
Cell Broadband Engine

Programming Tutorial

Version 1.0

October 21, 2005

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2005

All Rights Reserved
Printed in the United States of America October 2005

The following are trademarks of International Business Machines Corporation in the United States or other countries, or
both.

IBM PowerPC
IBM Logo PowerPC Architecture

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com
The IBM semiconductor solutions home page can be found at ibm.com/chips

Version 1.0
October 21, 2005

http://www.ibm.com
http://www.ibm.com/chips

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Contents
Page 3 of 183

Contents

List of Figures ... 7

List of Tables ... 9

Preface ... 11
Related Publications ... 11

1. Overview of the Cell Broadband Engine ... 13
1.1 Introduction ... 13

1.1.1 Background and Motivations ... 13
1.1.2 Scaling the Three Performance-Limiting Walls ... 14

1.2 Architectural Overview .. 17
1.2.1 PowerPC Processor Element .. 18
1.2.2 Synergistic Processor Elements .. 19

1.3 Programming Overview ... 20
1.3.1 Byte Ordering and Bit Numbering .. 21
1.3.2 SIMD Vectorization .. 21
1.3.3 SIMD C-Language Intrinsics .. 22
1.3.4 Threads and Tasks .. 23
1.3.5 Runtime Environment .. 24
1.3.6 Application Partitioning .. 24

1.4 Software Development Kit ... 26
1.4.1 Tools .. 26
1.4.2 Directory Structure ... 27
1.4.3 Libraries ... 27

2. The PPE and the Programming Process .. 29
2.1 PPE Registers ... 29
2.2 PPE Instruction Sets ... 31

2.2.1 PowerPC Instructions .. 31
2.2.2 Vector/SIMD Multimedia Extension Instructions .. 33
2.2.3 C/C++ Language Extensions (Intrinsics) ... 35
2.2.4 Programming with Vector/SIMD Multimedia Extension Intrinsics .. 40

2.3 The PPE and the SPEs ... 43
2.3.1 Storage Domains ... 43
2.3.2 Issuing DMA Commands from the PPE .. 45
2.3.3 Creating Threads for the SPEs .. 45
2.3.4 Communication Between the PPE and SPEs ... 46

2.4 Developing Code for the Cell Broadband Engine ... 47
2.4.1 Producing a Simple CBE Program .. 48
2.4.2 Running the Program in the Simulator .. 51
2.4.3 Debugging Programs ... 55

3. Programming the SPEs .. 57
3.1 SPE Configuration ... 57

Programming Tutorial

Cell Broadband Engine

Contents
Page 4 of 183

Version 1.0
October 21, 2005

3.1.1 Synergistic Processor Unit ... 58
3.1.2 Memory Flow Controller ... 62
3.1.3 Channels .. 63

3.2 SPU Instruction Set ... 68
3.2.1 Data Layout in Registers .. 68
3.2.2 Instruction Types .. 69

3.3 SPU C/C++ Language Extensions (Intrinsics) .. 72
3.3.1 Assembly Language versus Intrinsics Comparison: An Example .. 73
3.3.2 Intrinsic Classes ... 74
3.3.3 Promoting Scalar Data Types to Vector Data Types ... 80
3.3.4 Differences Between PPE and SPE SIMD Support ... 81
3.3.5 Compiler Directives .. 84

3.4 MFC Commands ... 84
3.4.1 DMA-Command Tag Groups ... 87
3.4.2 Synchronizing DMA Transfers ... 88

3.5 Coding Methods and Examples .. 88
3.5.1 DMA Transfers ... 88
3.5.2 DMA-List Transfers .. 89
3.5.3 Moving Double-Buffered Data .. 91
3.5.4 Vectorizing a Loop ... 93
3.5.5 Reducing the Impact of Branches .. 94

3.6 Porting SIMD Code from the PPE to the SPEs ... 98
3.6.1 Code-Mapping Considerations .. 99
3.6.2 Simple Macro Translation .. 100
3.6.3 Example 1: Euler Particle-System Simulation .. 102

3.7 Performance Analysis ... 112
3.7.1 Performance Issues ... 112
3.7.2 Example 1: Tuning SPE Performance with Static and Dynamic Timing Analysis 113

3.8 General SPE Programming Tips ... 123

4. Programming Models .. 127
4.1 Function-Offload Model ... 127

4.1.1 Remote Procedure Call .. 127
4.1.2 IDL Specification and Compilation ... 130
4.1.3 Simple Function-Offload Example ... 132

4.2 Device-Extension Model .. 133
4.3 Computation-Acceleration Model .. 133
4.4 Streaming Model ... 133
4.5 Shared-Memory Multiprocessor Model ... 134
4.6 Asymmetric-Thread Runtime Model .. 134
4.7 User-Mode Thread Model ... 135
4.8 SPE Plugins .. 135

5. The Simulator ... 137
5.1 Simulator Basics .. 138

5.1.1 Operating-System Modes .. 138
5.1.2 Interacting with the Simulator ... 138

5.2 Command-Line Interface ... 139

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Contents
Page 5 of 183

5.3 Graphical User Interface ... 140
5.3.1 The Simulation Panel .. 141
5.3.2 GUI Buttons ... 148

5.4 Performance Monitoring .. 153
5.4.1 Displaying Performance Statistics ... 154
5.4.2 Performance Profile Checkpoints .. 157
5.4.3 Example Program: tpa1 ... 159
5.4.4 Emitters ... 159

5.5 SPU Performance Statistics and Semantics ... 161

6. Glossary ... 165

7. Index ... 179

8. Revision Log ... 183

Programming Tutorial

Cell Broadband Engine

Contents
Page 6 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

List of Figures
Page 7 of 183

List of Figures
Figure 1-1. Cell Broadband Engine Overview .. 17

Figure 1-2. PPE Block Diagram .. 18

Figure 1-3. SPE Block Diagram .. 19

Figure 1-4. Big-Endian Byte and Bit Ordering .. 21

Figure 1-5. Four Concurrent Add Operations ... 22

Figure 1-6. Byte-Shuffle Operation ... 22

Figure 1-7. Application Partitioning Model .. 25

Figure 1-8. PPE-Centric Multistage Pipeline Model and Parallel Stages Model 25

Figure 1-9. PPE-Centric Services Model .. 26

Figure 2-1. PPE User-Register Set .. 29

Figure 2-2. Concurrent Execution of Integer, Floating-Point, and Vector Units .. 34

Figure 2-3. Running the Vector/SIMD Multimedia Extension Sample Program 41

Figure 2-4. Storage Domains ... 43

Figure 2-5. Sample Project Directory Structure and Makefiles ... 48

Figure 2-6. Windows Visible on Starting the GUI ... 52

Figure 2-7. Console Window on Completion of Linux Boot .. 53

Figure 2-8. Loading the Program into the Simulation Environment .. 54

Figure 2-9. Running the Sample Program .. 55

Figure 3-1. SPE Architectural Block Diagram ... 58

Figure 3-2. SPE User-Register Set .. 59

Figure 3-3. Register Layout of Data Types and Preferred Slot .. 69

Figure 3-4. SIMD Floating-Point Add Instruction Function ... 70

Figure 3-5. Array-of-Structures Data Organization for One Triangle .. 71

Figure 3-6. Structure-of-Arrays Data Organization for Four Triangles ... 72

Figure 3-7. DMA Transfers Using a Double-Buffering Method ... 92

Figure 4-1. Example of the Function-Offload (or RPC) Model .. 128

Figure 4-2. Production Flow for Function Offload (or RPC) Model ... 129

Figure 5-1. Simulation Stack .. 137

Figure 5-2. Simulator Structure and Screens ... 139

Figure 5-3. Main Graphical User Interface for the Simulator .. 141

Figure 5-4. Project and Processor Folders ... 142

Figure 5-5. PPE General-Purpose Registers Window .. 142

Figure 5-6. PPE Floating-Point Registers Window ... 143

Figure 5-7. PPE Core Window ... 143

Figure 5-8. SPE MFC Window ... 144

Figure 5-9. SPE MFC Address Translation Window ... 144

Figure 5-10. SPE Channels Window .. 145

Figure 5-11. SPE Local Store Statistics Window .. 146

Programming Tutorial

Cell Broadband Engine

List of Figures
Page 8 of 183

Version 1.0
October 21, 2005

Figure 5-12. SPU Statistics ...147

Figure 5-13. Debug Controls ...149

Figure 5-14. SPE Visualization Window ...150

Figure 5-15. Process Tree Statistics Window ...151

Figure 5-16. Track All PCs Window ..152

Figure 5-17. SPU Modes Window ...153

Figure 5-18. tpa1 Statistics for SPE 0 ...156

Figure 5-19. tpa1 Statistics for SPE 2 ...157

Figure 5-20. Profile Checkpoint Output for SPE 2 ..158

Figure 5-21. Emitters ..160

Figure 5-22. Emitter Architecture ..161

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

List of Tables
Page 9 of 183

List of Tables
Table 1-1. PPE and SPE Intrinsic Classes .. 23

Table 1-2. Definition of Threads and Tasks .. 23

Table 1-3. SDK Libraries ... 28

Table 2-1. Vector/SIMD Multimedia Extension Data Types .. 36

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics 37

Table 2-3. Vector/SIMD Multimedia Extension Predicate Intrinsics .. 39

Table 2-4. MFC Command-Parameter Registers for PPE-Initiated DMA Transfers 44

Table 2-5. Mailbox Channels and MMIO Registers ... 47

Table 2-6. Signal Notification Channels and MMIO Registers .. 47

Table 3-1. LS-Access Arbitration Priority and Transfer Size ... 61

Table 3-2. SPU Instruction Latency and Pipeline, by Instruction Class .. 61

Table 3-3. SPE Channels .. 63

Table 3-4. SPE Channel Instructions .. 65

Table 3-5. Vector Data Types ... 69

Table 3-6. SPU Instruction Types ... 69

Table 3-7. Specific Intrinsics Not Available as Generic Intrinsics .. 75

Table 3-8. Specific Casting Intrinsics .. 76

Table 3-9. Generic SPU Intrinsics ... 77

Table 3-10. Composite SPU Intrinsics .. 80

Table 3-11. Intrinsics for Changing Scalar and Vector Data Types .. 81

Table 3-12. PPE and SPE Architectural Comparison ... 81

Table 3-13. PPE versus SPU Vector Data Types ... 82

Table 3-14. Single-Token Vector Keyword Data Types .. 83

Table 3-15. MFC DMA Commands ... 85

Table 3-16. MFC Command Suffixes .. 86

Table 3-17. MFC Synchronization Commands ... 87

Table 3-18. MFC Atomic Commands .. 87

Table 3-19. Branch-Hint Instructions ... 97

Table 3-20. Proposed Vector/SIMD Multimedia Extension Single-Token Data Types 100

Table 3-21. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping 100

Table 3-22. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping 101

Table 5-1. Important Commands for the IBM Full System Simulator for the Cell Broadband Engine ... 140

Table 5-2. Simulator Performance Statistics for the SPU ... 161

Programming Tutorial

Cell Broadband Engine

List of Tables
Page 10 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Preface
Page 11 of 183

Preface

This tutorial is written for programmers who are interested in developing applications or libraries
for the Cell Broadband Engine. It is not intended for programmers who want to develop device
drivers, compilers, or operating systems for the Cell Broadband Engine.

We assume that you are an experienced C/C++ programmer and are familiar with the basic
concepts of single-instruction, multiple-data (SIMD) vector instruction sets, such as the
PowerPC® Architecture™ Vector/SIMD Multimedia Extensions, Intel® MMX™, SSE, 3DNOW!, or
x86-64 instruction sets.

