOC.

• Query by IocGUID

For a query by IocGUID, the initiator sets the IocGUID in the
DevMgtGet(IOControllerProfile) to the desired value and sets the
ComponentMask to 0x0001. The DevMgt agent returns the IO-
ControllerProfile for the specified IocGUID.

• Query by SlotNumber

For a query by SlotNumber, the initiator sets ComponentMask in
the DevMgtGet(IOControllerProfile) to 0x0004 (bit 2 of the Com-
ponentMask set) and sets the SlotNumber component in the
DevMgtGet(IOControllerProfile) attribute to the desired Slot
Number. The DevMgt agent returns an IOControllerProfile for
each IOC with the specified slot number.

- IocProtocolCountb RO 440 16 Number of Protocol Records that the DevMgt Agent
will return for a ProtocolRecord query matching this
IOC’s IocGUID (all other ComponentMask bits=0),
see A8.3.3.8 ProtocolRecord on page 1568. This
includes all IOC related protocols (I/O protocols,
management protocols, etc.)

- IocServiceObjectCountb RO 456 16 Number of Service Objects associated with this
IOC. This includes all IOC related services (I/O ser-
vice objects, management service objects, etc.)

- reserved RO 472 40 reserved

- ID String RO 512 512 UTF-8 encoded string for identifying the controller.

- reserved RO 1024 512 reserved

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.
b. For the case where the actual count exceeds the maximum value of 0xFFFF, the DevMgt agent reports the maximum value. Thus,
the value 0xFFFF indicates ‘0xFFFF or more’.

Table 472 IOControllerProfile (Continued)

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1564 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The number of service objects associated with the IOC is specified in
IocServiceObjectCountb. There are a number of ProtocolRecords and
ServiceRecords associated with each IOC. The number of these records
are specified in IocProtocolCountb and IocServiceRecordCount.

A8.3.3.7 SERVICERECORD

The IOU maintains the list of ServiceRecords. For each service object,
there is one or more ServiceRecords that contains that service object’s Io-
cGUID+ServiceObjectID. That is, if the IOC supports multiple I/O proto-
cols, then there will be multiple ServiceRecords per I/O service object
(each with the same ServiceObjectID but a different service name). Addi-
tionally, there are ServiceRecords for I/O management service objects.

The combination of IocGUID+ServiceObjectID+ServiceName uniquely
identifies a ServiceRecord.

There are two types of service objects (I/O service objects and I/O man-
agement service objects). An I/O service object is a port, through which a
client can access I/O devices. An I/O management service object is a port,
through which a management application can manage service objects
and their I/O devices. The ObjectType component in the ServiceRecord
attribute specifies if the service is an I/O service or an I/O management
service.

Each Service Object is associated with an IOC. The ServiceRecord con-
tains the IOC’s IocGUID plus a ServiceObjectID that together uniquely
identifies the service object. The IOU may have I/O management service
objects that are not associated with a particular IOC, in which case the Io-
cGUID in the ServiceRecord is set to zero.

An IOC has multiple I/O services objects anytime the IOC provides mul-
tiple sets of I/O resources for which the same I/O client has to use a dif-
ferent QP (or set of QPs) to access each set. For example, an IOC that
supports the SCSI RDMA Protocol (SRP) would have a ServiceRecord for
each SCSI target port. Additionally, if that IOC supports one or more man-
agement protocols (such as for a JBOD or RAID configuration program),
the IOC would also have additional ServiceRecords for them.

The DM uses ServiceRecords to learn what service objects exists and de-
termine how many resources (number and type of QPs) get consumed
when a client uses the specified service object. This information is useful
when the manager needs to establish the size of resource pools.

The IORM and I/O driver uses information from the ServiceRecord to
identify the protocol (ServiceName) and channel characteristics for com-
municating with the specified service object including the ServiceID that
the client uses in CM:REQ and/or CM:SIDR_REQ messages.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1565 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 473 ServiceRecord Attribute

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

0 IocGUID RO 0 64 IocGUID - Identifies the IOC that provides the ser-
vice. IOCs that have multiple service objects or sup-
port multiple protocols can have multiple records,
each with the same IocGUID value. A value of zero
designates the service is associated with the IOU and
not a particular IOC.

1 ServiceObjectID RO 64 64 ServiceObjectID - identifies the service object within
the IOC’s domain. ServiceRecords with the same
IocGUID+ServiceObjectID refer to the same service
object. Note that a service object that supports multi-
ple protocols has multiple ServiceRecords (each with
the same IocGUID+ServiceObjectID value).

2 ServiceName RO 128 512 Service Name (protocol name)- UTF-8 encoded, null-
terminated protocol-specific name of the service as
per Annex A3 from the ProtocolRecord attribute that
describes the protocol supported by a channel cre-
ated using this record’s ServiceID.

3 ObjectType RO 640 8 Indicates the type of service object
 • 0x00 = unknown/other
 • 0x01 = I/O Service Object
 • 0x02 = I/O Management Object
other values reserved

4 CMValidation RO 648 1 Set to one to indicate that the IOU validates
Client_Key as part of CM:REQ and
CM:SIDR_REQ.When set to zero, it indicates that the
DM must allocate a DefaultPool specifying this ser-
vice object if it wants to assign the service object to a
client.

5 SharedUD RO 649 1 Set to one to indicate that UD QPs are used for multi-
ple clients. This bit is set to zero if the service object
uses a different UD QP for each client, does not use
UD service, or only supports a single client and the
UD QP is released when the client logs out.

- reserved RO 650 6 reserved

ClientCountMax RO 656 16 Number of clients that can simultaneously access this
service. A value of 0xFFFF is interpreted as not lim-
ited by the implementation.

- ServiceID RO 672 64 ServiceID - The 64-bit Service ID that the Service Cli-
ent uses in CM class MADs to connect with a QP for
the particular service object using the specified I/O
Protocol. Refer to Chapter 12 and Annex A3 for defi-
nition and usage of Service IDs.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1566 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An initiator can request particular ServiceRecords using the Component-
Mask in the DevMgtGet(ServiceRecord). This limits the records returned
to a specific subset matching the component values specified in the re-

- RC Channels RO 736 16 Maximum number of Simultaneous RC Channels
Supported - a value of 0xFFFF means not limited by
the implementation or the protocol. Any other value
indicates the maximum number of RC QPs that the
IOC allows for this ServiceID.

- UC Channels RO 752 16 Maximum number of Simultaneous UC Channels
Supported - a value of 0xFFFF means not limited by
the implementation or the protocol. Any other value
indicates the maximum number of UC QPs that the
IOC allows for this ServiceID.

- UD Channels RO 768 16 Maximum number of Simultaneous UD QPs Sup-
ported - a value of 0xFFFF means not limited by the
implementation or the protocol. Any other value indi-
cates the maximum number of UD QPs that the IOC
allows for this ServiceID.

- RD Channels RO 784 16 Maximum number of Simultaneous RD QPs Sup-
ported - a value of 0xFFFF means not limited by the
implementation or the protocol. Any other value indi-
cates the maximum number of RD QPs that the IOC
allows for this ServiceID.

- Send Message
Queue Depth

RO 800 16 Maximum number of outstanding requests - the num-
ber of request messages that a client can send before
receiving an indication that they have been com-
pleted. If the implementation supports multiple chan-
nels per client, this is the value for the first command
channel (unless specified otherwise by the I/O proto-
col).

- reserved RO 816 8 reserved

- RDMA Read
Queue Depth

RO 824 8 Maximum number of RDMA Read transactions that
the service object can have outstanding (sent to cli-
ent). Actual limit is established in CM connection
establishment.

- Send Message
Size

RO 832 32 Maximum size of Send Messages in bytes that the
service object can receive on this channel.

- RDMA Transfer
Size

RO 864 32 Maximum size of outbound RDMA transfers initiated
by the IOC - in bytes.

- reserved RO 896 640 reserved

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

Table 473 ServiceRecord Attribute (Continued)

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1567 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

quest. Thus, in the DevMgtGet(ServiceRecord), the requestor sets the
corresponding ComponentMask bit to one (as specified by the CMsk
column in Table 473: ServiceRecord Attribute) and specifies the compo-
nent value in the ServiceRecord attribute. Only components with a CMsk
bit number assigned can be specified and the DevMgt agent ignores com-
ponent values for components without a CMsk bit number and for compo-
nents whose ComponentMask bit is zero. The DevMgt agent returns all
ServiceRecords that match the specified components and are associated
with the requestor’s Client_Key (see A8.4.2 Filtering Information on page
1608). Thus, when the ComponentMask is zero, the DevMgt agent re-
turns all ServiceRecords that are associated with the Client_Key.

A8.3.3.7.1 CM VALIDATATION

When set, the CMValidation bit indicates that the IOU does not permit a
client to use the service object until after it has validated that the client is
authorized to use the service object and that the connection does not ex-
ceed the client’s allotted resources as specified in the appropriate Plat-
formPoolRecord and ClientPoolRecord. That is, the service object
requires that the client passes its Client_Key in the CM MAD’s Private-
Data component or as part of a login sequence prior to the service object
allowing the client access to its service.

The requirement for setting CMValidation are

a) The client provides its Client_Key (such as in PrivateData of the
CM:REQ and CM:SIDR_REQ messages) before the client is per-
mitted to use to the service object, Service objects may set up a
channel with the client and use that channel to convey the
Client_Key, as long as the Client_Key validation is performed pri-
or to permitting any other access.

b) The IOU validates the access rights against the ClientPoolRecord
matching that Client_Key.

c) The QP is allocated from that client pool, except for UD QPs
where the QP serves multiple clients (i.e., SharedUD bit is set in
the corresponding ServiceRecord). In the case where SharedUD
=1 and the QP does not already exist, the QP is allocated from
the general pool.

A8.3.3.7.2 SHAREDUD

The SharedUD component indicates whether UD QPs are used for mul-
tiple clients. This bit is set to zero if the service object uses a different UD
QP for each client, if the service object does not use UD transport service,
or if the service only supports a single client and the UD QP is released
when the client logs out.

Since one UD QP can service multiple clients, when SharedUD is set, the
IOU allocates the QP from the general pool rather than from an individual

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1568 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

client pool. Thus, this bit lets the DM and supervisor know that it does not
need to account for the UD service in the pool table QP allocations.

A8.3.3.8 PROTOCOLRECORD

The ProtocolRecord attribute provides the IORM with information it needs
to match a generic driver to the service object.

The DevMgt Agent maintains the list of protocol records. The Protocol-
Record attribute contains the IOC’s IocGUID. Each record describes a
protocol supported by the IOC, and if the IOC supports multiple protocols,
then there will be multiple Protocol records for that IOC. Protocol types in-
clude I/O protocols and I/O management protocols. Thus, there will be
one ProtocolRecord attribute for each I/O protocol and each I/O manage-
ment protocol that the IOC supports. The IOU may have one or more man-
agement protocols that are not associated with a particular IOC, in which
case the IocGUID in the ProtocolRecord attribute is set to zero.

The combination of IocGUID+OrgID+Protocol components uniquely iden-
tifies a ProtocolRecord attribute.

Table 474 ProtocolRecord Attribute

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

0 IocGUID RO 0 64 IocGUID - Identifies the IOC that this protocol is asso-
ciated with. Entries with same IocGUID refer to same
IOC. IOCs that support multiple protocols will have
multiple protocol records, each with the same
IocGUID value. A value of zero designates the IOU.
{i.e., IocGUID=0 for IOU management and utility pro-
tocols like ROM Repository}.

1 Category RO 64 4 Protocol category as per Annex A3.3.2.

- reserved RO 68 4 reserved

3 OrgID RO 72 24 24-bit IEEE assigned OUI of the organization defining
the protocol.

4 Protocol RO 96 16 Protocol ID - as specified by organization identified in
OrgID

5 ProtocolType RO 112 8 Indicates the type of service object this protocol is for:
 • 0x00 = unknown/other
 • 0x01 = I/O Protocol
 • 0x02 = Management Protocol
other values reserved

reserved RO 120 8 reserved

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1569 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An initiator can request particular Protocol records using the Component-
Mask in the DevMgtGet(ProtocolRecord). This limits the records returned
to a specific subset matching the component values specified in the re-
quest. Thus, in the DevMgtGet(ProtocolRecord), the initiator sets the ap-
propriate ComponentMask bit to one (as specified by the CMsk column in
Table 474: ProtocolRecord Attribute) and specifies the component value
in the ProtocolRecord attribute. Only components with CMsk bit numbers
assigned can be specified and the DevMgt agent ignores component
values for components without a CMsk bit number assigned and for com-

7 ServiceName RO 128 512 Service Name for the protocol as per Service Naming
Conventions defined in Annex A3. UTF-8 encoded,
null-terminated character string (e.g., “Con-
sole.IBTA”).

- ProtocolVerLow RO 640 16 Protocol Versionb (Low) - This is a protocol-specific
value that specifies the lowest protocol version sup-
ported by the IOC.

- ProtocolVerHi RO 656 16 Protocol Versionb. (High) - This is a protocol-spe-
cific value that specifies the highest protocol version
supported by the IOC.

- ServiceRecord-
Countc

RO 672 16 Number of ServiceRecords that match
IocGUID+ServiceName of this record

- Operations RO 688 16 Supported operation types of this protocol. A bit set
to 1 for affirmation of supported capability.
Bit: Name; Description
0: ST; Send Messages To IOCs
1: SF; Send Messages From IOCs
2: RT; RDMA Read Requests To IOCs
3: RF; RDMA Read Requests From IOCs
4: WT; RDMA Write Requests To IOCs
5: WF; RDMA Write Requests From IOCs
6: AT; Atomic Operations To IOCs
7: AF; Atomic Operations From IOCs
8-13 reserved
14: VSi; Vendor Specific operations to IOC
15: VSo; Vendor Specific operations from IOC

- reserved RO 704 832 reserved

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.
b. Protocol version is a numerically increasing value where the higher value indicates a later version. Format of this value is
protocol specific.
c. For the case where the actual count exceeds the maximum value of 0xFFFF, the DevMgt agent reports the maximum value.
Thus, the value 0xFFFF indicates ‘0xFFFF or more’.

Table 474 ProtocolRecord Attribute (Continued)

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1570 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ponents whose ComponentMask bit is zero. The DevMgt agent returns all
Protocol records that match the specified components. Thus, when the
ComponentMask is zero, the DevMgt agent returns all ProtocolRecords.

A8.3.3.9 SLOTCONTROLSTATUS

The SlotControlStatus attribute provides the DM with the module removal
status for an I/O module and the means to control the removal state. This
attribute is used for Graceful IOC Hot Plug.

An IOU that supports Graceful IOC Hot Plug (see A8.6: IOC Graceful Hot
Removal) must support both Get(SlotControlStatus) and Set(SlotControl-
Status). Each removable I/O module has its own SlotControlStatus at-
tribute as per Table 475. A non-removable I/O module does not have a
SlotControlStatus. Thus, the number of attribute records returned for a
wildcard query for all slots is equal to the number of removable I/O mod-
ules (one attribute for each slot or a removable I/O module whether or not
the slot is populated). An IOU that does not support Graceful IOC Hot Plug
only needs to support Get(SlotControlStatus) and returns a MAD-
Header:Status of NoMatchingRecord in the GetResp().

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1571 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 475 SlotControlStatus Attribute

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

0 SlotNumber RO 0 8 Slot number of the I/O module

- RemovalControl RW 8 8 Specifies action as follows:
• 0x00 = no change
• 0x01 = Reset IOU_RTR and SW_RTR to zero
• 0x02 = Set SW_RTR to one
• 0x03 = Reset SW_CTR to zero
• 0x04 = Set SW_CTR to one and reset IOU_RTR

and SW_RTR to zero
other values reserved
For a DevMgtGetResp() in response to a DevMgt-
Set(SlotControlStatus), this is the value from the
DevMgtSet(). For a response to a DevMgtGet() this
value is zero.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1572 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

An initiator can request particular SlotControlStatus attributes by using the
ComponentMask in the DevMgtGet(SlotControlStatus). This limits the
records returned to a specific subset matching the component values
specified in the request. For example, in the DevMgtGet(SlotControl-
Status), the initiator sets the ComponentMask to 0x0001 (i.e., bit 0 =1) and
specifies the slot number in the SlotControlStatus attribute to get the at-
tribute for a specific slot. When the ComponentMask is zero, the DevMgt
agent returns all SlotControlStatus records. DevMgt agent rejects a
DevMgtSet(SlotControlStatus) if the ComponentMask is not 0x0001. That
is, the DM can read all of the slots with a single request, but may only set
one module per MAD.

2 ModuleStatus RO 16 16 Indicates status of the IO module
• bit 0: Module_Present - a 1 indicates that the mod-

ule is present
• bit 1: IOU_RTR - a 1 indicates that the IOU is

requesting removal of the module.
• bit 2: SW_RTR - a 1 indicates that DM has started

the removal process for this module.
• bit 3: SW_CTR - a 1 indicates that the I/O module

may be removed.
all other bits reserved

- AttentionControl R/W 32 2 Specifies a change to the Attention LED state as fol-
lows:
• 00b = Turn Attention LED OFF
• 01b = Turn Attention LED ON
• 10b = Blink Attention LED (Module Identify)
• 11b = no change to Attention LED state
Note that local events may also cause a change to
the Attention LED state.
For a DevMgtGetResp() in response to a DevMgt-
Set(SlotControlStatus), this is the value from the
DevMgtSet(). For a response to a DevMgtGet() this
value is returned as 11b.

3 AttentionLED-
State

RO 34 2 Indicates status of the Attention LED
• 00b = OFF (neither the IOU nor the DM has indi-

cated an attention event)
• 01b = ON (either the IOU or the DM has indicated an

attention event)
• 10b = Blink (indicates Module Identify)
• 11b = reserved

- reserved RO 36 28 reserved

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

Table 475 SlotControlStatus Attribute (Continued)

CMska

bit Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1573 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.10 RESET

The reset attribute permits the DM to initiate an IOU or IOC reset by is-
suing a DevMgtSet(Reset) MAD. The reset is targeted the to the particular
IOC specified by the IocGUID. The DM can target the reset to the entire
IOU by setting IocGUID to zero. In this case, the DevMgt Agent resets the
entire IOU.

A reset can be graceful or immediate. Graceful means that the IOC at-
tempts to complete any I/O transactions in progress (i.e., empties its re-
ceive queues), if it cannot, or if the IOC continues to receive requests, the
IOU terminates the reset and indicates that the reset failed. There are
other conditions that may occur that also prevent a graceful reset from
completing. They also cause the reset to fail. If so, the DM may need to
signal an immediate reset. Immediate means the reset occurs indepen-
dent of IOC state. IOU policy determines what actions the IOU takes when
it receives a Reset. The ResetStatus component in the DevMgtGet-
Resp(Reset) indicates the IOU’s reaction to the Reset MAD.

Table 476 Reset Attribute

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

0 IocGUID R/W 0 64 A value of zero specifies an IOU reset, otherwise specifies the IOC
GUID of the IOC.

- ResetType R/W 64 1 Reset Type
 • 0b - Graceful Reset - Shutdown and Reset. Complete outstanding

commands, close files etc., then reset.
 • 1b - Immediate Reset - Perform the reset immediately.
In a DevMgtGetResp() to a DevMgtGet(Reset), this component is
reserved and set to zero.

ResetScope R/W 65 2 Scope of reset
00 - default (IOU determines scope of reset)
01 - Reset only software
10 - Reset only hardware
11 - Reset both hardware and software

reserved RO 67 5 Reserved

ResetStatus RO 72 8 Reset Status
 • 0x00 - Not attempting to Reset
 • 0x01 - Reset in progress
 • 0x02 - Reset failed

Reserved RO 80 48 Reserved

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1574 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-30: When the IOU receives a DevMgtSet(Reset) with IocGUID=0
and ResetType = Immediate, it shall immediately attempt a reset of the
entire IOU.

CA8-31: When the IOU receives a DevMgtSet(Reset) with an IocGUID
that matches one of its IOCs and ResetType = Immediate, it shall imme-
diately attempt a reset of the specified IOC.

CA8-32: When the IOU receives a DevMgtSet(Reset) with an IocGUID =
0 and ResetType = Graceful, it shall only attempt the reset if all I/O trans-
actions for all IOCs have ceased.

CA8-33: When the IOU receives a DevMgtSet(Reset) with an IocGUID
that matches one of its IOCs and ResetType = Graceful, it shall only at-
tempt a reset of the specified IOC if all I/O transactions for that IOC have
ceased.

A8.3.3.11 PRODUCTINFO

The ProductInfo attribute provides the means for an IOU to provide
product specific information about the IOU or an IOC which might be
useful for asset management and other ancillary management.

A8.3.3.11.1 IOCGUID
Each ProductInfo record provides product specific information about the
IOU or an IOC. When the IocGUID is zero, the record contains product in-
formation for the IOU. Otherwise, the record contains product information
about the IOC specified by the IocGUID.

Table 477 ProductInfo Attribute

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

0 IocGUID RO 0 64 An EUI-64 GUID used to uniquely identify the control-
ler. This could be the same GIUD as the TCA’s Node
GUID if there is only one controller using that GUID.
A value of zero signifies the IOU, any other value sig-
nifies an IOC.

- ProductData RO 64 1472 A null-terminated TLV encoded component contain-
ing multiple packed elements of product specific
information (see A8.3.3.11.2 ProductData on page
1575).

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1575 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.11.2 PRODUCTDATA

The ProductData component provides supplemental information about
the IOU or IOC that might help identify the IOU/IOC. The ProductData is
a fixed-length variable-content field as follows.

• The ProductData component contains a variable number of vari-
able length elements and is terminated with the null value (0x00).
All bytes after the termination byte should also be null bytes.

• Elements in ProductData are in TLV format. The first byte is the
Type, the second byte is the Length (number of bytes in the value
string), and the remainder of the element is the value string, in
UTF-8 format. Type codes are specified in Table 478 ProductData
Elements on page 1575.

• An element with a Length of zero means that the value for that el-
ement is unknown or not set.

Elements that are not valid for a particular implementation should be ex-
cluded from the component. The choice of which elements are included is
implementation policy. The recommended practice is to order elements by
their Type value, lowest to highest.

Table 478 ProductData Elements

Type
Value

Length
Value

Description
(All strings are in UTF-8 and the content of each element is vendor specific)

0x00 0x00 Marks end of elements - ignore remainder of component data following this Type code

0x01 variable Vendor Name String
This string provides the name of the vendor that manufactured the IOU/IOC.

0x02 variable Vendor Model/Type String
This string provides model and type information for the IOU/IOC.

0x03 variable Serial Number String
This string provides the serial number of the IOU/IOC.

0x04 variable Firmware/OS Vendor Name String
This string provides the name of the firmware vendor that manufactured the environ-
ment code (e.g., RTOS vendor.).

0x05 variable Firmware/OS Version String
This string provides the version of the firmware code.

0x06 variable CPU Vendor Name String
This string provides the name of the CPU vendor

0x07 variable CPU Vendor Version String
This string provides the CPU version, stepping, etc.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1576 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.12 KEYINFO

The KeyInfo attribute is used by the DM to set the IOU’s Device Manage-
ment Manager_Key and protection properties.

0x08 variable Platform Name String
This string provides the local name assigned the IOU/IOC - usually assigned by the Sys-
tem Administrator to identify the IOU/IOC by name.

0x09 variable Operating Environment Name String
This string provides the name of the Operating Environment (RTOS, OS, etc.).

Table 478 ProductData Elements (Continued)

Type
Value

Length
Value

Description
(All strings are in UTF-8 and the content of each element is vendor specific)

Table 479 KeyInfo Attribute

Component Access Offset
(bits)

Length
(bits) Description

Manager_Key R/W 0 64 The 8-byte Manager_Key used in DevMgt MADs by valid DMs. A
KeyInfo:Manager_Key value of 0 means the DevMgt agent does not
perform a MADHeader:Access_Key check (see Table 480,
“Manager_Key Check,” on page 1578).

ProtectBits R/W 64 2 See A8.3.3.12.3 Manager_Key Check on page 1578 for details.

reserved R/W 66 14 reserved

LeasePeriod R/W 80 16 Timer value used to indicate how long the ProtectBits are to remain
non zero after a failed MADHeader:Access_Key check with Key-
Type=Manager. The value of the timer indicates the number of sec-
onds for the lease period. With a 16 bit counter, the period can range
from one second to approximately 18 hours. 0 shall mean infinite. See
A8.3.3.12.5 Manager_Key Recovery on page 1580 for details.

Violations R/W 96 16 Number of MADs that have been received at this IOU since power-on
or reset that have been dropped due to a failed MAD-
Header:Access_Key check with KeyType = Manager or attempt to
access an attribute that has a ‘DM only’ access level.
Counts the number of DevMgt MADs that have been received by the
DevMgt agent that contain an invalid MADHeader:Access_Key. The
counter Increments until the count reaches all 1s and then must be
set back to zero to re-enable incrementing.
When the DM sets this component to 0x0000, the counter is reset to
0x0000 and counting resumes. Setting the counter to a value other
than zero results the counter being left unchanged.

BackwardCompatibili-
tyLevel

112 4 Sets the desired Backward Compatibility Level. See A8.3.1.1.2: Back-
ward Compatibility Level.

reserved RO 116 12 reserved

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1577 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.12.1 MANAGER_KEY GENERAL USE

The DM’s key (Manager_Key) provides a separate level of authentication
that helps protect against receipt of improper management request mes-
sages. There are two Key values that are compared with each other. One
is the MADHeader:Access_Key located in the MAD header of every
DevMgt MAD. The other is the KeyInfo:Manager_Key that is read and set
via the KeyInfo attribute.

A DM sets an IOU’s Manager_Key value via the DevMgtSet(KeyInfo) and
the DevMgt agent uses that value to authenticate trusted sources by val-
idating that the MADHeader:Access_Key in received MADs with KeyType
= Manager match the KeyInfo:Manager_Key value.

Similar to the model used for other management classes (M_Key, B_Key,
etc.), this model assumes that the fabric has some level of physical secu-
rity. The value of MADHeader:KeyType component and the MAD’s
method and attribute determines how the DevMgt agent handles the
MADHeader:Access_Key validation.

A DevMgt agent always sets the MADHeader:Access_Key to zero in all
MADs it creates. For MADs received by the DevMgt agent, the MAD’s
Method, the KeyInfo:Manager_Key, and the KeyInfo:ProtectBits deter-
mine how the DevMgt agent handles the MADHeader:Access_Key vali-
dation (as per Table 480 Manager_Key Check on page 1578). If a key
check fails, then the DevMgt agent silently drops the packet and incre-
ments the KeyInfo:KeyViolations counter. It then issues a MgrKey Viola-
tion trap.

CA8-34: The KeyInfo:KeyViolations component shall be incremented
once, each time the DevMgt agent receives a MAD for which the MAD-
Header:Access_Key check was performed according to Table 480
Manager_Key Check on page 1578 and failed. However, the counter shall
not be incremented if its value is all 1's.

CA8-35: The DevMgt agent shall set the KeyInfo:KeyViolations compo-
nent to 0x0000 when it receives a valid DevMgtSet(KeyInfo) with KeyVio-

V1ClientKey 128 64 Specifies the client pool table record that determines which service
objects that a host using class version 1 MADs is authorized to see
and use. See A8.3.1.1.2: Backward Compatibility Level.

reserved RO 192 1344 reserved

Table 479 KeyInfo Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1578 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

lations=0x0000. A KeyViolations value other than 0x0000 shall leave the
counter unchanged.

A8.3.3.12.2 MANAGER_KEY ASSUMPTIONS

Assumptions for using the Manager_Key are:

1) To use the correct key for each IOU, the DM or a higher-level man-
ager keeps track of the keys for the IOUs that it is managing.

2) If a backup DM exists, it shares the Manager_Key for ease of fail-
over.

3) The DM sets the Manager_Key, the ProtectBits, and the LeasePeriod
via the KeyInfo attribute with one DevMgtSet(KeyInfo) MAD. A suc-
cessful completion of this assignment indicates to the DM that it has
taken ownership of the IOU.

A8.3.3.12.3 MANAGER_KEY CHECK

Matching the MADHeader:AccessKey to KeyInfo:Manager_Key implies
MADHeader:KeyType=DM.

The success and affect of the MADHeader:Access_Key validation check
depends on the value of the KeyInfo:Manager_Key, KeyInfo:ProtectBits,
and on the method and attribute contained in the incoming MAD. If the key
check succeeds then the DevMgt agent responds to the MAD. If the key
check fails, the DevMgt agent silently drops the MAD (i.e., does not pro-
cess it and does not send a response).

CA8-36: When the DevMgt agent receives a MAD with MADHeader:Key-
Type=DM, it shall perform the authentication determined by the contents
of KeyInfo:Manager_Key and the KeyInfo:ProtectBits as per the behav-
iors described in Table 480, “Manager_Key Check,” on page 1578.

Table 480 Manager_Key Check

KeyInfo Component Values
DevMgt Agent Actions

Manager_Key ProtectBits

zero any The MADHeader:Access_Key of the MAD shall not be checked when the Key-
Info:Manager_Key is zero. As a result, no authentication is performed.

non-zero 00b • Any DevMgt MAD received shall succeed if MADHeader:Access_Key matches the Key-
Info:Manager_Key component of the IOU.

 • DevMgtTrapRepress(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGet(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGet(KeyInfo) shall return the IOU’s Manager_Key in DevMgtGetResp(Key-

Info) allowing any DM to learn the Manager_Key for the IOU.
 • A DevMgtSet(*) shall fail if MADHeader:Access_Key does not match the Key-

Info:Manager_Key component of the IOU.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1579 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-37: When the DevMgt agent receives a validated (as per Chapter
13) DevMgtGet() or DevMgtSet() and the Manager_Key checking suc-
ceeds according to the rules specified in Table 480 Manager_Key Check
on page 1578, then the DevMgt agent shall generate a DevMgtGetResp().

CA8-38: If Manager_Key check specified in Table 480, “Manager_Key
Check,” on page 1578 fails, the DevMgt agent shall:

1) Silently drop the MAD (i.e., do not send a response).

2) Increment KeyInfo:KeyViolations. Incrementing shall stop when the
component reaches all 1s.

3) Send a KeyViolation trap on all ports.

When a DevMgt agent sends a MAD to the DM there is no need for the
DM to do any type of key authentication. For simplicity and consistency,
the MADHeader:Access_Key is set to zero for all MADs issued by the
DevMgt agent.

CA8-39: The DevMgt agent shall set MADHeader:Access_Key to zero in
all DevMgt MADs that it sends.

non-zero 01b • Any DevMgt MAD received shall succeed if MADHeader:Access_Key matches the Key-
Info:Manager_Key component of the IOU.

 • DevMgtTrapRepress(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGet(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGetResp(KeyInfo) shall return the KeyInfo:Manager_Key value set to zero if

MADHeader:Access_Key does not match the KeyInfo:Manager_Key. This prevents
unauthorized entities from learning the Manager_Key of the IOU.

 • A DevMgtSet(*) shall fail if MADHeader:Access_Key does not match the Key-
Info:Manager_Key component of the IOU.

non-zero 10b • Any DevMgt MAD received shall succeed if MADHeader:Access_Key matches the Key-
Info:Manager_Key component of the IOU

 • DevMgtTrapRepress(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGet(*) for an attribute with RAL of ‘A’ or ‘C’ shall succeed for any value in the

MADHeader:Access_Key
 • A DevMgtGet(*) for an attribute with RAL of ‘M’ shall fail if MADHeader:Access_Key

does not match the KeyInfo:Manager_Key component of the IOU.
 • A DevMgtSet(*) shall fail if MADHeader: Manager_Key does not match the Key-

Info:Manager_Key component of the IOU.

non-zero 11b • Any DevMgt MAD received shall succeed if MADHeader:Access_Key matches the Key-
Info:Manager_Key component of the IOU

 • DevMgtTrapRepress(*) shall succeed for any value in the MADHeader:Access_Key
 • A DevMgtGet(*) for any attribute shall fail if MADHeader:Access_Key does not match

the KeyInfo:Manager_Key component of the IOU.
 • A DevMgtSet(*) shall fail if MADHeader: Manager_Key does not match the Key-

Info:Manager_Key component of the IOU.

Table 480 Manager_Key Check (Continued)

KeyInfo Component Values
DevMgt Agent Actions

Manager_Key ProtectBits

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1580 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM does not check the MADHeader:Access_Key in any received
DevMgt class MAD.

A8.3.3.12.4 MANAGER_KEY INITIALIZATION

CA8-40: At power-up, the KeyInfo:Manager_Key, KeyInfo:ProtectBits,
and KeyInfo:LeasePeriod shall be set to zero if KeyInfo is not saved in
NVRAM; otherwise, they shall be set to the values stored in NVRAM.

In the case that the IOU is reset or rebooted, the protection afforded by
the Manager_Key needs to be preserved. It is desirable that the Key-
Info:Manager_Key, KeyInfo:ProtectBits, and KeyInfo:LeasePeriod survive
the reset. It is only permissible to reset KeyInfo attribute components if the
reset is complete, such that the P_Key tables are also cleared, because
resetting the P_Key table removes clients’ ability to access the IOU while
it is vulnerable.

CA8-41: When the IOU is reset or rebooted, the KeyInfo:Manager_Key,
KeyInfo:ProtectBits, and KeyInfo:LeasePeriod shall be preserved. The
only exception is that if the IOU’s P_Key tables are cleared and KeyInfo is
not saved in NVRAM, then the KeyInfo:Manager_Key, KeyInfo:ProtectBits
and KeyInfo:LeasePeriod may be set to zero.

Using a DevMgtSet(KeyInfo), the DM may assign the subsequent
Manager_Key, ProtectBits, and LeasePeriod. Note that the DM should en-
sure that the lease period allows ample time for the DM to sweep the IOUs
in its configuration group to prevent the lease from expiring.

A8.3.3.12.5 MANAGER_KEY RECOVERY

The Manager_Key lease period timer starts when the DevMgt agent re-
ceives a DevMgt class MAD whose MADHeader:Access_Key fails the
Manager_Key check. At this time, the DevMgt agent sends a KeyViolation
trap to the DM (that is, if the DM set its information in the trap components
of the ClassPortInfo attribute). This trap serves as a request to the DM to
refresh the lease period, which it can do by issuing any DevMgt MAD with
a MADHeader:KeyType=DM and MADHeader:Access_Key that matches
the IOU’s KeyInfo:Manager_Key. The lease period timer is reset to the
value contained in KeyInfo:LeasePeriod when the DevMgt agent receives
any MAD with MADHeader:Access_Key that matches the Key-
Info:Manager_Key.

If the DevMgt agent fails to receive a MAD with a MAD-
Header:Access_Key that matches KeyInfo:Manager_Key, then the lease
period expires - clearing the KeyInfo:ProtectBits to zero and allowing
anyone to read (and then set) the KeyInfo:Manager_Key.

In the case when a IOU initializes using NVRAM (e.g.
IsManager_KeyNonVolatile=1b) then Manager_Key, ProtectBits, LeasePe-

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1581 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

riod are set to the values the DevMgt agent had saved in local-persistent
storage. The TrapLID for each port is reset to zero and the DevMgt agent
waits for the DM to come around to set the port’s TrapLid before it can
send any traps. If the DevMgt agent receives a MAD that fails the
Manager_Key check and the TrapLID is reset, then the DevMgt agent
cannot determine the LID of the DM needed to send the trap. In this case,
the IOU does not send the trap and the lease period timer could expire,
causing eventual take over by a new DM.

With the DevMgtGet(KeyInfo), any DM can detect whether the
Manager_Key is set (although hidden) based on the ProtectBits. If the
ProtectBits are non-zero, the KeyInfo:Manager_Key is set and hidden.
Otherwise, the returned KeyInfo:Manager_Key is the real one even if it is
zero. Failure to get a response after some number of attempts is an indi-
cation that the KeyInfo:Manager_Key is set and KeyInfo:ProtectBits = 10b
or 11b.

A8.3.3.12.6 LEASE PERIOD

A DM specifies the Lease Period by setting the contents of the Key-
Info:LeasePeriod component. It is intended to allow the Manager_Key
protection to 'expire' if the DM inadvertently goes away without sharing the
Manager_Key.

CA8-42: The lease period timer shall start counting down toward zero
when the DevMgt agent receives a DevMgt MAD for which the
Manager_Key check was performed according to Table 480,
“Manager_Key Check,” on page 1578 and failed. If the lease timer count
is already underway, it shall not be interrupted by the arrival of that MAD.

Furthermore, for each port capable of sending DevMgt traps, the DevMgt
agent sends a MgrKey Violation trap described in Table 458 Notice
0x0000 DataDetails [MgrKey Violation] on page 1548 to the DM indicating
that the lease timer has started counting. In response to that trap, the DM
may renew the Lease Period by setting the proper MAD-
Header:Access_Key in the DevMgtTrapRepress() or any other DevMgt
MAD it sends to the IOU. If all DMs with the proper Manager_Key have
gone away, then the Lease Period will expire, allowing another DM to take
over.

CA8-43: The DevMgt agent shall cease counting down the lease period
timer and shall reset it to the value contained in KeyInfo:LeasePeriod
component when the DevMgt agent receives any MAD on any port with
MADHeader:Access_Key that matches the KeyInfo:Manager_Key.

CA8-44: The DevMgt agent shall set its KeyInfo:ProtectBits to zero when
its lease period counter expires.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1582 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When the lease period expires, clearing the ProtectBits allow any DM to
read (and then set) the KeyInfo:Manager_Key.

CA8-45: When the KeyInfo:LeasePeriod is set to zero, the lease period
timer shall never expire.

Whether there is an out-of-band mechanism to reset data protected with
a lease period of zero is outside the scope of this specification.

A8.3.3.13 IOURESOURCEINFO

A DM uses DevMgtGet(IouResourceInfo) to learn detailed information
about the IOU’s configurable resources, such as size and capacity of plat-
form pool table, size and capacity of client pool table, the number of QPs
already assigned to platforms, and the number of available QPs.

There is one IouResourceInfo record and thus the DevMgt agent ignores
the ComponentMask and RMPP header and returns a single DevMgtGe-
tResp(IouResourceInfo) MAD.

Table 481 IouResourceInfo Attribute

Component Access Offset
(bits)

Length
(bits) Description

PlatformPoolTableSizea RO 0 16 Number of Platform Pools, thus it is the maximum number of
PlatformPoolRecords the IOU can have

PlatformPoolRecordCounta RO 16 16 Number of Platform Pools currently configured

ClientPoolTableSizea RO 32 32 Number of Client Pools, thus it is the maximum number of Client-
PoolRecords the IOU can have

ClientPoolRecordCounta RO 64 32 Number of Client Pools currently configured

ServiceObjectMaxCounta RO 96 32 Maximum number of service objects that can be specified in a
PlatformPoolRecord and a ClientPoolRecord.

reserved RO 128 8 reserved

NumFreeQPs RO 136 24 Number of QPs still available - This value limits the number of
QPs that the DM can allocate to a Platform Pool.

reserved RO 160 8 reserved

TotalReservedQPs RO 168 24 Number of QPs that have been reserved for platform pools - i.e.,
sum of PlatformQPmin for all Platform Pools

reserved RO 192 8 reserved

TotalReservedQPsTarget RO 200 24 Number of QPs that have been requested for platform pools - i.e.,
sum of PlatformQPminTarget for all Platform Pools

reserved RO 224 8 reserved

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1583 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

TotalQPsInUse RO 232 24 Number of QPs consumed by all platforms - i.e., sum of Cli-
entQPsInUse for all Client Pools

reserved RO 256 8 reserved

TotalAdditionalQPs RO 264 24 Number of additional QPs consumed by all platforms - i.e., sum
of PlatformAdditionalQPs for all Platform Pools

reserved 288 7 reserved

NonVolatile RO 295 1 Set to 1 to indicate that Pool Tables are persistently saved across
power cycles.

ManagerUpdateLock R/W 296 8 Set by the DM to coordinate updates
Bit 0 - Supervisors prohibited from modifying ClientPoolRecords
Bit 1 - Clients prohibited from consuming QPs
other bits reserved

ManagerUpdateLease R/W 304 16 Specifies the number of milliseconds from the time the manager
sets this record until the ManagerUpdateLock reverts to zero. A
lease value of zero means infinite.

reserved 320 16 reserved

MaxNumbDiagSessions RO 336 16 Specifies the maximum number of concurrent diagnostic ses-
sions that the IOU supports. A value of zero means the IOU does
not support DIagnostic Sessions.

MaxNumbDiagObjects RO 352 32 Specifies the maximum number of objects that can be listed in
the DiagSession:ObjectList.

MaxClientPriority RO 384 8 Specifies the number of priority levels the IOU supports by speci-
fying the maximum priority value that can be specified for client
priority in PlatformPoolRecords and ClientPoolRecords.

IsClientPriorityRetroactive RO 392 1 Indicates if changes to ClientPoolRecord:ClientPriority impacts
the priority of existing connections.
0 = only impacts priority of future connections
1 = impacts priority of existing as well as future connections

MaxPriorityChangeTime RO 393 7 Indicates the maximum number of seconds that the IOU takes to
change a QP’s priority when ClientPoolRecord:ClientPriority
changes. If IsClientPriorityRetroactive =0, then this component is
undefined and set to zero.

RO 400 1136 reserved

a. For the case where the actual count exceeds the maximum value, the DevMgt agent reports the maximum value. Thus, the value
0xFFFF in a 16-bit filed indicates ‘0xFFFF or more’.

Table 481 IouResourceInfo Attribute (Continued)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1584 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.13.1 TABLE SIZES

The PlatformPoolTableSize and ClientPoolTableSize components re-
spectively specify the maximum number of Platform Pool Table entries
and Client Pool Table entries the IOU supports.

The PlatformPoolRecordCount and ClientPoolRecordCount components
respectively specify the actual number of Platform Pool Table entries and
Client Pool Table entries in use. Their values change when the DM cre-
ates or destroys Pool Table Records via the DevMgtSet(PlatformPool-
Record) and DevMgtSet(ClientPoolRecord) with Action = Create or
Delete.

The number of pool table entries affects the ability of the DM to distribute
resources. The number of platform pool table records affect the number
of client platforms that may access the IOU.

CA8-46: An IOU shall support a minimum of 4 Platform Pool Records.

The number of client pool table records needed affect the number of cli-
ents that may access service objects. Ideally, there would be one record
per service object per client platform. There must be at least one record
per client platform and when there is a large number of service objects
there needs to be at least one record for each service object.

CA8-47: An IOU shall support a number of Client Pool Table records
equal to or greater than the number of Platform Pool Records or the
number of Service Objects, which ever is greater.

ServiceObjectMaxCount specifies the maximum number of service ob-
jects that may be listed in a pool table entry. Ideally, that number is equal
to the number of service objects. For the case where management cre-
ates a new service object for each client platform, the number of service
objects necessary in a pool table record is significantly less than the total
number of service objects. At a minimum, the DM needs the ability to list
at least one service object per IOC.

CA8-48: An IOU shall support a ServiceObjectMaxCount equal to or
greater than the number of IOCs.

A8.3.3.13.2 QP RESOURCES

The maximum number of QPs available can vary from one moment to the
next depending on circumstances outside of Device Management. Addi-
tionally, the number of QPs in use is a dynamic value. The DM can calcu-
late the maximum QPs available via adding the TotalReservedQPs,
TotalAdditionalQPs, and the NumFreeQPs components, which represent
a snapshot at the time the DM reads the IouResourceInfo attribute.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1585 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

When there are sufficient QPs to fill a DevMgtSet(PlatformPool-
Record.PlatformQPminTarget) request, the IOU reserves the QPs for the
platform and the TotalReservedQPs component will equal the TotalRe-
servedQPsTarget. When there are not sufficient free QPs (i.e., NumFre-
eQPs = 0), then TotalReservedQPsTarget can be greater than
TotalReservedQPs. As QPs become available (i.e., DM reduces QPmin of
other pool table records or additional QPs are released), the DevMgt
agent allocates those resources to platform pools that have a PlatformQP-
minTarget exceeding its PlatformQPmin. Thus, TotalReservedQPs will in-
crement until it reaches TotalReservedQPsTarget.

The actual number of QPs in use (as reported in the TotalQPsInUse com-
ponent) is different than the number of QPs reserved for platforms. This
value represents the QPs that clients are actually consuming. The Total-
AdditionalQPs component specifies the number of QPs that client plat-
forms are consuming above their QPmin.

A8.3.3.13.3 UPDATE LOCK

The ManagerUpdateLock and ManagerUpdateLease components pro-
vide a means for the DM to lock out clients and supervisors while it is mod-
ifying pool table records. When the DM sets a non-zero value for the
ManagerUpdateLock, the DevMgt Agent starts a timer for the time speci-
fied in ManagerUpdateLease. If the timer expires, the DevMgt Agent re-
sets the ManagerUpdateLock to zero. This protects from the manager
going away and leaving the IOU disabled. The DM cancels the lease by
setting a ManagerUpdateLock value of zero. If the DM needs more time,
it simply writes the IouResourceInfo attribute again, which restarts the
timer with the new ManagerUpdateLease value.

A8.3.3.13.4 MAXCLIENTPRIORITY

MaxClientPriority specifies the number of priority levels the IOU supports
by specifying the maximum priority value that may be specified for client
priority in PlatformPoolRecords and in ClientPoolRecords. A value of zero
indicates that the IOU supports one priority (i.e. the IOU does not support
client priority). A value of “n” indicates the IOU supports “n+1” priorities,
for example, a value of 3 indicates that the IOU supports the 4 priority
levels 0 through 3.

A8.3.3.14 PLATFORMPOOLRECORD

The DM uses PlatformPoolRecords to create Supervisor_Keys and pro-
gram the IOU with access privileges for individual platforms. Each record
represents a client-platform, which is identified by a unique
Supervisor_Key. The platform’s supervisor can read its PlatformPool-

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1586 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Record to learn which service objects the platform is allowed to access as
well as the resources that the platform’s clients are permitted to consume.

Table 482 PlatformPoolRecord Attribute

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

0 Supervisor_Key RO 0 64 A key that identifies the supervisor of the node permitted to
access the service objects listed below.

- ClientPoolCount RO 64 32 The number of ClientPoolRecords with this Supervisor_Key

- reserved RO 96 32 reserved

- Action R/W 128 8 Specifies the action to be taken when this record is written.
This component is returned with a value of zero in response
to a DevMgtGet().
0x00 - Update: Replace the record that matches this

attribute’s Supervisor_Key with this record.
0x01 - Create a new record
0x04 - Delete the PlatformPoolRecord with this

Supervisor_Key and delete all ClientPoolRecords with
this Supervisor_Key

0x07 - Delete all PlatformPoolRecords and all ClientPool-
Records

Any other value is an error - do not modify any record

- ManagerUpdateLock RO 136 8 ManagerUpdateLock value as defined in the IouResource-
Info attribute. This component provides the means for the
Supervisor to learn that the DM has asserted the global lock.

- Non-Volatile RO 144 1 Indicates if Pool Tables are preserved over power cycles.

- SharedRecord R/W 145 1 Specifies that this record is used by more than one platform.

- reserved RO 146 14 reserved

- PlatformQoS R/W 160 16 Indicates SL that the IOU is allowed to use with this platform’
clients. Bit 0=SL0, Bit 1=SL1, ... Bit 15=SL15

- reserved RO 176 24

- PlatformQPmin RO 200 24 Indicates the number of IOU QPs reserved for this platform.

- reserved RO 224 8

- PlatformQPminTarget R/W 232 24 Specifies the desired QP minimum. The DM sets this value
to change QPmin. The DevMgt Agent changes PlatformQP-
min as soon as QPs become available.

- reserved RO 256 8

- PlatformQPmax R/W 264 24 Specifies the maximum number of IOU QPs this platform is
allowed to consume.

- reserved RO 288 8

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1587 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM can request particular PlatformPoolRecords by using the Compo-
nentMask in the DevMgtGet(PlatformPoolRecord). This limits the records

- PlatformQPsAllocated RO 296 24 Indicates the number of IOU QPs that the supervisor has
allocated to its client pools - This is the sum of ClientQPmin
for all ClientPoolRecords with this Supervisor_Key

- reserved RO 320 8

- PlatformQPsAllocatedTarget RO 328 24 Number of QPs that have been requested for this platform’s
client pools - it is the sum of ClientQPminTarget for all Client-
PoolRecords with this Supervisor_Key.

- reserved RO 352 8

- PlatformQPsInUse RO 360 24 Indicates the number of IOU QPs that are currently being
used by this platform’s clients - It is the sum of ClientQPsI-
nUse for all ClientPoolRecords with this Supervisor_Key.

- reserved RO 384 8

- PlatformAdditionalQPs RO 392 24 Indicates the number of QPs that the platform is consuming
in excess of the number reserved for that platform (Platform-
QPmin).This is the number of QPs borrowed from the gen-
eral pool.
- This value is calculated as the greater of zero or
[Sum {ClientAdditionalQPs} - PlatformUnallocatedQPs],
• where PlatformUnallocatedQPs = [PlatformQPmin - Plat-

formQPsAllocated], and Sum {ClientAdditionalQPs} is the
total of [ClientQPsInUse-ClientQPmin] for ClientPool-
Records with this Supervisor_Key and ClientQPsInUse
greater than ClientQPmin.

- PlatformPriorityMin R/W 416 8 Indicates the minimum priority that may be assigned to a cli-
ent of this platform. Valid values range from 0 to PlatformPri-
orityMax, where zero is the lowest priority.

- PlatformPriorityMax R/W 424 8 Indicates the maximum priority that may be assigned to a cli-
ent of this platform. Valid values range from PlatformPriori-
tyMin to IouResourceInfo:MaxClientPriority.

- reserved 432 16

- ServiceObjCount R/W 448 32 Specifies the number of service objects listed in ServiceOb-
jList

- ServiceObjList R/W 480 varies List of service objects that the platform is allowed to access.
Each service object is 128 bits [64-bit IouGUID+64bit Servi-
ceObjectID]. The length of this field is 128 x n where n is
ServiceObjCount.

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

Table 482 PlatformPoolRecord Attribute (Continued)

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1588 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

returned to a specific subset matching the component values specified in
the request. For example, in the DevMgtGet(PlatformPoolRecord), the
manager sets the ComponentMask to 0x0001 (i.e., bit 0 =1) and specifies
the Supervisor_Key in the PlatformPoolRecord attribute to get the record
for a specific platform. When the ComponentMask is zero, the DevMgt
agent returns all PlatformPoolRecords.

DevMgt agent rejects a DevMgtSet(PlatformPoolRecord) containing more
than one attribute. Thus, the DM can read multiple records, but can only
perform a single write per transaction. For a DevMgtSet(PlatformPool-
Record), the DevMgt agent ignores the ComponentMask.

A8.3.3.14.1 SUPERVISOR KEY

The platform is designated by its Supervisor_Key. The DM creates a
record by specifying a unique Supervisor_Key and setting the Action com-
ponent to Create. If the Supervisor_Key already exists or there are no
platform pools available, the DevMgt Agent rejects the set. Otherwise it
creates a new record with that Supervisor_Key.

CA8-49: The DevMgt Agent shall reject a DevMgtSet(PlatformPool-
Record) with MADHeader:KeyType other than Manager.

CA8-50: The DevMgt Agent shall reject to a DevMgtGet(PlatformPool-
Record) with MADHeader:KeyType not equal to DM or Supervisor.

CA8-51: In response to a DevMgtGet(PlatformPoolRecord) with MAD-
Header:KeyType = Supervisor, the DevMgt Agent shall only return the
record with Supervisor_Key matching MADHeader:Access_Key.

A8.3.3.14.2 ACTION COMPONENT

The Action component specifies the action that the IOU takes when the
DM performs the DevMgtSet(PlatformPoolRecord). The normal action is
to replace or create a record. However there are times when the DM may
need to delete a specific record or delete all records.

DevMgt agent ignores the ComponentMask in a DevMgtSet(Platform-
PoolRecord) because the Action component specifies the scope.

CA8-52: The DevMgt Agent shall reject to a DevMgtSet(PlatformPool-
Record) with Action = Update if the Supervisor_Key does not exist.

CA8-53: The DevMgt Agent shall reject to a DevMgtSet(PlatformPool-
Record) with Action = Create if the Supervisor_Key already exists.

CA8-54: The DevMgt Agent shall reject to a DevMgtSet(PlatformPool-
Record) with Action = Delete Record if the Supervisor_Key does not exist.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1589 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.14.3 MANAGER UPDATE

The ManagerUpdateLock informs the supervisor if the DM has locked the
IOU’s resources while the manager is modifying pool table entries. Set by
the DM in the IouResourceInfo attribute ManagerUpdateLock component
to coordinate updates.

CA8-55: If ManagerUpdateLock specifies that supervisors are prohibited
from modifying ClientPoolRecords, then that DevMgt Agent shall either
reject or defer a DevMgtSet(ClientPoolRecord) with KeyType = Super-
visor.

A8.3.3.14.4 NON-VOLITILE

Informs the supervisor if the information that the supervisor configures
into its ClientPoolRecords will be retained across power cycles.

A8.3.3.14.5 PLATFORMQOS

PlatformQoS specifies the SLs that the platform’s clients are allowed to
use when connecting with a service object. Thus, this component speci-
fies the ClientQoS values that the supervisor may specify in a ClientPool-
Record.

A8.3.3.14.6 PLATFORM QPMIN, QPMAX, AND QPMINTARGET

Refer to Figure 318 Allocating Resource Pools on page 1607. The Plat-
formPoolRecord indicates the number of IOU QPs reserved for that plat-
form (PlatformQPmin) and the maximum number of IOU QPs that the
platform is allowed to consume (PlatformQPmax) for use in communica-
tion between the platform’s clients and the IOU. Because there might not
be enough available QPs to increase a platform’s QP min, the DM sets
PlatformQPminTarget to the desired value. If the QPs are available, the
DevMgt Agent increases PlatformQPmin immediately, otherwise, the
DevMgt Agent increases PlatformQPmin over time as QPs become avail-
able.

When the supervisor reduces PlatformQPminTarget below Platform-
QPmin, the DevMgt Agent immediately reduces PlatformQPmin to match.

The IOU rejects a CM request that would cause the number of QPs used
by all the clients with that same Supervisor_Key to exceed Platform-
QPmax - see A8.4 Resource Allocation Framework on page 1606.

The attribute also provides a count of QPs that have been allocated to or
consumed by the platform’s clients (see Figure 320 Consuming QPs from
Resource Pools on page 1613).

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1590 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• PlatformQPsAllocated = sum of ClientQPmin for all ClientPool-
Records with this Supervisor_Key. This value is the total number of
IOU QPs that the supervisor has successfully allocated to its client
pools.

• PlatfromQPsAllocatedTarget = sum of ClientQPminTarget for all
ClientPoolRecords with this Supervisor_Key. This value is the total
number of QPs that the supervisor has attempted to allocate to its cli-
ent pools. When PlatformQPsAllocated is less than PlatfromQPsAllo-
catedTarget, it means that there are insufficient QPs - either because
the supervisor has specified more than its QPmin or because the
some of its clients have consumed all of the platforms excess QPs.

• PlatformQPsInUse = sum of ClientQPsInUse for all ClientPool-
Records with this Supervisor_Key. This value indicates the number of
IOU QPs that are actually being used by this platform’s clients.

• PlatformAdditionalQPs - This value indicates number of additional
IOU QPs consumed by this platform in excess of its PlatformQPmin.
It is calculated as the greater of zero or [Sum {ClientAdditionalQPs}
minus PlatformUnallocatedQPs], -- where PlatformUnallocatedQPs =
[PlatformQPmin - PlatformQPsAllocated], and Sum {ClientAddition-
alQPs} is the total of [ClientQPsInUse-ClientQPmin] for ClientPool-
Records with this Supervisor_Key and ClientQPsInUse greater than
ClientQPmin. This value indicates number of additional IOU QPs
consumed by this platform in excess of its PlatformQPmin.

A8.3.3.14.7 PLATFORMPRIORITYMIN & PLATFORMPRIORITYMAX

The PlatformPoolRecord specifies the minimum priority (PlatformPriori-
tyMin) and maximum priority (PlatformPriorityMax) that may be assigned
to any client of that platform. The values of these components limit the
value of Client Priority that the supervisor may specify in it’s ClientPool-
Records.

An administrator uses these components to set relative priorities for client
platforms. For example, setting PlatformPriorityMax and PlatformPriori-
tyMin to the same value assures that the platform operates at that priority
level.

Valid values are 0-n, where zero is the lowest priority possible and n is the
value specified in MaxClientPriority of the IouResourceInfo attribute.The
higher the priority value, the greater the access to resources.

CA8-56: The DevMgt Agent shall reject a DevMgtSet(PlatformPool-
Record) with a PlatformPriorityMax that is greater than the MaxClientPri-
ority of the IouResourceInfo attribute.

CA8-57: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with a ClientPriority that is lower than the PlatformPriorityMin in the corre-
sponding PlatformPoolRecord.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1591 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-58: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with a ClientPriority that is greater than the PlatformPriorityMax in the cor-
responding PlatformPoolRecord.

CA8-59: The DevMgt Agent shall reject a DevMgtSet(PlatformPool-
Record) with a PlatformPriorityMax that is lower than the PlatformPriori-
tyMin.

The DM changing PlatformPriorityMax or PlatformPriorityMin does not
change ClientPriority in ClientPoolRecords regardless of whether the Cli-
entPriority is within the new range. Thus, if the DM wants to enforce the
change, it needs to also modify the ClientPoolRecords. However,
changes to ClientPoolRecords does not necessarily effect existing con-
nections.

A8.3.3.14.8 SERVICE OBJECT LIST

The ServiceObjList is a list of service objects that the platform is allowed
to access. Each service object is designated by two components: Io-
cGUID + ServiceObjectID (see Figure 317: Service Object Tuple). The Io-
cGUID specifies the IOC providing the service object and ServiceObjectID
species the IOC specific service object. An IocGUID value of zero indi-
cates an IOU service object.

The length of the ServiceObjList component is calculated as ServiceObj-
Count x 128 bits. The maximum size of the service object list is specified
in the IouResourceInfo attribute ServiceObjectMaxCount.

A8.3.3.15 CLIENTPOOLRECORD

The DM uses ClientPoolRecords to create unique Client_Keys and the
Supervisor uses the attribute to program the IOU with client access privi-
leges for individual clients. See A8.4 Resource Allocation Framework on
page 1606 for more information on how ClientPoolRecords are used.

Each record represents a client, which is identified by a unique
Client_Key. The record also specifies the Supervisor_Key that associates
the ClientPoolRecord to a particular PlatformPoolRecord. For each Client-
PoolRecord, the platform’s supervisor configures which service objects
the client is allowed to access as well as the resources that the client is
permitted to consume.

Byte0 Byte 7 Byte 8 Byte 15
IocGUID ServiceObjectID

Figure 317 Service Object Tuple

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1592 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The platform’s supervisor may only allocate resources (i.e., QPs, QoS,
BW) permitted as per the respective PlatformPoolRecord.

Table 483 ClientPoolRecord Attribute

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

0 Client_Key RW 0 64 A key that identifies the client permitted to access the
service objects listed below.

1 Supervisor_Key RW 64 64 A key that identifies the supervisor of this record and
relates this record to its corresponding PlatformPool-
Record.

- Action R/W 128 8 Specifies the action to be taken when this record is
written. This component is returned with a value of
zero in response to a DevMgtGet().
 • 0x00 - Update: Replace the record that matches

this attribute’s Client_Key with this record.
 • 0x01 - Create a new record
 • 0x02 - Lock ClientPoolRecord with this

Client_Key - make no other changes
 • 0x03 - Unlock ClientPoolRecord with this

Client_Key - make no other changes
 • 0x04 - Delete the ClientPoolRecord with this

Client_Key
 • 0x05 - Delete all ClientPoolRecords with this

Supervisor_Key
 • 0x07 - Delete all ClientPoolRecords
 • Any other value is an error - do not modify any

record
Any Action other than 0x00 can only be performed by

the DM

- ManagerUpdateLock RO 136 8 ManagerUpdateLock value as defined in the IouRe-
sourceInfo attribute.

- Non-Volatile RO 144 1 Indicates if Pool Tables are preserved over power
cycles.

5 LockedRecord RO 145 1 When set to one, means that only the DM can modify
the record. When set to zero the supervisor may
modify the record. This value is set by the DM via the
Action component.

6 DefaultPool R/W 146 1 When set to one, means that this record describes
the default pool for service objects listed in its Servi-
ceObjList. When set to zero, means that this record
describes a normal client pool.

- reserved RO 147 13

- ClientQoS R/W 160 16 Indicates SL that the IOU is allowed to use with this
client. Bit 0=SL0, Bit 1=SL1, ... Bit 15=Sl15

- reserved RO 176 24

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1593 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM or supervisor can request particular ClientPoolRecords by using
the ComponentMask in the DevMgtGet(ClientPoolRecord). This limits the
records returned to a specific subset matching the component values
specified in the request. For example, in the DevMgtGet(ClientPool-
Record), the manager sets the ComponentMask to 0x0002 (i.e., bit 1 =1)
and specifies the Supervisor_Key in the ClientPoolRecord attribute to get
all the records for a specific platform. When the ComponentMask is zero,
the DevMgt agent returns all ClientPoolRecords. A supervisor can only
read its own ClientPoolRecords, so if it specifies a ComponentMask is
zero, the DevMgt Agent returns its own ClientPoolRecords. A client
cannot read any ClientPoolRecords.

- ClientQPmin R/W 200 24 Indicates the number of IOU QPs reserved for this cli-
ent.

- reserved RO 224 8

- ClientQPminTarget R/W 232 24 Specifies the desired QP minimum. The supervisor
sets this value to change QPmin. The DevMgt Agent
changes ClientQPmin as soon as QPs become avail-
able.

- reserved RO 256 8

- ClientQPmax R/W 264 24 Specifies the maximum number of IOU QPs this Cli-
ent is allowed to consume.

- reserved RO 288 72

- ClientQPsInUse RO 360 24 Indicates the actual number of IOU QPs this Client is
currently consuming.

- reserved RO 384 32

- ClientPriority R/W 416 8 Indicates the priority for this client. Valid values are
limited by PlatformPriorityMin and PlatformPriority-
Max of the corresponding PlatformPoolRecord. The
higher the value the higher the priority.

- reserved 424 24

- ServiceObjCount R/W 448 32 Specifies the number of service objects listed in Ser-
viceObjList

- ServiceObjList R/W varies List of service objects that the Client is allowed to
access. Each service object is 128 bits [64-bit Iou-
GUID+64bit ServiceObjectID]. The length of this field
is 128 x n where n is ServiceObjCount.

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that
match the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.

Table 483 ClientPoolRecord Attribute (Continued)

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1594 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

DevMgt agent rejects a DevMgtSet(ClientPoolRecord) with more than
one attribute. Thus, the DM or supervisor can read multiple records, but
may only perform a single write. A supervisor can only write its own Cli-
entPoolRecords. A client cannot write any ClientPoolRecords. For a
DevMgtSet(PlatformPoolRecord), the DevMgt agent ignores the Compo-
nentMask.

A8.3.3.15.1 CLIENT KEY

The Client’s is designated by its Client_Key. The DM creates a record by
specifying a unique Client_Key and setting the Action component to
Create. If the Client_Key already exists, the DevMgt Agent rejects the set.
Otherwise it creates a new record with that Client_Key.

CA8-60: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with KeyType not equal to DM or Supervisor.

CA8-61: The DevMgt Agent shall reject a DevMgtGet(ClientPoolRecord)
with MADHeader:KeyType not equal to DM or Supervisor.

A8.3.3.15.2 SUPERVISOR KEY

The Supervisor_Key correlates the ClientPoolRecord to a PlatformPool-
Record.

CA8-62: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with KeyType = Supervisor if the attribute’s Supervisor_Key does not
match the MADHeader:Access_Key.

CA8-63: In response to a DevMgtGet(ClientPoolRecord) with MAD-
Header:KeyType = Supervisor, the DevMgt Agent shall only return
records with Supervisor_Key matching MADHeader:Access_Key.

Note that by using component mask, in addition to requesting a particular
ClientPoolRecord, the supervisor can request all of its own records.

A8.3.3.15.3 ACTION COMPONENT

The Action component specifies the action that the IOU takes when the
DM performs the DevMgtSet(ClientPoolRecord). The normal action is to
replace or create a record. However there are times when the DM may
need to delete a specific record or delete all records. The DM is also able
to lock the record. Only the DM can create, delete, lock, or unlock Client-
PoolRecords.

DevMgt agent ignores the ComponentMask in a DevMgtSet(ClientPool-
Record) because the Action component specifies the scope.

CA8-64: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with Action other than Update if KeyType is not Manager.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1595 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-65: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with Action = Update if the Client_Key does not exist.

CA8-66: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with Action = Create if the Client_Key already exists.

CA8-67: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with Action = Delete Record if the Client_Key does not exist.

CA8-68: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
if the Supervisor_Key does not exist, unless Action = Delete All.

A8.3.3.15.4 MANAGER UPDATE LOCK

The ManagerUpdateLock component is used to coordinate updates. It in-
dicates if the DM has locked the IOU’s resources while the manager is
modifying pool table entries. The value is set by the DM via the IouResour-
ceInfo attribute.

CA8-69: If ManagerUpdateLock specifies that supervisors are prohibited
from modifying ClientPoolRecords, then that DevMgt Agent shall either
reject or defer a DevMgtSet(ClientPoolRecord) with KeyType = Super-
visor.

CA8-70: If ManagerUpdateLock specifies that clients are prohibited from
consuming resources, then the IOU shall reject or defer CM:REQs for ser-
vice objects.

A8.3.3.15.5 NON-VOLITILE

Informs the supervisor if the information that the supervisor configures
into its ClientPoolRecords will be retained across power cycles.

A8.3.3.15.6 LOCKEDRECORD

Indicates if the record is locked and thus cannot be modified except by the
DM. This value is set via the Action component. When not locked, the su-
pervisor may modify the record.

The DM can lock ClientPoolRecords via the Action component. Locking a
record prevents the supervisor from modifying the record. This is useful
for Default Pools and for shared Platform Pools.

CA8-71: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
with KeyType = Supervisor if the record’s LockedRecord bit is set.

A8.3.3.15.7 CLIENTQOS

Specifies the SLs that the Client is allowed to use when connecting with a
service object.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1596 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-72: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
if the ClientQoS is not a subset of PlatformQoS in the corresponding Plat-
formPoolRecord.

CA8-73: If the Primary SL or Alternate SL in a CM:REQ or CM:LAP is not
a value specified in the ClientQoS component, then the IOU shall reject
the CM request.

A8.3.3.15.8 CLIENT QPMIN, QPMAX, AND QPMINTARGET

Refer to Figure 318 Allocating Resource Pools on page 1607. The Client-
PoolRecord specifies the number of IOU QPs reserved for that Client (Cli-
entQPmin) and the maximum number of IOU QPs that the Client is
allowed to consume (ClientQPmax) for use in communication between
the clients and the IOU. Because the platform may have already con-
sumed excess QPs, there might not be enough available QPs to increase
a client’s QP min. Thus, the supervisor sets ClientQPminTarget to the de-
sired value. If the QPs are available, the DevMgt Agent increases Cli-
entQPmin immediately, otherwise, the DevMgt Agent increase
ClientQPmin over time as QPs become available.

When the supervisor reduces ClientQPminTarget, the DevMgt Agent im-
mediately reduces ClientQPmin to match.

CA8-74: The DevMgt Agent shall not increase ClientQPmin if the sum of
ClientQPmin for ClientPoolRecords with the same Supervisor_Key ex-
ceeds PlatformQPmin in the corresponding PlatformPoolRecord.

The DevMgt Agent rejects a CM request that would cause the number of
QPs used by the client to exceed ClientQPmax - see A8.4 Resource Allo-
cation Framework on page 1606.

A8.3.3.15.9 CLIENTPRIORITY

The ClientPoolRecord specifies the priority for that Client (ClientPriority).
Valid values are limited by the corresponding PlatformPoolRecord (Plat-
formPriorityMin and PlatformPriorityMax), where the higher the value is
higher priority.

Implementation of priority is not architected and is left as an implementa-
tion policy. However, a client with a higher priority must have equal or
greater access to IOU resources than clients with lower priorities. For ex-
ample, QPs for higher priority clients should have higher priority slots in
the channel adapter’s scheduling queue than QPs for lower priority cli-
ents. Thus, when the IOU completes a connection with a client, that
QP/EEC assumes the priority assigned to that client via the corresponding
ClientPoolRecord.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1597 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-75: When the IOU creates a QP for a particular client, the IOU shall
assign that QP the client priority from the corresponding ClientPool-
Record.

CA8-76: If IouResourceInfo:IsClientPriorityRetroactive is one, then a
change to ClientPoolRecord:ClientPriority must change the client priority
for all QPs associated with that client within IouResouceInfo:MaxPriority-
ChangeTime seconds.

CA8-77: The IOU shall assure that QPs with a given client priority are
given equal or greater access to IOU resources than QPs with lower pri-
ority values.

A8.3.3.15.10 SERVICE OBJECT LIST

The ServiceObjList is a list of service objects that the client is allowed to
access. Each service object is designated by two components: IocGUID
+ ServiceObjectID (see Figure 317 Service Object Tuple on page 1591).

The length of the ServiceObjList component is calculated as ServiceObj-
Count x 128 bits. The maximum size of the service object list is specified
in the IouResourceInfo attribute ServiceObjectMaxCount.

CA8-78: The DevMgt Agent shall reject a DevMgtSet(ClientPoolRecord)
if the ServiceObjList is not a proper subset of the ServiceObjList in the cor-
responding PlatformPoolRecord.

A8.3.3.16 KEYCHANGE

The DM uses KeyChange attribute to change Client_Key and
Supervisor_Key values. A successful DevMgtSet(KeyChange) means
that the DevMgt Agent changed the Client_Key or the Supervisor_Key as
specified in the attribute.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1598 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.17 DIAGSESSION

This attribute provides the means to establish, renew, or terminate a Di-
agnostic Session. A diagnostic application requests a Diagnostic Session
by sending a DevMgtSet(DiagSession) to the DM and if the manager ap-
proves, the manager notifies the affected hosts and then sends a
DevMgtSet(DiagSession) to the IOU. Renewing and terminating an estab-
lished session work the same way. If the DiagSessionStatus in the re-
sponse from the IOU indicates ‘Device not Ready’, then the IOU will send
a trap when the status changes. If the manager accepts the session re-
quest, it responds to the diagnostic application with ‘Device not Ready’ so
that it can inform the affected hosts and configure the IOU. It will then
follow-up with a DevMgtReport() with the final status.

Table 484 KeyChange Attribute

Component Access Offset
(bits)

Length
(bits) Description

Old_Key W 0 64 Specifies the old Client_Key or Supervisor_Key value

New_Key W 64 64 Specifies the new Client_Key or Supervisor_Key
value

Action W 128 8 Specifies the action to be taken when this record is
written.
 • 0x01 - Change the Client_Key value in the Cli-

entPoolRecord who’s Client_Key = Old_Key to
the value specified in New_Key.

 • 0x02 - Change the Supervisor_Key value in the
PlatformPoolRecord who’s Supervisor_Key =
Old_Key to the value specified in New_Key and
change Supervisor_Key value in all ClientPool-
Records who’s Supervisor_Key = Old_Key to the
value specified in New_Key

Any other value is an error - do not modify any record

RO 136 120 reserved

Table 485 DiagSession

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

- IouGUID R/W 0 64 The CA GUID of the IOU to be tested.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1599 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1 DiagToken R/W 64 64 Diagnostic Token set by the DM. When this attribute is sent by the
diagnostic program to establish a new session, it sets this value to
zero in the Set() and the manager provides the actual value in the
GetResp(). This component is ignored when Action = Terminate all
existing diagnostic sessions.

- DiagSeverity R/W 128 4 Specifies the severity level of diagnostics that the diagnostic pro-
gram may perform using this token:
• 0x0 - Non-Intrusive - does not impact I/O performance
• 0x1 - I/O performance reduced to 90%
• 0x2 - I/O performance reduced to 80%
• 0x3 - I/O performance reduced to 70%
• 0x4 - I/O performance reduced to 60%
• 0x5 - I/O performance reduced to 50%
• 0x6 - I/O performance reduced to 40%
• 0x7 - I/O performance reduced to 30%
• 0x8 - I/O performance reduced to 20%
• 0x9 - I/O performance reduced to 10%
• 0xA - No I/O Service during diagnostics - connections remain
• 0xF - No I/O Service - Connections terminated
• other values reserved

- DiagScope R/W 132 4 Specifies the scope of the objects that can be affected by diagnostic
testing using this token:
0x0 - Entire IOU: The diagnostics can affect all I/O objects of all

IOCs.
0x1 - I/O Modules: The diagnostics can affect all I/O objects of the

IOCs associated with the I/O modules listed in the ObjectList
component.

0x2 - I/O Controllers: The diagnostics can affect all I/O objects of the
IOCs listed in the ObjectList component.

0x3 - Service Objects: The diagnostics can affect the I/O objects
listed in the ObjectList component.

other values reserved

- Action R/W 136 4 Specifies the action that the DevMgt Agent takes when the DM sets
this attribute:
0x0 - Establish a new diagnostic session
0x1 - Terminate allb existing sessions (if any) and establish a new

diagnostic session
0x2 - Terminate existing diagnostic session (identified by DiagTo-

ken)
0x3 - Terminate allb existing diagnostic sessions
0x4 - Renew the lease for the Diagnostic Session identified by Diag-

Token. This may also establish new scope and diagnostic level.
other values reserved

Table 485 DiagSession (Continued)

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1600 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The number of Diagnostic Sessions that an IOU supports is implementa-
tion dependant and reported in the IouResourceInfo attribute. The IOU re-
jects a DevMgtSet(DiagSession) that attempts to exceed the supported
number of Diagnostic Sessions using MADHeader:Status of ‘TableFull’.
The IOU may also reject a DiagSession if the scope overlaps with an ex-
isting Diagnostic Session.

- DiagSession-
Status

RO 140 4 Indicates the state of the Diagnostic Session
0x0 = Ready for diagnostic test
0x1 = Invalid DiagScope - one or more of the objects listed is not

present or does not exist
0x2 = Device not ready - More time is required to prepare one or

more of the objects listed
0x4 = Device not responding - one or more of the objects listed

has failed to prepare for diagnostic testing.
0x6 = Device in use - at least one of the objects listed is part of

another DiagSession.
0x7 = Unknown or Invalid DiagToken - If

Action = Terminate or Renew, DiagToken does not exist;
Action = Establish, DiagToken already exists.

0x8 = Diagnostics not supported
0x9 = Session Terminated
0xF = Request denied
other values reserved

- LeasePeriod R/W 144 16 Number of seconds remaining in the DiagSession

- reserved 160 80 reserved

- ObjectList-
Count

R/W 240 16 Specifies the number of objects specified in objectList. When Diag-
Scope is ‘Entire IOU’ then this value is zero. The max value allowed
is reported in the IouResourceInfo attribute.

- ObjectList R/W 256 varies Specifies the list of objects that can be impacted by a diagnostic test
using this DiagToken. The content of this component is based on
DiagScope and ObjectListCount:
• Entire IOU: no data (this field size is zero)
• I/O Modules: List of I/O Modules by slot number where each byte

contains the slot number of an I/O module - thus the length of this
component is n Bytes where n = ObjectList Count.

• I/O Controllers: List of IocGUIDs - thus the length of this compo-
nent is 8n Bytes where n = ObjectList Count.

• Service Objects: List of IocGUID+ServiceObjectID tuples - thus the
length of this component is 16n Bytes where n = ObjectListCount

a. ComponentMask bit - This column indicates which bit in the ComponentMask is set when the initiator wants only records that match
the corresponding component value in the query. Only components with CMsk bit numbers assigned can be specified.
b. When sent to DevMgt Agent, ‘all sessions’ means any existing session. When sent by a diagnostic application to the manager, ‘all
sessions’ means all sessions created by the source LID+QP.

Table 485 DiagSession (Continued)

CMska
(bit)

Component Access Offset
(bits)

Length
(bits) Description

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1601 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The diagnostic application uses the IouGUID component to indicate to the
DM which IOU. If the DM permits the session, it then issues a
DevMgtSet(DiagSession) to the IOU. If the IOU receives a DevMgtGet(Di-
agSession) or DevMgtSet(DiagSession) with an IouGUID that does not
match the IOU’s CA GUID, then the DevMgt Agent rejects the MAD with
MADHeader:Status 2-4 = 7 (invalid value).

CA8-79: The DevMgt Agent shall reject a DevMgtGet(DiagSession) or
DevMgtSet(DiagSession) with an IouGUID that does not match the IOU’s
CA GUID.