We also assume a development environment that includes the 64-bit PowerPC Linux® operating
system and standard Linux toolset (augmented with the Linux extensions that support the Cell
Broadband Engine), a Cell Broadband Engine software development kit (SDK), and a Cell Broad-
band Engine system or simulator (such as the IBM Full System Simulator for the Cell Broadband
Engine). The descriptions and examples in this tutorial are from the public SDK. The examples
are chosen to highlight the general principals required for Cell Broadband Engine programming,
so that an experienced programmer can apply this knowledge to other environments.

Related Publications

A list of reference materials for the Cell Broadband Engine follows.

Title Version Revision Date

Cell Broadband Engine Architecture 1.0 August 2005

Cell Broadband Engine Linux Reference Implementation
Application Binary Interface Specification 1.0 October 2005

PowerPC User Instruction Set Architecture, Book I 2.02 January 28, 2005

PowerPC Virtual Environment Architecture, Book II 2.02 January 28, 2005

PowerPC Operating Environment Architecture, Book III 2.02 January 28, 2005

PowerPC Microprocessor Family: The Programming Environments Manual for
64-bit Microprocessors 3.0 July 2005

PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology
Programming Environments Manual 1.0 October 2005

Synergistic Processor Unit Instruction Set Architecture 1.0 August 2005

SPU C/C++ Language Extensions 2.0 August 2005

SPU Application Binary Interface Specification 1.3 August 2005

SPU Assembly Language Specification 1.2 August 2005

Programming Tutorial

Cell Broadband Engine

Preface
Page 12 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 13 of 183

1. Overview of the Cell Broadband Engine

1.1 Introduction

The first generation Cell Broadband Engine is the first incarnation of a new family of microproces-
sors conforming to the Cell Broadband Engine Architecture (CBEA). The CBEA is a new archi-
tecture that extends the 64-bit PowerPC Architecture. The CBEA and the Cell Broadband Engine
are the result of a collaboration between Sony, Toshiba, and IBM, known as STI, formally started
in early 2001.

1.1.1 Background and Motivations

Although the Cell Broadband Engine is initially intended for application in game consoles and
media-rich consumer-electronics devices such as high-definition televisions, the architecture and
the Cell Broadband Engine implementation have been designed to enable fundamental
advances in processor performance. A much broader use of the architecture is envisioned.

The Cell Broadband Engine is a single-chip multiprocessor with nine processors operating on a
shared, coherent memory. In this respect, it extends current trends in PC and server processors.
The most distinguishing feature of the Cell Broadband Engine is that, although all processors
share main storage (the effective-address space that includes main memory), their function is
specialized into two types: the PowerPC Processor Element (PPE), and the Synergistic
Processor Element (SPE). The Cell Broadband Engine has one PPE and eight SPEs.

The first type of processor, the PPE, is a 64-bit PowerPC Architecture core. It is fully compliant
with the 64-bit PowerPC Architecture and can run 32-bit and 64-bit operating systems and appli-
cations. The second type of processor, the SPE, is optimized for running compute-intensive
applications, and it is not optimized for running an operating system. The SPEs are independent
processors, each running its own individual application programs. Each SPE has full access to
coherent shared memory, including the memory-mapped I/O space. The designation synergistic
for this processor was chosen carefully because there is a mutual dependence between the PPE
and the SPEs. The SPEs depend on the PPE to run the operating system, and, in many cases,
the top-level control thread of an application. The PPE depends on the SPEs to provide the bulk
of the application performance.

The SPEs are designed to be programmed in high-level languages and support a rich instruction
set that includes extensive single-instruction, multiple-data (SIMD) functionality. However, just
like conventional processors with SIMD extensions, use of SIMD data types is preferred, not
mandatory. For programming convenience, the PPE also supports the PowerPC Architecture
Vector/SIMD Multimedia Extension.

To an application programmer, the Cell Broadband Engine looks like a 9-way coherent multipro-
cessor. The PPE is more adept at control-intensive tasks and quicker at task switching. The
SPEs are more adept at compute-intensive tasks and slower at task switching. However, either
processor is capable of both types of functions. This specialization has allowed increased effi-
ciency in the implementation of both the PPE and especially the SPEs. It is a significant factor in
the approximate order-of-magnitude improvement in peak computational performance and area-
and-power efficiency that the Cell Broadband Engine achieves over conventional PC processors.

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 14 of 183

Version 1.0
October 21, 2005

A significant difference between the SPEs and the PPE is how they access memory. The PPE
accesses main storage (the effective-address space that includes main memory) with load and
store instructions that go between a private register file and main storage (which may be
cached). However, the SPEs access main storage with direct memory access (DMA) commands
that go between main storage and a private local memory used to store both instructions and
data. SPE instruction-fetches and load and store instructions access this private local store,
rather than shared main storage. This 3-level organization of storage (register file, local store,
main storage), with asynchronous DMA transfers between local store and main storage, is a
radical break with conventional architecture and programming models, because it explicitly paral-
lelizes computation and the transfers of data and instructions.

The reason for this radical change is that memory latency, measured in processor cycles, has
gone up several hundredfold in the last 20 years. The result is that application performance is, in
most cases, limited by memory latency rather than by peak compute capability or peak band-
width. When a sequential program on a conventional architecture performs a load instruction that
misses in the caches, program execution now comes to a halt for several hundred cycles.
Compared to this penalty, the few cycles it takes to set up a DMA transfer for an SPE is quite
small. Conventional processors, even with deep and costly speculation, manage to get, at best, a
handful of independent memory accesses in flight. The result can be compared to a bucket
brigade in which a hundred people are required to cover the distance to the water needed to put
the fire out, but only a few buckets are available. In contrast, the explicit DMA model allows each
SPE to have many concurrent memory accesses in flight, without the need for speculation.

The most productive SPE memory-access model appears to be the one in which a list (such as a
scatter-gather list) of DMA transfers is constructed in an SPE’s local store, so that the SPE’s
DMA controller can process the list asynchronously while the SPE operates on previously trans-
ferred data. In several cases, this new approach to accessing memory has led to application
performance exceeding that of conventional processors by almost two orders of magnitude,
significantly more than one would expect from the peak performance ratio (about 10x) between
the Cell Broadband Engine and conventional PC processors.

It is also possible to write compilers that manage an SPE’s local store as a very large second-
level register file or to automatically bring in code when needed and present a conventional
symmetric multiprocessing (SMP) model. Although such a compiler exists, at least in prototype
form, it does not today result in the most optimal application performance. Hence, this tutorial
focuses on approaches to programming the Cell Broadband Engine that expose the local store
and the asynchronous DMA-transfer commands.

1.1.2 Scaling the Three Performance-Limiting Walls

The Cell Broadband Engine overcomes three important limiters of contemporary microprocessor
performance—power use, memory use, and processor frequency.

1.1.2.1 The Power Wall

Increasingly, microprocessor performance is limited by achievable power dissipation rather than
by the number of available integrated-circuit resources (transistors and wires). Thus, the only
way to significantly increase the performance of microprocessors is to improve power efficiency
at about the same rate as the performance increase.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 15 of 183

One way to increase power efficiency is to differentiate between (a) processors optimized to run
an operating system and control-intensive code, and (b) processors optimized to run compute-
intensive applications. The Cell Broadband Engine does this by providing a general-purpose
PPE to run the operating system and other control-plane code, and eight SPEs specialized for
computing data-rich (data-plane) applications.

1.1.2.2 The Memory Wall

On multigigahertz symmetric multiprocessors—even those with integrated memory controllers—
latency to DRAM memory is currently approaching 1,000 cycles. As a result, program perfor-
mance is dominated by the activity of moving data between main storage (the effective-address
space that includes main memory) and the processor. Increasingly, compilers and even applica-
tion writers must manage this movement of data explicitly, even though the hardware cache
mechanisms are supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long main-memory laten-
cies: (a) a 3-level memory structure (main storage, local stores in each SPE, and large register
files in each SPE), and (b) asynchronous DMA transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code transfers to cover
long latencies effectively. Because of this organization, the Cell Broadband Engine can usefully
support 128 simultaneous transfers between the eight SPE local stores and main storage. This
surpasses the number of simultaneous transfers on conventional processors by a factor of
almost twenty.

1.1.2.3 The Frequency Wall

Conventional processors require increasingly deeper instruction pipelines to achieve higher
operating frequencies. This technique has reached a point of diminishing returns—and even
negative returns if power is taken into account.

By specializing the PPE and the SPEs for control and compute-intensive tasks, respectively, the
Cell Broadband Engine Architecture, on which the Cell Broadband Engine is based, allows both
the PPE and the SPEs to be designed for high frequency without excessive overhead. The PPE
achieves efficiency primarily by executing two threads simultaneously rather than by optimizing
single-thread performance. Each SPE achieves efficiency by using a large register file, which
supports many simultaneous in-flight instructions without the overhead of register-renaming or
out-of-order processing. Each SPE also achieves efficiency by using asynchronous DMA trans-
fers, which support many concurrent memory operations without the overhead of speculation.

1.1.2.4 The Cell Broadband Engine Solution

By optimizing control-plane and data-plane processors individually, the Cell Broadband Engine
mitigates the problems posed by the power, memory, and frequency limitations. The net result is
a processor that, at the power budget of a conventional PC processor, can provide approximately
ten-fold the peak performance of a conventional processor. Of course, actual application perfor-
mance varies. Some applications may benefit little from the SPEs, whereas others show a perfor-
mance increase well in excess of ten-fold. In general, compute-intensive applications that use
32-bit or smaller data formats (such as single-precision floating-point and integer) are excellent
candidates for the Cell Broadband Engine.

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 16 of 183

Version 1.0
October 21, 2005

The remainder of this chapter describes the Cell Broadband Engine hardware, some basic
programming conventions, a typical software-development sequence, and the major support
tools available in the software development kit (SDK).

Programming the PPE is described in Section 2 on page 29. Programming the SPEs is described
in Section 3 on page 57. Programming models are described in Section 4 on page 127. The IBM
Full System Simulator for the Cell Broadband Engine is described in Section 5 on page 137. A
glossary is provided in Section 6 on page 165, and an index in Section 7 on page 179.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 17 of 183

1.2 Architectural Overview

The Cell Broadband Engine consists of nine processors on a single chip, all connected to each
other and to external devices by a high-bandwidth, memory-coherent bus. Figure 1-1 shows a
block diagram of the Cell Broadband Engine. The main blocks include:

• PowerPC Processor Element (PPE)—The PPE is the main processor. It contains a 64-bit
PowerPC Architecture reduced instruction set computer (RISC) core with a traditional virtual-
memory subsystem. It runs an operating system, manages system resources, and is
intended primarily for control processing, including the allocation and management of SPE
threads. It can run legacy PowerPC Architecture software and performs well executing sys-
tem-control code. It supports both the PowerPC instruction set and the Vector/SIMD Multime-
dia Extension instruction set.

• Synergistic Processor Elements (SPEs)—The eight SPEs are SIMD processors optimized
for data-rich operations allocated to them by the PPE. Each of these identical elements con-
tains a RISC core, 256-KB, software-controlled local store for instructions and data, and a
large (128-bit, 128-entry) unified register file. The SPEs support a special SIMD instruction
set, and they rely on asynchronous DMA transfers to move data and instructions between
main storage (the effective-address space that includes main memory) and their local stores.
SPE DMA transfers access main storage using PowerPC effective addresses. As on the
PPE, address translation is governed by PowerPC Architecture segment and page tables.
The SPEs are not intended to run an operating system.

• Element Interconnect Bus (EIB)—The PPE and SPEs communicate coherently with each
other and with main storage and I/O through the EIB. The EIB is a 4-ring structure (two clock-
wise and two counterclockwise) for data, and a tree structure for commands. The EIB’s inter-
nal bandwidth is 96 bytes per cycle, and it can support more than 100 outstanding DMA
memory requests between main storage and the SPEs.