If a DevMgtGet(DIAGSession) requests a specific DIAG Session (i.e.,
specifies a specific DiagToken), then the IOU returns the attribute for that
session. If the session does not exist, then the IOU returns an attribute
with DiagSessionStatus = 0x7 “Unknown or Invalid DiagToken”. If a
DevMgtGet(DIAGSession) requests all DIAG Sessions (i.e., DiagToken
CMsk bit not set), then the IOU returns all current DIAGSession Attributes
(i.e., DIAG sessions that have not been terminated).

The LeasePeriod specifies the amount of time that the IOU keeps the ses-
sion active. The time counts down from the time that DevMgtGetResp() is
sent. If the lease timer expires, the session terminates. Note that the lease
period granted by the manger may be different than what was requested
by the diagnostic application. It the application needs more time, it can
renew the lease before the end of the lease period. The lease period be-
tween the diagnostic application and the manager is to guard against the
application disappearing before it terminates the session and the lease
between the manager and the IOU is to protect against the manager dis-
appearing. Thus, the manager may choose to use a different lease period
with the IOU than it does with the diagnostic application.

CA8-80: The DevMgt Agent shall automatically terminate a DiagSession
if the DM does not renew the lease within the time limit specified in Diag-
Session:LeasePeriod.

The diagnostic application uses the DiagToken in diagnostic DevMgt
MADs that it sends to the IOU to specify the governing Diagnostic Ses-
sion. The DevMgt Agent uses the DiagToken to authenticate the rights of
the initiator to perform diagnostics by comparing the requested test to the
permissions granted by the Diagnostic Session matching the DiagToken.

The IOU rejects a diagnostic test request that:

a) Specifies an invalid DiagToken

b) Exceeds the specified DiagSeverity level

c) Exceeds the specified DiagScope

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1602 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-81: The DevMgt Agent shall reject any DevMgtSet(TestDeviceOnce)
and DevMgtSet(TestDeviceLoop) that does not specify a valid access key
(i.e., valid DiagToken and MADHeader:KeyType=Diagnostic Token or the
Manager_Key and MADHeader:KeyType=DM).

CA8-82: The DevMgt Agent shall reject any DevMgtSet(TestDeviceOnce)
and DevMgtSet(TestDeviceLoop) that specifies a test object outside the
scope of the Diagnostic Session matching the DiagToken.

CA8-83: The DevMgt Agent shall reject any DevMgtSet(TestDeviceOnce)
and DevMgtSet(TestDeviceLoop) that specifies a test that exceeds the Di-
agSeverity level of the Diagnostic Session matching the DiagToken.

Note that if the IOU/IOC performs any automatic background diagnostics,
those test should be inhibited while the device is included in an active Di-
agnostic Session. That is, while an object is listed in the scope of a Diag-
nostic Session, the DiagCode should only change as a result of a test
explicitly run via the TestDeviceOnce or TestDeviceLoop commands.

A8.3.3.18 DIAGNOSTICTIMEOUT

This attribute provides the means to learn the maximum time required to
perform the specified diagnostic. The result is based on the Test Type and
Test Target. The R/W components indicate the information that is supplied
in the DevMgtGet() to specify which test time,

Table 486 DiagnosticTimeout

Component Access Offset
(bits)

Length
(bits) Description

MaxDiagTime RO 0 32 Maximum time to finish the specified diagnostic operation in millisec-
onds

TestType R/W 32 4 Specifies the type of test
 • 0x0=default
 • 0x2=vendor specific (VendorSpecific component provides addi-

tional details)

TestTarget-
Type

R/W 36 4 Specifies the object type for the test
 • 0x0 = IOU
 • 0x1 = I/O module specified by ModuleSlot
 • 0x2 = IOC specified by IocGUID
 • 0x3 = I/O Object specified by IocGuid+ObjectID

reserved - 40 16 reserved

ModuleSlot R/W 56 8 I/O Module Slot Number

IocGUID R/W 64 64 IOC GUID - Identifies the IOC for a test target of I/O object or IOC.

ObjectID R/W 128 64 I/OC Object Identifier - Identifies the I/O object for a test target type of
I/O object.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1603 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Note that the diagnostic framework provides for both ‘default’ and ‘vendor
specific’ tests. Default refers to the test that is invoked by a diagnostic ap-
plication that does not have vendor specific knowledge. Thus, the ‘default’
test permits the OS or a third party to perform a single diagnostic test (or
set of tests) of the vendor’s choosing on the specified target.

A8.3.3.19 TESTDEVICEONCE

This attribute allows the diagnostic program to initiate a diagnostic test
that runs once.

reserved - 192 64 reserved

VendorSpecific R/W 256 varies Additional information defined by the IOU vendor (not required for
‘Default’ test)

Table 486 DiagnosticTimeout (Continued)

Component Access Offset
(bits)

Length
(bits) Description

Table 487 TestDeviceOnce

Component Access Offset
(bits)

Length
(bits) Description

reserved - 0 32 reserved

TestType W 32 4 Specifies the type of test
 • 0x0=default
 • 0x2=vendor specific

TestTarget-
Type

W 36 4 Specifies the object type for the test
 • 0x0 = IOU
 • 0x1 = I/O module specified by ModuleSlot
 • 0x2 = IOC specified by IocGUID
 • 0x3 = I/O Object specified by IocGuid+ObjectID

reserved - 40 16 reserved

ModuleSlot W 56 8 I/O Module Slot Number

IocGUID W 64 64 IOC GUID - Identifies the IOC for a test target of I/O object or IOC.

ObjectID W 128 64 I/OC Object Identifier - Identifies the I/O object for a test target type of
I/O object.

reserved - 192 64 reserved

VendorSpecific W 256 varies Additional information defined by the IOU vendor (not required for
‘Default’ test)

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1604 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.20 TESTDEVICELOOP

This attribute allows the diagnostic program to initiate a diagnostic test
that runs continuously.

This attribute provides several options for terminating the test. The be-
havior when the Action is set to ‘run continuously’ and the test encounters
an error is not specified. That is, the test may continue with the next phase
or might abort the current run and restart the diagnostic. In the event of an
error, the DiagCode is set to indicate the error and is not changed until the
test encounters another error or the test successfully completes a full loop
without errors. Thus, the time that an error code remains available is in-
deterministic. The Action of ‘Halt on Error’ guarantees that an error code
is not overwritten.

.

Table 488 TestDeviceLoop

Component Access Offset
(bits)

Length
(bits) Description

reserved - 0 32 reserved

TestType W 32 4 Specifies the type of test
 • 0x0=default
 • 0x2=vendor specific

TestTarget-
Type

W 36 4 Specifies the object type for the test
 • 0x0 = IOU
 • 0x1 = I/O module specified by ModuleSlot
 • 0x2 = IOC specified by IocGUID
 • 0x3 = I/O Object specified by IocGuid+ObjectID

Action W 40 4 Specifies weather the test halts when it encounters an error or contin-
ues to loop.
 • 0x0 Continue to loop
 • 0x1 Halt on error
 • 0x2 Halt after current pass
 • 0x3 Abort

reserved - 44 12 reserved

ModuleSlot W 56 8 I/O Module Slot Number

IocGUID W 64 64 IOC GUID - Identifies the IOC for a test target of I/O object or IOC.

ObjectID W 128 64 I/OC Object Identifier - Identifies the I/O object for a test target type of
I/O object.

reserved - 192 64 reserved

VendorSpecific R/W 256 varies Additional information defined by the IOU vendor (not required for
‘Default’ test)

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1605 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.3.3.21 DIAGCODE

This attribute provides the means to learn the result of the last diagnostic
test performed on the specified object. Anyone may issue a
DevMgtGet(DiagCode). Thus, a client may learn the status of the IOC
without establishing a Diagnostic Session. In this case, the result could be
from the IOC’s ‘power-on-test’, the last diagnostic test performed as part
of a Diagnostic Session, or background diagnostics automatically run by
the IOU.

The R/W components indicate the information that is supplied in the
DevMgtGet().

Table 489 DiagCode

Component Access Offset
(bits)

Length
(bits) Description

DiagCode RO 0 16 16-bit diagnostic code - a value of 0x0000 means “device operational”
and all other values are IOU vendor-specific.

reserved RO 16 16 reserved

TestType R/W 32 4 Specifies the type of test
 • 0x0=default
 • 0x2=vendor specific

TestTarget-
Type

R/W 36 4 Specifies the object type for the test
 • 0x0 = IOU
 • 0x1 = I/O module specified by ModuleSlot
 • 0x2 = IOC specified by IocGUID
 • 0x3 = I/O Object specified by IocGuid+ObjectID

reserved - 40 16 reserved

ModuleSlot R/W 56 8 I/O Module Slot Number

IocGUID R/W 64 64 IOC GUID - Identifies the IOC for a test target of I/O object or IOC.

ObjectID R/W 128 64 I/OC Object Identifier - Identifies the I/O object for a test target type of
I/O object.

reserved - 192 64 reserved

VendorSpecific R/W 256 varies Additional information defined by the IOU vendor (not required for
‘Default’ test)

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1606 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.4 RESOURCE ALLOCATION FRAMEWORK

A8.4.1 QP ALLOCATION

The DM assigns resources to platforms, such as reserving a number of
IOU QPs for a platform and limiting the maximum number of IOU QPs the
platform may use by setting PlatformPoolRecords. The platform’s super-
visor assigns those resources to clients (within the bounds of the re-
sources the DM assigned to the platform).

The IOU’s QPs are represented as a general pool of QPs which consists
of QPs reserved for client platforms, ‘Free QPs’ that are available on a
‘first come’ basis, and additional QPs used by platforms. The DM specifies
a minimum (PlatformQPmin) and a maximum (PlatformQPmax) number
of IOU QPs for each client platform as illustrated in Figure 318. QPmin
represents the number of QPs reserved for that platform. When the DM
increases a platform’s QPmin, the number of Free QPs in the general pool
decreases and the number reserved increase. Thus, a portion of the gen-
eral pool becomes reserved for specific platforms. Remaining FREE QPs
are available to platforms on a first come first served basis as long as the
platform has not reached its maximum limit.

The total number of QPs in an IOU is typically static, but might change
over time because non-I/O related processes consume and release QPs.
This affects the number of FREE QPs, but does not change the number
of QPs already reserved for platforms.

A supervisor allocates QPs from its platform pool to client pools by spec-
ifying a minimum (ClientQPmin) and a maximum (ClientQPmax) number
of IOU QPs for each client. The ClientQPmin specifies QPs reserved for
that client and the total number of QPs reserved for its clients cannot ex-
ceed the PlatformQPmin. Thus, QPs reserved for a platform (Platform-
QPmin) are either Allocated and Unallocated. When the supervisor
increases a client pool’s QPmin value, the count of Platform Unallocated
QPs decreases and the count of Platform Allocated QPs increases. A su-
pervisor can only reserve up to the Platform’s QPmin value for its clients
(i.e., Sum of ClientQPmin <= PlatformQPmin).

As a client makes connections, the IOU uses QPs from the appropriate
client pool. When a client has consumed all of the reserved QPs in its
client pool (i.e., ClientQPmin), it may continue to consume additional QPs
only if there are excess QPs available and the client pool has not reached
its maximum limit. If the platform has un-allocated QPs (i.e., sum of clients
QPmin is less than the platform’s QPmin), then clients consume the plat-
form’s un-allocated QPs until they are exhausted. Once all the platform’s
un-allocated QPs are used, the clients may continue to consume available
QPS from the general pool as long as the client’s pool and the platform’s
pool have not reached their maximum limit. This means that the number

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1607 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

of reserved QPs plus additional QPs is less than QPmax both at a client
level and at the platform level.

When a QPmin or QPmax value is reduced, it does not affect any QPs in
use until the client releases a connection and the QP is returned to the
client pool. Thus, only if a platform has un-allocated QPs that have not
been consumed by its clients, will reducing a platform’s QPmin immedi-
ately return QPs to the FREE pool. Otherwise, QPs are returned to the
Free pool when the QP is released by the client that has consumed more
than its QPmin.

If the DM needs to increase QPmin for a platform, there needs to be Free-
QPs in the general pool from which the additional QPs can be obtained.

Figure 318 Allocating Resource Pools

Free QPs

General
Pool

Total
QPs

QPs Reserved
for Specific

Platforms (i.e.,
sum of Platform

QP-min)

Can be used by
any platform until
they reach their

Max limit

Unallocated
QPs

Client
Pool

2

Client
Pool

3

Client
QPmin

Platform
Pool 0

Client
Pool

1

Client
Pool

0

Client
QPmax

Rsvrd
QPsRsvrd

QPs
Rsvrd
QPs

PlatformQPsAllocated: Total of all the Client
Pools (Client QPmin) for this Supervisor

Rsvrd
QPs

Allocated QPs

Platform QPmin
Platform QPmax

Rsvrd
QPs

Rsvrd
QPs

Rsvrd
QPs

Client
Pool

6

Client
Pool

7

Platform
Pool 1

Client
Pool

5

Client
Pool

4

Allocated QPs
Rsvrd
QPs

Unallocated
QPs

1

Remaining QPs not yet allocated to clients.
These QPs are availabile to clients after they

consume their Rsvrd QPs, but only if their
ClientQPMax have not been reached

2

Platform
QPmax

Platform
QPmin

To
ta

lR
es

er
ve

dQ
Ps

Additional QPs
In Use

To
ta

lA
dd

iti
on

al
Q

Ps
N

um
Fr

ee
Q

Ps

Io
uR

es
ou

rc
eI

nf
o

A
ttr

ib
ut

e:

PlatformPoolRecord
Attribute:

PlatformQPsAllocated

ClientPoolRecord
Attribute:

Client
QPmin

Client
QPmax

Pl
at

fo
rm

Q
Ps

A
llo

ca
te

d

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1608 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DM can reduce QPs allocated to other platforms (see previous para-
graph) to increase the number of Free QPs.

Additionally, for a platform to consume more than its QPmin allotment,
there has to be Free QPs available.

A8.4.2 FILTERING INFORMATION

ClientPoolRecords determine which records a particular client may see.
PlatformPoolRecords determine which records a particular supervisor
may see.

When the DevMgt agent receives a DevMgtGet() with a MADHeader:Key-
Type = Manager, it performs the Manager Key check as per A8.3.3.12.3
Manager_Key Check on page 1578. If the key check passes, the DevMgt
Agent returns any records that match the query.

When the DevMgt agent receives a DevMgtGet() with a MADHeader:Key-
Type = Supervisor and the DevMgtGet() specifies an attribute that has a
value of ‘S’ in the RAL column of Table 453 on page 1542, the DevMgt
Agent uses the PlatformPoolRecord with Supervisor_Key = MAD-
Header:Access_Key and the PlatformPoolRecord with Supervisor_Key =
0 (if they exist). The combination of service objects in both records defines
the IOCs and Service Objects for which the requester is authorized. For
DevMgtGet(ServiceRecord), the DevMgt Agent only returns Service-
Records that match the query and the service object appears in one of the
two PlatformPoolRecords. For all other attributes, the DevMgt Agent re-
turns only records that match the query and have an IocGUID listed in the
combined lists.

Likewise, When the DevMgt agent receives a DevMgtSet() with a MAD-
Header:KeyType = Supervisor and the DevMgtSet() specifies an attribute
that has a value of ‘S’ in the WAL column, the DevMgt agent does not
allow the write unless the attribute matches one of the platform’s service
objects.

CA8-84: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Supervisor, the DevMgtGet() specifies an attribute that
has a value of ‘S’ in the RAL column of Table 453 on page 1542, and there
is no PlatformPoolRecord with Supervisor_Key = MAD-
Header:Access_Key, then the DevMgt agent shall send a Supervisor Key
Violation Trap.

CA8-85: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Supervisor, the MAD specifies an attribute that does
not have a value of ‘S’ or ‘A’ in the respective RAL or WAL column of Table
453 on page 1542, then the DevMgt agent shall reject the MAD.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1609 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-86: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Supervisor, the DevMgtGet() specifies an attribute that
has a value of ‘S’ in the respective RAL or WAL column of Table 453 on
page 1542, the DevMgt Agent shall only return records that match service
objects listed in the PlatformPoolRecord with Supervisor_Key = MAD-
Header:Access_Key or listed in the PlatformPoolRecord with
Supervisor_Key = 0.

When the DevMgt agent receives a DevMgtGet() with a MADHeader:Key-
Type = Client and the DevMgtGet() specifies an attribute that has a value
of ‘C’ in the RAL column of Table 453 on page 1542, the DevMgt Agent
uses the ClientPoolRecord with Client_Key = MADHeader:Access_Key (if
it exists). The service objects listed in this record defines the IOCs and
Service Objects for which the requester is authorized. For
DevMgtGet(ServiceRecord), the DevMgt Agent only returns Service-
Records that match the query and the service object appears in the Cli-
entPoolRecord:ServiceObjList. For all other attributes, the DevMgt Agent
returns only records that match the query and have an IocGUID listed in
the ClientPoolRecord:ServiceObjList.

Likewise, when the DevMgt agent receives a DevMgtSet() with a MAD-
Header:KeyType = Supervisor and the DevMgtSet() specifies an attribute
that has a value of ‘C’ in the WAL column, the DevMgt agent does not
allow the write unless the attribute matches one of the client’s service ob-
jects. Currently, there are no attributes that clients may modify.

CA8-87: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Client, the DevMgtGet() specifies an attribute that has
a value of ‘C’ in the respective RAL or WAL column of Table 453 on page
1542, and there is no ClientPoolRecord with Client_Key = MAD-
Header:Access_Key, then the DevMgt agent shall send a Client Key Vio-
lation Trap.

CA8-88: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Client, the MAD specifies an attribute that does not
have a value of ‘C’ or ‘A’ in the respective RAL or WAL column of Table
453 on page 1542, then the DevMgt agent shall reject the MAD.

CA8-89: If the DevMgt agent receives a DevMgt MAD with a MAD-
Header:KeyType = Client, the MAD specifies an attribute that has a value
of ‘C’ in the respective RAL or WAL column of Table 453 on page 1542,
the DevMgt Agent shall only return records that match service objects
listed in the ClientPoolRecord with Client_Key = MAD-
Header:Access_Key.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1610 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.4.3 RESTRICTING ACCESS

The IOU must only permit authorized clients to access I/O objects. Autho-
rized client means that the service object is listed in the ServiceObjList of
the corresponding ClientPoolRecord. Thus, the service object must as-
certain the Client_Key before it allows the client to access its service. In
addition, the IOU needs to know which client is consuming the QP so it
can track the number of QPs that each client is using and thus limit the
resources that each client consumes.

CM MADs do not contain a Client_Key component. However, many I/O
protocols require some form of validation, where client information is
passed to the service object for validation. For SCSI this is the LOGIN,
and the equivalent of the DevMgt Client_Key is the SCSI Initiator ID. For
SRP, the Initiator ID is passed in the PrivateData field of CM MADs. Be-
cause I/O protocols already have architected ways of passing this type of
information, this annex does not specify how the information is passed.

The CMValidation bit in the ServiceRecord identifies if the ServiceObject
does validate the Client_Key when the client creates a connection.

• For service objects that validate clients (i.e., the CMValidation bit
in the corresponding ServiceRecord is set), the QP is allocated
from the client’s pool, if the pool exists, but only if the supervisor
has configured the pool to include that service object.

• For service objects that do not validate clients (i.e., the CMValida-
tion bit in the corresponding ServiceRecord is not set), the QP is
allocated from a default pool, if a default pool exists which speci-
fies that service object. If the DM omits a service object that has
CMValidation=0 from all Default Pool’s ServiceObjList, then no
one is allowed to access that service object.

Thus, when completing a connection, the IOC validates the access rights
using the Client_Key. If the ServiceObject’s CMValidation = 0, the then the
IOU uses Client_Key = 0. If the Client_Key is valid (i.e., a ClientPool-
Record exists with that Client_Key), the QP is allocated from the client
pool. Figure 319 Connection Approval Decision Tree on page 1611 illus-
trates the decision process.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1611 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CM:REQ

ClientPool
exists?

CM:SIDR_REQ

UDShare=1?

No

Client
Resource?

No

QPsInUse
Count

< QPmax?

REJECT-2

No

Client:
QPsInUse<

QPmin?

Yes

Platform:
QPAllocated +
TotCliAddQPs

< QPmax?

No

Platform:
TotCliAddQPs
< Unallocated?

Increment
ClientQPsInUse &

TotCliAddQPs

Yes

FreeQPCount
> 0

REJECT-3

No

APPROVE

Increment ClientQPsInUse &
TotCliAddQPs & PlatformAddQPs

Decrement FreeQPCount

Yes

Increment
QPsInUse

No

Yes

ClientPool
exists?

Client
Resource?

Yes

 Yes

 Yes
Yes

No QP Available

Yes

Rejected by
Service Provider

No

No

No

Yes

No

Send Client
Violation Trap

Decrement
ClientQPsInUse

ClientQPsInUse
< ClientQPmin?

Platform:
TotCliAddQPs
< Unallocated?

Decrement Platform:
TotCliAddQPs

Decrement
PlatformAddQPs

Done

Increment
FreeQPCount

Yes

Yes

Yes

No

No

No

UD QP from
Global Pool?

QP Released

QP(PKey)
exists?

APPROVE

Allocate QP
from Global

Pool
Yes

No

Figure 319 Connection Approval Decision Tree

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1612 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The IOC shall not allow access to a service object until it validates the
source’s Client_Key matches a Client_Key in a ClientPoolRecord con-
taining the service object’s IocGUID and ServiceObjectID.

For protocols passing Client_Key in the CM PrivateData field, the valida-
tion is done before the QP is allocated, otherwise it is done when the client
passes the Client_Key to the service object. For UD transport service, the
term ‘connection’ means the ability of the client to access the service.

CA8-90: The service object shall inhibit service over a connection until the
client provides a valid Client_Key (i.e., matches a Client_Key in a Client-
PoolRecord) and the corresponding ClientPoolRecord lists the target ser-
vice object in its ServiceObjList.

CA8-91: The IOU shall reject the connection and send a Client Validation
Trap if the client passes a Client_Key that does not match a Client_Key in
any ClientPoolRecord.

CA8-92: The IOU shall reject the connection if the target service object is
not in the ServiceObjList of the ClientPoolRecord corresponding to the
Client_Key passed to the service object.

CA8-93: The IOC shall reject the connection if there are no QPs available
in appropriate Client Pool. That is, if the client has exceeded Cli-
entQPmax, the platform has exceeded PlatformQPmax, or there are no
free QPs in the general QP pool.

CA8-94: If the service object uses a UD protocol where each client uses
a different UD QP (i.e., SharedUD not set in the ServiceRecord), then the
IOC shall reject the CM:SIDR_REQ if there are no QPs available in ap-
propriate Client Pool.

A8.4.4 CONSUMING QPS

The PlatformPoolRecord and the ClientPoolRecord specifies the min-
imum and maximum number of IOU QPs that a platform and client may
consume respectively. These values are related as illustrated in Figure
320.

As a client makes connections, it uses QPs from it’s client pool. When a
client has consumed all of the reserved QPs in its client pool (i.e., QPmin),
it may continue to consume additional QPs only if there are excess QPs
available and the client pool has not reached its maximum limit.

• If the platform has un-allocated QPs (i.e., sum of clients QPmin is
less than the platform’s QPmin), then clients consume the platform’s
un-allocated QPs until they are exhausted.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1613 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• Once all the platform’s un-allocated QPs are used, the clients may
continue to consume available QPs from the general pool as long as
the platform has not reached its maximum limit. This means that the
number of reserved QPs plus additional QPs is less than QPmax
both at the client level and at the platform level.

When the client or service object terminates a connection, the IOU returns
the freed QP to the appropriate pool as follows.

Rsvrd

In-Use

Resource
Pool

2

QPs
Free Rsvrd

Resource
Pool

3

In-Use

Min
Rsvrd

General
Pool

Resource
Pool

1

In-Use

Resource
Pool

0

In-Use

Max

Figure 320 Consuming QPs from Resource Pools

Free QPs
Total
QPs

QPs Reserved
for Specific

Platforms (i.e.,
sum of Platform

QP-min)

Can be used by any
platform until they

reach their Max limit

Addtnl

Unallocated
QPs

Client
Pool

2

Client
Pool

3

Client
QPmin

Platform
Pool 0

Client
Pool

1

Client
Pool

0

Client
QPmax

Rsvrd
QPsRsvrd

QPs
Rsvrd
QPs

PlatformPoolRecord: PlatformQPsInUse =
Total of all the Client Pools

(ClientQPsInUse) for this Supervisor

Rsvrd
QPs

Allocated
QPs

Platform
QPmin

Platform
QPmax

Additional QPs

Rsvrd
QPs

Rsvrd
QPs

Rsvrd
QPs

Addtnl

Client
Pool

6

Client
Pool

7
Platform
Pool 1

Client
Pool

5

Client
Pool

4

Allocated
QPs

Rsvrd
QPs

Unallocated
QPs

Min

Max

After the platform's clients consume all
unallocated QPs, the platform starts
consuming additional QPs from the

general pool (if available)

After a client consumes its
reserved QPs, it starts

consuming additional QPs (if
available). First, the client

consumes Unallocated QPs
reserved for the Platform.

Shaded areas
indicate QPs

in use

1

3

IouResourceInfo:
TotalAdditionalQps = Sum
of PlatformAdditionalQPs

2

General
Pool

ClientPoolRecord:
ClientQPsInUse indicates
how may QPs a client is

currently using

Pl
at

fo
rm

Q
Ps

In
U

se

PlatformPoolRecord:
PlatformAdditionalQPs = Total of all

the Client's AdditionaQPs for this
Supervisor minus Unallocated QPs

Client
QPmin

Client
QPmax

Additional QPs
In Use

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1614 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

1) The DevMgt Agent decrements the In-Use count for that client pool.

2) If the number of QPs in-use in that client pool is now less than the
client QPmin, then the freed QP remains allocated that client pool for
future use by that client.

3) If the number of QPs in-use in that client pool is greater than or equal
to the client QPmin, then the freed QP is returned to the platform pool
as follows.

a) If the total number of additional QPs in the platform’s client pools
plus the number of allocated QPs (i.e., sum of client QPmin) is
less than the platform’s QPmin, then the freed QP remains allo-
cated the platform pool for future connections by any of the plat-
form’s clients.

b) If the total number of additional QPs in the platform’s client pools
plus the number of allocated QPs (i.e., sum of its client QPmin) is
greater than or equal to the platform’s QPmin, then the freed QP
returns to the general pool for use by all clients.

A8.5 DEVICE DIAGNOSTIC FRAMEWORK

Device diagnostics allows the identification of faults in devices behind the
target channel adapter. As such, it complements other sections of this
specification that describe how problems at the fabric and node level may
be identified and isolated.

It is not the intent of this annex to define a set of white-box, technology-
specific diagnostic tests. Rather, the intent is to allow initiation of a vendor-
supplied test sequence (referred to as the default test), for which the ex-
pected outcome would be either success or failure. The DiagCode format,
however, allows flexibility for the a vendor specific diagnostic program to
run specific tests and for the vendor to provide specific, coded information
about the test results. To this end, most diagnostic attributes contain a
VendorSpecific component that allows the diagnostic program to specify
additional information and allows the IOU to return additional information.

The device diagnostic framework is intended to support tests within an ac-
tive fabric. It is versatile enough, however, to accommodate vendor-
unique approaches that may include retrieval of power-on data. It should
be noted that some, and perhaps most, devices may not permit simulta-
neous use of I/O transaction messages and diagnostics. Unless data is
flushed from internal buffers, for example, corruption or loss of user data
might occur. Thus, an IOU may reject a diagnostic request if the device is
not in an appropriate state. Further, it is expected that the diagnostics
tests would require setting the device to an initial, known state. For that
reason, provision is be made to put the device into a “ready” state prior to
test, which could cause I/O transactions to be held off. This may, in turn,

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1615 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cause established connections to time out, and other management no-
tices to be sent.

To prevent an I/O client from being surprised because of side effects from
performing diagnostics, the diagnostic application must first establish a
Diagnostic Session. It does that by sending a DevMgtSet(DiagSession)
request to the DM that indicates both the scope and severity of the diag-
nostics to be performed. The manager replies specifying the Diagnostic
Token that the diagnostic application will use to perform the diagnostics.
However, this response does not give the diagnostic application permis-
sion to perform the tests.

The DM informs all of the affected client platforms and then sets up the
Diagnostic Session with the IOU by sending it a DevMgtGet(DiagSession)
specifying the Diagnostic Token for the session as well as the bounds
(scope and severity) for the session. The DevMgt Agent indicates in the
DevMgtGetResp(DiagSession) whether it is ready to proceed. If it is not
ready, it will subsequently send a DiagSessionState trap when it is ready.
Once the IOU notifies the DM that it has prepared for the diagnostic
testing, the DM informs the diagnostic application that it may proceed via
sending a Report(DiagSessionState) to the diagnostic application that re-
quested the session. The diagnostic application may now perform diag-
nostic tests by suppling the Diagnostic Token in the MADs that it sends to
the IOU, to validate that it is the one authorized to perform the tests. The
IOU rejects any test that is not performed under a valid Diagnostic Token
or any test that exceeds the bounds established for that Diagnostic Ses-
sion.

In general, device diagnostics should be used with great care, and with
full understanding of the potential impact to I/O transactions to the target
device. It is best used during periods of initial configuration, major main-
tenance, or as a tool of last resort.

When the diagnostic application has completed its testing, it cancels the
session by sending a DevMgtSet(DiagSession) to the DM. The manager
invalidates the session by sending a DevMgtSet(DiagSession) to the IOU
and then notifying the affected clients that the IOCs are back on-line. If the
IOU responds with a DevMgtGetResp(DiagSession) with DiagStatus =
not ready, then the DA does not notify the affected clients until the IOU
sends a DiagSessionState trap indicating the session has terminated.

If the diagnostic application fails for any reason, the diagnostic lease ex-
pires and the manager performs the same actions as if the application had
terminated the session. Likewise, if the manager fails for any reason, the
DevMgt Agent automatically terminates the session when the lease ex-
pires and returns the affected IOCs to service.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1616 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The diagnostic framework allows for diagnostics to be performed at var-
ious levels (i.e., TestTargetType = a Service Object, an IOC, an I/O
module, or the entire IOU). When a DevMgt Agent receives a
DevMgtGet(DiagCode), DevMgtGet(DiagnosticTimeout),
DevMgtSet(TestDevcieOnce), or DevMgtSet(TestDeviceLoop) specifying
a TestTargetType that is not supported, the DevMgt Agent rejects the re-
quest using the MADHeader:Status of 'InvalidDiagTest'.

A8.5.1 BEHAVIORS

The DevMgt class of MADs (see A8.3 Device Mgt MAD Specification on
page 1530) is used for diagnostics, i.e., DevMgtGet(), DevMgtSet(), and
DevMgtTrap(). Vendor specific testing may be accomplished via the stan-
dard DevMgt methods and attributes or via vendor defined methods
and/or attributes. In addition, standard DevMgt diagnostic attributes pro-
vide for additional vendor-specific data.

Each diagnostic attribute indicates the device under test. The DiagSes-
sion attribute can specify the IOU, a list of I/O modules, a list of IOCs, or
a list of Service Objects - while the TestDeviceOnce, TestDeviceLoop, Di-
agnosticTimeout, and DiagCode specify either the IOU, an I/O module, a
single IOC, or a single Service Object.

A diagnostic application may send DevMgtGet(DiagnosticTimeout) prior
to establishing a Diagnostic Session to help determine the lease period.
The lease period granted may differ from that requested so the application
should check the GetResp() to determine the actual lease period. If more
time is required, the diagnostic application may renew the lease periodi-
cally before the lease expires by sending another DevMgtSet(DiagSes-
sion) with Action = Renew.

Once the diagnostic application establishes a Diagnostic Session, it per-
forms tests by sending DevMgtSet(TestDeviceOnce) or
DevMgtSet(TestDeviceLoop) directly to the IOU.

Results are reported in the DiagCode attribute. The first 16-bits provide an
overall status of the device under test where a value of zero indicates that
the device is operational and all other values are vendor-specific. The
Vendor-Specific component of the attribute data provide for additional
vendor-specific information. The format of the Vendor-Specific component
is defined by the IOU vendor.

A diagnostic application written by the vendor is able to perform any
number of tests using vendor-specific fields. However, a diagnostic appli-
cation not familiar with the product can still perform ‘default’ diagnostic
testing. Default diagnostic tests are defined by the vendor as a means to
perform a Go/NoGo test.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1617 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.5.2 PREPARING FOR DIAGNOSTIC TESTS

The DevMgtSet(DiagSession) attribute specifies the scope of the test by
listing the service objects, IOCs, or I/O modules that may be tested. It also
specifies the intensity/severity of testing that is allowed to be performed.
The IOU places the device(s) into a test-ready state. The time required to
complete this step is device-specific, as it may involve flushing data from
cache memory, re-initializing SCSI ports, etc. If the IOU responds with a
status indicating more time is required, the IOU subsequently indicates its
readiness for test by having the DevMgt agent send a DiagSessionState
Trap.

Alternatively, a DevMgtGet(DiagSession) also returns information per-
taining to the specific device's ability or readiness for test. This allows the
status to be polled in case the trap is lost.

CA8-95: When the DevMgt agent receives a DevMgtSet(DiagSession), it
shall respond immediately53 with the appropriate DiagSessionStatus as
specified in Table 485 DiagSession on page 1598. If the preparation re-
quires additional time, the DevMgt agent shall report “Device not ready”
DiagSessionStatus.

CA8-96: It the DevMgt agent responds to a DevMgtSet(DiagSession) with
DiagSessionStatus = “Device not ready”, then, when the status changes,
the DevMgt agent shall generate a Trap as per Table 468 Notice 0x0801
DataDetails [DiagSessionState] on page 1556.

A8.5.3 INVOKING DIAGNOSTIC TESTS

After the diagnostic application successfully establishes a Diagnostic Ses-
sion, it sends DevMgt MADs directly to the IOU’s DevMgt Agent to per-
form the diagnostics and get their status. The diagnostic application
supplies the DiagToken in the MAD’s Access_Key field.

Two modes are provided for initiating diagnostics: single test mode and
continuous test mode. In single test mode, a single test sequence is initi-
ated by sending a DevMgtSet(TestDeviceOnce) attribute. The attribute
specifies the target device and specific test. Which components of an IOC
are testable is implementation-specific.

The DevMgt Agent rejects a DevMgtSet(TestDeviceOnce) that violates
the bounds established by the Diagnostic Session. Once initiated, this
vendor-defined test will run to completion. Because tests will vary by de-
vice technology and by vendor, the time-to-completion is inherently de-
vice-specific. To detect devices which are unable to complete their
diagnostic test, a DiagnosticTimeout attribute may be retrieved in ad-
vance of test initiation, which indicates the maximum allowable period for

53. Within the response time indicated in ClassPortInfo.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1618 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

completion. Results of the completed diagnostic test are obtained through
the DevMgtGet(DiagCode) method, - i.e., diagnostic status is returned in
the DevMgtGetResp().

The continuous test mode can assist in detecting problems that are tran-
sient in nature, or used to initiate endurance-related tests. The contin-
uous-test mode is initiated by sending a DevMgtSet(TestDeviceLoop).
Results of the last completed diagnostic test are obtained through the
DevMgtGet(DiagCode) method.

For graceful termination of the continuous test mode, the initiator sends a
DevMgtSet(TestDeviceLoop) with Action = ‘Halt after current pass’. In this
case, the DevMgt Agent terminates the continuous test mode after it com-
pletes the current pass and the DiagCode is valid.

The DevMgt Agent aborts the continuous test mode when it receives a
DevMgtSet(TestDeviceLoop) with Action = Abort. In this case the Diag-
Code is indeterminate (e.g., might be set from the previous pass, might
have been set to an initial value, or might indicate an intermediate result).

A8.6 IOC GRACEFUL HOT REMOVAL

“Surprise Hot Removal” is defined as the removal of an I/O module from
an IOU without the module first being placed in a quiescent state.

“Graceful Hot Removal” is the removal of an I/O module that has first been
placed in a quiescent state where no activity is present that would cause
disruption upon module’s removal. Module power might or might not be
on. Other modules remain operational. The features required for the
achievement of the quiescent state are described in this section.

Support for Graceful Hot Removal is optional. To claim compliance, an
IOU must meet the requirements specified in this section and provide a
DevMgt agent that supports Graceful Hot Removal.

This section covers removal of an I/O module (and its IOCs). An I/O
module is different from an IB module because the I/O module does not
contain the channel adapter. That is, the I/O module resides behind the
channel adapter and thus DevMgt is still functional after the I/O module
has been removed. Removal of IB modules (i.e., the IOU itself) is covered
in Volume 2 under Baseboard Management.

Graceful Hot Removal requires that the I/O module has first been placed
in a quiescent state where no activity is present that would cause disrup-
tion upon its detachment. The quiescent state is under control of the DM
(i.e., a node that knows the IOU’s Manager_Key). The DM’s role is to co-
ordinate the removal of an I/O module with clients that might be using to
the affected Service Objects.

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1619 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The term “affected clients” refers to those elements that are dependent on
the presence of a given I/O module (i.e., its IOCs and their Service Ob-
jects) for operation.

The architecture assumes that there is a switch or lever on each I/O
module that an operator engages to signal that the module is to be re-
moved. That action causes a STATUS LED on the module to blink and a
trap to be sent to the DM, who informs affected clients.

The request to remove may also be initiated via the DM allowing a soft-
ware process such as a console application invoked by the system admin-
istrator, a diagnostic or health monitoring application, to inform the DM
that an I/O module needs to be removed. In this case the DM sets a bit in
the SlotControlStatus attribute indicating the module may be removed,
which also causes its STATUS LED to blink.

When the affected clients have notified the DM that they have acquiesced
their I/O operation, the DM sends an approval to the IOU, which causes
the STATUS LED to turn off, indicating that it is OK to remove the module.

Power to the module is assumed to be removed when the LED is turned
off.

A8.6.1 REQUIRED HOT PLUG FACILITIES

The following facilities and signals are used for interaction with the DM to
accomplish Graceful Hot Removal:

• Indicator LEDs - Each I/O module has a Status LED and Atten-
tion LED as per A8.6.4 I/O Module Indicators on page 1622.