Figure 1-1. Cell Broadband Engine Overview

PPE
(PowerPC
Processor
Element)

SPE
(Synergistic
Processor
Element)

SPE SPE SPE

SPE SPE SPE SPE

Element Interconnect Bus (EIB)
Cell Broadband
Engine Interface

(BEI)

Memory Interface
Controller (MIC)

XIO
Channels

FlexIO
Channels

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 18 of 183

Version 1.0
October 21, 2005

The memory-coherent EIB has two external interfaces, shown in Figure 1-1 on page 17:

• Memory Interface Controller (MIC)—The MIC provides the interface between the EIB and
main storage. It supports two Rambus Extreme Data Rate (XDR) I/O (XIO) memory channels
and memory accesses on each channel of 1-8, 16, 32, 64, or 128 bytes.

• Cell Broadband Engine Interface (BEI)—The BEI manages data transfers between the EIB
and I/O devices. It provides address translation, command processing, an internal interrupt
controller, and bus interfacing. It supports two Rambus FlexIO external I/O channels. One
channel supports only noncoherent I/O devices. The other channel can be configured to sup-
port either noncoherent transfers or coherent transfers that extend the logical EIB to another
compatible external device, such as another Cell Broadband Engine.

The Cell Broadband Engine supports concurrent real-time and non-real-time operating systems
and resource management. Software development in the C/C++ language is supported by a rich
set of language extensions that define C/C++ data types for SIMD operations and map C/C++
intrinsics (commands, in the form of function calls) to one or more assembly instructions. These
language extensions give C/C++ programmers much greater control over code performance,
without the need for assembly-language programming. Software development is further
supported by a complete Linux-based SDK and a full-system simulator.

1.2.1 PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC
processor that conforms to the PowerPC Architecture, version 2.02, with the Vector/SIMD Multi-
media Extension. Programs written for the PowerPC 970 processor, for example, should run on
the Cell Broadband Engine without modification.

The PPE consists of two main units, the PowerPC Processor Unit (PPU) and the PowerPC
Processor Storage Subsystem (PPSS), as shown in Figure 1-2. The PPE is responsible for
overall control of the system. It runs the operating systems for all applications running on the Cell
Broadband Engine.

Figure 1-2. PPE Block Diagram

PowerPC Processor Element (PPE)

PowerPC Processor Unit (PPU)

PowerPC Processor Storage Subsystem (PPSS)

L1 Cache

L2 Cache

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 19 of 183

The PPU deals with instruction control and execution. It includes the full set of 64-bit PowerPC
registers, 32 128-bit vector multimedia registers, a 32-KB level 1 (L1) instruction cache, a 32-KB
level 1 (L1) data cache, an instruction-control unit, a load and store unit, a fixed-point integer unit,
a floating-point unit, a vector unit, a branch unit, and a virtual-memory management unit.

The PPU supports two simultaneous threads of execution and can be viewed as a 2-way multi-
processor with shared dataflow. This appears to software as two independent processing units.
The state for each thread is duplicated, including all architected and special-purpose registers
except those that deal with system-level resources, such as logical partitions, memory, and
thread-control. Most nonarchitected resources, such as caches and queues, are shared by both
threads, except in cases where the resource is small or offers a critical performance improve-
ment to multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the PPE from other
processors or I/O devices. It includes a unified 512-KB level 2 (L2) instruction and data cache,
various queues, and a bus interface unit that handles bus arbitration and pacing on the EIB.
Memory is seen as a linear array of bytes indexed from 0 to 264 - 1. Each byte is identified by its
index, called an address, and each byte contains a value. One storage access occurs at a time,
and all accesses appear to occur in program order.

The L2 cache and the address-translation caches use replacement-management tables that
allow software to control use of the caches. This software control over cache resources is espe-
cially useful for real-time programming.

1.2.2 Synergistic Processor Elements

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor special-
ized for data-rich, compute-intensive SIMD applications. It consists of two main units, the Syner-
gistic Processor Unit (SPU) and the Memory Flow Controller (MFC), as shown in Figure 1-3.

Figure 1-3. SPE Block Diagram

Synergistic Processor Element (SPE)

Synergistic Processor Unit (SPU)

Memory Flow Controller (MFC)

Local Store (LS)

DMA Controller

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 20 of 183

Version 1.0
October 21, 2005

The SPU deals with instruction control and execution. It includes a single register file with 128
registers (each one 128 bits wide), a unified (instructions and data) 256-KB local store (LS), an
instruction-control unit, a load and store unit, two fixed-point units, a floating-point unit, and a
channel-and-DMA interface. The SPU implements a new SIMD instruction set, the SPU Instruc-
tion Set Architecture, that is specific to the Cell Broadband Engine Architecture.

Each SPU is an independent processor with its own program counter and is optimized to run
SPE threads spawned by the PPE. The SPU fetches instructions from its own LS, and it loads
and stores data from and to its own LS. With respect to accesses by its SPU, the LS is unpro-
tected and untranslated storage.

The MFC contains a DMA controller that supports DMA transfers. Programs running on the SPU,
the PPE, or another SPU, use the MFC’s DMA transfers to move instructions and data between
the SPU’s LS and main storage. (Main storage is the effective-address space that includes main
memory, other SPEs’ LS, and memory-mapped registers such as memory-mapped I/O [MMIO]
registers.) The MFC interfaces the SPU to the EIB, implements bus bandwidth-reservation
features, and synchronizes operations between the SPU and all other processors in the system.

To support DMA transfers, the MFC maintains and processes queues of DMA commands. After
a DMA command has been queued to the MFC, the SPU can continue to execute instructions
while the MFC processes the DMA command autonomously and asynchronously. The MFC also
can autonomously execute a sequence of DMA transfers, such as scatter-gather lists, in
response to a DMA-list command. This autonomous execution of MFC DMA commands and
SPU instructions allows DMA transfers to be conveniently scheduled to hide memory latency.

Each DMA transfer can be up to 16 KB in size. However, only the MFC’s associated SPU can
issue DMA-list commands. These can represent up to 2,048 DMA transfers, each one up to
16 KB in size. DMA transfers are coherent with respect to main storage. Virtual-memory address-
translation information is provided to each MFC by the operating system running on the PPE.
Attributes of system storage (address translation and protection) are governed by the page and
segment tables of the PowerPC Architecture. Although privileged software on the PPE can map
LS addresses and certain MFC resources to the main-storage address space, enabling the PPE
or other SPUs in the system to access these resources, this aliased memory is not coherent in
the system.

The SPEs provide a deterministic operating environment. They do not have caches, so cache
misses are not a factor in their performance. Pipeline-scheduling rules are simple, so it is easy to
statically determine the performance of code. Although the LS is shared between DMA read and
write operations, load and store operations, and instruction prefetch, DMA operations are accu-
mulated and can only access the LS for at most one of every eight cycles. Instruction prefetch
delivers at least 17 instructions sequentially from the branch target. Thus, the impact of DMA
operations on loads and stores and program-execution times is, by design, limited.

1.3 Programming Overview

The instruction set for the PPE is an extended version of the PowerPC instruction set. The exten-
sions consist of the Vector/SIMD Multimedia Extension instruction set plus a few additions and
changes to PowerPC instructions. The instruction set for the SPE is similar to that of the PPE’s
Vector/SIMD Multimedia Extension instruction set. Although the PPE and the SPEs execute
SIMD instructions, the two instruction sets are different, and programs for the PPE and SPEs
must be compiled by different compilers.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 21 of 183

1.3.1 Byte Ordering and Bit Numbering

Storage of data and instructions in the Cell Broadband Engine is big-endian. Big-endian ordering
has the following characteristics:

• Most-significant byte is stored at the lowest address, and least-significant byte is stored at
the highest address.

• Bit numbering within a byte goes from most-significant bit (bit 0) to least-significant bit (bit n).
This differs from some other big-endian processors.

A summary of the byte-ordering and bit-ordering in memory, as well as the bit-numbering
conventions, is shown in Figure 1-4.

1.3.2 SIMD Vectorization

A vector is an instruction operand containing a set of data elements packed into a one-dimen-
sional array. The elements can be integer or floating-point values. Most Vector/SIMD Multimedia
Extension and SPU instructions operate on vector operands. Vectors are also called SIMD oper-
ands or packed operands.

SIMD processing exploits data-level parallelism. Data-level parallelism means that the opera-
tions required to transform a set of vector elements can be performed on all elements of the
vector at the same time. That is, a single instruction can be applied to multiple data elements in
parallel.

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they are
supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs, they are
supported by the SPU instruction set.

In both the PPE and SPEs, vector multimedia registers hold multiple data elements as a single
vector. The data paths and registers supporting SIMD operations are 128 bits wide, corre-
sponding to four full 32-bit words. This means that four 32-bit words can be loaded into a single
register, and, for example, added to four other words in a different register in a single operation.
Figure 1-5 on page 22 shows such an operation. Similar operations can be performed on vector
operands containing 16 bytes, 8 halfwords, or 2 doublewords.

Figure 1-4. Big-Endian Byte and Bit Ordering

Byte 0 Byte 3Byte 2Byte 1

0 31302928272625242322212019181716151413121110987654321

Bit and Byte Order for a 32-bit Word

MSB LSB

Byte 0 Byte 15Byte 1

0 127151413121110987654321

Bit and Byte Order for a 128-bit Register

MSB LSB
120

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 22 of 183

Version 1.0
October 21, 2005

The process of preparing a program for use on a vector processor is called vectorization or
SIMDization. It can be done manually by the programmer, or it can be done by a compiler that
does auto-vectorization.

Figure 1-6 shows another example of an SIMD operation—in this case, a byte-shuffle operation.
Here, the bytes selected for the shuffle from the source registers, VA and VB, are based on byte
entries in the control vector, VC, in which a 0 specifies VA and a 1 specifies VB. The result of the
shuffle is placed in register VT.

1.3.3 SIMD C-Language Intrinsics

Both the Vector/SIMD Multimedia Extension and SPU instruction sets have extensions that
support C-language intrinsics. Intrinsics are C-language commands, in the form of function calls,
that are convenient substitutes for one or more inline assembly-language instructions.

Figure 1-5. Four Concurrent Add Operations

add VC,VA,VB

VA A.0 A.1 A.2 A.3

VB B.0 B.1 B.2 B.3

VC C.0 C.1 C.2 C.3

+ + + +

Figure 1-6. Byte-Shuffle Operation

shuffle VT,VA,VB,VC

VC

VA

VB

VT

01 14 18 10 06 15 19 1A 1C 1C 1C 13 08 1D 1B 0E

A.0 A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.A A.B A.C A.D A.E A.F

B.0 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9 B.A B.B B.C B.D B.E B.F

A.1 B.4 B.8 B.0 A.6 B.5 B.9 B.A B.C B.C B.C B.3 A.8 B.D B.B A.E

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 23 of 183

In a specific instruction set, most intrinsic names use a standard prefix in their mnemonic, and
some intrinsic names incorporate the mnemonic of an associated assembly-language instruction.
For example, the Vector/SIMD Multimedia Extension intrinsic that implements the add
Vector/SIMD Multimedia Extension assembly-language instruction is named vec_add, and the
SPU intrinsic that implements the stop SPU assembly-language instruction is named spu_stop.

The PPE’s Vector/SIMD Multimedia Extension instruction set and the SPE’s SPU instruction set
both have extensions that define somewhat different sets of intrinsics, but they all fall into four
types of intrinsics. These are listed in Table 1-1. Although the intrinsics provided by the two
instruction sets are similar in function, their naming conventions and function-call forms are
different.

For more information about the PPE intrinsics, see Section 2.2.3 on page 35. For more informa-
tion about the SPE intrinsics, see Section 3.3 on page 72.

1.3.4 Threads and Tasks

In a system running the Linux operating system, the main thread of a program is a Linux thread
running on the PPE. The program’s main Linux thread can spawn one or more Cell Broadband
Engine Linux tasks. A Cell Broadband Engine Linux task has one or more Linux threads associ-
ated with it, along with some number of SPE threads. An SPE thread is a thread that is spawned
to run on an available SPE. These terms are defined in Table 1-2.

The software threads described in this section are unrelated to the hardware multithreading
capability of the PPE.

A Linux thread can interact directly with an SPE thread through the SPE’s local store. It can
interact indirectly through effective-address (EA) memory. A thread can poll or sleep, waiting for
SPE threads, using the spe_get_event() or spe_wait() intrinsic subroutines.

Table 1-1. PPE and SPE Intrinsic Classes

Types of Intrinsic Definition PPE SPE

Specific One-to-one mapping to a single assembly-language instruction. X X

Generic Map to one or more assembly-language instructions, depending on types of input
parameters. X X

Composite Constructed from a sequence of Specific or Generic intrinsics. X

Predicates Evaluate SIMD conditionals. X

Table 1-2. Definition of Threads and Tasks

Term Definition

Linux Thread A thread running on the PPE in the Linux operating-system environment.

Cell Broadband Engine Linux Task

A task running on the PPE and SPE. Each such task:
• Has one or more Linux thread and some number of SPE threads.
• All the Linux threads within the task share the task’s resources, including

access to the SPE threads.

SPE Thread

A thread running on an SPE. Each such thread:
• Has its own 128 x 128-bit register file, program counter, and MFC Com-

mand Queues.
• Can communicate with other execution units (or with effective-address

memory through the MFC channel interface).

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 24 of 183

Version 1.0
October 21, 2005

The operating system defines the mechanism and policy for selecting an available SPE. It must
prioritize among all the Cell Broadband Engine Linux applications in the system, and it must
schedule SPE execution independent from regular Linux threads. It is also responsible for run-
time loading, passing parameters to SPE programs, notification of SPE events and errors, and
debugger support.

1.3.5 Runtime Environment

The PPE runs PowerPC applications and operating systems, which may include Vector/SIMD
Multimedia Extension instructions. The PPE requires an operating system that is extended to
support the hardware features of Cell Broadband Engines, such as multiprocessing with the
SPEs, access to the PPE Vector/SIMD Multimedia Extension functions, the Cell Broadband
Engine interrupt controller, and all other functions on the Cell Broadband Engine.

The assumed development and operating-system environment for this tutorial are described in
the Preface on page 11. In this operating environment, the PPE handles thread allocation and
resource management among SPEs. The PPE’s Linux kernel controls the SPUs’ execution of
programs.

SPE threads follow the M:N thread model, meaning M threads distributed over N processor
elements. SPE threads run to completion. The SDK Linux kernel supports a run-to-completion
model, except for certain preemptive debugging services.

The Linux kernel manages virtual memory, including mapping each SPE’s local store (LS) into
the effective-address space. The kernel also controls virtual-memory mapping of MFC resources,
as well as MFC segment-fault and page-fault handling. Large pages (16-MB pages, using the
hugetlbfs Linux extension) are supported.

The Linux release has also been modified to support performance monitoring, thermal manage-
ment, and power management.

1.3.6 Application Partitioning

Programs running on the Cell Broadband Engine’s nine processor elements typically partition the
work among the available processor elements. In determining when and how to distribute the
workload and data, take into account the following considerations:

• Processing-load distribution

• Program structure

• Program data flow and data access patterns

• Cost, in time and complexity of code movement and data movement among processors

• Cost of loading the bus and bus attachments

The main model for partitioning an application is PPE-centric, as shown in Figure 1-7 on
page 25.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 25 of 183

In the PPE-centric model, the main application runs on the PPE, and individual tasks are off-
loaded to the SPEs. The PPE then waits for, and coordinates, the results returning from the
SPEs. This model fits an application with serial data and parallel computation. In the SPE-centric
model, most of the application code is distributed among the SPEs. The PPE acts as a central-
ized resource manager for the SPEs. Each SPE fetches its next work item from main storage (or
its own local store) when it completes its current work.

There are three ways in which the SPEs can be used in the PPE-centric model—the Multistage
Pipeline Model, the Parallel Stages Model, and the Services Model. The first two of these are
shown in Figure 1-8.

If a task requires sequential stages, the SPEs can act as a multistage pipeline. The left side of
Figure 1-8 shows a multistage pipeline. Here, the stream of data is sent into the first SPE, which
performs the first stage of the processing. The first SPE then passes the data to the next SPE for
the next stage of processing. After the last SPE has done the final stage of processing on its
data, that data is returned to the PPE. As with any pipeline architecture, parallel processing
occurs, with various portions of data in different stages of being processed. Multistage pipelining
is typically avoided because of the difficulty of load balancing. In addition, the Multistage Model
increases the data-movement requirement because data must be moved for each stage of the
pipeline.

Figure 1-7. Application Partitioning Model

Multistage
Pipleline
Model

Parallel
Stages
Model

Services
Model

SPE-centric
Model

PPE-centric

Models

Figure 1-8. PPE-Centric Multistage Pipeline Model and Parallel Stages Model

PPE

SPE

SPE

SPE

PPE

SPE SPESPE

Multistage Pipeline Model Parallel Stages Model

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 26 of 183

Version 1.0
October 21, 2005

If the task to be performed is not a multistage task, but a task in which there is a large amount of
data that can be partitioned and acted on at the same time, then it might make sense to use
SPEs to process different portions of that data in parallel. This Parallel Stages Model is shown on
the right side of Figure 1-8 on page 25.

The third way in which SPEs can be used in a PPE-centric model is the Services Model. In the
Services Model, the PPE assigns different services to different SPEs, and the PPE’s main
process calls upon the appropriate SPE when a particular service is needed.

Figure 1-9 shows the PPE-centric Services Model. Here, one SPE processes data encryption,
another SPE processes MPEG encoding, and a third SPE processes curve analysis. Fixed static
allocation of SPU services should be avoided. These services should be virtualized and
managed on a demand-initiated basis.

For a more detailed view of programming models, see Section 4 Programming Models on
page 127.

1.4 Software Development Kit

An SDK is available for the Cell Broadband Engine. The SDK contains the essential tools
required for developing programs for the Cell Broadband Engine. The preface to this tutorial, on
page 11, describes the assumptions with respect to the available SDK.

1.4.1 Tools

The many tools in the SDK include the full range of standard UNIX® tools plus other tools that
support special features of the Cell Broadband Engine, including such things as:

• systemsim - The IBM Full System Simulator for the Cell Broadband Engine (see Section 5 on
page 137)

• idl - The compiler for the remote-procedure-call interface between the PPE and the SPEs

The SDK contains two versions of the gcc compiler, ppu-gcc and spu-gcc. ppu-gcc compiles
code for the PPE’s Vector/SIMD Multimedia Extension instruction set and associated C intrinsics.
spu-gcc compiles code for the SPE’s SPU instruction set and associated C intrinsics.

Figure 1-9. PPE-Centric Services Model

PPE
Application Code

SPE
Curve Analysis

SPE
MPEG Encoding

SPE
Data Encryption

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 27 of 183

gdb, the GNU debugger, has been enhanced to support SPE debugging. gdb handles PPE and
SPE multithreading and supports multiple PPE and SPE threads that interact (see Section 1.3.4
on page 23). There are two ways to debug SPE threads:

• gdb can attach to the SPE thread.

• gdb can launch a new debug session for each SPE thread.

Additional tools familiar to UNIX programmers are available for SPE coding: ar for managing
libraries or archives, and nm for getting symbols from object files. The gas (assembler) and gld
(link and load) utilities are available, although C/C++ programmers usually do not use these
directly.

1.4.2 Directory Structure

The main SDK directory includes the following subdirectories:

• docs—Contains documents and papers that have wide applicability, beyond a single SDK
component. Documentation is provided in PDF format. Documentation on particular compo-
nents of the SDK is in the related directories as appropriate.

• include—Contains the system header (.h) files required for compiling programs for the Cell
Broadband Engine.

• lib—Contains the object code for the libraries as well as a set of reusable source header files.
Complete documentation for all the library functions is in the sdk/docs/lib/libraries.pdf
file.

• samples—Contains a set of programs used to demonstrate the use of tools, libraries, and
hardware features. The subdirectories are named according to the feature or software being
demonstrated.

• tests—Contains a set of self-verifying tests used to validate the hardware, standards, librar-
ies, and tools.

• tools—Contains a set of utilities used to generate content or make programming easier.

• workloads—Contains a set of code samples used to characterize the performance of the
architecture, algorithms, libraries, tools, and compilers.

The SDK contains standardized directory names that reflect the processor, function, or environ-
ment for which the code is meant to run, as follows:

• CPU

– spu—Code compiled for execution in a Linux environment on an SPE.

– ppu—Code compiled for execution on the PPE.

– spu_sim—Code compiled for execution on an SPE in a simulated (systemsim), stand-
alone (without Linux) environment.

1.4.3 Libraries

The SDK contains a set of libraries for use in multiprocessing tasks, including the computation of
curves and surfaces, game mathematics, and matrix math. There are also libraries covering Cell
Broadband Engine-specific tasks, such as SPE management of the MFC. A summary of the

Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 28 of 183

Version 1.0
October 21, 2005

most important libraries is given in Table 1-3. The table also indicates the processors—PPE or
SPE—on which the libraries are supported. For libraries supported on both processors, the
routines implemented on each platform may be different.

Table 1-3. SDK Libraries

Library PPE SPE Description

Audio_resample X X Support for audio resampling of monophonic and stereophonic audio data.

C X X A set of functions that can all be found in stdlib. All functions are C99
compliant

FFT X X Support for Fast Fourier Transforms.

Game Math X X Mathematical routines applicable to game needs, where precision and
mathematical accuracy can be sacrificed for performance.

Images X X Routines for image processing.

Large Matrix X Routines for operating on large vectors as well as large matrices of single
precision floating-point numbers.

Math X X
General-purpose math routines similar to those found in the standard math
library, but tuned to support SIMD features. These generally only support
single precision.

Matrix X X Routines for operating on small (4 x 4) matrices and quaternions.

Miscellaneous X X
General-purpose routines that do not fit logically within any of the specific
libraries. Includes clamping, finding minimum/maximum, random number
calculation, printing, splatting, set/longjumping.

Multiprecision Math X Routines that perform mathematical functions on unsigned integers of a
large number of bits (up to 4,096 bits).

Noise X X Routines that implement lattice noise, turbulence, and fractal operations.

Oscillator X X Routines that support the creation of a synthetic environment consisting of
one or more configurable directional microphones.

Simulation X X Routines useful only in the simulation environments. These include stan-
dard library subroutines and connection subroutines.

Surface X X
Support for evaluating curves and surfaces, including quadratic and Bezier
curves, and biquadratic and bicubic Bezier surfaces.

Sync X X Simple, general-purpose atomic update operations for programs executing
on either the SPE or PPE.

Vector X X General-purpose routines that operate on vectors.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 29 of 183

2. The PPE and the Programming Process

Section 1.2.1 on page 18 introduced the organization and functions of the PPE. This chapter
describes the PPE registers, the PPE’s two instruction sets, and the C-language intrinsics for the
Vector/SIMD Multimedia Extension instructions. The relation between PPE and SPE address
spaces is described. Examples are provided of PPE-initiated DMA transfers between main
storage and an SPE’s local store (LS) and of PPE thread-creation for the SPE.

2.1 PPE Registers

The complete set of PPE user (problem-state) registers is shown in Figure 2-1. All computational
instructions operate only on registers—there are no computational instructions that modify
storage. To use a storage operand in a computation and then modify the same or another
storage location, the contents of the storage operand must be loaded into a register, modified,
and then stored back to the target location.