• SlotControlStatus Attribute - The DM uses this attribute to get
and set information about an I/O module’s removal state. Each
I/O module has the following set of bits:

• IOU_RTR (IOU Request to Remove) - this is an indication
that someone at the IOU wants to remove the I/O module.
How this signal is generated is implementation-specific. It can
be cleared via a DevMgtSet(SlotControlStatus). The IOU ini-
tializes this bit to zero (cleared) at power-up or IOU reset (but
not IOC reset).

• SW_RTR (Software Request to Remove) - this is an indica-
tion that the DM is processing the removal of the I/O module.
The removal might have been initiated by the IOU or by the
DM. This signal is set and cleared via a DevMgtSet(SlotCon-
trolStatus). The IOU initializes this bit to zero (cleared) at pow-
er-up or IOU reset (but not IOC reset).

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1620 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• SW_CTR (Software Clear to Remove) - this is an indication
from the DM that the I/O module is in the acquiesced state
and thus can be removed gracefully. This signal can be set
(unclaimed/acquiesced) and cleared (claimed) via a DevMgt-
Set(SlotControlStatus.RemovalControl). The IOU initializes
this bit to one (unclaimed) at power-up.

• The DevMgtTrap mechanism is used to notify the DM that a Re-
quest to Remove (IOU_RTR) is pending.

oA8-4: An IOU that implements IOC Graceful Hot Removal shall support
the SlotControlStatus attribute.

oA8-5: An IOU that implements IOC Graceful Hot Removal shall support
the IomRemoval TRAP (Table 467 Notice 0x0020 DataDetails [IomRe-
moval] on page 1555).

A8.6.2 OPERATION

To enable Graceful Hot Removal, it is necessary for software to “Claim”
the I/O module by clearing the SW_CTR bit, which turns the STATUS LED
on indicating that software is presently using or preparing to use one or
more of the module’s IOC.

At power-up, SW_CTR is set to 1b. Once the SW_CTR bit is set to 0b, the
I/O module’s STATUS LED indicates that it is not OK to Remove the I/O
module (See A8.6.4 I/O Module Indicators on page 1622 for a full descrip-
tion).

Once an I/O module is claimed, the general steps of Graceful Hot Re-
moval are:

1) 1) The IOU or DM initiates a request for removal.

a) For the case that the DM initiates the removal, the DM issues a
DevMgtSet(SlotControlStatus:RemovalControl = 0x02 = Set
SW_RTR to one) for the affected I/O module prior to collecting
the necessary responses from the affected clients. Setting
SW_RTR=1 instructs the DevMgt agent to indicate the “transition”
condition through the blinking of the module’s Status LED (see
A8.6.4 I/O Module Indicators on page 1622).

b) For the case that the request is coming from the IOU, the DevMgt
agent sets IOU_RTR for the affected I/O module and then forms
and sends a DevMgtTrap out each port (if the port’s ClassPortIn-
fo trap information has been set). On setting the IOU_RTR, the
DevMgt agent blinks the module’s Status LED.

Upon receipt of a DevMgtTrap or equivalent polling means that in-
dicates IOU_RTR is set, the DM issues a DevMgtSet(SlotCon-
trolStatus:RemovalControl = 0x02 = Set SW_RTR to one).The

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1621 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

setting of the SW_RTR bit to 1b acts as an acknowledgement to
the setting of IOU_RTR.

2) The DM notifies all affected clients of the removal request and deter-
mines when all such entities have released their dependence on the
IOCs. This is termed “Claim Release”.

3) For the case that not all affected clients concur with the claim re-
lease, the DM shall issue a DevMgtSet(SlotControlStatus:Remov-
alControl = 0x01 = Reset IOU_RTR and SW_RTR to zero) setting
SW_RTR=0 to cancel the request.

For the case that not all responses are received within a DM specific
time-out period, the DM may issue a DevMgtSet(SlotControl-
Status:RemovalControl = 0x01) to cancel the request. Failure to
issue this operation will leave the IOC in a transition state for an indef-
inite period of time; the LED state for this case indicates that the I/O
module is not OK to Remove.

4) For the case that all affected clients have quashed their operation
and released the IOCs, the DM issues a DevMgtSet(SlotControl-
Status:RemovalControl = 0x04 = Set SW_CTR to one and reset
IOU_RTR and SW_RTR to zero). Setting SW_CTR=1 results in the
I/O module Status LED condition being changed to the “OK to
Remove” indication.

5) Anytime an I/O module is removed or added, the IOU sends a Slot
Status Change trap to the DM.

Power is assumed to be removed when SW_CTR transitions from 0 to 1.
How power is removed is implementation specific. Note that SW_CTR=1
is the default state at power up, but power is expected to be applied to the
I/O module. In the case where there is no DM, the I/O module is never
claimed and thus the Status LED remains OFF, indicating that the module
may be removed (since there is no DM to control the removal sequence).

Graceful or ungraceful removal of an I/O module results in its IOU_RTR
signal being reset.

A8.6.3 STATE DIAGRAM

The Graceful Hot Removal process is summarized in the state diagram of
Figure 321: Graceful Removal State Diagram and generally depicts the
behavior of the I/O module’s Status LED. (See A8.6.4 I/O Module Indica-
tors on page 1622).

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1622 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

A8.6.4 I/O MODULE INDICATORS

An IOU that implements IOC Graceful Hot Removal provides a Status
LED for each I/O module to indicate the module’s removal status.

oA8-6: An IOU that implements IOC Graceful Hot Removal shall have a
Green Status LED and an Amber Attention LED for each removable
module. The LED shall have the characteristics and operation as speci-
fied in A8.6.4 I/O Module Indicators on page 1622.

During power-on test, self-test, or diagnostics, the IOU/module may slow
blink the Status LED as part of an LED test. Otherwise, LED states are
controlled by the SlotControlStatus attribute bits IOU_RTR, SW_RTR,
and SW_CTR as per Table 490: I/O Module Status LED

OK-to-REMOVE

CLAIMED TRANSITIONING

SW_CTR=1

IOU_RTR=1 or SW_RTR=1

IOU_RTR=0 and SW_CTR=0

SW_CTR=1

Power-up

SW_CTR=0

IOU_RTR=0;
SW_RTR=0;
SW_CTR=1

IOU_RTR=0;
SW_RTR=0

Status LED = OFF

Status LED = ON Status LED = Blink

Module Power OFF

Module Power ON Module Power ON

Module Power ON

Figure 321 Graceful Removal State Diagram

Table 490 I/O Module Status LED

IOU
RTR

SW
RTR

SW
CTR

LED
Condition Description

x x 1 OFF I/O module can be gracefully removed

n/a n/a n/a Slow Blink LED test

1
X

X
1

0
0

Blink
Removal Transition - Release in progress but IOCs are
still claimed and not removable.

0 0 0 ON Claimed - I/O module can NOT be gracefully removed

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1623 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.6.4.1 LED BLINK RATE DEFINITIONS

When used in this annex, the LED Conditions defined in Table 490: I/O
Module Status LED shall apply to the repetitive ON/OFF behavior of the
LED indicators as per Table 491: Blink Rate Definitions.

A8.6.4.2 LED COLOR

oA8-7: The I/O module Status LED shall be Green or Blue-Green (555 -
565 nm).

oA8-8: The I/O module Attention LED shall be Amber (582 - 592 nm).

A8.7 DEVICE MANAGER

The role of the Device Manager is specified in the Configuration Manage-
ment Annex. Device Management plays an intricate role in configuration
management. A client platform communicates with the Configuration
Management Application using DevAdm class to learn of IOUs and then
uses Device Management to communicate with the IOUs. The Configura-
tion Management Application uses Device Management to communicate
with I/O units and configure them with client information. Additionally, third
parties (such as other managers and diagnostic programs use Device
Management to communicate with the DM to request a diagnostic ses-
sion.

The DevMgt class provides mechanisms (methods and attributes) to en-
able a DM to set and retrieve DevMgt information from IOUs that provide
a DevMgt agent. Other interested parties are also allowed to get DevMgt
information directly from the IOUs. A DM configures an IOU using at-
tributes listed Table 453 DevMgt Agent Attribute / Method Map on page
1542.

Table 491 Blink Rate Definitions

Term Frequency Period Duty Cycle Comments

OFF 0 n/a 0% LED is steady off

Slow
Blink

1/4 Hz 4 sec 50 +/- 2 % Nominally 2 sec ON, 2 sec OFF

Blink 2 Hz 500
msec

50 +/- 2 % Nominally 250ms ON, 250ms OFF

ON 0 n/a 100% LED is steady on

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1624 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A DM communicates with the DevMgt agent by sending a DevMgtSet() or
a DevMgtGet() to the DevMgt agent and the DevMgt agent responds with
a DevMgtGetResp(). The DevMgt agent also sends DevMgtTrap()s to the
DM and the DM responds with a DevMgtTrapRepress().

A8.8 I/O UNIT IMPLEMENTATION

DevMgt supports various concepts such as virtualized I/O resources. An
IOU is modeled as one or more IOCs with each IOC providing one or more
I/O services (i.e., I/O service object) via an I/O protocol. An IOC can sup-
port multiple I/O protocols. In addition to I/O protocols, the IOU or each
IOC might also support one or more I/O management protocols. Thus, the
term Service Object applies to both I/O management objects and I/O ser-
vice objects.

I/O Service Object is an abstract term that refers to a service object with
which an I/O client communicates to perform I/O operations. thus, the
client uses a different QP for each service object. The architecture places
no restriction on how an IOC defines service objects. For instance, an IOC
might have:

• just one service object;
• a service object for each physical port to a secondary fabric;
• a service object for each virtual controller;
• a service object for each physical I/O device.

The following example illustrate the flexibility of Device Management by
illustrating different ways a SCSI storage controller’s Device Management
information could be implemented.

For the following examples, assume an IB/SCSI device that has a single
SCSI port, which connects to a SCSI bus with 3 SCSI devices. Device A
and Device B have one logical unit (LUN 0) and Device C has 3 logical
units (LUN 0,1,2).

Example 1: Talk through model where each SCSI device is a ser-
vice object (i.e., each SCSI device appears as a SCSI target port).
In this case, there would be three I/O service objects, each corre-
sponding to one of the SCSI devices. A client assigned to the ser-
vice object for Device C would have access to all three of its LUNs
unless an I/O management application configured the object for
LUN masking (i.e., managing which clients may access each
LUN). The client would use a different QP to access each SCSI
device.
Example 2: Talk-To model where the SCSI port is the I/O service
object (i.e., a single SCSI target port). For this example, each I/O
device (SCSI device) is presented as a protocol object and is ac-

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1625 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cessed as a SCSI LUN, such that the I/O client sends SCSI com-
mands to the I/O service object, and the LUN in the SCSI
command block determines which I/O device is accessed. The 5
logical units could be represented by hierarchical LUN addressing
(i.e. LUN 1.0, 2.0, 3.0, 3.1, 3.2). A client authorized for the service
object would have access to all the LUNs, unless an I/O manage-
ment application configured the object for LUN masking. The client
sends all SCSI commands to the same QP.
Example 3: Virtual target devices. Each of the LUNs in example 2
are represented as a service object. For this case LUN masking is
inherent in the virtualization. The client would need a different QP
to access each LUN.
Example 4: Virtual target ports. For each client, I/O management
creates a service object and the specifies which devices and LUNs
may be accessed via that service object. For this case LUN
masking is the virtualization. The client sends all SCSI commands
to the same QP.

When the mapping between I/O devices and service objects is not fixed,
or when the mapping varies based on the client, the mapping function
(such as LUN masking) is typically provided by an I/O management pro-
tocol (via an I/O management object or ClientPoolRecord).

A8.9 COMPLIANCE
A8.9.1 COMPLIANCE CATEGORIES

In order to claim compliance to the Device Management class an I/O unit
shall meet all requirements specified in this section, except for those
statements preceded by Qualifiers that the product does not support.

A8.9.2 DEVICE MANAGEMENT AGENT COMPLIANCE SUMMARY

In order to claim compliance to the InfiniBand Specification for the Com-
pliance Category of Managed IOU, a product shall meet all requirements
specified in this section and in A8.9.3 “Common Management Require-
ments” on page 1628, except for those statements preceded by Qualifiers
that the product does not support.

CA8-1: Datagrams conform to DevMgt format Page 1530
CA8-2: Datagrams Follow Common MAD Use Page 1531
CA8-3: Response to the MADHeader:ClassVersion Page 1532

Table 492 Device Management Compliance Qualifiers

Qualifier Description

V1: Backward compatibility with class version 1

HOT: Hot plug / hot removal

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1626 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-4: IsBackwardCompatibilitySupported bit is set Page 1534
CA8-5: IsBackwardCompatibilitySupported bit not set Page 1534
CA8-6: BackwardCompatibilityLevel is ‘No_v1_Access’ Page 1535
oA8-1: V1: BackwardCompatibilityLevel is ‘Full_v1_Access’ Page 1535
oA8-2: V1: BackwardCompatibilityLevel is ‘Programmed’ Page 1535
CA8-7: Reliable Multi-Packet Protocol . Page 1536
CA8-8: Invalid RMPP types . Page 1536
CA8-9: Reject a request containing more than one attribute Page 1536
CA8-10: Zero the Key in a DevMgtTrap(). Page 1537
CA8-11: Zero the Key in a DevGetResp(). Page 1537
CA8-12: Key in a DevMgtTrapRepress().. Page 1537
CA8-14: Ignore ComponentMask in MADs not marked ’RMPP’ Page 1538
CA8-15: Ignore ComponentMask bits that are not defined Page 1538
CA8-16: Filtering on ComponentMask . Page 1538
CA8-17: ComponentMask in the response . Page 1539
CA8-18: Traps issued to all ports . Page 1545
CA8-19: TrapRepress. Page 1545
CA8-20: Layouts for the DataDetails component Page 1547
CA8-21: Manager Key Violation Trap. Page 1548
CA8-22: Supv Key Violation Trap. Page 1549
CA8-23: Client Key Violation Trap . Page 1550
CA8-24: Client Key Access Violation Trap . Page 1550
CA8-25: Diag Token Violation Trap . Page 1551
CA8-26: IOC Change Trap . Page 1553
CA8-27: Service Record Change trap . Page 1554
CA8-28: Slot Status Change Trap . Page 1555
oA8-3: HOT: Removal Notice Trap . Page 1555
CA8-29: Diag Session Violation Trap . Page 1557
CA8-30: Immediate IOU reset . Page 1574
CA8-31: Immediate IOC reset . Page 1574
CA8-32: Graceful IOU reset . Page 1574
CA8-33: Graceful IOC reset . Page 1574
CA8-34: Incrementing KeyViolations counter. Page 1577
CA8-35: Reseting KeyViolations counter . Page 1577
CA8-36: Perform Key authentication . Page 1578
CA8-37: Generate a Resp() when key check succeeds. Page 1579
CA8-38: Key check fail rules . Page 1579
CA8-39: Set Key to zero on Sends . Page 1579
CA8-40: Key mechanism reset to zero at POR no NVRAM. Page 1580
CA8-41: Preserving KeyInfo values during IOU Reset. Page 1580
CA8-42: Lease period timer counts when key check fails Page 1581
CA8-43: Lease period timer reset on key check match Page 1581
CA8-44: ProtectBits set to zero when its lease expires Page 1581
CA8-45: When Lease set to zero, the lease never expires Page 1582
CA8-46: Minimum number of Platform Pool Records. Page 1584
CA8-47: Minimum number of Client Pool Table records Page 1584
CA8-48: Minimum ServiceObjectMaxCount . Page 1584
CA8-49: PlatformPoolRecord can only be set by Manager. Page 1588
CA8-50: Clients can not read PlatformPoolRecord Page 1588
CA8-51: Filter PlatformPoolRecord Supervisor Page 1588
CA8-52: Update Action when Supervisor_Key does not exist. Page 1588
CA8-53: Create Action when Supervisor_Key already exists. Page 1588

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1627 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA8-54: Delete Record when Supervisor_Key does not exist. Page 1588
CA8-55: ManagerUpdateLock when modifying Client Pools Page 1589
CA8-56: Reject PlatformPriorityMax > MaxClientPriority Page 1590
CA8-57: Reject ClientPriority < PlatformPriorityMin Page 1590
CA8-58: Reject ClientPriority > PlatformPriorityMax Page 1591
CA8-59: Reject PlatformPriorityMax < PlatformPriorityMin. Page 1591
CA8-60: Client can not modify ClientPoolRecord. Page 1594
CA8-61: Client can not read ClientPoolRecord. Page 1594
CA8-62: Supervisors can only modify their own Client Pools Page 1594
CA8-63: Supervisors can only read thier own Client Pools Page 1594
CA8-64: Only manager can create/destroy Client Pools Page 1594
CA8-65: Client Pool Update when Client_Key does not exist. Page 1595
CA8-66: Create Client Pool only if Client_Key does not exist Page 1595
CA8-67: Delete Client Pool only if Client_Key exists.. Page 1595
CA8-68: Deleting ClientPoolRecords . Page 1595
CA8-69: ManagerUpdateLock & modifying ClientPoolRecords Page 1595
CA8-70: ManagerUpdateLock & consuming resources Page 1595
CA8-71: Supervior cannot modify locked ClientPoolRecord Page 1595
CA8-72: ClientQoS must be subset of PlatformQoS Page 1596
CA8-73: Primary SL and Alternate SL must be %ClientQoS Page 1596
CA8-74: Sum of ClientQPmin cannot exceed PlatformQPmin. Page 1596
CA8-75: QP assigned client priority from ClientPoolRecord. Page 1597
CA8-76: If IouResourceInfo:IsClientPriorityRetroactive is 1. Page 1597
CA8-77: QPs with higher client priority. Page 1597
CA8-78: Client ServiceObjList subset of PlatformPoolRecord. Page 1597
CA8-79: Termination of DiagSession when lease expires Page 1601
CA8-80: Termination of DiagSession when lease expires Page 1601
CA8-81: Reject test that has invalid DiagToken. Page 1602
CA8-82: Reject test specifying invalid a test object Page 1602
CA8-83: Reject test that has invalid DiagLevel Page 1602
CA8-84: Supervisor Key Violation Trap . Page 1608
CA8-85: Supervisor access limited . Page 1608
CA8-86: Filtering Supervisor access . Page 1609
CA8-87: Client Key Violation trap . Page 1609
CA8-88: Client access limited . Page 1609
CA8-89: Flitering client access. Page 1609
CA8-90: Restricting client access. Page 1612
CA8-91: Client ValidationTrap . Page 1612
CA8-92: Limiting client connection access. Page 1612
CA8-93: Limiting QP consumption . Page 1612
CA8-94: Limiting UD QP consumption . Page 1612
CA8-95: DevMgtSet(DiagSession) response . Page 1617
CA8-96: DiagSession status = ’Device not ready’ Page 1617
oA8-4: HOT: Support for SlotStatus attribute. Page 1620
oA8-5: HOT: Support TRAP 0x0020. Page 1620
oA8-6: HOT: Green Status LED for each removable module Page 1622
oA8-7: HOT: Module Status LED color . Page 1623
oA8-8: HOT: Module Attention LED color . Page 1623

InfiniBandTM Architecture Release 1.2 Device Management October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1628 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A8.9.3 COMMON MANAGEMENT REQUIREMENTS

In addition, a Device Management Agent must also be compliant with the
Common MAD requirements specified is 20.14 and the following general
management framework requirements from Chapter 13.

C13-27.1.1:Standard common AttributeIDs and Attributes Page 733
C13-30.1.1:Manager must support both Notice poll and Trap Page 737
C13-31: Obsolete . Page 741
o13-5.1.1:Trap: TrapRepress format . Page 743
C13-32.1.1:Manager with Notice attribues must do forwarding . . . Page 745
o13-12: Obsolete . Page 745
o13-12.1.1:Trap or Notice: Event Subscription Confirmation Page 745
C13-32.2.1:Ignore duplicate subscriptions. Page 745
o13-13: Obsolete . Page 745
o13-13.1.1:Trap or Notice: Event subscription rejection Page 745
o13-14: Obsolete . Page 746
o13-14.1.1:Trap or Notice: Set(InformInfo) Verification Page 746
C13-32.2.2:Must verify all subscriptions. Page 746
o13-15: Obsolete . Page 746
o13-15.2.1:Trap or Notice: Set(InformInfo) Verification Failure . . . Page 746
o13-16: Obsolete . Page 747
o13-17: Obsolete . Page 747
o13-17.1.1:Trap or notice: Event Subscription Action Page 747
o13-17.2.1:Trap or Notice: Discontinuing event forwarding. Page 747
o13-17.1.2:Trap or Notice: Action when trap forwarding fails Page 747
C13-32.1.2:Trap or Notice: Content of Report(Notice) Page 747
C13-34: GSA MADs Directed to QP1 . Page 750

InfiniBandTM Architecture Release 1.2 Verb Extensions Annex October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1629 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A9: VERB EXTENSIONS ANNEX

A9.1 INTRODUCTION

A9.1.1 OVERVIEW

This Annex defines enhancements to the Verbs specified in Release 1.1
of the base specification:

• efficient memory registration mechanisms for privileged Consumers,

• a mechanism for invalidation of Memory Windows and registered
Physical Memory Regions,

• finer Memory Window protection through the ability to associate a
bound Memory Window to a single QP,

• efficient mechanism for posting multiple work requests at one time,

• ability to share Receive Queue resources between multiple Reliable
Connected and Unreliable Datagram Consumers through the use of
a Shared Receive Queue (SRQ),

• ability to use multiple completion event handlers per HCA,

• ability to directly use host physical addresses through a Reserved
L_Key, and

• introduction of zero based virtual addressing and block list oriented
physical buffer lists.

The changes included in this Annex have been incorporated into the main
body of this specification. Compliance statements for the Verb Extensions
listed above take two forms:

CX-y.2.z: This type of compliance statement is mandatory in order to
comply with the 1.1 specification semantics.

oX-y.2.z: This type of compliance statement is required to comply with the
optional function referenced by the compliance statement.

Where X is dependent on which chapter and y & z or dependent on where
the compliance statement is placed.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1630 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

ANNEX A10: CONGESTION CONTROL

A10.1 CONGESTION CONTROL IN INFINIBAND NETWORKS

A10.1.1 GLOSSARY

Backward Explicit Conges-
tion Notification

A signal, set by a destination port in either an ACK or a CNP. The BECN
bit tells the source port that a packet it sent earlier, which corresponds to
this ACK or CNP, encountered congestion.

BECN Backward Explicit Congestion Notification

BTH Base Transport Header

CA Channel Adapter.

CCT Congestion Control Table

CCTI Congestion Control Table Index

CCTI_Increase The amount by which a CCTI will be increased, when a packet which
was marked as having gone through a point of congestion, is received.

CCTI_Limit CCTI_Limit is the bounding value for a CCTI; CCTI cannot be greater
than CCTI_Limit.

CCTI_Min This is the lowest value that CCTI can be reduced to; the default value is
zero.

CCTI_Timer Congestion Control Table Timer

CCMgr Congestion Control Manager see Congestion Control Manager

CCMgtA Congestion Control Management Agent see Congestion Control Man-
agement Agent

Channel Adapter Conges-
tion Event

The arrival of a packet with the BECN bit active in the BTH.

Channel Adapter Threshold
Congestion Event

When a CCTI is equal to the Trigger Threshold this event is triggered and
information pertaining to the event is logged by the CA.

CN Congestion Notification

CNP Congestion Notification Packet

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1631 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Congestion Control Table The Congestion Control Table contains an array of values of injection
rate delay used to control congestion. The data is organized such that
the lowest IRD is contained in entry 0, and the highest IRD is contained
in the last entry of the table.

Congestion Control Table
Index

An Index into the CCT, to select an Injection Rate Delay value.

Congestion Control Table
Timer

A cyclic timer set up by the congestion manager, associated with an SL,
which on expiry is reset and decreases the CCTI.

Congestion Control Man-
ager

A manager dedicated to the control of congestion within a subnet. There
may be more than one per subnet.

Congestion Control Man-
agement Agent

A management agent that decodes Congestion Control MAD attributes
and applies them to a CA or Switch.

Congestion Notification A Congestion Notification is generated to signal a congestion event to a
source.

Credit Starvation A mechanism to control the injection rate of legacy devices (e.g. CAs) by
starving the device of credits.

CS_ReturnDelay Used by Credit Starvation to control the rate of credit return upstream,
while the input port is considered to be in a congested state.

CS_Threshold The level at an input port, which when crossed, places the port in a con-
gested state.

FECN Forward Explicit Congestion Notification

Flow A flow is a stream of data, from a QP or an SL (on a port).

Forward Explicit Conges-
tion Notification

A signal set in a packet by a switch, to indicate that the packet encoun-
tered congestion along the path to the destination.

Injection Rate Delay A minimum delay which a CA is to place between packets, to control con-
gestion within a subnet. (See also CCT[CCTI]).

IRD Injection Rate Delay

MAD Management Datagram

QP Queue Pair.

Root of Congestion A switch output port whose buffer threshold for a VL has been exceeded,
and for which there are link flow control credits available to send data
continuously, is the root of congestion.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1632 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SL Service Level

Switch Port VL Congestion
State

The state of a VL at a port, in which packets for that VL are candidates
for being marked with a FECN.

Switch Congestion event When a VL on a switch port moves into a Switch Port VL Congestion
State.

Trigger Threshold When the CCTI reaches this level for a given flow, a Channel Adapter
Threshold Congestion Event occurs.

Victim of Congestion A switch output port whose buffer threshold for a VL has been exceeded,
and which does not have sufficient flow control credits available to keep
the data flowing at full rate, is a victim of congestion.

VL Virtual Lane.

A10.1.2 CONGESTION OVERVIEW

To understand the congestion spreading problem, and the relationship
between a root source and a victim of congestion, consider Figure 322
Fabric Congestion on page 1633. Assume that ports A through E on
Switch 1 are all sending packets to port G so that port G is receiving
data at 100% of its capability to send it.

Also assume that port F, on adjacent Switch 2 is also transmitting data to
port G on Switch 1 at 20% of the total link bandwidth. Since egress port
G is backed up, port F will transmit packets until there are no more
credits left on the inter-switch link between the two switches.

At this point, port G will be congested, however there is no detrimental
side effect, since all ports (A-F) will be served as quickly as port G is
able to.

Now consider a port X on Switch 2, which is sending packets to port Y
on Switch 1, at 20% of the paths bandwidth. Port G, the source of the
congestion is not anywhere in the path from port X to port Y. In this
case one might expect that since port F was only using 20% of the inter-
switch links bandwidth, the remaining 80% of the links bandwidth would
be available for port X, much more than port X requires. However this is
not the case, since port F will eventually consume all of the link credits
to switch 2, and port X will have to wait for available credits.

Congestion Control further defines two subcategories of congestion a
port may experience. It may be the “root” cause of the congestion, or it
may be a “victim”.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1633 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

If a port has a large queue of packets awaiting transmission, and the
port has available credits to send packets, then it is the root cause; how-
ever if the port does not have credits to send packets, then it is a “victim”
of congestion spreading.

In this example port G in switch 1 would be the “root” of the congestion.
It has available credits, however the queue is growing because it is re-
ceiving packets faster than it is able to forward them.

The congestion in Switch 1 has spread so that port H on Switch 2 is now
congested. Port H will not have flow control credits, causing it to throttle
data and is therefore a “victim” of congestion spreading. Traffic from port
X is suffering from head-of-line blocking, and results in a reduction of the
total throughput of the fabric.

The objective of congestion Control is to avoid if possible, and eliminate
if it has already occurred, congestion spreading such as this. The ap-
proach here is to limit the injection rate of flows at the ports which are
the root cause of the congestion (ports A-F), so that other ports are not
affected (port X).

By limiting the injection rate of ports A-F to something which port G can
handle, ports A-F should not see a significant degradation (after all, their
packets were just going to wait anyway), however packets being sent from
port X to port Y should be able to flow normally, since credits will be avail-
able.

Figure 322 Fabric Congestion
There are situations where congestion can occur, yet no switch will de-
tect that it is the root of congestion. For example, consider the case of a
switch port connected to a CA that is unable to process received
packets at the full line rate. In this case the switch output port buffer

F ABCDE

X G

Y

JH

Switch 1Switch 2

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1634 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

threshold for a VL will be exceeded, and it will not have sufficient flow
control credits available to keep the data flowing at full rate. As a result,
the switch will view itself as the victim of congestion, instead of the root.

To handle this situation, a switch may be configured to enter the conges-
tion state even when it views itself as the victim.

A10.1.3 CONGESTION CONTROL SUMMARY

This is a summary and is included to provide an overview of the conges-
tion control specification. The normative portion of this specification is
contained in A10.2 Congestion Control Mechanism on page 1636. A Con-
gestion Manager is not architected by this specification.

• Switches detect congestion on a VL.

• Switches distinguish between when that congestion is the
root cause, or the result of congestion spreading (victim).

• Forward Explicit Congestion Notification (FECN) is used to com-
municate that a switch port is in the congested state.

• Ports on switches may be configured to be in a congested
state either when the port is the root of the congestion, or any
time congestion is detected (i.e. the port is either the root or
victim).

• The switch will set a FECN bit on a subset of the packets exiting
the port when in the port VL congested state.

• The target CA of the marked packet then notifies the packet’s
source that congestion has occurred via a BECN.

• The source of the congested packet reacts by temporarily reduc-
ing its injection of packets into the network.

• The original injection rate resumes over time.

• Congestion Control may be performed on a per QP basis.

• Congestion may alternatively be controlled for each SL on a
Port.

• Cyclic logs are kept in congestion control aware switches and
CAs, and are supplied to a congestion manager on request.

• Congestion control as defined will handle transient congestion
within the fabric directly, and will define attributes, which may be
used by higher levels of management to control longer term con-
gestion, possibly in conjunction with a QoS manager.

• Security: Access to congestion control information in a switch or
CA will be done under a congestion control key. See A10.4.1.1
CC_Key on page 1650 for detail of the CC_Key.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1635 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• For a link controlled by static rate control, if there is no conges-
tion, static rate control will be predominant. When congestion oc-
curs on a path that is controlled by static rate control, then the
minimum of the two rates (i.e. the maximum interpacket delay) is
used to inject packets into the fabric.

A10.1.3.1 CURRENT PERFORMANCE METRICS

Performance counters pertaining to congestion will be kept by CAs and
switches.

Information that is currently collected may be pertinent to congestion:-

Mandatory counters:-

• PortXmitData. The closer this is to the maximum transmission of a
link the more likely it is that a port may be in a congested environ-
ment.

• PortXmitWait. This provides information on a potential victim of con-
gestion. It is the number of ticks during which the port had data to
transmit but was unable to because of a lack of credits or a lack of ar-
bitration.

Optional counters:-

• PortXmitQueue[n]
• PortXmitDataVL[n]
• PortVLXmitWaitCounters:PortVLXmitWait[n]
• SwPortVLCongestion:SWPortVLCongestion[n]
For Further information see 16.1 Performance Management on page 930.

A10.1.3.2 OPERATION WITH REV 1.1 SWITCHES AND CHANNEL ADAPTERS

The full capability of the congestion control mechanism requires conges-
tion control aware CAs and switches. However, a mix of congestion con-
trol aware and unaware devices is supported, with, at most, some loss of
Congestion control.

Marked packets and Congestion Notification Packets (CNPs) traverse re-
lease 1.1 (or earlier) switches as valid packets.

The Opcode in the BTH of a CNP has been chosen so that Release 1.1
(or earlier) CAs ignore the congestion notifications. The FECN and BECN
are in fields that are reserved in the Release 1.1 specification.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1636 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2 CONGESTION CONTROL MECHANISM

The implementation of congestion control in a Switch or a CA is optional.
When implemented, it shall be done so in accordance with the specifica-
tion in this section.

In order for congestion control to work effectively with unreliable data-
grams, the paths must be reversible as described in 13.5.4 Response
Generation and Reversible Paths on page 768. CN’s can only be con-
structed from the received datagram with a FECN mark (see A10.3.2 on
page 1648). BECNs may not reach the source if the path is non reversible,
as they may be dropped.

Congestion control is only applicable to Data VLs; it does not apply to
VL15.

A Congestion Control Manager will identify that a switch or CA supports
Congestion Control by receiving successful responses to valid Conges-
tion Control Method requests. A non congestion aware CA or switch will
return either “Bad Version” or drop the packet. If a request times out it is
up to a congestion manager to determine how many times it will retry
without a response before the CA or Switch is assumed not to support
Congestion Control.

CA10-1: A CA or Switch that supports Congestion Control shall so-indi-
cate by responding to valid Congestion Control Method requests succes-
fully.

A10.2.1 SWITCH BEHAVIOR

This section defines the operation of a switch that supports congestion
control.

A switch that supports congestion control may or may not support conges-
tion control on its enhanced switch port zero. The indication of such sup-
port is by the setting of EnhancedPort0CC in the Congestion Control
ClassPortinfo:CapabilityMask, see Table 501 Congestion Control Class-
PortInfo:CapabilityMask on page 1655. The requirements are identical to
those for a CA. Congestion control is not supported on base port0.

A10.2.1.1 CONGESTION DETECTION

A switch port may identify that it has entered a Port VL congested state
when it crosses a threshold. The threshold for this event may be set to a
different level for each port. The threshold is determined by a weight that
has a value of 0 to 15 and is interpreted as follows:-

• 0: there is no marking of packets on this port

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1637 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• 1: Indicates a high value of a threshold (little space to accom-
modate for packets already in the fabric).i.e. there is a high
probability that congestion will spread.

• 2-14: A uniform distribution of thresholds between those as-
signed to weights 1 and 15.

• 15: indicates a low value of the threshold (more space to ac-
commodate packets in the fabric). In this case the likelihood
of congestion spreading is reduced, but there is an increased
probability that a packet might be signalled as moving through
a point of congestion, when the fabric is not congested.

The threshold should be considered in terms of credits. A threshold with
weight 15 will be set by the device such that traffic with a fixed packet size
of 256 bytes (including headers), with a uniformly random destination ad-
dress on each supported VL on the port, and an inter packet gap of 176
bytes (approximate load of 60%), on all ports will have a <1% probability
of packets being marked with a FECN. This calculation should be per-
formed on a device configured such that each port has the same number
of operational VLs.

This will provide different settings for the threshold with a weight 15, de-
pending on the number of VLs that are configured on a port. Fewer VLs
provides more buffer space.

A weight of 1 should have a threshold that has consumed the majority of
the buffering for a VL

A switch should have a default weight of 8.

The weights from 15 to 1 should cover a uniform distribution over the
available buffering from the average 60% queueing point, on a VL basis.

The setting of the thresholds in the switch is dependent on the architec-
ture (Output buffered, Input buffered, central shared buffer pool with or
without dynamic buffer allocation, virtual output queueing, etc.). The as-
sociation of the congestion weighting to the threshold, beyond what is out-
lined in A10.2.1.1 Congestion Detection on page 1636, is left to the device
designer.

CA10-2: A weight of 0 shall indicate no congestion marking.

CA10-3: A weight of n shall produce a threshold that is lower than a
threshold generated by a weight of n-1.

CA10-4: There shall be 16 distinct thresholds levels within a device
(based on credits), including the threshold for a weight of 0 which indi-
cates no marking.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1638 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2.1.1.1 ROOT VS. VICTIM

A switch is capable of identifying both root and victim of congestion.

• Identify a root of congestion:- An output VL has exceeded the se-
lected threshold and there are credits available to output data, i.e.
data is always able to exit, but may be delayed due to arbitration.

• Identify a victim of congestion:- An output VL has exceeded the
selected threshold and packets are delayed due to a lack of cred-
its, i.e. data may not always be able to exit the port due to a lack
of credit.

Under certain circumstances, such as when a switch port is connected to
a CA that is unable to process received packets quickly enough, it may be
beneficial to enter the Port VL congested state when the switch identifies
itself as a victim of congestion. This can be accomplished by setting the
Victim_Mask for the port (see A10.4.3.6 SwitchCongestionSetting on
page 1659). The Victim_Mask would typically be set for enhanced switch
port zero.

The indication of congestion through the VL should be smoothed over
time. The precise smoothing mechanism is left to the switch implementor.
The precise mechanism for identifying congestion is dependent on the
switch architecture.

CA10-5: A switch that supports congestion control shall be capable of de-
termining whether it is a root or a victim of congestion.

CA10-6: A switch port data VL shall detect that it is a root of congestion
when the congestion threshold has been exceeded and there is sufficient
credit to transmit a packet at the head of the queue on that data VL. It is
permissible to smooth or average credits in the determination of a root of
congestion, as long as the result maintains the long term behavior.

CA10-7: A switch port VL shall detect that it is a victim of congestion when
the congestion threshold has been exceeded and it is unable to transmit
a packet at the head of the queue on that data VL due to a lack of credit.

A10.2.1.2 CONGESTION MARKING

A switch marks packets when a switch port is in a switch port VL conges-
tion state which is defined as follows.

CA10-8: A switch port VL shall be in the congestion state when it is a root
of congestion.

CA10-9: A switch port VL shall be in the congestion state when it is a
victim of congestion and the Victim_Mask bit (see A10.4.3.6 SwitchCon-
gestionSetting on page 1659) is set for that port.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1639 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-10: A switch shall generate a switch congestion event when a port
VL enters the congestion state. This event is used to log events in the
switch CongestionLog (see Table 506 CongestionLog (switch) on page
1658).

CA10-11: A switch that has a port that enters a switch port VL congestion
state, shall mark packets by setting the “F” field in the BTH, while in this
state. See A10.3.1 BTH: FECN and BECN locations on page 1647

CA10-12: A switch shall not mark raw packets with a FECN.

CA10-13: A switch shall not mark packets with a FECN, if the packet size
is below the specified value. If the packet_size threshold is set to 0, then
packets of all size are eligible to be marked. To control the marking packet
size see:- Table 510 SwitchCongestionSetting on page 1660 and Table
511 SwitchPortCongestionSetting Attribute on page 1661.

CA10-14: A switch shall set the FECN bit in the BTH of packets that are
candidates for marking determined by the Marking_Rate. (see Table 510
SwitchCongestionSetting on page 1660 marking_rate). If the
Marking_Rate is set to zero, then all packets are eligible to be marked.

A10.2.1.3 CONGESTION LOG

A switch that supports congestion control maintains a congestion log to
identify the frequency and source of congestion events. Due to the possi-
bility of contention in large switches this log is best effort, but while a
switch is marking packets this log file shall have at least one active entry.
See Table 506 CongestionLog (switch) on page 1658.

• Entries may be placed in the log for each Switch Congestion
Event. This may happen on more than one VL on a port, and for
more than one port in the same switch at the same time.