Figure 2-1. PPE User-Register Set

General-Purpose Registers GPR 0

GPR 1

GPR 31

LR

CTR

XER

CR

FPSCR

Floating-Point Registers FPR 0

FPR 1

FPR 31

0 63

Vector Multimedia Registers VMR 0

VMR 1

VMR 31

0 127

Link Register
0 63

Count Register
0 63

Fixed-Point Exception Register
0 63

Condition Register
0 32

Floating-Point Status and Control Register
0 32

VSCR

VRSAVE

Vector Status and Control Register
0 32

VR Save/Restore Register
0 32

0 63

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 30 of 183

Version 1.0
October 21, 2005

The PPE registers include:

• General-Purpose Registers (GPRs)—Fixed-point instructions operate on the full 64-bit width
of the GPRs, of which there are 32. The instructions are mode-independent, except that in
32-bit mode, the processor uses only the low-order 32 bits for determination of a memory
address and the carry, overflow, and record status bits.

• Floating-Point Registers (FPRs)—The 32 FPRs are 64 bits wide. The internal format of float-
ing-point data is the IEEE 754 double-precision format. Single-precision results are main-
tained internally in the double-precision format.

• Link Register (LR)—The 64-bit LR can be used to hold the effective address of a branch tar-
get. Branch instructions with the link bit (LK) set to 1 (that is, subroutine-call instructions)
copy the next instruction address into the LR. A Move To Special-Purpose Register instruc-
tion can copy the contents of a GPR into the LR.

• Count Register (CTR)—The 64-bit CTR can be used to hold either a loop counter or the
effective address of a branch target. Some conditional-branch instruction forms decrement
the CTR and test it for a zero value. A Move To Special-Purpose Register instruction can
copy the contents of a GPR into the CTR.

• Fixed-Point Exception Register (XER)—The 64-bit XER contains the carry and overflow bits
and the byte count for the move-assist instructions. Most arithmetic operations have instruc-
tion forms for setting the carry and overflow bit.

• Condition Register (CR)—Conditional comparisons are performed by first setting a condition
code in the 32-bit CR with a compare instruction or with a recording instruction. The condition
code is then available as a value or can be tested by a branch instruction to control program
flow. The CR consists of eight independent 4-bit fields grouped together for convenient save
or restore during a context switch. Each field can hold status information from a comparison,
arithmetic, or logical operation. The compiler can schedule CR fields to avoid data hazards in
the same way that it schedules the use of GPRs. Writes to the CR occur only for instructions
that explicitly request them; most operations have recording and nonrecording instruction
forms.

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 32-bit
FPSCR after every floating-point operation to record information about the result and any
associated exceptions. The status information required by IEEE 754 is included, plus some
additional information for exception handling.

• Vector Multimedia Registers (VMRs)—There are 32 128-bit-wide VMRs. They serve as
source and destination registers for all vector instructions.

• Vector Status and Control Register (VSCR)—The 32-bit VSCR is read and written in a man-
ner similar to the FPSCR. It has 2 defined bits, a non-Java™ mode bit and a saturation bit;
the remaining bits are reserved. Special instructions are provided to move the VSCR to a
VMR register.

• Vector Save Register (VRSAVE)—The 32-bit VRSAVE register assists user and privileged
software in saving and restoring the architectural state across context switches.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 31 of 183

2.2 PPE Instruction Sets

The PPE supports two instruction sets: the PowerPC instruction set and the Vector/SIMD Multi-
media Extension instruction set. Although most of the coding for the Cell Broadband Engine will
be in a high-level language like C or C++, an understanding of the PPE architecture and instruc-
tion sets adds considerably to a developer’s ability to produce efficient, optimized code. This is
particularly true because C-language intrinsics are provided for the PPE’s Vector/SIMD Multi-
media Extension instruction set, and these intrinsics map directly to one or more Vector/SIMD
Multimedia Extension assembly-language instructions.

The PowerPC instruction set uses instructions that are 4 bytes long and word-aligned. It supports
byte, halfword, word, and doubleword operand accesses between storage and its 32 general-
purpose registers (GPRs). The instruction set also supports word and doubleword operand
accesses between storage and a set of 32 floating-point registers (FPRs). Signed integers are
represented in twos-complement form.

The Vector/SIMD Multimedia Extension instruction set uses instructions that, like PowerPC
instructions, are 4 bytes long and word-aligned. However, all of its operands are 128 bits wide.
Most of the Vector/SIMD Multimedia Extension operands are vectors, including single-precision
floating-point, integer, scalar, and fixed-point of vector-element sizes of 8,16, and 32 bits.

The sections that follow briefly summarize key points of the instruction sets. For a complete
description of the PowerPC instruction sets, see:

• PowerPC Microprocessor Family: Programming Environments Manual for 64-Bit Micropro-
cessors

• PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Program-
ming Environments Manual

2.2.1 PowerPC Instructions

Whenever instruction addresses are presented to the processor, the low-order 2 bits are ignored.
Similarly, whenever the processor develops an instruction address, the low-order 2 bits are zero.
The address of either an instruction or a multiple-byte data value is its lowest-numbered byte.
This address points to the most-significant end (big-endian convention). The little-endian conven-
tion is not supported. Arithmetic for address computation is unsigned and ignores any carry out of
bit 0 (the MSb). See Section 1.3.1 on page 21 for an overview of the big-endian bit and byte
numbering used by the PPE.

2.2.1.1 Addressing Modes

All instructions, except branches, generate addresses by incrementing a program counter. All
load and store instructions specify a base register. The effective address in memory for a data
value is calculated relative to the base register in one of three ways:

• Register + Displacement—The displacement forms of the load and store instructions calcu-
late an address that is the sum of a displacement specified by the sign-extended 16-bit
immediate field of the instruction plus the contents of the base register.

• Register + Register—The indexed forms of the load and store instructions calculate an
address that is the sum of the contents of the index register, which is a GPR, plus the con-
tents of the base register.

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 32 of 183

Version 1.0
October 21, 2005

• Register—The Load String Immediate and Store String Immediate instructions use the
unmodified contents of the base register to calculate an address.

Loads and stores can specify an update form that reloads the base register with the computed
address, unless the base register is the target register of the load.

Branches are the only instructions that explicitly specify the address of the next instruction. A
branch instruction specifies the effective address of the branch target in one of the following
ways:

• Branch Not Taken—The byte address of the next instruction is the byte address of the current
instruction, plus 4.

• Absolute—The word address of the next instruction is given in an immediate field of the
branch instruction.

• Relative—The word address of the next instruction is given by the sum of the immediate field
of the branch instruction and the word address of the branch instruction itself.

• Link Register or Count Register—The byte address of the next instruction is the effective byte
address of the branch target specified in the Link Register or Count Register, respectively.

2.2.1.2 Instruction Types

The PPE’s PowerPC instructions can have up to three operands. Most computational instruc-
tions specify two source operands and one destination operand. The instructions include the
following types:

• Integer Instructions—These include arithmetic, compare, logical, and rotate/shift instructions.
They operate on byte, halfword, word, and doubleword operands.

• Floating-Point Instructions—These include floating-point arithmetic, multiply-add, compare,
and move instructions, as well as instructions that affect the Floating-Point Status and Con-
trol Register (FPSCR). Floating-point instructions operate on single-precision and double-
precision floating-point operands.

• Load and Store Instructions—These include integer and floating-point load and store instruc-
tions, with byte-reverse, multiple, and string options for the integer loads and stores.

• Memory Synchronization Instructions—These instructions control the order in which memory
operations are completed with respect to asynchronous events, and the order in which mem-
ory operations are seen by other processors or memory-access mechanisms. The instruction
types include load and store with reservation, synchronization, and enforce in-order execu-
tion of I/O. They are especially useful for multiprocessing.

• Flow Control Instructions—These include branch, Condition-Register logical, trap, and other
instructions that affect the instruction flow.

• Processor Control Instructions—These instructions are used for synchronizing memory
accesses and managing caches, Translation Lookaside Buffers (TLBs), segment registers,
and other privileged processor states. They include move-to/from special-purpose register
instructions.

• Memory and Cache Control Instructions—These instructions control caches, TLBs, and seg-
ment registers.

• External Control Instructions—These instructions allow a user-level program to communicate
with a special-purpose device.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 33 of 183

2.2.1.3 Compatibility with Existing PowerPC Code

The PPE complies with version 2.0.2 of the PowerPC Architecture, with only minor exceptions.

The following optional user-mode instructions are implemented:

• fsqrt(.)—Floating-point square root
• fsqrts(.)—Floating-point square root single
• fres(.)—Floating-point reciprocal estimate single, A-form
• frsqrte(.)—Floating-point reciprocal square root estimate, A-form
• fsel(.)—Floating-point select
• mtocrf —Move to one condition register field, XFX-form
• mfocrf —Move from one condition register field, XFX-form

The following optional instructions that are defined in PowerPC Book I are not implemented. Use
of these instructions will cause an illegal-instruction interrupt:

• mcrxr—Move to condition register from XER
• bccbr—Branch condition to CBR

The following instructions that are not defined in the PowerPC Architecture are implemented.
Since these instructions are not part of the architecture, they should be considered highly imple-
mentation-specific.

• ldbrx—Load doubleword byte reverse indexed, X-form
• sdbrx—Store doubleword byte reverse indexed, X-form

In addition, the little endian option for data ordering is not available. A complete list of differences
can be found in the PowerPC Architecture Compliance chapter of the PowerPC Processor
Element, Book IV. This document is confidential; your IBM representative can give you access to
the document.

2.2.2 Vector/SIMD Multimedia Extension Instructions

The 128-bit Vector/SIMD Multimedia Extension unit (VXU) operates concurrently with the PPU’s
fixed-point integer unit (FXU) and floating-point execution unit (FPU), as shown Figure 2-2 on
page 34. Like PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are 4
bytes long and word-aligned. The Vector/SIMD Multimedia Extension instructions support simul-
taneous execution on multiple elements that make up the 128-bit vector operands. These vector
elements may be byte, halfword, or word.

The Vector/SIMD Multimedia Extension instructions are fully described in the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments
Manual.

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 34 of 183

Version 1.0
October 21, 2005

All Vector/SIMD Multimedia Extension instructions are designed to be easily pipelined. Parallel
execution with the PPE’s integer and floating-point instructions is simplified by the fact that
Vector/SIMD Multimedia Extension instructions do not generate exceptions (other than data-
storage interrupt exceptions on loads and stores), do not support unaligned memory accesses or
complex functions, and share few resources or communication paths with the other PPE execu-
tion units.

2.2.2.1 Addressing Modes

The PPE supports not only basic load and store operations but also load and store vector left or
right indexed forms. All Vector/SIMD Multimedia Extension load and store operations use the
register + register indexed addressing mode, which forms the sum of the contents of an index
GPR plus the contents of a base-address GPR. This addressing mode is very useful for
accessing arrays.

In addition to the load and store operations, the Vector/SIMD Multimedia Extension instruction
set provides a powerful set of element-manipulation instructions—for example, shuffle, permute
(similar to the SPEs’ shuffle), rotate, and shift—to manipulate vector elements into the desired
alignment and arrangement after the vectors have been loaded into vector multimedia registers.

2.2.2.2 Instruction Types

Most Vector/SIMD Multimedia Extension instructions have three or four 128-bit vector oper-
ands—two or three source operands and one result. Also, most instructions are SIMD in nature.
The instructions have been chosen for their utility in digital signal processing (DSP) algorithms,
including 3D graphics.

The Vector/SIMD Multimedia Extension instructions include the following types:

• Vector Integer Instructions—These include vector arithmetic, compare, logical, rotate, and
shift instructions. They operate on byte, halfword, and word vector elements. The instructions
use saturation-clamping.

Figure 2-2. Concurrent Execution of Integer, Floating-Point, and Vector Units

FPUFXU VXU

Memory

FPU

Instructions

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 35 of 183

• Vector Floating-Point Instructions—These include floating-point arithmetic, multiply/add,
rounding and conversion, compare, and estimate instructions. They operate on single-preci-
sion floating-point vector elements.

• Vector Load and Store Instructions—These include only basic integer and floating-point load
and store instructions. No update forms of the load and store instruction are provided. They
operate on 128-bit vectors.

• Vector Permutation and Formatting Instructions—These include vector pack, unpack, merge,
splat, permute, select, and shift instructions.

• Processor Control Instructions—These include instructions that read and write the vector
status and control register (VSCR).

• Memory Control Instructions—These include instructions for managing caches (user-level
and supervisor-level). These instructions are no-ops.

2.2.3 C/C++ Language Extensions (Intrinsics)

A set of C-language extensions are available for Vector/SIMD Multimedia Extension program-
ming. These extensions include vector data types and a large set of vector commands (intrin-
sics).

The intrinsics are essentially inline assembly-language instructions, in the form of function calls,
that have syntax familiar to high-level programmers using the C language. The intrinsics provide
explicit control of the Vector/SIMD Multimedia Extension instructions without directly managing
registers and scheduling instructions, as assembly-language programming requires. A compiler
that supports these C-language extensions will emit code optimized for the Vector/SIMD Multi-
media Extension architecture.

2.2.3.1 Vector Data Types

The Vector/SIMD Multimedia Extension programming model adds a set of fundamental data
types, called vector types, as shown in Table 2-1 on page 36. The represented values are in
decimal (base-10) notation. The vector multimedia registers are 128 bits and can contain:

• Sixteen 8-bit values, signed or unsigned

• Eight 16-bit values, signed or unsigned

• Four 32-bit values, signed or unsigned

• Four single-precision IEEE-754 floating-point values

The vector types use the prefix vector in front of one of standard C data types—for example
vector signed int and vector unsigned short. A vector type represents a vector of as many of
the specified C data type as will fit in a 128-bit register. Hence, the vector signed int is a
128-bit operand containing four 32-bit signed ints. The vector unsigned short is a 128-bit
operand containing eight unsigned values.

Note: Since the token, vector, is a keyword in the Vector/SIMD Multimedia Extension data types,
it is recommended that the term not be used elsewhere in the program as, for example, a vari-
able name.

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 36 of 183

Version 1.0
October 21, 2005

Introducing fundamental vector data types permits the compiler to provide stronger type-
checking and supports overloaded operations on vector types.

2.2.3.2 Vector Intrinsics

Vector/SIMD Multimedia Extension intrinsics are grouped into the following three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction

• Generic Intrinsics—Intrinsics that map to one or more assembly-language instructions as a
function of the type of input parameters

• Predicates Intrinsics—Intrinsics that compare values and return an integer that may be used
directly as a value or as a condition for branching

The Vector/SIMD Multimedia Extension intrinsics and predicates use the prefix, “vec_” in front of
an assembly-language or operation mnemonic; predicate intrinsics use the prefixes “vec_all”
and “vec_any”. When complied, the intrinsics generate one or more Vector/SIMD Multimedia
Extension assembly-language instructions.

The specific and generic intrinsics are shown in Table 2-2 on page 37. The predicate intrinsics
are shown in Table 2-3 on page 39.

Table 2-1. Vector/SIMD Multimedia Extension Data Types

Vector Data Type Meaning Values

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)

vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767

vector signed short int Eight 16-bit signed values -32768 ... 32767

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector unsigned int Four 32-bit unsigned values 0 ... 232 - 1

vector signed int Four 32-bit signed values -231 ... 231 - 1

vector bool int Four 32-bit unsigned values 0 (false), 231 - 1 (true)

vector float Four 32-bit single precision IEEE-754 values

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 37 of 183

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 1 of 3)

Intrinsic Description

Arithmetic Intrinsics

d = vec_abs(a) Vector Absolute Value

d = vec_abss(a) Vector Absolute Value Saturated

d = vec_add(a,b) Vector Add

d = vec_addc(a,b) Vector Add Carryout Unsigned Word

d = vec_adds(a,b) Vector Add Saturated

d = vec_avg(a,b) Vector Average

d = vec_madd(a,b,c) Vector Multiply Add

d = vec_madds(a,b,c) Vector Multiply Add Saturated

d = vec_max(a,b) Vector Maximum

d = vec_min(a,b) Vector Minimum

d = vec_mladd(a,b,c) Vector Multiply Low and Add Unsigned Half Word

d = vec_mradds(a,b,c) Vector Multiply Round and Add Saturated

d = vec_msum(a,b,c) Vector Multiply Sum

d = vec_msums(a,b,c) Vector Multiply Sum Saturated

d = vec_mule(a,b) Vector Multiply Even

d = vec_mulo(a,b) Vector Multiply Odd

d = vec_nmsub(a,b,c) Vector Negative Multiply Subtract

d = vec_sub(a,b) Vector Subtract

d = vec_subc(a,b) Vector Subtract Carryout

d = vec_subs(a,b) Vector Subtract Saturated

d = vec_sum4s(a,b) Vector Sum Across Partial (1/4) Saturated

d = vec_sum2s(a,b) Vector Sum Across Partial (1/2) Saturated

d = vec_sums(a,b) Vector Sum Saturated

Rounding And Conversion Intrinsics

d = vec_ceil(a) Vector Ceiling

d = vec_ctf(a,b) Vector Convert from Fixed-Point Word

d = vec_cts(a,b) Vector Convert to Signed Fixed-Point Word Saturated

d = vec_ctu(a,b) Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_floor(a) Vector Floor

d = vec_trunc(a) Vector Truncate

Floating-Point Estimate Intrinsics

d = vec_expte(a) Vector Is 2 Raised to the Exponent Estimate Floating-Point

d = vec_loge(a) Vector Log2 Estimate Floating-Point

d = vec_re(a) Vector Reciprocal Estimate

d = vec_rsqrte(a) Vector Reciprocal Square Root Estimate

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 38 of 183

Version 1.0
October 21, 2005

Compare Intrinsics

d = vec_cmpb(a,b) Vector Compare Bounds Floating-Point

d = vec_cmpeq(a,b) Vector Compare Equal

d = vec_cmpge(a,b) Vector Compare Greater Than or Equal

d = vec_cmpgt(a,b) Vector Compare Greater Than

d = vec_cmple(a,b) Vector Compare Less Than or Equal

d = vec_cmplt(a,b) Vector Compare Less Than

Logical Intrinsics

d = vec_and(a,b) Vector Logical AND

d = vec_andc(a,b) Vector Logical AND with Complement

d = vec_nor(a,b) Vector Logical NOR

d = vec_or(a,b) Vector Logical OR

d = vec_xor(a,b) Vector Logical XOR

Rotate and Shift Intrinsics

d = vec_rl(a,b) Vector Rotate Left

d = vec_round(a) Vector Round

d = vec_sl(a,b) Vector Shift Left

d = vec_sld(a,b,c) Vector Shift Left Double

d = vec_sll(a,b) Vector Shift Left Long

d = vec_slo(a,b) Vector Shift Left by Octet

d = vec_sr(a,b) Vector Shift Right

d = vec_sra(a,b) Vector Shift Right Algebraic

d = vec_srl(a,b) Vector Shift Right Long

d = vec_sro(a,b) Vector Shift Right by Octet

Load and Store Intrinsics

d = vec_ld(a,b) Vector Load Indexed

d = vec_lde(a,b) Vector Load Element Indexed

d = vec_ldl(a,b) Vector Load Indexed LRU

d = vec_lvsl(a,b) Vector Load for Shift Left

d = vec_lvsr(a,b) Vector Load Shift Right

vec_st(a,b,c) Vector Store Indexed

vec_ste(a,b,c) Vector Store Element Indexed

vec_stl(a,b,c) Vector Store Indexed LRU

Pack and Unpack Intrinsics

d = vec_pack(a,b) Vector Pack

d = vec_packpx(a,b) Vector Pack Pixel

d = vec_packs(a,b) Vector Pack Saturated

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 2 of 3)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 39 of 183

d = vec_packsu(a,b) Vector Pack Saturated Unsigned

d = vec_unpackh(a) Vector Unpack High Element

d = vec_unpackl(a) Vector Unpack Low Element

Merge Intrinsics

d = vec_mergeh(a,b) Vector Merge High

d = vec_mergel(a,b) Vector Merge Low

Permute and Select Intrinsics

d = vec_perm(a,b,c) Vector Permute

d = vec_sel(a,b,c) Vector Select

Stream Intrinsics

vec_dss(a) Vector Data Stream Stop

vec_dssall() Vector Stream Stop All

vec_dst(a,b,c) Vector Data Stream Touch

vec_dstst(a,b,c) Vector Data Stream Touch for Store

vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient

vec_dstt(a,b,c) Vector Data Stream Touch Transient

Move Intrinsics

d = vec_mfvscr Vector Move from Vector Status and Control Register

vec_mtvscr(a) Vector Move to Vector Status and Control Register

Replicate Intrinsics

d = vec_splat(a,b) Vector Splat

d = vec_splat_s8(a) Vector Splat Signed Byte

d = vec_splat_s16(a) Vector Splat Signed Half-Word

d = vec_splat_s32(a) Vector Splat Signed Word

d = vec_splat_u8(a) Vector Splat Unsigned Byte

d = vec_splat_u16(a) Vector Splat Unsigned Half-Word

d = vec_splat_u32(a) Vector Splat Unsigned Word

Table 2-3. Vector/SIMD Multimedia Extension Predicate Intrinsics (Page 1 of 2)

Predicate Description

All Predicates

d = vec_all_eq(a,b) All Elements Equal

d = vec_all_ge(a,b) All Elements Greater Than or Equal

d = vec_all_gt(a,b) All Elements Greater Than

d = vec_all_in(a,b) All Elements in Bounds

d = vec_all_le(a,b) All Elements Less Than or Equal

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 3 of 3)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 40 of 183

Version 1.0
October 21, 2005

2.2.4 Programming with Vector/SIMD Multimedia Extension Intrinsics

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia Extension intrinsics
can be used seamlessly throughout a C-language program. There is no need for setup, or to
enter a special mode, or to include a special header file.

2.2.4.1 A Simple Example

The sample program below, vmx_sample, illustrates the ease with which vector instructions can
be incorporated into a PPE program. The program first typedefs a union of an array of four ints,
and a vector of signed ints. This is only done so we can refer to the values in two different ways.
(Vector elements can also be accessed using the SPU intrinsic, spu_extract. For more informa-
tion about SPU intrinsics, see Section 3.3.2 Intrinsic Classes on page 74.) The program then
loads the literal value 2 into each of the four 32-bit fields of vector vConst. It then loads four
different integer values into the fields of vector v1. The vec_add intrinsic is then called, and the
two vectors are added with the result being assigned to v2.