• Only a sampling of switch congestion events needs to be report-
ed; all events are not reported.

• If the switch marks multiple packets at any instant during a
congestion period for the same SL/DLID, it may chose to
record only one of the packets in it’s log of congestion events
(best effort).

• The switch maintains information for the last 20 congestion
events. Some entries may be zero if either twenty events
have not yet occurred, or if events are too old (outside the
scope of the current timestamp).

• The Switch Congestion Log is not cleared on reading, and is
not explicitly cleared. A congestion manager identifies dupli-
cate entries from successive reads via the time stamps.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1640 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A switch maintains a free running 32 bit timer for log purposes that encom-
passes a range of 1.024 µsec to 1.22 hours.

CA10-15: A switch that supports congestion control shall maintain a
Switch Congestion Log.

CA10-16: The Switch Congestion log shall be a cyclic buffer of 20 en-
tries.(i.e. most recent events replace older ones)

CA10-17: A switch shall place at least one entry in the switch congestion
log when it generates one or more switch port VL congestion events.

CA10-18: A switch shall maintain a free running 32 bit timer for log pur-
poses that increments in 1.024 µsec steps and is derived from the link bit
rate.

CA10-19: The Switch Congestion Log shall contain the information de-
fined in Table 506 CongestionLog (switch) on page 1658.

CA10-20: In a Switch Congestion Log, entries that are older than the max-
imum timestamp wrapping twice, shall be returned as zero.

A10.2.1.4 SWITCH PERFORMANCE COUNTERS FOR CONGESTION

The switch maintains the following sampled performance counters that
pertain to congestion on a port.

• The length of time (number of ticks) during the sample period that the
port for a given data VL is in the switch port VL congestion state
(PortXmitTimeCong).

• The length of time (number of ticks) during the sample period that
any data VL on a port is in the switch port VL congestion state (PortV-
LXmitTimeCong).

For a definition of tick, see 16.1.3.2 PortSamplesControl on page 933.

At 2.5Gbps a tick can be in the range of 4 nsec to 1 microsecond (in mul-
tiples of 4 nsec). If a higher resolution tick is used, then the counter shall
be larger. For a 4ns resolution, the counter shall be 32 bits (max. of 4 sec-
onds).

CA10-21: A switch that supports congestion control shall maintain the
sampled performance counters to be returned to the CCMgr on request
defined in Table 525 PortXmitConCtrl on page 1673 and Table 526 PortV-
LXmitTimeCong on page 1673.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1641 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2.1.5 SWITCH CREDIT STARVATION

Switch Credit Starvation may be used to control congestion when at-
tached to legacy devices (CAs or switches), or even “rogue” Congestion
Control capable endpoints. It is an optional feature within Congestion
Control.

The technique is to control the return of credits to the device upstream of
a link (Credit Starvation), when an input port is marked as having such a
mechanism active. The mechanism identifies a trigger point at which a
port will start to control the rate of credit return for a VL. The trigger point
will be based on an average “input buffer” threshold for a VL, but may also
be considered as being the average active number of credits used for a
VL. Note that this mechanism will affect flows that might not be going
through the root of congestion. While this condition exists, the credit return
rate will be controlled by the CS_ReturnDelay. When the average “buffer
occupancy” for a VL falls below its threshold, credits will be returned by
the switch’s normal policy.

There will be one average “buffer occupancy” threshold and a
CS_ReturnDelay for each port. Each port on a switch may have different
values. Capable ports can be set active, through the Credit_Mask, see
Table 510 SwitchCongestionSetting on page 1660, which also contains
the default settings for the trigger level (CS_Threshold), and credit return
rate (CS_ReturnDelay) see Table 510 SwitchCongestionSetting on page
1660 for switch defaults, and Table 511 SwitchPortCongestionSetting At-
tribute on page 1661to set different rates on ports. Individual ports may be
set, see A10.4.3.7 SwitchPortCongestionSetting on page 1661

oA10-1: A switch may support the Switch Credit Starvation option.

oA10-2: A switch shall indicate support of the Switch Credit Starvation op-
tion by setting Bit0 in the CongestionInfo to a one, see Table 504 Conges-
tionInfo on page 1657

oA10-3: A switch that supports the Switch Credit Starvation option shall
activate credit starvation on each port that has the Credit_Mask set to one
(see Table 510 SwitchCongestionSetting on page 1660).

oA10-4: A switch port that has credit starvation activated shall detect
when the CS_Threshold for a data VL on that port is exceeded.

oA10-5: When the CS_Threshold is exceeded on a switch port data VL,
the credits for that VL shall be delayed as specified by the
CS_ReturnDelay for that port.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1642 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2.2 CA BEHAVIOR

The implementation of congestion control in a CA is optional. This section
defines its operation if implemented.

A CA that supports congestion control is responsible for notifying the
source when packets are received that indicate they have passed through
a point of congestion. The CA is also responsible for reducing the injection
rate of flows that pass through a point of congestion when it receives such
a notification from the target.

A CA ignores the FECN bit in the BTH (it will not generate a BECN re-
sponse) of the following packet types:-

• Multicast Packets

• ACK Packets

• CN Packets

The CA notifies the source of a packet that has passed through a point of
congestion by sending a CN packet. Alternatively, for reliable connec-
tions, this may be optimized by placing a BECN marker in the ACK rather
than generating a CNP. Note: ACKs are not normally subject to IRD, how-
ever an RDMA_Read_Response is an ACK which may be controlled by
IRD, and in such a case, a CNP should be used to signal a BECN back to
its source.

A CA may be subject to high rates of small packets arriving which are
marked with a FECN and, additionally, there is the possibility of output
scheduling delays. Under such conditions it may not be possible to gen-
erate a BECN for each FECN that arrives. Under such conditions a device
shall:-

• For BECNs in ACKs, BECN responses may be coalesced.

• The BECN bit on a coalesced Acknowledge packet shall be ac-
tive if one or more of the Acknowledges covered by the coalesced
acknowledge should have had its BECN bit active.

• For BECNs in CN’s, the endpoint shall be able to support at least
1 outstanding CN per QP, or if a centralized CN allocation mecha-
nism is used, shall be capable of queueing at least 32 CN’s per
port. (When CN resources are exhausted a FECN shall have its
corresponding BECN dropped).

On receipt of a FECN, the resulting ACK or CN should be scheduled as
quickly as possible.

CA10-22: CAs that support congestion control shall ignore the FECN bit
set in the BTH of multicast, ACK and Congestion Notification Packets.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1643 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-23: When a valid FECN is received (see CA10-22:), the CA shall
set the BECN bit to a one in the BTH of either an ACK or a CNP that is
returned in response to the packet received with the FECN bit set.

CA10-24: A CA that supports congestion control shall be capable of
scheduling at least one CNP per QP or 32 CNPs per port.

CA10-25: A CA that supports Congestion control shall be able to handle
a BECN received in either an ACK (including unsolicited ACK), or a CNP.

CA10-26: A CA that supports congestion control and marks ACKs with a
BECN shall schedule an ACK marked with a BECN regardless of the state
of the AckReq bit in the received packet’s BTH field.

CA10-27: CAs that support congestion control shall ensure that the BECN
bit on a coalesced Acknowledge packet shall be active if one or more of
the Acknowledges covered by the coalesced acknowledge should have
had its BECN bit active.

A10.2.2.1 INJECTION RATE CONTROL

The following describes the way in which a congestion-control-capable
CA receiving a BECN will control the rate of injection into the fabric.

A CA has one Congestion control table (CCT) per port, with a minimum of
128 entries in each CCT. The CCT may be larger, but only in multiples of
64 entries. A CA returns the size of the CCT in 64 entry units in Con-
trolTableCap in the CongestionInfo attribute (see: Table 504 Congestion-
Info on page 1657).

A10.2.2.1.1 CCT ENTRY FORMAT

A CCT entry is 16 bits wide; consisting of a 2-bit shift_field and a 14-bit
multiplier. The lowest injection rate that can be achieved is 100/(2**14) or
0.006% of a links throughput.

A CA shall interpret a CCT entry as follows:-

The IRD will be the value of CCT[CCTI] that defines the delay between
packets from this flow.

CA10-28: For a CA that supports congestion control, if a packet has been
sent from a flow, the subsequent packet from the flow shall not be sched-
uled until at least time Ts has passed since the previous packet was
scheduled, where Ts is calculated as follows:

Ts = (TpacketTime >> Shift_field) * Mult_Factor
Where:

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1644 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

>> = shift right

Multi_factor = CCT[CCTI] bits 0-13 (14 bit multiplier)

Shift_field = CCT[CCTI] bits 14-15

TpacketTime = time it takes to transmit the preceding packet

 LRH:PktLen*4/Lr,

 Lr is the port speed as obtained from the PortInfo:Link-
WidthActive and PortInfo:LinkSpeedActive attributes.

A CA may aggregate a small number of packets together (up to 4 MTU)
before asserting IRD. In such a case, the IRD applied between such
grouping shall be that appropriate to the aggregate size.

A CA controls the injection rate of a flow on either a QP or SL basis, de-
pending on the setting for the port. It shall either be QP or SL based ex-
clusively. See Table 513 CACongestionSetting on page 1662

A CA will have a CCTI and CCTI_Min per flow (QP and SL). It also has a
table for CCTI_Increase and CCTI_Timer for each port. Each table has 16
entries; one for each SL. See Table 513 CACongestionSetting on page
1662.

CA10-29: A CA that supports congestion control shall interwork with
Static Rate Control. The IRD will be the maximum of the static rate control
and the congestion rate control.

CA10-30: A CA that supports congestion control shall maintain one Con-
gestion Control Table (CCT) per port.

CA10-31: The CCT shall contain a minimum of 128 entries.

CA10-32: A CA shall report the number of entries in the CCT in 64 entry
units in the CongestionInfo attribute (see Table 504 CongestionInfo on
page 1657).

CA10-33: A CA shall load the CCT based on the information received in
the CongestionControlTable attribute (see Table 515 CongestionCon-
trolTable on page 1664).

CA10-34: A CA shall maintain a CCTI_Limit for each CCT.

CA10-35: A CA shall be capable of controlling the injection rate on each
QP flow or on each port SL flow, depending on the setting of the Port Con-
trol:FlowSelect (bit 0) in CA CongestionSetting (see Table 513 CACon-
gestionSetting on page 1662).

CA10-36: A CA shall maintain a CCTI for each QP or port SL flow.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1645 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-37: A CA shall maintain a CCTI_Min, CCTI_Increase and
CCTI_Timer for each port SL and shall load them based on the contents
of the CA CongestionSetting attribute (see Table 513 CACongestionSet-
ting on page 1662).

CA10-38: Each CCTI_Timer shall increment in 1.024 µsec steps and be
derived from the link bit rate.

A10.2.2.1.2 RATE DECREASE

The injection rate is decreased for a flow (QP or port SL) based on the re-
ceipt of BECNs. When the CA is configured for SL based control, the CCTI
is incremented by the CCTI_Increase value associated with the SL. When
configured for QP based control, the CCTI_Increase value for the SL as-
sociated with that QP is used. The CCTI is only increased up to the
CCTI_Limit, and no history of BECNs arriving while the CCTI is at the
CCTI_Limit is kept.

CA10-39: When the CA is configured for SL-based control, the CCTI is in-
cremented by the CCTI_Increase value associated with the SL, each time
a BECN is received on that SL.

CA10-40: When the CA is configured for QP-based control, the CCTI is
incremented by the CCTI_Increase value for the SL associated with that
QP, each time a BECN is received on that QP.

CA10-41: A CA shall not increment the CCTI beyond the CCTI_Limit.

A10.2.2.1.3 RATE INCREASE

The injection rate is increased periodically based on the value set in the
CCTI_Timer. The CCTI_Timer has a range from 1.024 µsec to 67 msec
and is maintained for each port SL. When this timer expires, the CCTI for
each flow associated with that timer is decremented by one, thus refer-
encing a CCT entry that has a reduced delay value. When the CCTI
reaches zero, no injection rate delay is to be added to the flow.

The CCTI is not reduced any further, once it has reached either CCTI_Min
or zero (whichever is the larger).

This specification describes setting CCTI_Min for a port SL (see A10.4.3.8
CACongestionSetting on page 1662). When configured for QP-based in-
jection rate control, the CCTI_Min for the associated SL is applied to the
QP.

CA10-42: A CA shall decrement by one, the CCTI for each flow associ-
ated with an SL that has its CCTI_Timer expire. The CCTI shall not be
decremented below zero or the CCTI_Min value for the flow.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1646 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.2.2.2 CA CONGESTION THRESHOLD EVENT NOTIFICATION LOG

A congestion-control-capable CA provides a Congestion Threshold Event
Notification Log for each port in order to provide information pertaining to
the frequency and source of congestion events. CAs provide the capa-
bility to detect when a CCTI reaches the Trigger_Threshold that is set by
a Congestion Manager. When the Trigger_Threshold for a flow is
reached, information pertaining to the event is logged by the CA. A Con-
gestion Manager sets the Trigger_Threshold for each SL on a CA port
using the CACongestionSetting attribute (see A10.4.3.8 CACongestion-
Setting on page 1662). If the Trigger_Threshold is set to zero, no informa-
tion is logged.

The Congestion Threshold Event Notification log is a cyclic buffer of six-
teen entries. It is not cleared on reading, and is not explicitly cleared. A
congestion manager identifies duplicate entries from successive reads via
the entry time stamps.

A CA shall maintain a free running 32 bit timer for log entries, with a range
of 1.024 µsec to 1.22 hours.

A CA places entries in the notification log as follows:-

• The detailed information recorded for each log entry is given in
Table 509 CongestionLogEvent (CA) on page 1659. Event Log
entries for which information is not available are returned as all
zeros.

• The log maintains an indication that the threshold for any SL has
occurred since the last CCMgtGet(CongestionLog). This indica-
tion for each SL is returned in the Trigger_Threshold Log informa-
tion in the ThresholdCongestionEventMap field (see Table 508
CongestionLog (CA) on page 1658).

• When the ThresholdCongestionEventMap has been returned in a
CCMgtGetResp(CongestionLog) it shall be set to zero. It is possi-
ble for a packet to get lost, and thus lose the current information.

• If multiple notification events occur in quick succession, it may not
be possible to log all the events, in which case a CA will log as
many as may be practical (best effort).

• When a CA is configured to control congestion on a port SL, the
following entry fields shall be maintained:-

• SL

• Remote LID

• Timestamp

CA10-43: A CA that supports congestion control shall provide a Conges-
tion Threshold Event Notification Log for each port.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1647 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-44: The Congestion Threshold Event Notification Log shall be a cy-
clic buffer of sixteen entries.

CA10-45: A CA shall detect when the CCTI for a flow is increased and be-
comes equal to the Trigger Threshold. When this is detected the CA shall
generate a threshold event.

CA10-46: A CA shall place at least one entry in the Congestion Threshold
Event Notification Log when it detects that one or more threshold events
have occurred.

CA10-47: A CA shall maintain a free running 32-bit timer for log entries
that increments in 1.024 µsec steps and is derived from the link bit rate.

CA10-48: The Congestion Threshold Event Notification Log shall contain
the information defined in Table 508 CongestionLog (CA) on page 1658.

CA10-49: In a Congestion Threshold Event Notification Log, entries that
are older than the maximum timestamp wrapping twice, shall be returned
as zero.

A10.2.2.3 CA PERFORMANCE COUNTERS

A congestion-control-capable CA supports the following sampled perfor-
mance counters on each port.

• The number of packets received with a FECN mark (PortPktRcv-
FECN).

• The number of CNPs/ACKs received with a BECN mark (PortPk-
tRcvBECN).

• The number of packets for a specified SL received with a FECN mark
(PortSLRcvFECN).

• The number of CNPs/ACKs for a specified SL received with a BECN
mark (PortSLRcvBECN).

CA10-50: A CA that supports congestion control shall provide the sam-
pled performance counters defined in A10.5.4 PortRcvConCtrl on page
1668, A10.5.5 PortSLRcvFECN on page 1669 and A10.5.6 PortSL-
RcvBECN on page 1671.

A10.3 PACKET FORMATS

A10.3.1 BTH: FECN AND BECN LOCATIONS

The following table shows the BTH and where the FECN and
BECN will reside. The FECN & BECN bits are in the area of the
BTH that is not covered by the iCRC.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1648 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 493 BTH Header

B (BECN): 0 indicates that no congestion was encountered, 1 in-
dicates that the packet indicated by this header was subject to for-
ward congestion. The B bit is set in an ACK or CN BTH.

F (FECN): 0 indicates that it probably did not go through a point of
congestion, 1 indicates that the packet went through a point of
congestion.

A10.3.2 CONGESTION NOTIFICATION PACKET (CNP) FORMAT

Figure 323 Congestion Notification packet format

Notes:

a) The Lver-field of the LRH must be set to 0x0. To be transparent to
version 1.1 and earlier switches.

b) The BECN bit of the BETH will be set (see BTH bit settings
above).

c) CNP opcode of 0b’10000000.

d) The QP field in the BTH will be set to the source QP of the packet
marked with a FECN:-

For UD the QP is obtained from the DETH.

For UC and RC the QP is obtained from the QP context.

For RD the QP is obtained from the EE context.

e) The PSN will be set to 0 and ignored by the receiver.

f) The P_Key will be the same as the BTH of the packet marked
with a FECN.

g) The Tver in the BTH will be set to 0x0

bits
bytes

31-24 23-16 15-8 7-0

0-3 Opcode SE M Pad TVER Partition Key

4-7 F B Reserved 6 Destination QP

(masked in the iCRC)

8-11 A Reserved 7 PSN - Packet Sequence Number

Local Routing
Header

Global Routing
Header

Base Transport
 Header

Invariant
CRC

Variant
CRC

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1649 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

h) The Solicited Event and Migration Required shall not be set.

i) If the original packet contained a GRH, then the CN packet must
contain a GRH. For original packets being RC and UC this infor-
mation is obtained from the QP context, for RD it is obtained from
the EE context and for UD as follows:-

The DGID is copied from the SGID in the GRH of the original
packet.

The FlowLabel and TrafficClass are copied from the original
packet.

HopLimit is set to 0xFF

CA10-51: A congestion control aware device that signals or receives
BECNs, shall support the CN packet format as described in section
A10.3.2 Congestion Notification Packet (CNP) format on page 1648.

A10.4 CONGESTION CONTROL MANAGEMENT

CA10-52: The Congestion Control Management Agent (CCMgtA) is man-
datory on all nodes that support congestion control.

The Congestion Control Management class provides mechanisms to con-
figure congestion control parameters in switches and channel adapters
that support congestion control. It also provides mechanisms for retrieving
information pertaining to congestion events from such devices.

A10.4.1 CONGESTION CONTROL MAD FORMAT

CA10-53: The datagrams for the Congestion Control class shall conform
to the MAD format and used as specified in 13.4 Management Datagrams
on page 627 and further specified in Figure 324 on page 1649 and Table
494 Congestion Control MAD Fields on page 1650.

The management class for the Congestion Control class is 0x21.

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

0

Common MAD Header.....

20

24
CC_Key

28

Figure 324 Congestion Control MAD format

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1650 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.1.1 CC_KEY

In order to authenticate that congestion control MADs originated from a
trusted source, all Congestion Control MADs must include the Congestion
Control Key (CC_Key).

A10.4.1.1.1 CC_KEY ASSUMPTIONS

6) To use the correct key for each node, a CCMgr or a higher level
CC_Key manager keeps track of the keys for the nodes that it is man-
aging.

7) If a backup CCMgr exists, it shares the CC_Keys for ease of fail-over.

8) A CCMgr sets the CC_Key, CC_KeyProtectBit, and
CC_KeyLeasePeriod in the CCKeyInfo Attribute with one CC-
MgtSet(CCKeyInfo) MAD. A successful completion of this as-
signment indicates to a CCMgr that it has taken ownership of the
node.

A10.4.1.1.2 CC_KEY PROTECTION SCOPE

Each Congestion Management Agent in a node has one CC_Key. All ac-
cess from a CCMgr to a CCMgtA are protected by the CC_Key. Table 495

32
Congestion Control Log Data

(otherwise reserved)
...

60

64

CCMgt Data...

252

bytes bits 31-24 bits 23-16 bits 15-8 bits 7-0

Figure 324 Congestion Control MAD format

Table 494 Congestion Control MAD Fields

Field Name Length Description

Common MAD
Header

24 bytes Common MAD header as described in 13.4.2 Management Datagram Format on page
718. MgtClass0x21, ClassVersion=2.

CC_Key 8 bytes Congestion Control key, is used to validate the source of the Congestion Control MADs,
see A10.4.3.4 CongestionKeyInfo on page 1657 for definition and use.

Congestion Control
Log Data

32 bytes 32 bytes of CCMgt payload for congestion control log MADs. This data may extend into
the CCMgt Data field below. See A10.4.3.5 CongestionLog on page 1657 for attribute for-
mat.

CCMgt Data 192
bytes

192 bytes of CCMgt payload. The structure and content depends upon the Method,
Attribute, and Attribute Modifier fields in the MAD header.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1651 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CC_Key Protection Scope on page 1651 shows the scope protected by
the CC_Key.

A10.4.1.1.3 CC_KEY OPERATION

CA10-54: The CCMgtA shall check the CC_Key contained in incoming
MADs of the Congestion Control class.

The success and effect of the check depends on the value of the CCKey-
Info:CC_Key and CCKeyInfo:CC_KeyProtectBit of the CCMgtA and on
the method and attribute contained in the incoming MAD.

CA10-55: If the CC_Key check fails, the CCMgtA shall

• Drop the MAD.
• Increment a CC_Key Violation counter if supported.
• Send a CCKeyViolation trap or generate a

CCKeyViolation Notice.
• Start a countdown timer with the CC_Key lease period

value.
A10.4.1.1.4 CC_KEY INITIALIZATION

CA10-56: At power up or reset, the CCKeyInfo:CC_Key, CCKey-
Info:CC_KeyProtectBit and CCKeyInfo:CC_KeyLeasePeriod shall be set
to zero.

A CCMgr may use CCMgtSet(CCKeyInfo) to assign the subsequent CCK-
eyInfo:CC_Key, CCKeyInfo:CC_KeyProtectBit and CCKey-
Info:CC_KeyLeasePeriod.

Table 495 CC_Key Protection Scope

Source Target Entity Protection

CCMgr Reads and Writes to a CCMgtA yes

Table 496 CC_Key Check

CCMgtA CC_Key CCMgtA CC_Key
Protection Bit MADs method Success

Zero any any yes

non-zero any CCMgtSet() if MADs CC_Key equals CCMgtAs CC_Key

non-zero 0 CCMgtGet() yes

non-zero 1 CCMgtGet() if MADs CC_Key equals CCMgtAs CC_Keya

a. Even though the check succeeds, the CC_Key value in the CCKeyInfo attribute shall be returned as
zero

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1652 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.1.1.5 CC_KEY RECOVERY

CA10-57: The CC_Key lease period timer shall start when a CC_Key
check fails.

When a CC_Key check fails, the node either sends a trap to the CCMgr
or generates a Notice indicating the attempted access. This trap or notice
serves as a request to the CCMgr to refresh the lease period by issuing a
CCMgtSet(CCKeyInfo). A successful CCMgtSet(CCKeyInfo) will stop the
timer and will rearm it.

If the CCMgr that originally set the CC_Key has gone away, then the lease
period expires --- clearing the CCKeyInfo:CC_KeyProtectBit and allowing
a new CCMgr to read (and then set) the CCKeyInfo:CC_Key.

In the case where the TrapLID is zero (because no CCMgr has set it), the
node has no CCMgr to send the trap to. In this case, the node does not
send the trap and the lease period timer will expire, causing eventual take
over by a new CCMgr

With the CCMgtGet(CCKeyInfo), any CCMgr can detect whether a CCK-
eyInfo:CC_Key is set (although hidden) based on the CCKey-
Info:CC_KeyProtectBit. If the CCKeyInfo:CC_KeyProtectBit is set, the
CCKeyInfo:CC_Key is set and hidden. Otherwise the return CCKey-
Info:CC_Key is the real one even if it is zero.

A10.4.1.1.6 LEVELS OF PROTECTION

There are four different protection levels based on the CC_Key, de-
pending on the system requirements.

Table 497 Protection Levels

CC_Key CC_KeyProtectBit CC_KeyLeasePeriod Description

0 any any No Protection provided. Any CCMgr can issue sets and gets

non-zero 0 n/a Protection provided, but allows CCMgrs to read the CCKey-
Info:CC_Key in this mode

non-zero 1 non-zero Protection provided and does not allow anyone to read the
CC_Key in the node until the lease period has expired. The
CC_Key lease period is a mechanism to allow the CC_Key
to be protected only for a given amount of time.

non-zero 1 0 Protection provided and does not allow the CC_Key in the
node to be read by other CCMgrs.
It must be noted that if the lease period was set to 0 (infinite)
and the CCMgr that set it is no longer operational, there is
no possibility for other CCMgrs to ever read it. So if the
CC_Key is not provided by some unspecified way to the
other CCMgrs, the CCMgtA of this node will never be acces-
sible again

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1653 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.1.2 CONGESTION CONTROL LOG DATA

For the CongestionLog attribute, the payload is 224 bytes, starting at byte
32 and extending into the CCMgt Data field. For attributes other than Con-
gestionLog, the contents of the Congestion Control Log Data field is re-
served.

A10.4.1.3 CCMGT DATA

For attributes other than CongestionLog, the payload is 192 bytes,
starting at byte 64.

A10.4.2 METHODS

The Congestion Control Class uses a subset of the common methods de-
scribed in 13.4.5 Management Class Methods on page 721.

CA10-58: Congestion Control shall support the methods listed in Table
498 Congestion Control Methods on page 1653. All method type values
not listed in the Table are reserved.

A10.4.3 ATTRIBUTES

CA10-59: A Congestion Control Management Agent shall support the at-
tributes listed in Table 499 Congestion Control Attributes on page 1653.
All attributes not listed in Table 499 Congestion Control Attributes on
page 1653 are reserved.

The attributes are described in detail in the sections following the table.

Table 498 Congestion Control Methods

Method Type Value Description

CCMgtGet() 0x01 Request (read) a class specific information attribute.

CCMgtSet() 0x02 Request (write) that a class specific information attribute be set.

CCMgtGetResp() 0x81 Response from a Get() or Set() request.

CCMgtTrap() 0x05 Unsolicited datagram sent to the Congestion Control Management entity. Contains the Notice
Attribute as defined in A10.4.3.2 Traps and Notices on page 1655 to identify the trap.

CCMgtTrapRepress() 0x07 Block repetition of notification.

Table 499 Congestion Control Attributes

Attribute Name Attribute
ID

Attribute
Modifier Description Applicable

to

ClassPortInfo 0x0001 0x00000000 Provides information about the CCMgt Agent. See
A10.4.3.1 ClassPortInfo on page 1655. Switch & CA

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1654 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Notice 0x0002 0x00000000 Provides Trap details. See A10.4.3.2 Traps and
Notices on page 1655. Switch & CA

CongestionInfo 0x0011 0x00000000
Provides information about the congestion
capability of a device. See A10.4.3.3
CongestionInfo on page 1657.

Switch & CA

CongestionKeyInfo 0x0012 0x00000000
Provides CC_Key information for a port. Note: For
a switch this is only applicable to port 0. See
A10.4.3.4 CongestionKeyInfo on page 1657.

Switch & CA

CongestionLog 0x0013 0x00000000 Returns CA or switch congestion log. See
A10.4.3.5 CongestionLog on page 1657. Switch & CA

SwitchCongestionSetting 0x0014 0x00000000
Default buffer thresholds at which packet marking
should occur, and device specific fields. See
A10.4.3.6 SwitchCongestionSetting on page 1659.

Switch

SwitchPortCongestionSetting 0x0015 Block
Identifier

Provides the trigger levels, packet_size, and credit
return rate controls for a port. See A10.4.3.7
SwitchPortCongestionSetting on page 1661.

Switch

CACongestionSetting 0x0016 0x00000000
Provides rate control reduction and logging
settings. See A10.4.3.8 CACongestionSetting on
page 1662.

CA

CongestionControlTable 0x0017 Sequence
Number

Indicates the starting element of the table for this
request. See A10.4.3.9 CongestionControlTable
on page 1664.

CA

TimeStamp 0x0018 0x00000000 Returns the current timer value from a device. See
A10.4.3.10 TimeStamp on page 1666. Switch & CA

Table 500 Congestion Control Attribute / Method Map

Attribute Name CCMgtGet() CCMgtSet() CCMgtTrap() CCMgtTraprepress

ClassPortInfo X

Notice X X X X

CongestionInfo X

CongestionKeyInfo X X

CongestionLog X

SwitchCongestionSetting X X

SwitchPortCongestionSetting X X

CACongestionSetting X X

CongestionControlTable X X

TimeStamp X

Table 499 Congestion Control Attributes (Continued)

Attribute Name Attribute
ID

Attribute
Modifier Description Applicable

to

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1655 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.1 CLASSPORTINFO

CA10-60: A CCMgtA shall support ClassPortInfo as described in 13.4.8.1
ClassPortInfo on page 734.

The ClassPortInfo attribute is described in 13.4.8.1 ClassPortInfo on page
734. There are no Class-specific bits for the Congestion Control Class-
PortInfo:CapabilityMask. See Table 501 Congestion Control ClassPort-
Info:CapabilityMask on page 1655.

A10.4.3.2 TRAPS AND NOTICES

Notice and Trap Queues allow a CCMgtA to inform a Congestion Manager
of a CC_Key violation.

CA10-61: A Congestion Control Management Agent shall support either
a Trap or a Notice Queue.

It is expected that a Congestion Manager will be capable of supporting
both Trap and Notice Queues.

Traps and Notice Queues are described in detail in 13.4.9 Traps on page
741 and 13.4.10 Notice Queue on page 743. Congestion Control will use
the common framework and this section serves only to describe behavior
that is unique to the Congestion Control Class.

.

Table 501 Congestion Control ClassPortInfo:CapabilityMask

Bits Name Meaning

0-7 - Common bits as defined in 13.4.8.1 ClassPortInfo on page 734.

8 EnhancedPort0CC Switch only: set if the EnhacedPort0 supports CA Congestion Control. (Note a switch
can support Congestion control on data ports without supporting it on EnhancedPort0)

9-15 - Reserved

Table 502 Congestion Control Traps

Name Type Number Details

CC_KeyViolation Security 0x0000 See Table 503 Notice details for Trap 0x0000 CC_KeyViolation on page
1656

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1656 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

oA10-6: If the CCMgtA supports Traps, then the CCMgtA shall only use
the Type and Number listed in Table 502 Congestion Control Traps on
page 1655

oA10-7: If the CCMgtA supports Traps as indicated in ClassPortInfo, then
the CCMgtA shall set the CC_KeyViolation notice as specified in Table
503 Notice details for Trap 0x0000 CC_KeyViolation on page 1656 Fields
shall be filled with the information corresponding to the description of the
trap.

oA10-8: If the CCMgtA supports Notices as indicated in ClassPortInfo,
then the CCMgtA shall post the CC_KeyViolation notice as specified in
Table 503 Notice details for Trap 0x0000 CC_KeyViolation on page 1656
to the notice queue when a CC_Key mismatch is detected.

oA10-9: The notice shall only be visible on the port that detected the
CC_Key mismatch.

Table 503 Notice details for Trap 0x0000 CC_KeyViolation

Component Length (Bits) Description

Source LID 16 Source Local Identifier, from the LRH of the offending MAD.

Method 8 Method, from Common MAD Header of the offending MAD.

Reserved 8 Reserved

Attribute ID 16 Attribute ID, from Common MAD Header of the offending MAD.

Attribute Modifier 32 Attribute Modifier, from Common MAD Header of the offending MAD.

Reserved 8 Reserved

QP 24 Destination Queue Pair number from the BTH of the offending MAD.

CC_Key 64 Congestion Control Key specified in the offending MAD.

Source GID 128 The Source Global Identifier from the GRH of the offending MAD.
If no GRH is present in the offending packet, this field shall be binary zeroes.

Padding 192 Shall be ignored on read. Content is unspecified.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1657 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.3 CONGESTIONINFO

The CongestionInfo attribute provides the Congestion Control Manager
with information on the capabilities of the node. This attribute is supported
by both CAs and switches.

A10.4.3.4 CONGESTIONKEYINFO

The CongestionKeyInfo attribute is used by the Congestion Control Man-
ager to set and retrieve the node’s CC_Key and protection properties.

A10.4.3.5 CONGESTIONLOG

The CongestionLog attribute provides the Congestion Control Manager
with information on congestion events detected at congestion control ca-

Table 504 CongestionInfo

Component Access Length
(bits)

Offset
(bits) Description

CongestionInfo RO 16 0 • Bit0 = 1: Supports Credit Starvation (switch only)
• Bit0 = 0: Does not support Credit Starvation
All other bits are reserved

ControlTableCap RO 8 16 Number of 64 entry blocks in the CongestionControlTable. At
least two 64 entry blocks must be supported. (CA only)

Table 505 CongestionKeyInfo

Component Access Length
(bits)

Offset
(bits) Description

CC_Key RW 64 0 The 8-byte CC_Key used in all CongestionControl MADs by all
valid CCMgrs. A value of 0 means that no CC_Key check is ever
performed by the CCMgtA.

CC_KeyProtectBit RW 1 64 See A10.4.1.1.6 Levels of Protection on page 1652 for details.

Reserved RW 15 65 Reserved

CC_KeyLeasePeriod RW 16 80 Timer value used to indicate how long the CC_KeyProtectBit is
to remain non zero after a CCMgtSet(CCKeyInfo) MAD that
failed a CC_Key check is dropped. The value of the timer indi-
cates the number of seconds for the lease period. With a 16 bit
counter, the period can range from 1 second to approximately 18
hours. 0 shall mean infinite.

CC_KeyViolations RO 16 96 Number of MADs that have been received at this node since
power-on or reset that have been dropped due to a failed
CC_Key check if such a counter is implemented. Otherwise it
shall be 0xFFFF.
When the CCMgr sets this component to 0x0000, the counter is
reset to 0x0000 and counting resumes. Setting the counter to a
value other than zero results in the counter being left
unchanged.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1658 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

pable switches and CAs. For switches, it returns a map of ports that
marked packets within a specified time window. For CAs, it returns a map
of SLs that have hit their threshold within a specified time window.

Table 506 CongestionLog (switch)

Component Access Length
(bits)

Offset
(bits) Description

Logtype RO 8 0 = 0x1 Switch

CongestionFlags RO 8 8 Bit 0 = 1, CC_Key lease period timer active.
Bit 0 = 0, CC_Key lease period timer inactive.
All other bits are reserved.

LogEventsCounter RO 16 16 Number of CongestionLogEvents since log last sent

CurrentTimeStamp RO 32 32 32 bits wraps ~1hr with a 1.024 µsec tick

PortMap RO 256 64 If a bit is set to 1 then the corresponding port has marked packets with
a FECN.
Bit 0: reserved
Bit 1: port 1
...
Bit 254: port 254
Bit 255: reserved

CongestionEntryList RO 1440 320 Contains an array of the twenty most recent CongestionLogEvent
entries. (See Table 507 on page 1658.)

Table 507 CongestionLogEvent (switch)

Component Access Length
(bits)

Offset
(bits) Description

SLID RO 16 0 Source LID of congestion event

DLID RO 16 16 Destination LID of congestion event

SL RO 4 32 Service level of congestion event

Reserved RO 4 36 reserved

Timestamp RO 32 40 Timestamp of congestion event

Table 508 CongestionLog (CA)

Component Access Length
(bits)

Offset
(bits) Description

LogType RO 8 0 = 0x2 CA

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1659 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.6 SWITCHCONGESTIONSETTING

The Congestion Control Manager uses the SwitchCongestionSetting at-
tribute to program and retrieve the switch’s congestion settings. This al-
lows the CCMgr to control such attributes as how aggressively the switch

CongestionFlags RO 8 8 Bit 0 = 1, CC_Key lease period timer active.
Bit 0 = 0, CC_Key lease period timer inactive.
All other bits are reserved.

ThresholdEventCounter RO 16 16 Number of events since log last sent.

ThresholdCongestion-
EventMap

RO 16 32 Contains an array of sixteen bits, one for each SL.
• If set to 1b, at least one event has occurred on this SL before the
timestamp wrapped twice.
• If set to 0b, no events have occurred on this SL for a period equal to
twice the maximum timestamp.

CurrentTimeStamp RO 16 48 Timestamp when log sent

CongestionLogEvent RO 1664 64 Contains an array of the sixteen most recent CongestionLogEvent
entries. (See Table 509 on page 1659.)

Table 509 CongestionLogEvent (CA)

Component Access Length
(bits)

Offset
(bits) Description

Local_QP_CN_Entry RO 8 0 Local QP that reached CN Threshold. Set to zero if port
threshold reached

Remote_QP_Number_CN_Entry RO 24 8 Remote QP that is connected to local QP. Set to zero for
datagram QPs.

SL_CN_Entry RO 4 32 Service Level associated with local QP

Service_Type_CN_Entry RO 4 36 Service Type of local QP
• b’0000’ - RC
• b’0001’ - UC
• b’0010’ - RD
• b’0011’ - UD

Remote_LID_CN_Entry RO 32 40 LID of remote port that is connected to local QP. Set to zero
for datagram service.

Timestamp_CN_Entry RO 32 72 Timestamp when threshold reached.

Table 508 CongestionLog (CA) (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1660 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

marks congested packets, whether packets which are the victim of con-
gestion are marked, and credit starvation.

Table 510 SwitchCongestionSetting

Component Access Length
(bits)

Offset
(bits) Description

Control_Map RW 32 0 Indicates which components of this attribute are valid
• bit 0: a 1 indicates that the victim mask is valid.
• bit 1: a 1 indicates that the credit mask is valid.
• bit 2: a 1 indicates that the Threshold and Packet_Size components are
valid.
• bit 3: a 1 indicates that the CS_threshold and CS_ReturnDelay compo-
nents are valid.
• bit 4: a 1 indicates that the Marking_Rate is valid.
all other bits reserved.