#include <stdio.h>

d = vec_all_lt(a,b) All Elements Less Than

d = vec_all_nan(a) All Elements Not a Number

d = vec_all_ne(a,b) All Elements Not Equal

d = vec_all_nge(a,b) All Elements Not Greater Than or Equal

d = vec_all_ngt(a,b) All Elements Not Greater Than

d = vec_all_nle(a,b) All Elements Not Less Than or Equal

d = vec_all_nlt(a,b) All Elements Not Less Than

d = vec_all_numeric(a) All Elements Numeric

Any Predicates

d = vec_any_eq(a,b) Any Element Equal

d = vec_any_ge(a,b) Any Element Greater Than or Equal

d = vec_any_gt(a,b) Any Element Greater Than

d = vec_any_le(a,b) Any Element Less Than or Equal

d = vec_any_lt(a,b) Any Element Less Than

d = vec_any_nan(a) Any Element Not a Number

d = vec_any_ne(a,b) Any Element Not Equal

d = vec_any_nge(a,b) Any Element Not Greater Than or Equal

d = vec_any_ngt(a,b) Any Element Not Greater Than

d = vec_any_nle(a,b) Any Element Not Less Than or Equal

d = vec_any_nlt(a,b) Any Element Not Less Than

d = vec_any_numeric(a) Any Element Numeric

d = vec_any_out(a,b) Any Element Out of Bounds

Table 2-3. Vector/SIMD Multimedia Extension Predicate Intrinsics (Page 2 of 2)

Predicate Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 41 of 183

// Define a type we can look at either as an array of ints or as a vector.
typedef union {

int iVals[4];
vector signed int myVec;

} vecVar;

int main()
{

vecVar v1, v2, vConst; // define variables

// load the literal value 2 into the 4 positions in vConst,
vConst.myVec = (vector signed int)(2);

// load 4 values into the 4 positions in vector v1
v1.myVec = (vector signed int)(10, 20, 30, 40);

// call vector add function
v2.myVec = vec_add(v1.myVec, vConst.myVec);

// see what we got!
printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3] = %d\n\n",

v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]);

return 0;
}

See Section 2.4 on page 47 for more information on how to run the example on the simulator.
Figure 2-3 shows the results of running the sample program.

2.2.4.2 An Array-Summing Example

The following code contains three versions of a function that sums an input array of 16 byte
values. For this kind of array-summing function, you have several options. You can unroll the
scalar code to slightly improve the performance, you can use the Vector/SIMD Multimedia Exten-
sion to significantly improve the performance, or you can eliminate the loop entirely.

Figure 2-3. Running the Vector/SIMD Multimedia Extension Sample Program

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 42 of 183

Version 1.0
October 21, 2005

The first version, below, performs 16 iterations of the loop. The second version performs only
four iterations of the loop but with four additions in each iteration. The third version uses
Vector/SIMD Multimedia Extension intrinsics to eliminate the loop entirely.

// 16 iterations of a loop
int rolled_sum(unsigned char bytes[16])
{

int i;
int sum = 0;
for (i = 0; i < 16; ++i)
{

sum += bytes[i];
}
return sum;

}

// 4 iterations of a loop, with 4 additions in each iteration
int unrolled_sum(unsigned char bytes[16])
{

int i;
int sum[4] = {0, 0, 0, 0};
for (i = 0; i < 16; i += 4)
{

sum[0] += bytes[i + 0];
sum[1] += bytes[i + 1];
sum[2] += bytes[i + 2];
sum[3] += bytes[i + 3];

}
return sum[0] + sum[1] + sum[2] + sum[3];

}

// Vectorized for Vector/SIMD Multimedia Extension
int vectorized_sum(unsigned char bytes[16])
{
 vector unsigned char vbytes;
 union {
 int i[4];
 vector signed int v;
 } sum;
 vector unsigned int zero = (vector unsigned int)(0);

 // Perform a misaligned vector load of the 16 bytes.
 vbytes = vec_perm(vec_ld(0, bytes), vec_ld(16, bytes), vec_lvsl(0, bytes));

 // Sum the 16 bytes of the vector
 sum.v = vec_sums((vector signed int)vec_sum4s(vbytes, zero), (vector signed

int)zero);

 // Extract the sum and return the result.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 43 of 183

 return (sum.i[3]);
}

2.3 The PPE and the SPEs

2.3.1 Storage Domains

Three types of storage domains are defined in the Cell Broadband Engine—one main-storage
domain, eight SPE local store domains, and eight SPE channel domains, as shown in Figure 2-4.
The main-storage domain, which is the entire effective-address space, can be configured by the
PPE operating system to be shared by all processors and memory-mapped devices in the
system (all I/O is memory-mapped). However, the local-storage and channel problem-state
(user-state) domains are private to the SPU, LS, and MFC of each SPE.

An SPE can only fetch instructions from its own LS, and loads and stores can only access the
LS. An SPE or PPE performs data transfers between the SPE’s LS and main storage primarily
using DMA transfers controlled by the MFC DMA controller for that SPE. Software on the SPE’s
SPU interacts with the MFC through channels, which enqueue DMA commands and provide
other facilities, such as mailboxes, signal notification, and access auxiliary resources.

Figure 2-4. Storage Domains

SPE

Main Storage
(effective-address space)

Local Storage
(local-address space)

1 of 8

Channels
(channel commands)

1 of 8

PPE

DRAM
Memory

LS

SPU

MFC

Other
Devices

Other
SPEsI/O

MMIO
Registers DMA

Controller

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 44 of 183

Version 1.0
October 21, 2005

An SPE program references its own LS using a Local Store Address (LSA). The LS of each SPE
is also assigned a Real Address (RA) range within the system's memory map. This allows privi-
leged software to map LS areas into the effective address (EA) space, where the PPE, other
SPEs, and other devices that generate EAs can access the LS.

Each SPE’s MFC serves as a data-transfer engine. DMA transfer requests contain both an LSA
and an EA. Thus, they can address both an SPE’s LS and main storage and thereby initiate DMA
transfers between the domains. The MFC accomplishes this by maintaining and processing an
MFC command queue. DMA requests can be sent to an MFC either by software on its associ-
ated SPU or on the PPE, or by any other processing device that has access to the MFC's MMIO
problem-state registers.

The queued requests are converted into DMA transfers. Each MFC can maintain and process
multiple in-progress DMA command requests and DMA transfers. The MFC can also autono-
mously manage a sequence of DMA transfers in response to a DMA-list command from its asso-
ciated SPU. Each DMA command is tagged with a 5-bit Tag Group ID. Software can use this
identifier to check or wait on the completion of all queued commands in one or more tag groups.

The MFC supports naturally aligned transfer sizes of 1, 2, 4, or 8 bytes, and multiples of
16-bytes, with a maximum transfer size of 16 KB. Peak performance can be achieved for trans-
fers when both the EA and LSA are 128-byte aligned and the size of the transfer is an even
multiple of 128 bytes.

Each MFC has an associated memory management unit (MMU) that holds and processes
address-translation and access-permission information supplied by the PPE operating system.
This MMU is distinct from the one used by the PPE. To process an effective address provided by
a DMA command, the MMU uses the same method as the PPE memory-management functions.
Thus, DMA transfers are coherent with respect to system storage. Attributes of system storage
are governed by the page and segment tables of the PowerPC Architecture.

The PPE or other processing devices can initiate MFC commands on a particular MFC by
accessing its MFC Command-Parameter Registers, shown in Table 2-4. These registers are
mapped to the system’s real-address space. The PPE performs MMIO reads and writes to
access these registers. The registers are contained in each SPE’s memory region, and DMA
command requests are made by writing parameters to the registers.

Table 2-4. MFC Command-Parameter Registers for PPE-Initiated DMA Transfers

Name Mnemonic Maximum
Entries R/W Width

(bits)

MFC Local-Storage Address MFC_LSA 1 W 32

MFC Effective Address High MFC_EAH 1 W 32

MFC Effective Address Low MFC_EAL 1 W 32

MFC Transfer Size
MFC Command Tag Identification

MFC_Size
MFC_TagID

1 W 32

MFC Class ID and Command Opcode MFC_ClassID_CMD 8 W 32

MFC Command Status MFC_CMDStatus 1 R 32

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 45 of 183

2.3.2 Issuing DMA Commands from the PPE

To enqueue a DMA command from the PPE, access the MFC Command-Parameter Registers in
the following sequence:

1. Write the LS address to the MFC_LSA register.

2. Write the effective address high and low parts to the MFC_EAH and MFC_EAL registers.

3. Write the transfer size and tag ID to the MFC_Size and MFC_TagID registers.

4. Write the class ID and command opcode to the MFC_ClassID_CMD registers.

5. Read the MFC_CMDStatus register to determine the success or failure of the attempt to
enqueue a DMA command.

The least-significant 2 bits of the command status value returned from the read of the
MFC_CMDStatus register indicate the success or error of the attempt to enqueue a DMA. The
values of these two bits have the following meanings:

• 0—Indicates that the enqueue was successful.

• 1—Indicates that a sequence error occurred while enqueuing the DMA. For example, an
interrupt occurred, then another DMA was started within an interrupt handler. In this case,
the DMA enqueue sequence must be restarted at step 1.

• 2—Indicates that the enqueue failed due to insufficient space in the command queue.

• 3—Indicates that both errors occurred.

In the case of insufficient space, software could wait for space to become available before
attempting the DMA transfer again, or software could simply continue attempting to enqueue the
DMA until successful.

2.3.3 Creating Threads for the SPEs

Programs to be run on an SPE are written in C or C++ (or assembly language) and can use the
SPE data types and intrinsics defined in the SPU C/C++ Language Extensions (see Section 3.3
on page 72). The SPE code modules must be written and compiled separately from the PPE
code modules, using different compilers. A PPE module starts an SPE module running by
creating a thread on the SPE, using the spe_create_thread call, which calls an SPE runtime
management library.

The spe_create_thread call loads the program image into the SPE local store (LS), sets up the
SPE environment, starts the SPE program, and then returns a pointer to the SPE's new thread
ID.

The signature and parameters synopsis for the spe_create_thread system call are:

speid_t spe_create_thread(spe_gid_t gid, spe_program_handle_t *spe_program_handle,
 void *argp, void *envp, unsigned long * mask, int flags)

• gid—The identifier of the SPU group to which the new thread will belong. SPU group identifi-
ers are returned by spe_create_group. The new SPE thread inherits memory access privi-
leges and scheduling attributes from the designated SPU group.

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 46 of 183

Version 1.0
October 21, 2005

• spe_program_handle - Indicates the program to be executed on the SPE. This is an opaque
pointer to an SPE Executable and Linking Format (ELF) image that has already been loaded
and mapped into system memory. This pointer is normally provided as a symbol reference to
an SPE ELF executable image that has been embedded into a PPE ELF object and linked
with the calling PPE program. This pointer can also be established dynamically by loading a
shared library containing an embedded SPE ELF executable, using dlopen(2) and dlsym(2),
or by using the spe_open_image function to load and map a raw SPE ELF executable.

• argp—An optional pointer to application specific data. It is passed as the second parameter
of the SPU program.

• envp—An optional pointer to environment specific data. It is passed as the third parameter of
the SPU program.

• mask—The processor affinity mask for the new thread. Each bit in the mask enables (1) or
disables (0) thread execution on a CPU. At least 1 bit in the affinity mask must be enabled. If
equal to NULL, the new thread can be scheduled for execution on any processor.

• flags—This is a bit-wise OR of modifiers that is applied when the new thread is created. The
following values are accepted:

• 0—No modifiers are applied.

• SPE_CFG_SIGNOTIFY1_OR—Configure the SPU Signal Notification 1 Register to be in “logi-
cal OR” mode instead of the default “Overwrite” mode.

• SPE_CFG_SIGNOTIFY2_OR—Configure the SPU Signal Notification 2 Register to be in “logi-
cal OR” mode instead of the default “Overwrite” mode.

• SPE_MAP_PS—Request permission for memory-mapped access to the SPE thread’s prob-
lem state area.

• SPE_USER_REGS—Specifies that the SPE setup registers, r3, r4, and r5, are initialized with
the 48 bytes pointed to by argp.

The following code sample shows PPE code creating threads on each of the SPEs.

#include <libspe.h>
#define NUM_SPES 8
for (i = 0; i < NUM_SPES; i++)

spe_ids[i] = spe_create_thread(gid, &spe_code, NULL, NULL, -1, 0);

2.3.4 Communication Between the PPE and SPEs

The PPE communicates with the SPEs through privileged-state and problem-state MMIO regis-
ters supported by the MFC of each SPE. These registers are accessed by the associated SPE
through its channel mechanism (see Section 3.1.3 on page 63), which consist of unidirectional
registers and queues and support logic. The two primary communication mechanisms between
the PPE and SPEs are mailboxes and signal notification registers.