Victim_Mask RW 256 32 If the bit set to 1, then the port corresponding to that bit shall mark packets
that encounter congestion with a FECN, whether they are the source or
victim of congestion. (See A10.2.1.1.1 Root vs. Victim on page 1638.)
• bit 0: port 0 (enhanced port 0 only)
• ...
• bit 254: port 254
• bit 255: reserved

Credit_Mask RW 256 288 If bit set to 1, then the port corresponding to that bit shall apply Credit
Starvation.
• bit 0: port 0 (enhanced port 0 only)
• ...
• bit 254: port 254
• bit 255: reserved

Threshold RW 4 544 A value that indicates how aggressive congestion marking should be:
• 0x0: No packet marking
• 0x1: Loose
• 0x2:
• ...
• 0xF: Very aggressive
(See A10.2.1.1 Congestion Detection on page 1636.)

Reserved RW 4 548 reserved

Packet_Size RW 8 552 Any packet less than this size will not be marked with a FECN.
This fields units are credits, a value greater than the maximum packet
size will result in no packets being marked with a FECN.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1661 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

This may be used to set the Victim and/or Credit Starvation (CS) Marker
on each of the ports, A seting of the Marker in each case will activate that
functionality on that port. It shall also be used to set a default setting for
Threshold, packet_size, CS _threshold, and CS_ReturnRate, along with
the packet marking rate to the same value on all ports. This is the only way
of setting the marking rate for a switch. The control map will indicate which
attributes are active. A CongestionGet() shall return the latest values set
in a device for each active attribute set in the Control_Map.

All attributes apply to both data ports and port zero, as it is only a switch
that sets a FECN in a packet, except for CS_Threshold and
CS_ReturnDelay, which applies to data ports and enhanced port 0 only.

A10.4.3.7 SWITCHPORTCONGESTIONSETTING

The Congestion Control Manager uses the SwitchPortCongestionSetting
attribute to program and retrieve specific switch port’s congestion set-
tings.

CS_Threshold RW 4 560 • 0x0: No credit starvation
• 0x1: Loose
• 0x2:
• ..
• 0xF: Very aggressive
see A10.2.1.1 Congestion Detection on page 1636

Reserved RW 4 564 reserved

CS_ReturnDelay RW 16 568 The same format as a CCT entry, that controls the credit rate return when
active. See A10.2.2.1.1 CCT Entry Format on page 1643

Marking_Rate RW 16 584 The value that provides the mean number of packets, between marking
eligible packets with a FECN.

Table 510 SwitchCongestionSetting (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 511 SwitchPortCongestionSetting Attribute

Component Access Length(bits) Description

SwitchPortCongestionSetting Block RW 1536 Contains an array of 64 SwitchPortConges-
tionSettingElements. (See Table 512 on
page 1661)

Table 512 SwitchPortCongestionSettingElement

Component Length (bits) Offset (bits) Description

Valid 1 0 When set to 1, indicates this switch port congestion setting element is valid.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1662 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The AttributeModifier is a pointer to a block of 64 Congestion controls for
ports to which this attribute applies. Valid values are from 0 to 3, and are
further limited by the number of ports within a switch.

Any entries in the SwitchPortCongestionSetting Block beyond the number
of ports within a switch will be ignored on write and read back as zero

A10.4.3.8 CACONGESTIONSETTING

The Congestion Control Manager uses the CACongestionSetting attribute
to program and retrieve congestion settings on channel adapters.

Control_Type 1 1 Indicates which type of attribute is being set:
• 0b = Congestion Control parameters are being set.
• 1b = Credit Starvation parameters are being set.

Reserved 2 2 reserved

Threshold 4 4 • When Control_Type=0b, contains the congestion threshold value (Thresh-
old) for this port.
• When Control_Type=1b, contains the credit starvation threshold
(CS_Threshold) value for this port.

• 0x0: None
• 0x1: Loose
• 0x2:
• ...
• 0xF: Very aggressive
See A10.2.1.1 Congestion Detection on page 1636.

Cong_Parm 16 8 • When Control_Type = 0b, this field contains the minimum size of packets
(Packet_Size) that may be marked with a FECN. Packets smaller than this
size will not be marked. The packet size is specified in credits.
• When Control_Type = 1b, this field contains the congestion control return
delay (CS_ReturnDelay). The delay is specified in the same format as a
CCT entry. (See A10.2.2.1.1 CCT Entry Format on page 1643.

Table 512 SwitchPortCongestionSettingElement (Continued)

Component Length (bits) Offset (bits) Description

Table 513 CACongestionSetting

Component Access Length
(bits)

Offset
(bits) Description

Port_Control RW 16 0 Specifies congestion attributes for this port:
• bit 0 = 0; QP based congestion control
• bit 0 = 1; SL/Port based congestion control
All other bits are reserved.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1663 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.8.1 PORT_CONTROL

Port_Control indicates whether congestion control is on an SL/port or a
QP basis.

If it is on a QP basis, each QP on a port will have a unique CCTI, so
BECNs received on one QP will have no effect on other QPs on that same
SL.

If it is on an SL/port basis, all QPs on that same SL, and behind the same
port, will share a common CCTI, so that BECNs received on one QP, will
effect the IRD of all QPs on that SL/port.

A10.4.3.8.2 CONTROL_MAP

The Control_Map identifies which of the sixteen SLs, will be set by this at-
tribute. When set to 1b, the corresponding SL will have its CCTI_Increase,
CCTI_Timer, Trigger_Threshold and CCTI_Min set from the corre-
sponding entries in this attribute.

A10.4.3.8.3 CACONGESTIONENTRYLIST

The CACongestionEntryList is a list of sixteen CACongestionEntries.
Each entry corresponds to a service level, from zero to fifteen.

All sixteen entries must be specified in the attribute, however only entries
with their corresponding Control_Map bit equal to 1b, will be used. Entries
with their Control_Map bit equal to 0b are ignored.

Control_Map RW 16 16 An array of sixteen bits, one for each SL. Each bit indicates
whether or not the corresponding SL entry is to be modified. If 1b,
then the values for the corresponding SL must be set.

CACongestionEntryList RW 640 32 Specifies a list of sixteen CACongestionEntries, one per service
level. (See Table 514 on page 1664.)

Table 513 CACongestionSetting (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1664 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.8.4 CACONGESTIONENTRY

A10.4.3.9 CONGESTIONCONTROLTABLE

The Congestion Control Manager uses the CongestionControlTable at-
tribute to program and retrieve entries in a channel adapter’s Congestion
Control Table. There is a separate Congestion Control Table for each port.

In the case of a switch with enhanced port 0, the “device” beyond the port
may be considered a CA, and this attribute may be used to program its
congestion control table.

A10.4.3.9.1 CCTI_LIMIT

Specifies the maximum value that the CCTI may reach. It is the number
of valid (i.e. defined) CCT entries plus one. The last CCTI_Limit specified
in a MAD will be the one used by the CA.

Note: To determine the maximum number of entries the CA supports,
check the ControlTableCap component of the CongestionInfo attribute.
(See A10.4.3.3 CongestionInfo on page 1657.)

Since a congestion control table may support far more than 64 entries, yet
only 64 may be defined in a single MAD, it is suggested that each MAD
specify a CCTI_Limit which will not allow the CCTI to extend beyond the
valid entries defined up to that point.

Table 514 CACongestionEntry

Component Access Length
(bits)

Offset
(bits) Description

CCTI_Increase RW 8 0 The number to be added to the table Index (CCTI) on the receipt
of a BECN.

CCTI_Timer RW 16 8 When the timer expires it will be reset to its specified value, and 1
will be decremented from the CCTI.

Trigger_Threshold RW 8 24 When the CCTI is equal to this value, an event is logged in the
CA’s cyclic event log.

CCTI_Min RW 8 32 The minimum value permitted for the CCTI. This is used to
impose a minimum injection rate delay on the SL.

Table 515 CongestionControlTable

Component Access Length
(bits)

Offset
(bits) Description

CCTI_Limit RW 16 0 This value indicates the maximum valid CCTI for this table. See
A10.2.2.1.2 Rate Decrease on page 1645.

CCTI_Entry_List RW 1024 16 Specifies a list of up to 64 CongestionControlTableEntries. (See
Table 516 on page 1666.)

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1665 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

So for example, if you were defining a table with 150 entries, the first MAD
sent defines the first 64 entries, and CCTI_Limit is set to 63; the second
MAD would contain the next 64 entries, and CCTI_Limit set to 127 and the
final MAD would contain the remaining 22 entries, and CCTI_Limit set to
149. In this way, if BECNs were being received while the table is being de-
fined, it would not run off the end of the table.

If the tables are reloaded and the resulting CCTI_Limit is found to be lower
than the current CCTI, the CCTI will be set to the CCTI_Limit. This can be
done on a case by case basis, and does not require the CA to check all
its CCTI’s when a CCTI_Limit is lowered.

A10.4.3.9.2 CCTI_ENTRY_LIST

Specifies a list of up to 64 CongestionControlTableEntries. The origin of
these table entries is equal to 64 * attribute modifier + 1. In other words, if
the attribute modifier is 0, then entries 1 - 64 are being defined. If the at-
tribute modifier is 1, then entries 65 - 128 are being defined.

Note: Since these MADs are directed to specific ports, the attribute mod-
ifier is not required to be used to identify the port.

Only entries that are within the range of the CCTI_Limit specified in the
attribute need be specified. In other words, if the CCTI_Limit is 149, and
the attribute modifier is 2 (i.e. entries 129 - 192), then the MAD may be
truncated to contain only 22 entries.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1666 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.4.3.9.3 CONGESTIONCONTROLTABLEENTRY

A10.4.3.10 TIMESTAMP

The TimeStamp attribute allows the Congestion Control Manager to read
a device’s free running timer. This may be used to help synchronize
events from different devices.

A10.5 CONGESTION MANAGEMENT PERFORMANCE COUNTERS

These performance counters may be accessed though a collecting or
polling mechanism. Mechanisms for sampling counters are described in
16.1 Performance Management on page 930.

The following describes the additions to the Component Mask, and other
fields that are currently reserved in the version 1.1 of the specification.

A10.5.1 PORTSAMPLESCONTROL

The following are additions to the PortSamplesControl:OptionMask in
order to enable a device to disclose the congestion management perfor-
mance counters that it supports. (Table 222 PortSamplesControl on page
934)

Table 516 CongestionControlTableEntry

Component Access Length
(bits)

Offset
(bits) Description

CCT_Shift RW 2 0 This is the shft value used when calculating the injection rate
delay. (See A10.2.2.1.1 CCT Entry Format on page 1643.)

CCT_Multiplier RW 14 2 This is the multiplier used when calculating the injection rate
delay (See A10.2.2.1.1 CCT Entry Format on page 1643.).

Table 517 TimeStamp

Component Access Length
(bits)

Offset
(bits) Description

TimeStamp RO 32 0 Free running clock that provides relative time information for a device. Time
is kept in 1.024 µsec units.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1667 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.5.2 COUNTER SELECT VALUES

The following are additions to the CounterSelect Values in order to sup-
port the Congestion Control performance counters. (see Table 223 Coun-
terSelect Values on page 941)

A10.5.3 OPTIONAL PERFORMANCE MANAGEMENT ATTRIBUTES

The following are additions to the optional performance management at-
tributes in order to support the Congestion Control performance metrics.
(see Table 226 Optional Performance Management Attributes on page
950).

Table 518 Addition to PortSamplesControl

Component Access Length
(bits)

Offset
(bits) Description

OptionMask RO 64 96 Bit 49 = PortRcvConCtrl:PortPktRcvFECN
Bit 50 = PortRcvConCtrl:PortPktRcvBECN
Bit 51 = PortSLRcvFECN:PortSLPktRcvFECN[n]
Bit 52 = PortSLRcvBECN:PortSLPktRcvBECN[n]
Bit 53 = PortXmitConCtrl:PortXmitTimeCong
Bit 54 = PortVLXmitTimeCong:PortVLXmitTimeCong[n]

Table 519 Additional CounterSelect Values

Sample
Select
Value

Name Description

0x5001 PortRcvConCtrl:PortPktRcvFECN See Table 522 PortRcvConCtrl on page 1669

0x5002 PortRcvConCtrl:PortPktRcvBECN See Table 522 PortRcvConCtrl on page 1669

0x5n03 PortSLRcvFECN:PortSLPktRcvFECN[n] See Table 523 PortSLRcvFECN on page 1670

0x5n04 PortSLRcvBECN:PortSLPktRcvBECN[n] See Table 524 PortSLRcvBECN on page 1671

0x5005 PortXmitConCtrl:PortXmitTimeCong See Table 525 PortXmitConCtrl on page 1673

0x5n06 PortVLXmitDataRoot:PortVLXmitTimeCong[n] See Table 526 PortVLXmitTimeCong on page
1673

Table 520 Additional Optional Performance Management Attributes

Attribute Name Attribute ID Attribute Modifier Description

PortRcvConCtrl 0x0031 0x00000000 See A10.5.4 PortRcvConCtrl on page 1668

PortSLRcvFECN 0x0032 0x00000000 See A10.5.5 PortSLRcvFECN on page 1669

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1668 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The following are additions to the optional performance management at-
tribute / method map in order to support the congestion control perfor-
mance metrics. (see Table 227 Optional Performance Management
Attribute / Method Map on page 951).

A10.5.4 PORTRCVCONCTRL

The PortRcvConCtrl provides a mechanism for counting the number of
packets received by a CA marked with a FECN or BECN. This counter is
only provided by a congestion-control-capable CA.

PortSLRcvBECN 0x0033 0x00000000 See A10.5.6 PortSLRcvBECN on page 1671

PortXmitConCtrl 0x0034 0x00000000 See A10.5.7 PortXmitConCtrl on page 1673

PortVLXmitTimeCong 0x0035 0x00000000 See A10.5.8 PortVLXmitTimeCong on page 1673

Table 520 Additional Optional Performance Management Attributes (Continued)

Attribute Name Attribute ID Attribute Modifier Description

Table 521 Additional Optional Performance Management Attribute / Method Map

Attribute Name PerformanceGet() PerformanceSet()

PortRcvConCtrl X X

PortSLRcvFECN X X

PortSLRcvBECN X X

PortXmitConCtrl X X

PortVLXmitTimeCong X X

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1669 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.5.5 PORTSLRCVFECN
The PortSLRcvFECN provides a mechanism for counting the number of
packets received by a CA marked with a FECN on each SL. This counter
is only provided by a congestion-control-capable CA.

Table 522 PortRcvConCtrl

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl on page
934, for which the statistics are reported. Statistics are accumulated for
all SL’s on a port.
If gathering data from all ports at once is supported (see Table 221 Per-
formance Management ClassPortInfo:CapabilityMask on page 933),
setting PortSelect to 0xFF will cause data from all valid ports to be
accumulated.
When Selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by the val-
ues specified in their respective fields. When reading (Get), this is
ignored.
Bit 0 - PortPktRcvFECN
Bit 1 - PortPktRcvBECN

PortPktRcvFECN RW 32 32 Total number of packets received at the port that contain a FECN mark
in the BTH.

PortPktRcvBECN RW 32 64 Total number of packets received at the port that contain a BECN mark
in the BTH.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1670 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 523 PortSLRcvFECN

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl on page
934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table 221 Per-
formance Management ClassPortInfo:CapabilityMask on page 933),
setting PortSelect to 0xFF will cause data from all valid ports to be accu-
mulated.
When Selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by the values
specified in their respective fields. When reading (Get), this is ignored.
Bit 0 - PortSLRcvFECN0
Bit 1 - PortSLRcvFECN1
Bit 2 - PortSLRcvFECN2
Bit 3 - PortSLRcvFECN3
Bit 4 - PortSLRcvFECN4
Bit 5 - PortSLRcvFECN5
Bit 6 - PortSLRcvFECN6
Bit 7 - PortSLRcvFECN7
Bit 8 - PortSLRcvFECN8
Bit 9 - PortSLRcvFECN9
Bit 10 - PortSLRcvFECN10
Bit 11 - PortSLRcvFECN11
Bit 12 - PortSLRcvFECN12
Bit 13 - PortSLRcvFECN13
Bit 14 - PortSLRcvFECN14
Bit 15 - PortSLRcvFECN15

PortSLRcvFECN0 RW 32 32 Number of packets received on SL0 at the port that contain a FECN
mark in the BTH.

PortSLRcvFECN1 RW 32 64 Similar count for SL1

PortSLRcvFECN2 RW 32 96 Similar count for SL2

PortSLRcvFECN3 RW 32 128 Similar count for SL3

PortSLRcvFECN4 RW 32 160 Similar count for SL4

PortSLRcvFECN5 RW 32 192 Similar count for SL5

PortSLRcvFECN6 RW 32 224 Similar count for SL6

PortSLRcvFECN7 RW 32 256 Similar count for SL7

PortSLRcvFECN8 RW 32 288 Similar count for SL8

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1671 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.5.6 PORTSLRCVBECN
The PortSLRcvBECN provides a mechanism for counting the number of
packets received by a CA marked with a BECN on each SL. This counter
is only provided by a congestion-control-capable CA.

PortSLRcvFECN9 RW 32 320 Similar count for SL9

PortSLRcvFECN10 RW 32 352 Similar count for SL10

PortSLRcvFECN11 RW 32 384 Similar count for SL11

PortSLRcvFECN12 RW 32 416 Similar count for SL12

PortSLRcvFECN13 RW 32 448 Similar count for SL13

PortSLRcvFECN14 RW 32 480 Similar count for SL14

PortSLRcvFECN15 RW 32 512 Similar count for SL15

Table 523 PortSLRcvFECN (Continued)

Component Access Length
(bits)

Offset
(bits) Description

Table 524 PortSLRcvBECN

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl on page
934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table 221 Per-
formance Management ClassPortInfo:CapabilityMask on page 933), set-
ting PortSelect to 0xFF will cause data from all valid ports to be
accumulated.
When Selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1672 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by the values
specified in their respective fields. When reading (Get), this is ignored.
Bit 0 - PortSLRcvBECN0
Bit 1 - PortSLRcvBECN1
Bit 2 - PortSLRcvBECN2
Bit 3 - PortSLRcvBECN3
Bit 4 - PortSLRcvBECN4
Bit 5 - PortSLRcvBECN5
Bit 6 - PortSLRcvBECN6
Bit 7 - PortSLRcvBECN7
Bit 8 - PortSLRcvBECN8
Bit 9 - PortSLRcvBECN9
Bit 10 - PortSLRcvBECN10
Bit 11 - PortSLRcvBECN11
Bit 12 - PortSLRcvBECN12
Bit 13 - PortSLRcvBECN13
Bit 14 - PortSLRcvBECN14
Bit 15 - PortSLRcvBECN15

PortSLRcvBECN0 RW 32 32 Number of packets received on SL0 at the port that contain a BECN
mark in the BTH.

PortSLRcvBECN1 RW 32 64 Similar count for SL1

PortSLRcvBECN2 RW 32 96 Similar count for SL2

PortSLRcvBECN3 RW 32 128 Similar count for SL3

PortSLRcvBECN4 RW 32 160 Similar count for SL4

PortSLRcvBECN5 RW 32 192 Similar count for SL5

PortSLRcvBECN6 RW 32 224 Similar count for SL6

PortSLRcvBECN7 RW 32 256 Similar count for SL7

PortSLRcvBECN8 RW 32 288 Similar count for SL8

PortSLRcvBECN9 RW 32 320 Similar count for SL9

PortSLRcvBECN10 RW 32 352 Similar count for SL10

PortSLRcvBECN11 RW 32 384 Similar count for SL11

PortSLRcvBECN12 RW 32 416 Similar count for SL12

PortSLRcvBECN13 RW 32 448 Similar count for SL13

PortSLRcvBECN14 RW 32 480 Similar count for SL14

PortSLRcvBECN15 RW 32 512 Similar count for SL15

Table 524 PortSLRcvBECN (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1673 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.5.7 PORTXMITCONCTRL

The PortXmitConCtrl provides a mechanism for counting the amount of
time a switch port is in the congested state. This counter is only provided
by a congestion-control-capable switch.

For a definition of a tick, see Table 222 PortSamplesControl on page 934.

A10.5.8 PORTVLXMITTIMECONG

The PortVLXmitTimeCong provides a mechanism for counting the
amount of time a switch port data VL is in the congested state. This
counter is only provided by a congestion-control-capable switch.

Table 525 PortXmitConCtrl

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl on page
934, for which the statistics are reported. Statistics are accumulated for
all SL’s on a port.
If gathering data from all ports at once is supported (Table 221 Perfor-
mance Management ClassPortInfo:CapabilityMask on page 933), setting
PortSelect to 0xFF will cause data from all valid ports to be accumulated.
When Selecting invalid port values, any results are undefined.

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by the values
specified in their respective fields. When reading (Get), this is ignored.
Bit 0 - PortXmitTimeCong

PortXmitTimeCong RW 32 32 Total number of ticks during which the port selected by PortSelect was in
the congested state on any VL.

Table 526 PortVLXmitTimeCong

Component Access Length
(bits)

Offset
(bits) Description

Reserved RO 8 0 Reserved

PortSelect RW 8 8 Selects the port, as defined in Table 222 PortSamplesControl on
page 934, for which the statistics are reported.
If gathering data from all ports at once is supported (see Table 221
Performance Management ClassPortInfo:CapabilityMask on page
933), setting PortSelect to 0xFF will cause data from all valid ports
to be accumulated.
When Selecting invalid port values, any results are undefined.

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1674 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CounterSelect RW 16 16 When writing (Set), selects which counters are overwritten by the
values specified in their respective fields. When reading (Get), this
is ignored.
Bit 0 - PortVLXmitTimeCong0
Bit 1 - PortVLXmitTimeCong1
Bit 2 - PortVLXmitTimeCong2
Bit 3 - PortVLXmitTimeCong3
Bit 4 - PortVLXmitTimeCong4
Bit 5 - PortVLXmitTimeCong5
Bit 6 - PortVLXmitTimeCong6
Bit 7 - PortVLXmitTimeCong7
Bit 8 - PortVLXmitTimeCong8
Bit 9 - PortVLXmitTimeCong9
Bit 10 - PortVLXmitTimeCong10
Bit 11 - PortVLXmitTimeCong11
Bit 12 - PortVLXmitTimeCong12
Bit 13 - PortVLXmitTimeCong13
Bit 14 - PortVLXmitTimeCong14
Bit 15 - Reserved

PortVLXmitTimeCong0 RW 32 32 Total number of ticks during which the port selected by PortSelect
was in the congested state on VL0.

PortVLXmitTimeCong1 RW 32 64 Similar count for VL1

PortVLXmitTimeCong2 RW 32 96 Similar count for VL2

PortVLXmitTimeCong3 RW 32 128 Similar count for VL3

PortVLXmitTimeCong4 RW 32 160 Similar count for VL4

PortVLXmitTimeCong5 RW 32 192 Similar count for VL5

PortVLXmitTimeCong6 RW 32 224 Similar count for VL6

PortVLXmitTimeCong7 RW 32 256 Similar count for VL7

PortVLXmitTimeCong8 RW 32 288 Similar count for VL8

PortVLXmitTimeCong9 RW 32 320 Similar count for VL9

PortVLXmitTimeCong10 RW 32 352 Similar count for VL10

PortVLXmitTimeCong11 RW 32 384 Similar count for VL11

PortVLXmitTimeCong12 RW 32 416 Similar count for VL12

PortVLXmitTimeCong13 RW 32 448 Similar count for VL13

PortVLXmitTimeCong14 RW 32 480 Similar count for VL14

Table 526 PortVLXmitTimeCong (Continued)

Component Access Length
(bits)

Offset
(bits) Description

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1675 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A10.6 COMPLIANCE SUMMARY

This annex specifies two new compliance categories (see Chapter 20:
Volume 1 Compliance Summary on page 1072 for an explanation of com-
pliance categories and qualifiers). These new categories are:

• CCMgt Switch
• CCMgt CA

A10.6.1 CCMGT SWITCH COMPLIANCE CATEGORY

In order to claim conformance to the InfiniBand Architecture Specification
for the Compliance Category of CCMgt Switch, a product shall meet all
the requirements specified in this section, except for those statements
preceded by Qualifiers that the product does not support. The TRAP and
NOTICE compliance qualifiers defined in chapter 20 apply for this cate-
gory.

There is one further Compliance Qualifier for the CCMgt Switch. It is:

• SCS - A switch supporting Switch Credit Starvation
CA10-1: Valid CC Class response indicates CC support Page 1636
CA10-2: Weight 0 (no marking) . Page 1637
CA10-3: Relationship of weight thresholds . Page 1637
CA10-4: Weights generate 16 thresholds . Page 1637
CA10-5: Root or victim identification . Page 1638
CA10-6: Definition of root of congestion . Page 1638
CA10-7: Definition of victim of congestion. Page 1638
CA10-8: Congestion state & root of congestion Page 1638
CA10-9: Congested state when a victim . Page 1638
CA10-10: Congestion state causing congestion event Page 1639
CA10-11: Mark packets in congestion state . Page 1639
CA10-12: CC and raw packets . Page 1639
CA10-13: Size limit on marking . Page 1639
CA10-14: CC packet marking rate. Page 1639
CA10-15: Congestion Log support . Page 1640
CA10-16: 20 entry Congestion Log . Page 1640
CA10-17: Congestion Log of multiple events . Page 1640
CA10-18: 32 bit free running timer . Page 1640
CA10-19: Switch Congestion Log information. Page 1640
CA10-20: Aging entries in Congestion Log . Page 1640
CA10-21: CC switch sampled counters. Page 1640
oA10-1: SCS: Switch Credit Starvation. Page 1641
oA10-2: SCS: CongestionInfo indicates CS . Page 1641
oA10-3: SCS: Port CS via Credit_Mask . Page 1641
oA10-4: SCS: CS from CS_Threshold . Page 1641
oA10-5: SCS: Port CS by CS_ReturnDelay . Page 1641
CA10-52: CC and CCMgtA . Page 1649
CA10-53: CC MAD format. Page 1649
CA10-54: CCMgtA handling of CC_Key . Page 1651
CA10-55: Failure of CC_Key check . Page 1651
CA10-56: CC_Key and reset/power up . Page 1651
CA10-57: CC_Key lease period timer . Page 1652
CA10-58: CC management methods . Page 1653

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1676 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-59: CC supported attributes . Page 1653
CA10-60: CCMgtA & ClassPortInfo. Page 1655
CA10-61: CCMgtA support for Trap / Notice . Page 1655
oA10-6: Trap: CC Trap format . Page 1656
oA10-7: Trap: CC_KeyViolation Trap . Page 1656
oA10-8: Notice: CC_KeyViolation Notice . Page 1656
oA10-9: Notice: Port CC_Key missmatch & Notice Page 1656

A10.6.2 CCMGT CA COMPLIANCE CATEGORY

In order to claim conformance to the InfiniBand Architecture Specification
for the Compliance Category of CCMgt CA, a product shall meet all the
requirements specified in this section, except for those statements pre-
ceded by Qualifiers that the product does not support. The TRAP and NO-
TICE compliance qualifiers defined in chapter 20 apply for this category.

CA10-1: Valid CC Class response indicates CC support Page 1636
CA10-22: Ignored packets. Page 1642
CA10-23: BECN generation . Page 1643
CA10-24: Number of CNPs to support . Page 1643
CA10-25: Packets with a BECN . Page 1643
CA10-26: BECN in ACK . Page 1643
CA10-27: BECN & ACK Coalescing . Page 1643
CA10-28: Packet scheduling under CC. Page 1643
CA10-29: CC & Static Rate Control. Page 1644
CA10-30: CC requires CCT per port . Page 1644
CA10-31: CCT has minumum 128 entries . Page 1644
CA10-32: CCT entries reported in units of 64 . Page 1644
CA10-33: CCT loaded by CCT attribute . Page 1644
CA10-34: CCT has a CCTI_Limit . Page 1644
CA10-35: Injection Rate setting attribute. Page 1644
CA10-36: CCTI for each QP or port SL flow . Page 1644
CA10-37: CCTI setting attribute . Page 1645
CA10-38: Definition of CCTI_Timer. Page 1645
CA10-39: SL control: CCTI increase . Page 1645
CA10-40: QP control: CCTI increase . Page 1645
CA10-41: CCTI no greater than CCTI_Limit . Page 1645
CA10-42: Decrementing CCTI . Page 1645
CA10-43: Congestion Log per port . Page 1646
CA10-44: Congestion Log has 16 entries . Page 1647
CA10-45: Generating a Threshold Event . Page 1647
CA10-46: Multiple events & Log . Page 1647
CA10-47: 32 bit free running timer . Page 1647
CA10-48: Format of CA Log . Page 1647
CA10-49: Aging entries in Log . Page 1647
CA10-50: CA CC counters . Page 1647
CA10-51: CNP Format . Page 1649
CA10-52: CC and CCMgtA . Page 1649
CA10-53: CC MAD format. Page 1649
CA10-54: CCMgtA handling of CC_Key . Page 1651
CA10-55: Failure of CC_Key check . Page 1651
CA10-56: CC_Key and reset/power up . Page 1651
CA10-57: CC_Key lease period timer . Page 1652
CA10-58: CC management methods . Page 1653
CA10-59: CC supported attributes . Page 1653
CA10-60: CCMgtA & ClassPortInfo. Page 1655

InfiniBandTM Architecture Release 1.2 Congestion Control October 2004
VOLUME 1 - GENERAL SPECIFICATIONS FINAL RELEASE

InfiniBandSM Trade Association Page 1677 Proprietary and Confidential

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CA10-61: CCMgtA support for Trap / Notice . Page 1655
oA10-6: Trap: CC Trap format . Page 1656
oA10-7: Trap: CC_KeyViolation Trap . Page 1656
oA10-8: Notice: CC_KeyViolation Notice . Page 1656
oA10-9: Notice: Port CC_Key missmatch & Notice Page 1656

	Table of Contents
	Chapter 1: Introduction 60
	Chapter 2: Glossary 69
	Chapter 3: Architectural Overview 86
	Chapter 4: Addressing 141
	Chapter 5: Data Packet Format 150
	Chapter 6: Physical Layer Interface 163
	Chapter 7: Link Layer 167
	Chapter 8: Network Layer 222
	Chapter 9: Transport Layer 230
	Chapter 10: Software Transport Interface 430
	Chapter 11: Software Transport Verbs 546
	Chapter 12: Communication Management 650
	Chapter 13: Management Model 709
	Chapter 14: Subnet Management 794
	Chapter 15: Subnet Administration 882
	Chapter 16: General Services 930
	Chapter 17: Channel Adapters 1016
	Chapter 18: Switches 1040
	Chapter 19: Routers 1059
	Chapter 20: Volume 1 Compliance Summary 1072
	Annex A1: I/O Infrastructure 1121
	Annex A2: Console Service Protocol 1140
	Annex A3: Application Specific Identifiers 1173
	Annex A4: Sockets Direct Protocol (SDP) 1195
	Annex A5: Booting Annex 1270
	Annex A6: Boot Information Service 1403
	Annex A7: Configuration Management 1436
	Annex A8: Device Management 1507
	Annex A9: Verb Extensions Annex 1629
	Annex A10: Congestion Control 1630

	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Acknowledgments
	1.2 InfiniBand Conceptual Overview
	1.2.1 The Problem
	1.2.2 Features
	1.2.3 Benefits

	1.3 Scope
	1.4 Document Organization
	1.4.1 Series of Volumes
	1.4.2 Volume 1 Organization

	1.5 Document Conventions
	1.5.1 Byte Ordering
	1.5.2 Numeric Values

	1.6 Disclaimer

	Chapter 2: Glossary
	Chapter 3: Architectural Overview
	3.1 Architecture Scope
	3.1.1 Topologies & Components

	3.2 Communication
	3.2.1 Queuing
	3.2.2 Connections

	3.3 Communications Stack
	3.4 IBA Components
	3.4.1 Links & Repeaters
	3.4.2 Channel Adapters
	3.4.3 Switches
	3.4.4 Routers
	3.4.5 Management Components
	3.4.5.1 Subnet Managers
	3.4.5.2 Subnet Management Agents
	3.4.5.3 General Service Agents

	3.5 IBA Features
	3.5.1 Queue Pairs
	3.5.2 Types of Service
	3.5.3 Keys
	3.5.4 Virtual Memory Addresses
	3.5.5 Protection Domains
	3.5.6 Partitions
	3.5.7 Virtual Lanes
	3.5.8 Quality of Service
	3.5.8.1 Service Level
	3.5.8.2 SL to VL mapping
	3.5.8.3 Partitions

	3.5.9 Injection Rate Control
	3.5.10 Addressing
	3.5.11 Multicast
	3.5.11.1 Multicast Example
	3.5.11.2 Group Management
	3.5.11.2.1 Multicast Group Create
	3.5.11.2.2 Multicast Group Join
	3.5.11.2.3 Multicast Group Leave
	3.5.11.2.4 Multicast Group Delete

	3.5.11.3 Multicast Prune

	3.5.12 Verbs

	3.6 Channel & Memory Semantics
	3.6.1 Communication Interface
	3.6.2 IBA Transport Services

	3.7 IBA Layered Architecture
	3.7.1 Physical Layer
	3.7.2 Link Layer
	3.7.3 Network Layer
	3.7.4 Transport Layer
	3.7.5 Upper Layer Protocols
	3.7.5.1 Subnet Management
	3.7.5.2 General Services

	3.8 IBA Transaction Flow
	3.9 IBA Management Infrastructure
	3.9.1 Management Datagrams
	3.9.2 Management Methods
	3.9.2.1 Gets & Sets
	3.9.2.2 Traps and Notices
	3.9.2.3 Sends
	3.9.2.4 Reports

	3.9.3 Management Interfaces
	3.9.4 Subnet Management Interface
	3.9.4.1 Fabric Initialization
	3.9.4.2 Directed Routes

	3.9.5 General Service Interface
	3.9.5.1 Redirection

	3.10 I/O Operation

	Chapter 4: Addressing
	4.1 Terminology And Concepts
	4.1.1 GID Usage and Properties
	4.1.2 Channel Adapter, Switch, and Router Addressing Rules
	4.1.3 Local Identifiers

	Chapter 5: Data Packet Format
	5.1 Packet Types
	5.2 Data Packet Format
	5.2.1 Local Route Header (LRH) - 8 Bytes
	5.2.2 Global Route Header (GRH) - 40 Bytes
	5.2.3 Base Transport Header (BTH) - 12 Bytes
	5.2.4 Reliable Datagram Extended Transport Header (RDETH) - 4 Bytes
	5.2.5 Datagram Extended Transport Header (DETH) - 8 Bytes
	5.2.6 RDMA Extended Transport Header (RETH) - 16 Bytes
	5.2.7 Atomic Extended Transport Header (AtomicETH) - 28 Bytes
	5.2.8 ACK Extended Transport Header (AETH) - 4 Bytes
	5.2.9 Atomic ACK Extended Transport Header (AtomicAckETH) - 8 Bytes
	5.2.10 Immediate Data Extended Transport Header (ImmDt) - 4 Bytes
	5.2.11 INVALIDATE EXTENDED TRANSPORT HEADER (IETH) - 4 BYTES
	5.2.12 Payload
	5.2.13 Invariant CRC
	5.2.14 Variant CRC

	5.3 Raw Packet Format
	5.4 Packet Examples

	Chapter 6: Physical Layer Interface
	6.1 Overview
	6.2 Services provided by the Physical Layer.
	6.3 Interface between physical and Link Layers.
	6.3.1 Interface between physical receive and link receive.
	6.3.1.1 Phy_link - Physical Link Status
	6.3.1.2 L_Init_Train - Link Initiate Retraining
	6.3.1.3 rcv_stream - Receive Stream

	6.3.2 Interface between physical Transmit and link Transmit.
	6.3.2.1 Xmit_stream - Transmit Stream
	6.3.2.2 Xmit_Ready - Physical Transmitter Ready

	Chapter 7: Link Layer
	7.1 Overview
	7.1.1 State Machine Conventions

	7.2 Link States
	7.2.1 LinkDown State
	7.2.2 LinkInitialize State
	7.2.3 LinkArm State
	7.2.4 LinkActive State
	7.2.5 LinkActDefer State
	7.2.6 Management State Change Commands
	7.2.7 State Machine Terms

	7.3 Packet Receiver States
	7.4 Data Packet Check
	7.5 Link Packet Check
	7.6 Virtual Lanes Mechanisms
	7.6.1 VL identification
	7.6.2 Number of VLs supported
	7.6.3 Special VLs
	7.6.4 Buffering and Flow Control For Data VLs
	7.6.5 Service Level
	7.6.6 VL Mapping Within a Subnet
	7.6.7 Initialization and Configuration
	7.6.8 VL Scheduling and Flow Control For VL15 and Flow Control Packets
	7.6.9 VL Arbitration and Prioritization
	7.6.9.1 VL Arbitration When Only One Data VL Is Implemented
	7.6.9.2 VL Arbitration When Multiple Data VL s Are Implemented
	7.6.9.2.1 Arbitration Rules Between VL15, Link Control and Data VL Packets
	7.6.9.2.2 Arbitration Rules for Data VL Packets
	7.6.9.2.3 Arbitration Rules Between High and Low Priority Components
	7.6.9.2.4 Arbitration Rules Within the High and Low components

	7.7 Local Route Header
	7.7.1 Virtual Lane (VL) - 4 bits
	7.7.2 Link Version (LVer) - 4 bits
	7.7.3 Service Level (SL) - 4 bits
	7.7.4 Reserve - 2 bits
	7.7.5 Link Next Header (LNH) - 2 bits
	7.7.6 Destination Local Identifier (DLID) - 16 bits
	7.7.7 Reserve - 5 bits
	7.7.8 Packet Length (PktLen) - 11 bits
	7.7.9 Source Local Identifier (SLID) - 16 bits

	7.8 CRCs
	7.8.1 Invariant CRC (ICRC) - 4 Bytes
	7.8.2 Variant CRC (VCRC) - 2 Bytes
	7.8.3 Link Packet CRC (LPCRC) - 2 Bytes
	7.8.4 CRC Calculation Samples
	7.8.4.1 ICRC Generator
	7.8.4.2 VCRC Generator
	7.8.4.3 Sample Packets
	7.8.4.3.1 Local Packet Example
	7.8.4.3.2 Global Packet Example
	7.8.4.3.3 Link Packet Example

	7.9 Flow Control
	7.9.1 Introduction
	7.9.2 Flow Control Blocks
	7.9.3 Relationship to Virtual Lanes
	7.9.4 Flow Control Packet
	7.9.4.1 Flow Control Packet Fields
	7.9.4.1.1 Operand (Op) - 4 Bits
	7.9.4.1.2 Flow Control Total Blocks Sent (FCTBS) - 12 Bits
	7.9.4.1.3 Flow Control Credit Limit (FCCL) -12 Bits
	7.9.4.1.4 Virtual Lane (VL) - 4 Bits
	7.9.4.1.5 Link Packet Cyclic Redundancy Check (LPCRC) - 16 Bits

	7.9.4.2 Calculation of FCTBS
	7.9.4.3 Calculation of FCCL
	7.9.4.4 Transmission of Packets

	7.10 IBA and Raw Packet Multicast
	7.10.1 Overview
	7.10.2 IBA Unreliable Multicast Operational Rules
	7.10.3 Raw Packet Multicast
	7.10.3.1 Raw Multicast Operational Rules

	7.10.4 Group Management

	7.11 Subnet Multipathing
	7.11.1 Multipathing Requirements on end node

	7.12 Error detection and handling
	7.12.1 Error Detection
	7.12.2 Error Recovery Procedures
	7.12.3 Error Notification

	Chapter 8: Network Layer
	8.1 Overview
	8.2 Packet Routing
	8.2.1 Overview
	8.2.2 Global Fabric Characteristics
	8.2.2.1 Inheritance of Subnet Requirements
	8.2.2.2 Packet Errors and Error Detection
	8.2.2.3 Service Levels

	8.2.3 Support for Multiple Global Paths
	8.2.4 Global Multicast

	8.3 Global Route Header
	8.3.1 IP Version (IPVer) - 4 bits
	8.3.2 Traffic Class (TClass) - 8 bits
	8.3.3 Flow Label (FlowLabel) - 20 bits
	8.3.4 Payload Length (PayLen) - 16 bits
	8.3.5 Next Header (NxtHdr) - 8 bits
	8.3.6 Hop Limit (HopLmt) - 8 bits
	8.3.7 Source Global Identifier (SGID) - 128 bits
	8.3.8 Destination Global Identifier (DGID) - 128 bits

	8.4 Global Route Header Usage
	8.4.1 Global Route Header Generation
	8.4.2 Global Route Header Modification
	8.4.3 Global Route Header Verification

	Chapter 9: Transport Layer
	9.1 Overview
	9.2 Base Transport Header
	9.2.1 Operation Code (OpCode)
	9.2.2 Reserved Transport Function OpCodes
	9.2.3 Solicited Event (SE) - 1 bit
	9.2.4 MigReq (M) - 1 Bit
	9.2.5 Pad Count (PadCnt) - 2 bits
	9.2.6 Transport Header Version (TVer) - 4 bits
	9.2.7 Partition Key (P_Key) - 16 bits
	9.2.8 Destination QP (DestQP) - 24 bits
	9.2.9 Reserve 8 (Resv8) - 8 bits
	9.2.10 AckReq (A) - 1 Bit
	9.2.11 Reserve 7 (resv7) - 7 bits
	9.2.12 Packet Sequence Number (PSN) - 24 bits

	9.3 Extended Transport Headers
	9.3.1 Reliable Datagram Extended Transport Header (RDETH) - 4 Bytes
	9.3.1.1 Reserve - 8 bits
	9.3.1.2 End-to-End (EE) Context - 24 bits

	9.3.2 Datagram Extended Transport Header (DETH) - 8 Bytes
	9.3.2.1 Q_Key - 32 bits
	9.3.2.2 Reserve - 8 bits
	9.3.2.3 Source QP (SrcQP) - 24 bits

	9.3.3 RDMA Extended Transport Header (RETH) - 16 Bytes
	9.3.3.1 Virtual Address (VA) - 64 bits
	9.3.3.2 R_Key - 32 bits
	9.3.3.3 DMA Length (DMAlen) - 32 bits

	9.3.4 ATOMIC Extended Transport Header (AtomicETH) - 28 Bytes
	9.3.4.1 Virtual Address (VA) - 64 bits
	9.3.4.2 R_Key - 32 bits
	9.3.4.3 Swap (Add) Data (SwapDt) - 64 bits
	9.3.4.4 Compare Data (CmpDt) - 64 bits

	9.3.5 ACK Extended Transport Header (AETH) - 4 Bytes
	9.3.5.1 Syndrome
	9.3.5.2 Message Sequence Number (MSN)
	9.3.5.3 ATOMIC Acknowledge Extended Transport Header (AtomicAckETH) - 8 Bytes
	9.3.5.4 Original Remote Data (OrigRemDt) - 64 bits

	9.3.6 Immediate Extended Transport Header (ImmDt) - 4 Bytes
	9.3.7 Invalidate Extended Transport Header (IETH) - 4 Bytes
	9.3.7.1 R_Key - 32 bits

	9.4 Transport Functions
	9.4.1 SEND Operation
	9.4.1.1 Send With Invalidate
	9.4.1.1.1 Invalidate Operation Ordering
	9.4.1.1.2 Responder - R_Key Validation
	9.4.1.1.3 R_Key Validation for Remote Memory Invalidate

	9.4.2 RESYNC Operation
	9.4.3 RDMA WRITE Operation
	9.4.4 RDMA READ Operation
	9.4.5 ATOMIC Operations
	9.4.5.1 Atomicity Guarantees
	9.4.5.2 ATOMIC Acknowledgment Generation and Ordering Rules
	9.4.5.3 Error Behavior

	9.4.6 Reserved and Manufacturer Defined Transport Function OpCodes

	9.5 Transaction Ordering
	9.6 Packet Transport Header Validation
	9.6.1 Validating Header Fields
	9.6.1.1 BTH Checks
	9.6.1.1.1 BTH:TVer Validation
	9.6.1.1.2 BTH:Destination QP, OpCode Check
	9.6.1.1.3 BTH:P_Key

	9.6.1.2 GRH Checks
	9.6.1.2.1 GRH:Next Header
	9.6.1.2.2 GRH:IPVers
	9.6.1.2.3 GRH:SGID, GRH:DGID

	9.6.1.3 RDETH Checks
	9.6.1.3.1 RDETH:EE Context

	9.6.1.4 DETH Checks
	9.6.1.4.1 DETH:Q_Key

	9.6.1.5 LRH Checks
	9.6.1.5.1 LRH:SLID, LRH:DLID
	9.6.1.5.2 IBA Unreliable Multicast Checks

	9.7 Reliable Service
	9.7.1 Packet Sequence Numbers (PSN)
	9.7.1.1 PSN Model for Reliable Service

	9.7.2 ACK/NAK Protocol
	9.7.3 Requester: Generating Request Packets
	9.7.3.1 Requester Side - Generating PSN
	9.7.3.2 Requester - Special Rules for Reliable Datagram
	9.7.3.2.1 RDD Checking
	9.7.3.2.2 RESYNC Generation

	9.7.3.3 Requester - Generating Opcodes
	9.7.3.4 Requester - Generating Payloads

	9.7.4 Responder: Receiving Inbound Request Packets
	9.7.4.1 Responder - Inbound Packet Validation
	9.7.4.1.1 Responder - Special Rules for Reliable Datagram Checking
	9.7.4.1.2 Responder - PSN Verification
	9.7.4.1.3 Responder - OpCode Sequence Check
	9.7.4.1.4 Responder OpCode Validation
	9.7.4.1.5 Responder R_Key Validation
	9.7.4.1.6 Responder - Length Validation
	9.7.4.1.7 Responder Local Operation Validation

	9.7.5 Responder: Generating Responses
	9.7.5.1 Responder Side Behavior
	9.7.5.1.1 Generating PSNs for Acknowledge Messages
	9.7.5.1.2 Coalesced Acknowledge Messages
	9.7.5.1.3 Acknowledging RDMA READ Requests
	9.7.5.1.4 Acknowledging Duplicate Requests
	9.7.5.1.5 Generating NAKs
	9.7.5.1.6 Acknowledge Message Scheduling
	9.7.5.1.7 Response Formats
	9.7.5.1.8 Response Format for SEND, RESYNC or RDMA WRITE Requests
	9.7.5.1.9 RDMA READ Responses

	9.7.5.2 AETH Format
	9.7.5.2.1 End-to-End Flow Control Credit Field
	9.7.5.2.2 NAK Codes
	9.7.5.2.3 PSN Sequence Error
	9.7.5.2.4 Remote Access Error
	9.7.5.2.5 Invalid Request
	9.7.5.2.6 Remote Operational Error
	9.7.5.2.7 Invalid RD Request
	9.7.5.2.8 RNR NAK

	9.7.6 Requester: Receiving Responses
	9.7.6.1 Validating Inbound Response Packets
	9.7.6.1.1 PSNs for Retried Requests
	9.7.6.1.2 Requester Response to a NAK Message
	9.7.6.1.3 Detecting Lost Acknowledge Messages and Timeouts
	9.7.6.1.4 Duplicate Acknowledgements

	9.7.7 Reliable Connections
	9.7.7.1 Generating MSN Value
	9.7.7.1.1 Requester Behavior On Receiving a New MSN

	9.7.7.2 End-to-End (Message Level) Flow Control
	9.7.7.2.1 Transferring Credits from Responder to Requester
	9.7.7.2.2 Negotiating Connections: Initial Credits
	9.7.7.2.3 Responder Algorithm for Calculating Credits
	9.7.7.2.4 Requester Behavior
	9.7.7.2.5 Requester Behavior - Limited Send WQEs

	9.7.8 Reliable Datagram
	9.7.8.1 Reliable datagram Characteristics
	9.7.8.2 Example RD Operations
	9.7.8.2.1 Example Outbound Request
	9.7.8.2.2 Example Inbound Request
	9.7.8.2.3 Example Outbound Acknowledge
	9.7.8.2.4 Example Inbound Acknowledge

	9.7.8.3 Reliable Datagram Operations
	9.7.8.3.1 SEND and RDMA WRITE with Immediate Data processing
	9.7.8.3.2 RDMA READ processing
	9.7.8.3.3 Atomics processing

	9.7.8.4 Ordering Rules
	9.7.8.5 Handling QP errors - RESYNC
	9.7.8.6 Responder Generation of MSN
	9.7.8.6.1 Requester Behavior On Receiving a New MSN

	9.8 Unreliable Service
	9.8.1 Validating and Executing Requests
	9.8.2 Unreliable Connections
	9.8.2.1 Requester Behavior
	9.8.2.1.1 Requester - Generating PSN
	9.8.2.1.2 Requester - Generating Opcodes
	9.8.2.1.3 Requester - Generating Payloads
	9.8.2.1.4 Completing a Message Send or RDMA WRITE

	9.8.2.2 Responder Behavior
	9.8.2.2.1 Responder - Validating the PSN
	9.8.2.2.2 Responder - OpCode Sequence Check
	9.8.2.2.3 Responder OpCode Validation
	9.8.2.2.4 Responder Remote Access Validation
	9.8.2.2.5 Responder - Length Validation
	9.8.2.2.6 Responder - Local Operation Validation
	9.8.2.2.7 Completing a Message Receive

	9.8.3 Unreliable Datagrams
	9.8.3.1 Requester Behavior
	9.8.3.1.1 Generating PSN
	9.8.3.1.2 Completing a Message Send

	9.8.3.2 Responder Behavior
	9.8.3.2.1 Responder - Validating the PSN
	9.8.3.2.2 Responder - Length Validation
	9.8.3.2.3 Responder OpCode Validation
	9.8.3.2.4 Responder - Local Operation Validation
	9.8.3.2.5 Completing a Message Receive

	9.8.4 Raw datagrams
	9.8.4.1 Raw Datagram Packet Size

	9.9 Error detection and handling
	9.9.1 Reporting Errors to the Verbs Layer
	9.9.2 Requester Side Error Behavior
	9.9.2.1 Requester Side Error Detection - Locally Detected Errors
	9.9.2.1.1 Requester Error Retry Counters

	9.9.2.2 Requester Side Error Detection - Remotely Detected Errors
	9.9.2.3 Summary - Requester Side Error Behavior
	9.9.2.4 Requester Side Error Response
	9.9.2.4.1 Requester Class A Fault Behavior
	9.9.2.4.2 Requester Class B Fault Behavior
	9.9.2.4.3 Requester Class C Fault Behavior
	9.9.2.4.4 Requester Class D Fault Behavior
	9.9.2.4.5 Requester Class E Fault Behavior
	9.9.2.4.6 Requester Class F Fault Behavior

	9.9.3 Responder Side Behavior
	9.9.3.1 Responder Side Error Response
	9.9.3.1.1 Responder Class A Fault Behavior
	9.9.3.1.2 Responder Class B Fault Behavior
	9.9.3.1.3 Responder Class C Fault Behavior
	9.9.3.1.4 Responder Class D Fault Behavior
	9.9.3.1.5 Responder Class D1 Fault Behavior
	9.9.3.1.6 Responder Class E Fault Behavior
	9.9.3.1.7 Responder Class F Fault Behavior
	9.9.3.1.8 Responder Class G Fault Behavior
	9.9.3.1.9 Responder Class H Fault Behavior
	9.9.3.1.10 Responder Class J Fault Behavior

	9.10 Header and Data Field Source
	9.10.1 Field source when generating packets
	9.10.2 Transport Connection Parameters
	9.10.3 Packet Header and Data Field Validation

	9.11 Static Rate Control
	9.11.1 Static rate control for Heterogeneous Links

	Chapter 10: Software Transport Interface
	10.1 Overview
	10.1.1 Introduction

	10.2 Managing HCA Resources
	10.2.1 HCA
	10.2.1.1 Opening an HCA
	10.2.1.2 HCA Attributes
	10.2.1.3 Modifying HCA Attributes
	10.2.1.4 Closing an HCA

	10.2.2 Addressing
	10.2.2.1 Source Addressing
	10.2.2.2 Destination Addressing

	10.2.3 Protection Domains
	10.2.3.1 Allocating a Protection Domain
	10.2.3.2 Deallocating a Protection Domain

	10.2.4 Queue Pairs
	10.2.4.1 Creating a Queue Pair
	10.2.4.2 Queue Pair Attributes
	10.2.4.3 Modifying Queue Pair Attributes
	10.2.4.4 Destroying a Queue Pair
	10.2.4.5 Special QPs

	10.2.5 Q_Keys
	10.2.6 Completion Queues
	10.2.6.1 Creating a Completion Queue
	10.2.6.2 Completion Queue Attributes
	10.2.6.3 Modifying Completion Queue Attributes
	10.2.6.4 Destroying a Completion Queue

	10.2.7 End-to-End Contexts
	10.2.7.1 Creating an EE Context
	10.2.7.2 EE Context Attributes
	10.2.7.3 Modifying EE Context Attributes
	10.2.7.4 Destroying an EE Context

	10.2.8 Reliable Datagram Domains
	10.2.8.1 Allocating A Reliable Datagram Domain
	10.2.8.2 Deallocating A Reliable Datagram Domain

	10.2.9 Shared Receive Queue
	10.2.9.1 Motivation for supporting SRQ
	10.2.9.2 Shared Receive Queue Creation
	10.2.9.3 Shared Receive Queue Modification
	10.2.9.4 Shared Receive Queue Destruction
	10.2.9.5 SRQ States

	10.2.10 InfiniBand Header Data and Sources

	10.3 Resource States
	10.3.1 Queue Pair and EE Context States
	10.3.1.1 Reset
	10.3.1.2 Initialized (Init)
	10.3.1.3 Ready to Receive (RTR)
	10.3.1.4 Ready to Send (RTS)
	10.3.1.5 Send Queue Drain (SQD)
	10.3.1.6 Send Queue Error (SQEr)
	10.3.1.7 Error

	10.4 Automatic Path Migration
	10.4.1 Path Migration State Diagram
	10.4.1.1 Migrated
	10.4.1.2 Rearm
	10.4.1.3 Armed

	10.5 Multicast Services
	10.5.1 Multicast Groups and Multicast Message Reception
	10.5.1.1 IBA Unreliable Multicast Reception
	10.5.1.2 Raw Packet Multicast Reception

	10.5.2 Multicast Work Requests
	10.5.2.1 IBA Unreliable Multicast Work Requests
	10.5.2.2 Raw Packet Multicast Work Requests

	10.5.3 Multicast Destination Establishment

	10.6 Memory Management
	10.6.1 Overview
	10.6.2 Memory Registration
	10.6.2.1 Memory Regions
	10.6.2.2 Allocation of Memory Registration Resources
	10.6.2.3 Memory Region Types

	10.6.3 Access to Registered Memory
	10.6.3.1 Local Access to Registered Memory
	10.6.3.2 Remote Access to Registered Memory
	10.6.3.3 Local Access Keys
	10.6.3.4 Remote Access Keys
	10.6.3.5 Protection Domains
	10.6.3.6 Scope of Access
	10.6.3.7 Fast Registration
	10.6.3.8 Multiple Registration of Memory regions

	10.6.4 Addressing Memory
	10.6.4.1 Virtual Addresses (“Pointers”)
	10.6.4.2 Virtual to physical translations
	10.6.4.3 Registration of virtually addressed regions
	10.6.4.3.1 Registration of Zero Based Virtual Address (ZBVA) Memory Regions
	10.6.4.3.2 Reserved L_Key
	10.6.4.3.3 Byte Alignment and Length of Memory Regions
	10.6.4.3.4 Registered Memory Residency

	10.6.4.4 Registration of physically addressed regions
	10.6.4.4.1 Physical Buffer lists

	10.6.4.5 Memory Region Error Checking
	10.6.4.5.1 Error Checking of Local Accesses to Memory Regions
	10.6.4.5.2 Error Checking of Remote Accesses to Memory Regions

	10.6.5 Invalidation of Memory Regions
	10.6.5.1 Invalidation Ordering

	10.6.6 Deregistration of regions
	10.6.7 Memory Access Control
	10.6.7.1 Local Access Control
	10.6.7.2 Remote Access Control
	10.6.7.2.1 Remote Access Directly With Memory Regions
	10.6.7.2.2 Remote Access Through Memory Windows
	10.6.7.2.3 Type 1 Memory Windows
	10.6.7.2.4 Type 2 Memory Windows
	10.6.7.2.5 Rebinding or Deallocating Active Windows
	10.6.7.2.6 Deregistering Regions with Bound Windows
	10.6.7.2.7 Error Checking at Window Bind Time
	10.6.7.2.8 Error Checking at Window Access Time
	10.6.7.2.9 Error Checking at Type 2 Memory Window Invalidate Time

	10.7 Work Requests
	10.7.1 Creating Work Requests
	10.7.2 Work Request Types
	10.7.2.1 Send/Receive
	10.7.2.2 RDMA
	10.7.2.3 Atomic Operations
	10.7.2.4 Bind Memory Windows
	10.7.2.5 Local Invalidate
	10.7.2.6 Fast Register Physical MR

	10.7.3 Work Request Contents
	10.7.3.1 Signaled Completions
	10.7.3.2 Scatter/Gather

	10.8 Work Request Processing Model
	10.8.1 Overview
	10.8.2 Submitting Work Requests to a Work Queue
	10.8.2.1 Submitting A List of Work Requests

	10.8.3 Work Request Processing
	10.8.3.1 Reliable Datagram Ordering Rules
	10.8.3.2 Shared Receive Queue Ordering Rules
	10.8.3.3 Send Queue Ordering Rules

	10.8.4 Completion Processing
	10.8.5 Returning Completed Work Requests
	10.8.5.1 Freed Resource Count
	10.8.5.2 Completion Queue Errors

	10.8.6 Unsignaled Completions
	10.8.7 Asynchronous Completion Notification

	10.9 Partitioning
	10.9.1 Introduction
	10.9.1.1 Limited and Full Membership
	10.9.1.2 Special P_Keys
	10.9.1.3 Operation Across Subnets

	10.9.2 The Partition Key Table (P_Key Table)
	10.9.3 Partition Key Matching
	10.9.4 Bad P_Key Trap and P_Key Violations Counter (Optional)
	10.9.5 CI Partition Support
	10.9.5.1 EE Context (Reliable Datagram) Support
	10.9.5.2 Partition Key Changes

	10.9.6 TCA Partition Support
	10.9.7 Fabric Partition Support
	10.9.8 Partition Enforcement on Management Queue Pairs
	10.9.9 Related Enforcement of Management Message Checking

	10.10 Error Handling Semantics and Mechanisms
	10.10.1 Error Types
	10.10.2 Error Handling Mechanisms
	10.10.2.1 Immediate Errors
	10.10.2.2 Completion Errors
	10.10.2.3 Asynchronous Errors

	10.10.3 Effects of Errors on QP Service Types
	10.10.3.1 Reliable Connection QPs:
	10.10.3.2 Reliable Datagram QPs:
	10.10.3.3 Unreliable Connected QPs:
	10.10.3.4 Unreliable Datagram QPs:
	10.10.3.5 Raw QPs:

	10.10.4 Effects of Transport Layer Errors

	Chapter 11: Software Transport Verbs
	11.1 Verbs Introduction and Overview
	11.1.1 Verb Extensions
	11.1.2 Verb Classes
	11.1.2.1 Mandatory vs. Optional Verbs
	11.1.2.2 Mandatory vs. Optional Verb Functionality
	11.1.2.3 Consumer Accessibility

	11.2 Transport Resource Management
	11.2.1 HCA
	11.2.1.1 Open HCA
	11.2.1.2 Query HCA
	11.2.1.3 Modify HCA Attributes
	11.2.1.4 Close HCA
	11.2.1.5 Allocate Protection Domain
	11.2.1.6 Deallocate Protection Domain
	11.2.1.7 Allocate Reliable Datagram Domain
	11.2.1.8 Deallocate Reliable Datagram Domain

	11.2.2 Address Management Verbs
	11.2.2.1 Create Address Handle
	11.2.2.2 Modify Address Handle
	11.2.2.3 Query Address Handle
	11.2.2.4 Destroy Address Handle

	11.2.3 Shared Receive Queue
	11.2.3.1 Create Shared Receive Queue
	11.2.3.2 Query Shared Receive Queue
	11.2.3.3 Modify Shared Receive Queue
	11.2.3.4 Destroy Shared Receive Queue

	11.2.4 Queue Pair
	11.2.4.1 Create Queue Pair
	11.2.4.2 Modify Queue Pair
	11.2.4.3 Query Queue Pair
	11.2.4.4 Destroy Queue Pair

	11.2.5 Get Special QP
	11.2.6 Completion Queue
	11.2.6.1 Create Completion Queue
	11.2.6.2 Query Completion Queue
	11.2.6.3 Resize Completion Queue
	11.2.6.4 Destroy Completion Queue

	11.2.7 EE Context
	11.2.7.1 Create EE Context
	11.2.7.2 Modify EE Context Attributes
	11.2.7.3 Query EE Context
	11.2.7.4 Destroy EE Context

	11.2.8 Memory Management
	11.2.8.1 Allocate L_Key
	11.2.8.2 Register Memory Region
	11.2.8.3 Register Physical Memory Region
	11.2.8.4 Query Memory Region
	11.2.8.5 Deregister Memory Region
	11.2.8.6 Reregister Memory Region
	11.2.8.7 Reregister Physical Memory Region
	11.2.8.8 Register Shared Memory Region
	11.2.8.9 Allocate Memory Window
	11.2.8.10 Query Memory Window
	11.2.8.11 Bind Memory Window
	11.2.8.12 Deallocate Memory Window

	11.3 Multicast
	11.3.1 Attach QP to Multicast Group
	11.3.2 Detach QP from Multicast Group

	11.4 Work Request Processing
	11.4.1 Queue Pair Operations
	11.4.1.1 Post Send Request
	11.4.1.2 Post Receive Request

	11.4.2 Completion Queue Operations
	11.4.2.1 Poll for Completion
	11.4.2.2 Request Completion Notification

	11.5 Event Handling
	11.5.1 Set Completion Event Handler
	11.5.2 Set Asynchronous Event Handler

	11.6 Result Types
	11.6.1 Immediate Return Results
	11.6.2 Completion Return Status
	11.6.3 Asynchronous Events
	11.6.3.1 Affiliated Asynchronous Events
	11.6.3.2 Affiliated Asynchronous Errors
	11.6.3.3 Unaffiliated Asynchronous Events
	11.6.3.4 Unaffiliated Asynchronous Errors

	11.6.4 Verb Extension Summary

	Chapter 12: Communication Management
	12.1 Overview
	12.2 Establishment
	12.2.1 Quiet Time

	12.3 Automatic Path Migration
	12.4 Release
	12.4.1 Stale Connection

	12.5 Service Types
	12.5.1 Supported Protocols
	12.5.2 Connected Services
	12.5.3 Unreliable Datagram Service
	12.5.4 Reliable Datagram

	12.6 Communication Management Messages
	12.6.1 Required Messages
	12.6.2 Conditionally Required Messages
	12.6.3 Optional Messages
	12.6.4 Message Usage
	12.6.5 REQ - Request for Communication
	12.6.6 MRA - Message Receipt Acknowledgment
	12.6.7 REJ - Reject
	12.6.7.1 Example REJ message
	12.6.7.2 Rejection Reason

	12.6.8 REP - Reply to Request for Communication
	12.6.9 RTU - Ready To Use
	12.6.10 DREQ - Request for communication Release (Disconnection REQuest)
	12.6.11 DREP - Reply to Request for communication Release

	12.7 Message Field Details
	12.7.1 Local Communication ID
	12.7.2 Remote Communication ID
	12.7.3 ServiceID
	12.7.4 Remote CM Response Timeout
	12.7.5 Local CM Response Timeout
	12.7.6 Transport Service Type
	12.7.7 Subnet Local
	12.7.8 This Section Has Been Deleted
	12.7.9 Local CA GUID
	12.7.10 Local Port GID
	12.7.11 Local Port LID
	12.7.12 Local QPN
	12.7.13 Local Q_Key
	12.7.14 Local EECN
	12.7.15 Remote EECN
	12.7.16 Service Level
	12.7.17 Traffic Class
	12.7.18 Flow Label
	12.7.19 Hop Limit
	12.7.20 Primary Remote Port GID
	12.7.21 Primary Remote Port LID
	12.7.22 Alternate Remote Port GID
	12.7.23 Alternate Remote Port LID
	12.7.24 Partition Key
	12.7.25 Packet Rate
	12.7.26 End-to-End Flow Control
	12.7.27 Max CM Retries
	12.7.28 Path Packet Payload MTU
	12.7.29 Responder Resources
	12.7.30 Initiator Depth
	12.7.31 Starting PSN
	12.7.32 Service Timeout
	12.7.33 Target ACK Delay
	12.7.34 Local ACK Timeout
	12.7.35 PrivateData
	12.7.36 Failover Accepted
	12.7.37 Remote QPN/EECN
	12.7.38 Retry Count
	12.7.39 RNR Retry Count

	12.8 Alternate Path Management
	12.8.1 LAP - Load Alternate Path
	12.8.2 APR - Alternate Path Response
	12.8.2.1 AP Status

	12.9 State Transition Diagrams For Communication Establishment and Release
	12.9.1 Diagram Description
	12.9.2 Invalid State Input Handling
	12.9.3 timeouts
	12.9.4 State Diagram Notes
	12.9.5 Communication Establishment and Release - Active
	12.9.6 Communication Establishment - Passive
	12.9.7 State and Transition Definitions
	12.9.7.1 Active States
	12.9.7.2 Passive States

	12.9.8 State Details
	12.9.8.1 Timeout
	12.9.8.2 RTU Timeout
	12.9.8.3 Established
	12.9.8.3.1 REQ Received / REP Received

	12.9.8.4 TimeWait
	12.9.8.5 Message Receipt Acknowledgment (MRA)
	12.9.8.6 Timeouts and Retries
	12.9.8.7 REJ Retry
	12.9.8.8 REJ Sent
	12.9.8.9 REP Sent / MRA(REP) Received

	12.9.9 Connection State

	12.10 Communication Establishment Ladder Diagrams
	12.10.1 Active Client to Passive Server - Both Client and Server Accept Communication
	12.10.2 Active Client to Passive Server - Server Rejects Communication
	12.10.3 Active Client to Passive Server - Client Rejects Communication
	12.10.4 Peer to Peer - Both Accept Communication
	12.10.5 Active Peer to Active Peer - Passive Rejects Communication
	12.10.6 Active Peer to Active Peer - Active Rejects Communication
	12.10.7 Active Client to Passive Server with Redirector - All Accept Communication
	12.10.8 Communication Release
	12.10.8.1 Disconnect Request

	12.11 Service ID Resolution Protocol
	12.11.1 SIDR_REQ - Service ID Resolution Request
	12.11.1.1 RequestID
	12.11.1.2 Partition Key
	12.11.1.3 Service ID
	12.11.1.4 Private Data

	12.11.2 SIDR_REP - Service ID Resolution Response
	12.11.2.1 Status
	12.11.2.2 QPN
	12.11.2.3 Q_Key

	12.11.3 Path Information

	Chapter 13: Management Model
	13.1 Introduction
	13.2 Assumptions, and Scope
	13.2.1 Assumptions
	13.2.2 Scope

	13.3 Managers, Agents, and Interfaces
	13.3.1 Introduction
	13.3.2 Required Managers and Agents

	13.4 Management Datagrams
	13.4.1 Conventions
	13.4.2 Management Datagram Format
	13.4.3 Management Datagram Fields
	13.4.4 Management Classes
	13.4.5 Management Class Methods
	13.4.6 Management Messaging
	13.4.6.1 Methods and Message Sequencing
	13.4.6.1.1 Get()/GetResp()
	13.4.6.1.2 Set()/GetResp()
	13.4.6.1.3 Send()
	13.4.6.1.4 Trap()
	13.4.6.1.5 TrapRepress()
	13.4.6.1.6 Report()/ReportResp()

	13.4.6.2 Timers and Timeouts
	13.4.6.2.1 PortInfo:SubnetTimeout
	13.4.6.2.2 RespTimeValue

	13.4.6.3 Timeout/Timer Usage
	13.4.6.4 TransactionID usage

	13.4.7 Status Field
	13.4.8 Management Class Attributes
	13.4.8.1 ClassPortInfo
	13.4.8.2 Notice
	13.4.8.3 InformInfo

	13.4.9 Traps
	13.4.10 Notice Queue
	13.4.11 Event Forwarding

	13.5 MAD Processing
	13.5.1 MAD Interfaces
	13.5.1.1 Processing Subnet Management Packets (SMPs)
	13.5.1.2 Processing General Services Management Packets (GMPs)

	13.5.2 GSI Redirection
	13.5.3 MAD Validation
	13.5.3.1 MAD Validation for Subnet Management MADs
	13.5.3.2 Mad Validation for Subnet Administration and General Services
	13.5.3.2.1 MAD Validation at the GSI
	13.5.3.2.2 MAD Validation at the SA and GSAs

	13.5.3.3 Consolidated MAD Validation Flow Diagrams

	13.5.4 Response Generation and Reversible Paths
	13.5.4.1 Reversible Paths
	13.5.4.2 Common Response Actions
	13.5.4.3 Constructing a Response Without a GRH
	13.5.4.4 Constructing a Response With a GRH
	13.5.4.5 Responses to MADs

	13.6 Reliable Multi-Packet Transaction Protocol
	13.6.1 Management Class Use of RMPP
	13.6.2 RMPP Packet Formats
	13.6.2.1 RMPP Header
	13.6.2.2 Status Codes
	13.6.2.3 DATA Packet
	13.6.2.4 ACK Packet
	13.6.2.5 ABORT and STOP Packets

	13.6.3 Timeouts
	13.6.3.1 Response Timeout (Resp)
	13.6.3.2 Total Transaction Timeout (Ttime)

	13.6.4 Ladder Diagram (Example)
	13.6.5 Flow Diagrams
	13.6.5.1 Context State Variables
	13.6.5.2 Context & Dispatching
	13.6.5.3 Common Termination Flow
	13.6.5.4 Receiver Flow Diagram
	13.6.5.5 Sender Main Flow Diagram
	13.6.5.6 Direction Switch

	13.6.6 Startup Scenarios
	13.6.6.1 Receiver-Initiated Transfer
	13.6.6.2 Sender-Initiated Transfer
	13.6.6.3 Sender-Initiated Double-Sided Transfer

	Chapter 14: Subnet Management
	14.1 Subnet Management Model
	14.2 Subnet Management Class
	14.2.1 Datagram Formats and Use
	14.2.1.1 SMP Data Format - LID Routed
	14.2.1.2 SMP Data Format - Directed Route

	14.2.2 SMPs and Directed Route Algorithm
	14.2.2.1 Outgoing Directed Route SMP Initialization
	14.2.2.2 Outgoing Directed Route SMP handling by SMI
	14.2.2.3 Returning Directed Route SMP Initialization
	14.2.2.4 Returning Directed Route SMP handling by SMI

	14.2.3 Methods
	14.2.4 Management Key
	14.2.4.1 Levels of Protection
	14.2.4.2 Lease Period
	14.2.4.3 Notes on Expected Usage
	14.2.4.4 Update Procedure
	14.2.4.5 Initialization
	14.2.4.6 SMI

	14.2.5 Attributes
	14.2.5.1 Notices and Traps
	14.2.5.2 NodeDescription
	14.2.5.3 NodeInfo
	14.2.5.4 SwitchInfo
	14.2.5.5 GUIDInfo
	14.2.5.6 PortInfo
	14.2.5.6.1 Interpretation of DiagCode

	14.2.5.7 P_KeyTable
	14.2.5.8 SLtoVLMappingTable
	14.2.5.9 VLArbitrationTable
	14.2.5.10 LinearForwardingTable
	14.2.5.11 RandomForwardingTable
	14.2.5.12 MulticastForwardingTable
	14.2.5.13 SMInfo
	14.2.5.14 VendorDiag
	14.2.5.15 LedInfo

	14.2.6 Subnet Management MAD Status
	14.2.6.1 Status Precedence
	14.2.6.2 SMP Version Not Supported (status_field[4:2] = 0x1)
	14.2.6.3 SMP Method Not Supported (status_field[4:2] = 0x2)
	14.2.6.4 SMP Method/Attribute Combination Not Supported (status_field[4:2] = 0x3)
	14.2.6.5 SMP AttributeModifier Errors (status_field[4:2] = 0x7)
	14.2.6.6 SMP Attribute Component Errors (status_field[4:2] = 0x7)

	14.3 Subnet Management Agent
	14.3.1 SubnGet()
	14.3.2 SubnSet()
	14.3.3 SubnGetResp()
	14.3.4 SubnTrap()
	14.3.5 SubnTrapRepress()
	14.3.6 Port State Change
	14.3.7 P_Key Mismatch on Switch External Ports
	14.3.8 Transport Key Mismatch
	14.3.9 M_Key mismatch
	14.3.10 Link Layer Errors
	14.3.11 Change CapabilityMask
	14.3.12 Change SystemImageGUID

	14.4 Subnet Manager
	14.4.1 SM State Machine
	14.4.1.1 Control Packets
	14.4.1.2 Discovering State
	14.4.1.3 Standby State
	14.4.1.4 Not-Active State
	14.4.1.5 Master State

	14.4.2 Subnet Discovery Actions
	14.4.3 Initialization Actions
	14.4.4 Node Reinitialization
	14.4.5 Port State Transitions
	14.4.6 Subnet Sweeping
	14.4.7 Authentication
	14.4.8 SM Disable Mechanism
	14.4.9 In and Out of Service Traps
	14.4.10 Multicast Group Create/Delete Traps
	14.4.11 Client Reregistration

	Chapter 15: Subnet Administration
	15.1 Introduction and Overview
	15.1.1 SA Function
	15.1.2 Relationship Between SA and the SM
	15.1.3 Overview

	15.2 SA MADs
	15.2.1 SA MAD Format
	15.2.1.1 SA Header
	15.2.1.2 SA Header Fields
	15.2.1.3 SA-Specific ClassPortInfo:CapabilityMask Bits

	15.2.2 Summary of Methods
	15.2.3 Subnet Administration Status Values
	15.2.4 Attributes and Attribute Tables
	15.2.4.1 Embedded Attributes
	15.2.4.2 Record Identifier (RID) Fields
	15.2.4.3 Tables

	15.2.5 Attributes
	15.2.5.1 Summary of Attributes
	15.2.5.2 NodeRecord
	15.2.5.3 PortInfoRecord
	15.2.5.4 SLtoVLMappingTableRecord
	15.2.5.5 SwitchInfoRecord
	15.2.5.6 LinearForwardingTableRecord
	15.2.5.7 RandomForwardingTableRecord
	15.2.5.8 MulticastForwardingTableRecord
	15.2.5.9 VLArbitrationTableRecord
	15.2.5.10 SMInfoRecord
	15.2.5.11 P_KeyTableRecord
	15.2.5.12 InformInfoRecord
	15.2.5.13 LinkRecord
	15.2.5.14 ServiceRecord
	15.2.5.14.1 ServiceP_Key
	15.2.5.14.2 ServiceKey
	15.2.5.14.3 ServiceLease
	15.2.5.14.4 ServiceData

	15.2.5.15 ServiceAssociationRecord
	15.2.5.16 PathRecord
	15.2.5.17 MCMemberRecord
	15.2.5.17.1 Group Membership
	15.2.5.17.2 Creating a Multicast Group
	15.2.5.17.3 Joining a Multicast Group
	15.2.5.17.4 Leaving & Deleting a Multicast Group
	15.2.5.17.5 Querying a Multicast Group

	15.2.5.18 GuidInfoRecord
	15.2.5.19 TraceRecord
	15.2.5.20 MultiPathRecord

	15.3 Reliable Multi-Packet Transaction Protocol
	15.4 Operations
	15.4.1 Restrictions on Access
	15.4.1.1 Access Restrictions For PathRecords
	15.4.1.2 Access Restrictions For Other Attributes

	15.4.2 Locating Subnet Administration
	15.4.3 Event Forwarding Subsystem
	15.4.4 Administration Query Subsystem
	15.4.5 SubnAdmGetTable() / SubnAdmGetTableResp()
	15.4.6 SubnAdmGet() / SubnAdmGetResp(): Get an Attribute
	15.4.7 SubnAdmSet(): Set an Attribute
	15.4.8 SubnAdmDelete(): Delete an Attribute
	15.4.9 SubnAdmGetTraceTable(): Trace a Path
	15.4.10 SubnAdmGetMulti() / SubnAdmGetMultiResp(): Send & Receive Multiple Packets

	Chapter 16: General Services
	16.1 Performance Management
	16.1.1 MAD Format
	16.1.1.1 Status Field

	16.1.2 Methods
	16.1.3 Mandatory Attributes
	16.1.3.1 ClassPortInfo
	16.1.3.2 PortSamplesControl
	16.1.3.3 CounterSelect Values
	16.1.3.4 PortSamplesResult
	16.1.3.5 PortCounters
	16.1.3.6 Typical Performance Attribute Use Model

	16.1.4 Optional Attributes
	16.1.4.1 PortRcvErrorDetails
	16.1.4.2 PortXmitDiscardDetails
	16.1.4.3 PortOpRcvCounters
	16.1.4.4 PortFlowCtlCounters
	16.1.4.5 PortVLOpPackets
	16.1.4.6 PortVLOpData
	16.1.4.7 PortVLXmitFlowCtlUpdateErrors
	16.1.4.8 PortVLXmitWaitCounters
	16.1.4.9 SwPortVLCongestion
	16.1.4.10 PortSamplesResultExtended
	16.1.4.11 PortCountersExtended

	16.1.5 Performance Management Status
	16.1.5.1 Mandatory PM Attribute Status
	16.1.5.1.1 PM AttributeModifier Errors (Status[4:2] = 0x7)
	16.1.5.1.2 PM Attribute Component Errors (Status[4:2] = 0x7)

	16.1.5.2 Optional PM Attribute Status
	16.1.5.2.1 PM AttributeModifier Errors (Status[4:2] = 0x7)
	16.1.5.2.2 PM Attribute Component Errors (Status[4:2] = 0x7)

	16.2 Baseboard Management
	16.2.1 MAD Format
	16.2.1.1 Status Field

	16.2.2 Methods
	16.2.3 Attributes
	16.2.3.1 ClassPortInfo
	16.2.3.2 Notice
	16.2.3.3 BKeyInfo
	16.2.3.4 IB-ML Attributes

	16.2.4 B_Key General Use
	16.2.4.1 B_Key Assumptions
	16.2.4.2 B_Key Protection Scope
	16.2.4.3 B_Key Operation
	16.2.4.4 B_Key Initialization
	16.2.4.5 B_Key Recovery
	16.2.4.6 Levels of Protection

	16.3 Device Management
	16.3.1 MAD Format
	16.3.1.1 Status Field

	16.3.2 Methods
	16.3.3 Attributes
	16.3.3.1 ClassPortInfo
	16.3.3.2 Notice
	16.3.3.3 IOUnitInfo
	16.3.3.4 IOControllerProfile
	16.3.3.5 ServiceEntries
	16.3.3.6 DiagnosticTimeout
	16.3.3.7 PrepareToTest
	16.3.3.8 TestDeviceOnce
	16.3.3.9 TestDeviceLoop
	16.3.3.10 DiagCode

	16.3.4 Device Diagnostic Framework
	16.3.4.1 Behaviors

	16.4 SNMP Tunneling
	16.4.1 MAD Format
	16.4.1.1 Status Field

	16.4.2 Methods
	16.4.3 Attributes
	16.4.3.1 ClassPortInfo
	16.4.3.2 Obsolete Section
	16.4.3.3 PduInfo

	16.4.4 Operations
	16.4.4.1 SNMP Targets for Beyond the InfiniBand Endnode
	16.4.4.2 Trap Event Subscription

	16.5 Vendor-specific
	16.5.1 MAD Format
	16.5.2 Status Field
	16.5.3 Methods
	16.5.4 Attributes
	16.5.4.1 ClassPortInfo

	16.6 Application-specific
	16.6.1 MAD Format
	16.6.1.1 Status Field

	16.6.2 Methods
	16.6.3 Attributes
	16.6.3.1 ClassPortInfo

	16.7 Communication Management
	16.7.1 MAD Format
	16.7.1.1 Status Field

	16.7.2 Methods
	16.7.3 Attributes
	16.7.3.1 ClassPortInfo

	Chapter 17: Channel Adapters
	17.1 Overview
	17.2 Common Functional Requirements
	17.2.1 Multiple Ports per Channel Adapter
	17.2.1.1 Topologies Supported With Multi-Ported Channel Adapters
	17.2.1.2 Association of QPs with Ports
	17.2.1.3 Port Attributes and Functions
	17.2.1.4 Switching Packets through Multiple Ports

	17.2.2 Channel Adapter Attributes
	17.2.3 Deadlock Prevention
	17.2.4 Checking Incoming Packets
	17.2.5 Non-Volatile State
	17.2.6 Static Rate Control
	17.2.7 Management Messages
	17.2.7.1 Subnet Management
	17.2.7.2 General Services

	17.2.8 Automatic Path Migration
	17.2.8.1 Automatic Path Migration Protocol
	17.2.8.1.1 Initialization
	17.2.8.1.2 Migration Request
	17.2.8.1.3 Migration Response
	17.2.8.1.4 Re-enabling Migration

	17.3 Host Channel Adapter
	17.3.1 Loopback

	17.4 Target Channel Adapter
	17.4.1 Contrast to a Host Channel Adapter
	17.4.1.1 Memory Protection

	17.4.2 Device Administration
	17.4.3 Fabric Loopback

	Chapter 18: Switches
	18.1 Overview
	18.1.1 Switch Port 0

	18.2 Detailed Functional Requirements
	18.2.1 Attributes
	18.2.2 Initialization
	18.2.3 Configuration
	18.2.4 Packet Relay Requirements
	18.2.4.1 Switch Ports
	18.2.4.2 Receiver Queuing
	18.2.4.2.1 Inbound P_Key Enforcement

	18.2.4.3 Packet Relay
	18.2.4.3.1 Linear Forwarding Table Requirements
	18.2.4.3.2 Random Forwarding Table Requirements
	18.2.4.3.3 Required Multicast Relay
	18.2.4.3.4 Optional Multicast Relay

	18.2.4.4 Transmitter Queuing
	18.2.4.4.1 Outbound P_Key Enforcement

	18.2.4.5 Packet Transmission

	18.2.5 Error Handling
	18.2.5.1 Switch Ports
	18.2.5.2 Receiver Queuing
	18.2.5.3 Packet Relay
	18.2.5.4 Transmitter Queueing
	18.2.5.5 Packet Transmission

	18.2.6 Subnet Management Agent Requirements

	Chapter 19: Routers
	19.1 Overview
	19.2 Detailed functional requirements
	19.2.1 Attributes
	19.2.2 Initialization
	19.2.3 Configuration
	19.2.4 Packet Relay Model
	19.2.4.1 Path Selection
	19.2.4.2 Router Ports
	19.2.4.3 Receiver Queuing
	19.2.4.3.1 Inbound P_Key Enforcement

	19.2.4.4 Packet Relay
	19.2.4.5 Transmitter Queuing
	19.2.4.5.1 Outbound P_Key Enforcement

	19.2.4.6 Packet Transmission

	19.2.5 Error Handling
	19.2.5.1 Router Ports Errors
	19.2.5.2 Receiver Queuing Errors
	19.2.5.3 Packet Relay Errors
	19.2.5.4 Transmitter Queueing Errors
	19.2.5.5 Packet Transmission Errors

	19.2.6 Subnet Management Agent Requirements

	Chapter 20: Volume 1 Compliance Summary
	20.1 Compliance Definition
	20.1.1 Product Application

	20.2 Volume 1 Compliance Categories
	20.2.1 Volume 1 Compliance Qualifiers
	20.2.1.1 Claiming Support for Optional Features
	20.2.1.2 Compliance Statements with Multiple Qualifiers

	20.2.2 Compliance Statement Lists
	20.2.2.1 Hypertext Links
	20.2.2.2 Compliance Statement Labels
	20.2.2.3 Compliance Statement Titles

	20.2.3 Common Requirements

	20.3 HCA-CI Compliance Category
	20.4 TCA Compliance Category
	20.5 Switch Compliance Category
	20.6 Router Compliance Category
	20.7 Subnet Manager Compliance Category
	20.8 Subnet Administration Compliance Category
	20.9 Communication Manager Compliance Category
	20.10 Performance Manager Compliance Category
	20.11 Vendor-Defined Manager Compliance Category
	20.12 Optional Management Agent Compliance Category
	20.13 Common Port Requirements
	20.14 Common MAD Requirements

	Annex A1: I/O Infrastructure
	A1.1 Introduction
	A1.1.1 Purpose
	A1.1.2 Glossary

	A1.2 Principles of I/O
	A1.2.1 I/O Operation Overview
	A1.2.2 Managed I/O Units
	A1.2.3 ROM Repository
	A1.2.4 I/O Device Drivers
	A1.2.4.1 Matching an I/O Controller with an I/O Device Driver
	A1.2.4.1.1 Creating Compatibility Strings for an I/O Controller
	A1.2.4.1.2 Comparing Compatibility Strings

	A1.2.4.2 Using an I/O Controller

	A1.2.5 I/O Attachment
	A1.2.5.1 Direct attachment
	A1.2.5.2 Fabric Attachment
	A1.2.5.3 Power Management

	A1.3 I/O Management
	A1.3.1 I/O Device Resolution
	A1.3.1.1 Resolving A Path
	A1.3.1.2 Persistent Information
	A1.3.1.3 Configuration Changes
	A1.3.1.3.1 Identifiers Supporting Configuration Changes
	A1.3.1.3.2 Node Replacement
	A1.3.1.3.3 IOC Replacement

	A1.3.2 Retry-Backoff Policy

	A1.4 Impact of Partitions on I/O
	A1.4.1 I/O Units and Partitions
	A1.4.2 Hosts and I/O Partitions
	A1.4.2.1 Query for Path
	A1.4.2.2 Query for Service
	A1.4.2.3 Query for List of I/O Units

	A1.5 Storage I/O
	A1.5.1 IB Storage Concepts
	A1.5.2 Protocol Specific Fields
	A1.5.3 Storage Protocols

	Annex A2: Console Service Protocol
	A2.1 Introduction
	A2.1.1 Glossary
	A2.1.2 Compliance
	A2.1.3 Overview
	A2.1.4 Goals

	A2.2 The IB Console Abstraction
	A2.2.1 Console IO Controllers
	A2.2.2 Console Server Processes

	A2.3 Console Service Protocol
	A2.3.1 Error Reporting
	A2.3.2 Console Device Enumeration
	A2.3.3 Capability Query
	A2.3.4 Session Establishment
	A2.3.5 Normal Operation
	A2.3.5.1 ASCII Text Streams
	A2.3.5.2 UTF-8 Text Streams
	A2.3.5.3 HTTP Console Support

	A2.3.6 Session Handoff and Maintenance
	A2.3.7 Connection Maintenance Messages
	A2.3.8 Service Connection and Session Termination

	A2.4 Compliance Summary
	A2.4.1 CSP Client Compliance Category
	A2.4.2 CSP Server Compliance Category

	Annex A3: Application Specific Identifiers
	A3.1 Introduction
	A3.1.1 Glossary
	A3.1.2 Compliance

	A3.2 Service ID
	A3.2.1 Goals and Scope
	A3.2.2 Principles of Service ID Usage
	A3.2.2.1 Background
	A3.2.2.2 Considerations
	A3.2.2.3 Assigning Service IDs

	A3.2.3 Service ID Structure
	A3.2.3.1 IBTA Assigned Service IDs
	A3.2.3.1.1 Null Service ID
	A3.2.3.1.2 ROM Repository
	A3.2.3.1.3 Console Process
	A3.2.3.1.4 Service IDs for Testing
	A3.2.3.1.5 Sockets Direct Protocol

	A3.2.3.2 IETF Service IDs
	A3.2.3.3 Local OS Administered Service IDs
	A3.2.3.3.1 Port Association
	A3.2.3.3.2 Coherency Requirements

	A3.2.3.4 Externally Administrated Service IDs

	A3.2.4 Resolving Service Names
	A3.2.4.1 Service Advertisement
	A3.2.4.2 Multicast Query
	A3.2.4.3 Alternatives

	A3.3 I/O Controller Identification
	A3.3.1 Vendor Information
	A3.3.2 Generic Information
	A3.3.3 IBTA Protocols
	A3.3.4 Other Protocols

	A3.4 Service Names
	A3.4.1 IBTA Service Names
	A3.4.2 I/O Service Records
	A3.4.3 ServiceRecord Attribute

	A3.5 Management Class Codes
	A3.6 Queue Keys
	A3.7 Compliance Summary
	A3.7.1 Service ID Administration
	A3.7.2 Service Application
	A3.7.3 Managed I/O Unit

	Annex A4: Sockets Direct Protocol (SDP)
	A4.1 Introduction
	A4.1.1 Architectural Goals
	A4.1.2 Overview of the Byte-Stream Protocol

	A4.2 Glossary
	A4.3 SDP message Formats
	A4.3.1 Base Sockets Direct Header (BSDH)
	A4.3.1.1 Message identifier (MID)
	A4.3.1.2 Flags
	A4.3.1.3 Buffers (Bufs)
	A4.3.1.4 Length (Len)
	A4.3.1.5 Message Sequence Number (MSeq)
	A4.3.1.6 Message Sequence Number Acknowledgement (MSeqAck)

	A4.3.2 Connection Management Messages
	A4.3.2.1 Hello Message (HH)
	A4.3.2.1.1 Major Protocol Version Number (MajV) - 4 Bits
	A4.3.2.1.2 Minor Protocol Version Number (MinV) - 4 Bits
	A4.3.2.1.3 IP Version (IPV) - 4 Bits
	A4.3.2.1.4 Maximum Advertisements (MaxAdverts) - 8 Bits
	A4.3.2.1.5 Desired Remote Receive Size (DesRemRcvSz) - 32 Bits
	A4.3.2.1.6 Local Receive Size (LocalRcvSz) - 32 Bits
	A4.3.2.1.7 LocalPort - 16 Bits
	A4.3.2.1.8 Internet Protocol Address (SrcIP, DstIP) - 128 Bits
	A4.3.2.1.9 Rsvd
	A4.3.2.1.10 Capabilities (Cap) - 4 bits
	A4.3.2.1.11 Extended MaxAdverts (ExtMaxAdverts) - 16 bits

	A4.3.2.2 HelloAck Message (HAH)
	A4.3.2.2.1 Major Protocol Version Number (MajV) - 4 Bits
	A4.3.2.2.2 Minor Protocol Version Number (MinV) - 4 Bits
	A4.3.2.2.3 Extended MaxAdverts (ExtMaxAdverts) - 16 bits
	A4.3.2.2.4 Actual Receive Size (ActRcvSz) - 32 Bits
	A4.3.2.2.5 Rsvd
	A4.3.2.2.6 Capabilities (Cap) - 4 bits

	A4.3.2.3 DisConn Message
	A4.3.2.4 AbortConn Message

	A4.3.3 Data Transfer and Flow Control Messages
	A4.3.3.1 Data Message
	A4.3.3.2 SrcAvail Message (SrcAH)
	A4.3.3.2.1 Length (Len) - 32 bits
	A4.3.3.2.2 Virtual Address (VA) - 64 bits
	A4.3.3.2.3 R_Key - 32 bits

	A4.3.3.3 SinkAvail Message (SinkAH)
	A4.3.3.3.1 Length (Len) - 32 bits
	A4.3.3.3.2 Virtual Address (VA) - 64 bits
	A4.3.3.3.3 R_Key - 32 bits
	A4.3.3.3.4 NonDiscards - 32 bits

	A4.3.3.4 RDMA Messages
	A4.3.3.5 SendSm Message
	A4.3.3.6 RdmaWrCompl Message (RWCH)
	A4.3.3.6.1 Length (Len) - 32 Bits

	A4.3.3.7 RdmaRdCompl Message (RRCH)
	A4.3.3.7.1 Length (Len) - 32 Bits

	A4.3.3.8 ModeChange Message (MCH)
	A4.3.3.8.1 S - 1 bit
	A4.3.3.8.2 Mode - 3 bits
	A4.3.3.8.3 Rsvd - 28 Bits

	A4.3.3.9 SrcAvailCancel Message
	A4.3.3.10 SinkAvailCancel Message
	A4.3.3.11 SinkCancelAck Message

	A4.3.4 Private Buffer Resizing Messages
	A4.3.4.1 ChRcvBuf Message (CRBH)
	A4.3.4.1.1 Desired Size (DesSz) - 32 bits

	A4.3.4.2 ChRcvBufAck Message (CRBAH)
	A4.3.4.2.1 Actual Size (ActSz) - 32 bits

	A4.3.5 Socket Duplication Messages
	A4.3.5.1 SuspComm Message
	A4.3.5.1.1 Service ID - 64 Bits

	A4.3.5.2 SuspCommAck Message

	A4.4 Address Resolution
	A4.5 Connection Management
	A4.5.1 Connection Setup
	A4.5.1.1 InfiniBand Reliable Connection Setup
	A4.5.1.2 Aborting Connection Setup

	A4.5.2 Automatic Path Migration
	A4.5.2.1 Determining Alternate Paths
	A4.5.2.2 Example Alternate Path Selection Procedure
	A4.5.2.3 Configuring Alternate Paths

	A4.5.3 Connection Teardown
	A4.5.3.1 Graceful Close
	A4.5.3.2 Abortive Close

	A4.6 Data Transfer Mechanisms
	A4.6.1 Bcopy
	A4.6.2 Read Zcopy
	A4.6.3 Write Zcopy
	A4.6.4 Transaction Mechanism
	A4.6.5 Miscellaneous Data Transfer Issues
	A4.6.5.1 Detecting Stale SinkAvail Advertisements
	A4.6.5.2 Mechanisms For Forcing Bcopy
	A4.6.5.2.1 Data Sink Forcing Bcopy
	A4.6.5.2.2 Data Source Forcing Bcopy

	A4.6.5.3 Processing Out-Of-Band Data
	A4.6.5.4 SrcAvail Revocation
	A4.6.5.5 SinkAvail Revocation
	A4.6.5.6 Buffering ULP Payload

	A4.7 Private Buffer Management
	A4.7.1 SDP Message Ordering
	A4.7.2 Send Credit Calculation
	A4.7.3 Initialization of Send Credit
	A4.7.4 Gratuitous Update Of The Remote Peer’s Send Credit
	A4.7.5 Use of Send Credits
	A4.7.6 Receive Buffer Resizing
	A4.7.6.1 Conflict Resolution
	A4.7.6.2 Flow Control Issues During Resizing

	A4.8 SDP Modes
	A4.8.1 Buffered Mode
	A4.8.2 Combined Mode
	A4.8.3 Pipelined Mode

	A4.9 SDP Mode Transitions
	A4.9.1 Transition From Combined Mode to Buffered Mode
	A4.9.2 Transition From Buffered Mode to Combined Mode
	A4.9.3 Transition From Combined Mode to Pipelined Mode
	A4.9.4 Transition From Pipelined Mode to Combined Mode
	A4.9.5 State Mode Transition Summary

	A4.10 Socket Duplication
	A4.10.1 Implementing Socket Duplication
	A4.10.1.1 Socket Duplication Procedure
	A4.10.1.2 Conflict Resolution

	A4.10.2 HCA Managed Failover

	A4.11 InfiniBand Transport Layer Issues
	A4.11.1 InfiniBand Message Requirements
	A4.11.2 Solicited Events
	A4.11.3 Keepalive Messages

	A4.12 SDP Compliance Category

	Annex A5: Booting Annex
	A5.1 Introduction
	A5.1.1 Purpose
	A5.1.2 Glossary
	A5.1.3 Overview
	A5.1.4 Console
	A5.1.5 Storage Boot Method
	A5.1.6 Network Boot Method
	A5.1.7 Boot Environment
	A5.1.8 Managing the Behavior of a Booting Platform
	A5.1.8.1 Boot Resolution Methods
	A5.1.8.2 ROM Repository
	A5.1.8.3 Boot Environment Extension
	A5.1.8.4 Proprietary Driver Load

	A5.1.9 Subnet Initialization
	A5.1.10 Boot/Reboot

	A5.2 BootManager
	A5.2.1 General Operation
	A5.2.2 Detecting New Boot Platforms
	A5.2.3 Multiple Boot Managers
	A5.2.4 Protecting the BtM_Key
	A5.2.5 Event Reporting
	A5.2.6 SA Advertisement

	A5.3 BootAgent
	A5.4 MAD Format
	A5.4.1 Boot Management MAD Status
	A5.4.2 MAD BtM_Key

	A5.5 Boot Management Methods and Attributes
	A5.6 Boot Management Attribute Definitions
	A5.6.1 ClassPortInfo
	A5.6.2 BtM_KeyInfo
	A5.6.2.1 BtM_Key General Use
	A5.6.2.2 BtM_Key Assumptions
	A5.6.2.3 BtM_Key Operations
	A5.6.2.4 BtM_Key Initialization
	A5.6.2.5 BtM_Key Recovery
	A5.6.2.6 Lease Period

	A5.6.3 PlatformBootInfo Attribute
	A5.6.3.1 BootPlatformUUID
	A5.6.3.2 PlatformInfo
	A5.6.3.3 Booting Platform Capability
	A5.6.3.3.1 Extended Boot Environment
	A5.6.3.3.2 Proprietary Driver Load
	A5.6.3.3.3 Protocols Supported
	A5.6.3.3.4 Boot Resolution Methods Supported
	A5.6.3.3.5 Update Locator Records Supported

	A5.6.3.4 Boot Record Locator Sources
	A5.6.3.5 Record Count
	A5.6.3.6 Deleting Persistent Records
	A5.6.3.7 Status Components

	A5.6.4 PortBootInfo Attribute
	A5.6.4.1 BisPortPriority
	A5.6.4.2 RomPortPriority
	A5.6.4.3 ConsolePortPriority
	A5.6.4.4 IocPortPriority
	A5.6.4.5 NetworkBootPortPriority
	A5.6.4.6 Time-outs
	A5.6.4.6.1 InitTimeout and BisTimeout
	A5.6.4.6.2 EndNodeTimeout

	A5.6.5 Persistent Locator Records
	A5.6.5.1 Device-Service
	A5.6.5.2 IocGUID-SID
	A5.6.5.3 PortGID
	A5.6.5.4 Protocol
	A5.6.5.5 RecordFunction

	A5.6.6 Node Reboot
	A5.6.6.1 NodeReboot Attribute
	A5.6.6.2 Reboot Time Line

	A5.6.7 Traps and Notice Queues
	A5.6.7.1 Notice Attribute
	A5.6.7.1.1 KeyViolation Notice
	A5.6.7.1.2 ChangeReport Notice
	A5.6.7.1.3 StatusReport Notice
	A5.6.7.1.4 Heartbeat Notice

	A5.6.7.2 TrapRepress
	A5.6.7.3 Trap Subscription / Reporting
	A5.6.7.3.1 Subscription Integrity
	A5.6.7.3.2 Subscription Timeout
	A5.6.7.3.3 Heartbeat

	A5.6.8 InformInfo Attribute

	A5.7 Platforms Use of BIS
	A5.7.1 BIS Usage Overview
	A5.7.2 PlatformBootInfo Source
	A5.7.3 PortBootInfo Source
	A5.7.4 Determining to use a BIS
	A5.7.5 Finding a BIS
	A5.7.6 Selecting A BIS
	A5.7.7 Prioritizing Multiple BISs
	A5.7.8 Other Considerations
	A5.7.8.1 Reliable Multi-Packet Protocol
	A5.7.8.2 Port GID to LID Resolution
	A5.7.8.3 Reporting Failures

	A5.8 IB Network Booting
	A5.9 Retry Backoff
	A5.10 IB Boot Process - Summary
	A5.11 AdditionalInfo
	A5.11.1 SRP
	A5.11.2 Console

	A5.12 ROM Repository
	A5.12.1 Introduction
	A5.12.2 Overview of IOC Boot Driver Download
	A5.12.3 ROM Repository Model
	A5.12.4 Identifying a ROM Repository
	A5.12.5 ROM Repository Access Methods
	A5.12.6 ROM Repository Messages
	A5.12.7 Reading ROM Repository Information
	A5.12.8 IMAGE Descriptor
	A5.12.9 Reading an Image Descriptor
	A5.12.10 Reading an image
	A5.12.11 Adding and Updating an Image
	A5.12.11.1 Initiating an Image Add Operation
	A5.12.11.2 Initiating an Image Update
	A5.12.11.3 Writing Descriptor and Image Data
	A5.12.11.4 Deleting an Image

	A5.13 Compliance Summary
	A5.13.1 Booting Specification Compliance Categories
	A5.13.2 BootAgent (BtA) Compliance Category
	A5.13.3 BootManager (BtM) Compliance Category
	A5.13.4 Boot Platform (BtPlatform) Compliance Category
	A5.13.5 ROM Repository Compliance Category

	Annex A6: Boot Information Service
	A6.1 Introduction
	A6.1.1 Glossary
	A6.1.2 Compliance

	A6.2 BIS Overview
	A6.2.1 BIS Operational Model
	A6.2.2 Relationship with other Management Classes
	A6.2.2.1 Boot Management
	A6.2.2.2 Subnet Administration
	A6.2.2.3 Subnet Management
	A6.2.2.4 Device Management

	A6.2.3 Characteristics

	A6.3 BIS Class Specification
	A6.3.1 Registration
	A6.3.2 BIS Query Operation
	A6.3.3 BIS Data Formats
	A6.3.3.1 Reserved Fields
	A6.3.3.2 BIS Status Values

	A6.3.4 BIS Methods
	A6.3.4.1 Common Methods
	A6.3.4.2 Query Methods
	A6.3.4.2.1 Multi-Packet Transaction
	A6.3.4.2.2 Keep Alive Packets

	A6.3.4.3 Lost Messages

	A6.3.5 Attributes
	A6.3.5.1 ClassPortInfo
	A6.3.5.2 BootQueryInfo Attribute
	A6.3.5.2.1 BootInfoRequested
	A6.3.5.2.2 BootPlatformUUID
	A6.3.5.2.3 PortGUID
	A6.3.5.2.4 BootSupport
	A6.3.5.2.5 PlatformInfo

	A6.3.5.3 PlatformBootInfo Attribute
	A6.3.5.4 PortBootInfo Attribute
	A6.3.5.5 RomRepositoryLocatorRecord Attribute
	A6.3.5.6 ConsoleLocatorRecord Attribute
	A6.3.5.7 OsLocatorRecord Attribute
	A6.3.5.8 Protocol Field

	A6.4 Booting using Boot Information Records
	A6.4.1 Overview
	A6.4.2 General Operation

	A6.5 Compliance Summary

	Annex A7: Configuration Management
	A7.1 Introduction
	A7.1.1 Glossary
	A7.1.2 Compliance

	A7.2 Overview
	A7.2.1 Objective
	A7.2.2 Usage Model
	A7.2.3 Configuration Management Application
	A7.2.3.1 Passive Management
	A7.2.3.2 Active Management
	A7.2.3.3 Multiple Managers

	A7.3 Configuration Management Operational Model
	A7.4 Configuration Management Characteristics
	A7.4.1 Configuration Domain
	A7.4.2 Partition Usage
	A7.4.3 SA usage
	A7.4.4 Manager Interaction

	A7.5 Configuration Management Operation
	A7.5.1 Interaction with Subnet Manager
	A7.5.2 Initialization and SA Registration
	A7.5.3 Coherency between Configuration Managers
	A7.5.4 Active vs. Passive Configuration Management
	A7.5.5 Device Manager Operation
	A7.5.6 Protecting the Manager_Key
	A7.5.7 I/O Unit Trap Forwarding
	A7.5.7.1 Configuring IOUs for Traps
	A7.5.7.2 Trap Subscription / Reporting
	A7.5.7.3 Subscription Integrity
	A7.5.7.4 Subscription Timeout
	A7.5.7.5 Heartbeat

	A7.5.8 Graceful Hot Removal
	A7.5.9 Diagnostics
	A7.5.9.1 Diagnostic Framework
	A7.5.9.2 Version 1 Diagnostics
	A7.5.9.3 7.5.9.3 Diagnostics under Passive Management

	A7.6 DevAdm Class Definition
	A7.6.1 Operation
	A7.6.1.1 Query
	A7.6.1.2 Event Notification Subsystem
	A7.6.1.2.1 Event Subscription
	A7.6.1.2.2 Event Reporting
	A7.6.1.2.3 Subscription Integrity
	A7.6.1.2.4 Subscription Timeout:
	A7.6.1.2.5 Configuration Change Notification
	A7.6.1.2.6 IOC On-line Notification
	A7.6.1.2.7 IOC Off-line Notification
	A7.6.1.2.8 Resource Allocation Change Notification
	A7.6.1.2.9 Removal Requested Notification
	A7.6.1.2.10 Diagnostic Notification
	A7.6.1.2.11 Reset Notification
	A7.6.1.2.12 Heartbeat

	A7.6.2 DevAdm Message Format
	A7.6.2.1 Reserved Fields
	A7.6.2.2 DevAdm Status Values
	A7.6.2.3 Methods
	A7.6.2.4 RMPP Header
	A7.6.2.5 RequesterID
	A7.6.2.6 Component Mask
	A7.6.2.7 Lost Messages

	A7.6.3 Attributes
	A7.6.3.1 ClassPortInfo
	A7.6.3.2 Notice
	A7.6.3.2.1 Configuration Change
	A7.6.3.2.2 IOC On-line
	A7.6.3.2.3 IOC Off-line
	A7.6.3.2.4 Resource Allocation Change
	A7.6.3.2.5 Heartbeat

	A7.6.3.3 InformInfo
	A7.6.3.4 LogIn
	A7.6.3.5 S_KeyInfo
	A7.6.3.6 C_KeyInfo
	A7.6.3.7 RemovalReq
	A7.6.3.8 DiagNotice
	A7.6.3.9 ResetNotice

	A7.7 Compliance
	A7.7.1 Compliance Categories
	A7.7.2 Configuration Manager Compliance Summary
	A7.7.3 I/O Client Compliance Summary
	A7.7.4 Common Management Requirements

	Annex A8: Device Management
	A8.1 Introduction
	A8.1.1 Glossary
	A8.1.2 Compliance
	A8.1.3 Goals and Objectives

	A8.2 Overview
	A8.2.1 Usage Model
	A8.2.1.1 Device Manager (DM)
	A8.2.1.2 I/O Resource Manager
	A8.2.1.3 I/O Client
	A8.2.1.4 I/O Management Application

	A8.2.2 I/O Unit Model
	A8.2.3 Device Management Model
	A8.2.3.1 Authority
	A8.2.3.2 Device Information
	A8.2.3.3 Device Assignment
	A8.2.3.3.1 Resource Allocation
	A8.2.3.3.2 QP Allocation
	A8.2.3.3.3 Shared Pools
	A8.2.3.3.4 Client Identification and Default Pools
	A8.2.3.3.5 Passive Management

	A8.2.3.4 Physical Management
	A8.2.3.4.1 Modular Subassemblies
	A8.2.3.4.2 Graceful Hot removal
	A8.2.3.4.3 I/O Module Examples

	A8.2.3.5 Device Diagnostics

	A8.2.4 Levels of Access

	A8.3 Device Mgt MAD Specification
	A8.3.1 MAD Format
	A8.3.1.1 Class Version
	A8.3.1.1.1 Backward Compatibility
	A8.3.1.1.2 Backward Compatibility Level
	A8.3.1.1.3 Backward Compatibility Requirements

	A8.3.1.2 Status Field
	A8.3.1.3 RMPP Header
	A8.3.1.4 Access_Key and KeyType
	A8.3.1.4.1 Manager_Key
	A8.3.1.4.2 Supervisor_Key
	A8.3.1.4.3 Client_Key
	A8.3.1.4.4 DiagToken

	A8.3.1.5 Component Mask

	A8.3.2 Methods
	A8.3.3 Attributes
	A8.3.3.1 ClassPortInfo
	A8.3.3.2 Notice
	A8.3.3.2.1 MgrKey Violation Notice
	A8.3.3.2.2 SupvKey Violation Notice
	A8.3.3.2.3 Client Violation Notice
	A8.3.3.2.4 DiagToken Violation Notice
	A8.3.3.2.5 Heartbeat Notice
	A8.3.3.2.6 StatusReport Notice
	A8.3.3.2.7 IOC Change Notice
	A8.3.3.2.8 ServiceRecord Change Notice
	A8.3.3.2.9 Slot Status Change Notice
	A8.3.3.2.10 IOM Removal Notice
	A8.3.3.2.11 DiagSessionState Notice
	A8.3.3.2.12 Diag Session Violation Notice

	A8.3.3.3 InformInfo
	A8.3.3.4 DA Info
	A8.3.3.5 IOUnitInfo
	A8.3.3.6 IOControllerProfile
	A8.3.3.7 ServiceRecord
	A8.3.3.7.1 CM Validatation
	A8.3.3.7.2 SharedUD

	A8.3.3.8 ProtocolRecord
	A8.3.3.9 SlotControlStatus
	A8.3.3.10 Reset
	A8.3.3.11 ProductInfo
	A8.3.3.11.1 IocGUID
	A8.3.3.11.2 ProductData

	A8.3.3.12 KeyInfo
	A8.3.3.12.1 Manager_Key General Use
	A8.3.3.12.2 Manager_Key Assumptions
	A8.3.3.12.3 Manager_Key Check
	A8.3.3.12.4 Manager_Key Initialization
	A8.3.3.12.5 Manager_Key Recovery
	A8.3.3.12.6 Lease Period

	A8.3.3.13 IouResourceInfo
	A8.3.3.13.1 Table Sizes
	A8.3.3.13.2 QP Resources
	A8.3.3.13.3 Update Lock
	A8.3.3.13.4 MaxClientPriority

	A8.3.3.14 PlatformPoolRecord
	A8.3.3.14.1 Supervisor Key
	A8.3.3.14.2 Action Component
	A8.3.3.14.3 Manager Update
	A8.3.3.14.4 Non-Volitile
	A8.3.3.14.5 PlatformQoS
	A8.3.3.14.6 Platform QPmin, QPmax, and QPminTarget
	A8.3.3.14.7 PlatformPriorityMin & PlatformPriorityMax
	A8.3.3.14.8 Service Object List

	A8.3.3.15 ClientPoolRecord
	A8.3.3.15.1 Client Key
	A8.3.3.15.2 Supervisor Key
	A8.3.3.15.3 Action Component
	A8.3.3.15.4 Manager Update Lock
	A8.3.3.15.5 Non-Volitile
	A8.3.3.15.6 LockedRecord
	A8.3.3.15.7 ClientQoS
	A8.3.3.15.8 Client QPmin, QPmax, and QPminTarget
	A8.3.3.15.9 ClientPriority
	A8.3.3.15.10 Service Object List

	A8.3.3.16 KeyChange
	A8.3.3.17 DiagSession
	A8.3.3.18 DiagnosticTimeout
	A8.3.3.19 TestDeviceOnce
	A8.3.3.20 TestDeviceLoop
	A8.3.3.21 DiagCode

	A8.4 Resource Allocation Framework
	A8.4.1 QP Allocation
	A8.4.2 Filtering Information
	A8.4.3 Restricting Access
	A8.4.4 Consuming QPs

	A8.5 Device Diagnostic Framework
	A8.5.1 Behaviors
	A8.5.2 Preparing for Diagnostic Tests
	A8.5.3 Invoking Diagnostic Tests

	A8.6 IOC Graceful Hot Removal
	A8.6.1 Required Hot Plug Facilities
	A8.6.2 Operation
	A8.6.3 STATE DIAGRAM
	A8.6.4 I/O Module Indicators
	A8.6.4.1 LED Blink Rate Definitions
	A8.6.4.2 LED Color

	A8.7 Device Manager
	A8.8 I/O Unit Implementation
	A8.9 Compliance
	A8.9.1 Compliance Categories
	A8.9.2 Device Management Agent Compliance Summary
	A8.9.3 Common Management Requirements

	Annex A9: Verb Extensions Annex
	A9.1 Introduction
	A9.1.1 Overview

	Annex A10: Congestion Control
	A10.1 Congestion Control in InfiniBand Networks
	A10.1.1 Glossary
	A10.1.2 Congestion Overview
	A10.1.3 Congestion control Summary
	A10.1.3.1 Current Performance metrics
	A10.1.3.2 Operation with Rev 1.1 switches and Channel Adapters

	A10.2 Congestion Control Mechanism
	A10.2.1 Switch Behavior
	A10.2.1.1 Congestion Detection
	A10.2.1.1.1 Root vs. Victim

	A10.2.1.2 Congestion Marking
	A10.2.1.3 Congestion Log
	A10.2.1.4 Switch Performance counters for congestion
	A10.2.1.5 Switch Credit Starvation

	A10.2.2 CA Behavior
	A10.2.2.1 Injection rate control
	A10.2.2.1.1 CCT Entry Format
	A10.2.2.1.2 Rate Decrease
	A10.2.2.1.3 Rate Increase

	A10.2.2.2 CA Congestion Threshold Event Notification Log
	A10.2.2.3 CA Performance Counters

	A10.3 Packet Formats
	A10.3.1 BTH: FECN and BECN locations
	A10.3.2 Congestion Notification Packet (CNP) format

	A10.4 Congestion Control Management
	A10.4.1 Congestion Control MAD Format
	A10.4.1.1 CC_Key
	A10.4.1.1.1 CC_Key Assumptions
	A10.4.1.1.2 CC_Key Protection Scope
	A10.4.1.1.3 CC_Key Operation
	A10.4.1.1.4 CC_Key Initialization
	A10.4.1.1.5 CC_Key Recovery
	A10.4.1.1.6 Levels of Protection

	A10.4.1.2 Congestion Control Log Data
	A10.4.1.3 CCMgt Data

	A10.4.2 Methods
	A10.4.3 Attributes
	A10.4.3.1 ClassPortInfo
	A10.4.3.2 Traps and Notices
	A10.4.3.3 CongestionInfo
	A10.4.3.4 CongestionKeyInfo
	A10.4.3.5 CongestionLog
	A10.4.3.6 SwitchCongestionSetting
	A10.4.3.7 SwitchPortCongestionSetting
	A10.4.3.8 CACongestionSetting
	A10.4.3.8.1 Port_Control
	A10.4.3.8.2 Control_Map
	A10.4.3.8.3 CACongestionEntryList
	A10.4.3.8.4 CACongestionEntry

	A10.4.3.9 CongestionControlTable
	A10.4.3.9.1 CCTI_Limit
	A10.4.3.9.2 CCTI_Entry_List
	A10.4.3.9.3 CongestionControlTableEntry

	A10.4.3.10 TimeStamp

	A10.5 Congestion Management Performance Counters
	A10.5.1 PortSamplesControl
	A10.5.2 Counter Select Values
	A10.5.3 Optional Performance Management Attributes
	A10.5.4 PortRcvConCtrl
	A10.5.5 PortSLRcvFECN
	A10.5.6 PortSLRcvBECN
	A10.5.7 PortXmitConCtrl
	A10.5.8 PortVLXmitTimeCong

	A10.6 Compliance Summary
	A10.6.1 CCMgt Switch Compliance Category
	A10.6.2 CCMgt CA Compliance Category