Mailboxes are queues for exchanging 32-bit messages. Two mailboxes (the SPU Write
Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox) are provided for sending
messages from the SPE to the PPE. One mailbox (the SPU Read Inbound Mailbox) is provided
for sending messages to the SPE. Table 2-5 lists the mailbox channels and their associated
MMIO registers.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 47 of 183

SPU signal-notification channels are inbound (to an SPE) 32-bit registers. They can be config-
ured for one-to-one signaling or many-to-one signaling. An SPE read of one of its two signal-noti-
fication channels clears the channel. A PPE MMIO read does not clear the channel. Table 2-6
lists the signal-notification channels and associated MMIO registers.

The PPE is often used as an application controller, managing and distributing work to the SPEs.
A large part of this task is loading main storage with the data to be processed, and then notifying
the SPE by either writing to the SPU Read Inbound Mailbox or writing to one of the SPE’s signal
notification registers.

Mailboxes are also useful when the SPE places computational results in main storage via DMA.
After requesting the DMA transfer, the SPE waits for the DMAs to complete, and then writes to an
SPU Write Outbound Mailbox to notify the PPE that its computation is complete. The PPE can
use either a mailbox or a signal to let an SPE know that the PPE has placed computational
results in main storage via DMA.

2.4 Developing Code for the Cell Broadband Engine

There can be several types of programs, including PPE programs, SPE programs, and Cell
Broadband Engine programs (PPE programs with embedded SPE programs). The PPE and SPE
programs use different compilers. The correct compiler, compiler flags, and libraries must be
used for the intended processor and program type. The PPE typically sets up, starts, and stops
an SPE. Communication between the PPE and SPEs is an important consideration.

Table 2-5. Mailbox Channels and MMIO Registers

Name

Channel MMIO Register

Mnemonic

M
ax

. E
nt

rie
s

R/W Width
(bits) Mnemonic

M
ax

. E
nt

rie
s

R/W Width
(bits)

SPU Write Outbound
Mailbox SPU_WrOutMbox 1 W 32 SPU_Out_Mbox 1 R 32

SPU Read Inbound Mailbox SPU_RdInMbox 4 R 32 SPU_In_Mbox 4 W 32

SPU Write Outbound
Interrupt Mailbox SPU_WrOutIntrMbox 1 W 32 SPU_Out_Intr_Mbox 1 R 32

Table 2-6. Signal Notification Channels and MMIO Registers

Name

Channel MMIO Register

Mnemonic

M
ax

. E
nt

ri
es

R/W Width
(bits) Mnemonic

M
ax

. E
nt

ri
es

R/W Width
(bits)

SPU Signal Notification 1 SPU_RdSigNotify1 1 R 32 SPU_Sig_Notify_1 1 R/W 32

SPU Signal Notification 2 SPU_RdSigNotify2 1 R 32 SPU_Sig_Notify_2 1 R/W 32

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 48 of 183

Version 1.0
October 21, 2005

To aid in simplifying the process of producing programs for the Cell Broadband Engine, the SDK
(see Section 1.4 on page 26) includes the standard make utility. The SDK also provides a build
environment with the rules used by the make utility for producing basic Cell Broadband Engine
program types.

Software can declare the types of programs in the makefile, and the correct compiler, compiler
options, and libraries will be used for the build. The most important target types are PROGRAM_ppu
and PROGRAM_spu, for building PPE programs and SPE programs, respectively. To use makefile
definitions supplied by the SDK for producing programs, include the following line at the bottom
of the makefile:

include ../../../make.footer

Insert as many instances of “../” as necessary to reach the top of the SDK directory tree.

Figure 2-5 shows a sample directory structure and makefiles for a system with a PPE program
and an SPE program. This sample project, sampleproj, has a project directory and two subdirec-
tories. The ppu directory contains the source code and makefile for the PPE program. The spu
directory has the source code and makefile for the SPE program. The makefile in the project
directory executes the makefiles in the two subdirectories. This is only one of the possible project
directory structures.

2.4.1 Producing a Simple CBE Program

To produce a simple program for the CBE, follow the steps listed below. (This example is
included in the SDK in src/samples/tutorial/simple.) The project is called simple.

1. Create a directory named “simple”.

Figure 2-5. Sample Project Directory Structure and Makefiles

Subdirectories
DIRS = ppu spu

make.footer
include ../../../make.footer

Target
PROGRAM_ppu = sample_ppe

make.footer
include ../../../../make.footer

Target
PROGRAM_spu = sample_spe

make.footer
include ../../../../make.footer

Makefile in directory sampleproj

Makefile in directory ppu Makefile in directory spu

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 49 of 183

2. In directory simple, create a file “Makefile” with the following code:

##
Subdirectories
##

DIRS := spu

##
Target
##

PROGRAM_ppu:= simple

##
Local Defines
##

IMPORTS := spu/lib_simple_spu.a -lspe
imports the embedded simple_spu library
allows consolidation of spu program into ppe binary

##
make.footer
##

make.footer is in the top of the SDK
include ../../../../make.footer

3. In directory simple, create a file "simple.c" with the following code:

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <libspe.h>

extern spe_program_handle_t simple_spu;

#define SPU_THREADS 8

int main(int argc, char **argv)
{
 speid_t spe_ids[SPU_THREADS];
 int i, status = 0;

 /* Create several SPE-threads to execute 'simple_spu'.
 */
 for(i=0; i<SPU_THREADS; i++){
 spe_ids[i] = spe_create_thread(0, &simple_spu, NULL, NULL, -1, 0);
 if (spe_ids[i] == 0) {

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 50 of 183

Version 1.0
October 21, 2005

fprintf(stderr, "Failed spe_create_thread(rc=%d, errno=%d)\n",
 spe_ids[i], errno);

exit(1);
 }
 }

 /* Wait for SPU-thread to complete execution.
 */
 for (i=0; i<SPU_THREADS; i++) {
 (void)spe_wait(spe_ids[i], &status, 0);
 }

 printf("\nThe program has successfully executed.\n");

 return (0);
}

4. Create a directory named "spu."

5. In the directory spu, create a file named "Makefile" with the following code:

##
Target
##

PROGRAMS_spu := simple_spu

created embedded library
LIBRARY_embed:= lib_simple_spu.a

##
Local Defines
##

IMPORTS = $(SDKLIB_spu)/libc.a

##
make.footer
##

make.footer is in the top of the SDK
include ../../../../../make.footer

6. In the same directory, create a file "simple_spu.c", with the following code:

#include <stdio.h>

int main(unsigned long long id)
{

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 51 of 183

// the first parameter of an spu program will always be the spe_id of the spe thread
that issued it

printf("Hello Cell (0x%llx)\n", id);

 return 0;
}

7. Produce the program by entering the following command at the command line while in the
simple directory:

make

This CBE program creates SPE threads that output “Hello Cell (#)\n” to the systemsim output
window, where # is the spe_id of the SPE thread that issued the print.

2.4.2 Running the Program in the Simulator

Now that we have produced a program in the base simulator hosting environment, we need to
start the simulator—the IBM Full System Simulator for the Cell Broadband Engine—and import
the program.

To start the IBM Full System Simulator for the Cell Broadband Engine:

1. Copy the program file simple to the Linux run directory located in the SDK at systemsim-sti-
release/run/cell/linux.

2. In the Liux run directory, start the simulator using the following command:

../run_gui

3. Two new windows will appear on the screen. The first is a command-line window labeled
UART0 in the window’s title bar. The second is the simulator graphical user interface (GUI)
console window. These windows are shown in Figure 2-6 on page 52.

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 52 of 183

Version 1.0
October 21, 2005

The window labeled UART0 is a UART window that, when Linux boots effectively, becomes
a Linux console window. The window in which the simulator was started (../run_gui) is the
simulator command-line window. This is a command-line window (usually the serial port I/O)
in the simulated Linux operating system on the simulated system. When the console window
first appears, it is empty and there is no user prompt, because Linux has not yet been booted
on the simulated system.

4. Boot the Linux operating system on the simulator by clicking the Go button on the graphical
user interface (GUI) console window. The console window will begin to display the Linux
booting process. When Linux has finished booting on the simulator, a command prompt will
be visible in the window. Figure 2-7 on page 53 shows the window on completion of the boot
process.

Figure 2-6. Windows Visible on Starting the GUI

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 53 of 183

The simulator is now ready to import the sample program into its environment. Before doing
that, however, you can confirm that the program is not in the simulator environment, by
entering the ls command at the prompt in the console window, and observing that simple is
not listed in the directory listing.

5. Import the program from the base simulator hosting environment into the simulator environ-
ment by entering the following command:

callthru source simple > simple

This command tells the simulator environment to “call through” to the base simulator hosting
environment, retrieve the file called simple, and copy that file to the simulator file system. If
you now enter an ls command in the console window, you will see simple listed in the cur-
rent directory. Figure 2-8 on page 54 shows the process of loading the program into the sim-
ulation environment.

Figure 2-7. Console Window on Completion of Linux Boot

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 54 of 183

Version 1.0
October 21, 2005

Even though the file had execute permissions in the base simulator hosting environment, the
newly imported file in the emulator environment does not.

6. Add execute permissions to the program file simple by issuing the following command:

chmod +x simple

7. Execute the program by issuing the following command:

./simple

The output of the program will appear in the console window. Figure 2-9 on page 55 shows the
output of running the sample program.

Figure 2-8. Loading the Program into the Simulation Environment

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The PPE and the Programming Process
Page 55 of 183

2.4.3 Debugging Programs

Debugging a program is often the most challenging part of programming, especially with multi-
threaded programs. The SDK contains several tools for debugging, the most important of which
are the gbd debugger and the IBM Full System Simulator for the Cell Broadband Engine.

The gbd debugger is a command-line debugger available as part of the GNU development envi-
ronment. Because of the Cell Broadband Engine’s unique characteristics, gdb has been modified
so that there are actually two versions of the debugger—ppu-gdb for debugging PPE processes,
and spu-gdb for debugging SPE processes. To run gbd on the Cell Broadband Engine in which
gbd supports SPE-program debugging, attach spu-gdb to a running SPE process.

The other tool for debugging a Cell Broadband Engine program is the IBM Full System Simulator
for the Cell Broadband Engine. This simulator lets you view many aspects of the simulated
running program in GUI mode. You can also control many aspects of the simulator using Tcl
commands. The simulator is described more fully in Section 5 on page 137.

Figure 2-9. Running the Sample Program

Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 56 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 57 of 183

3. Programming the SPEs

The eight identical Synergistic Processor Elements (SPEs) are optimized for compute-intensive
applications in which a program’s data and instruction needs can be anticipated and transferred
into the local store (LS) by DMA while the SPE computes using previously transferred data and
instructions. The streaming data sets in 3D graphics, media, and broadband communications are
examples of applications that run well on SPEs. However, the SPEs are not optimized for running
programs that have much branching, such as an operating system. Each SPE supports only a
single program context at any one time. Typically, the operating system runs on the PPE, and
user-mode threads are spawned to the SPEs.

The SPEs achieve high performance, in part, by eliminating the overhead of load and store
address translation, hardware-managed caches, out-of-order instruction issue, and branch
prediction. Instead, the SPEs capitalize on the high computational efficiencies that can be
obtained for streaming-data applications by providing a large (128-entry by 128-bit) unified
register file, dual-instruction issue, and high DMA bandwidth between the LS and main storage.

Each SPE supports the single-instruction, multiple-data (SIMD) instruction architecture,
described in the SPU Instruction Set Architecture. Although details of this instruction set are
given in the sections that follow, an SPE is normally programmed in a high-level language like C
or C++. The SPU instruction set is supported by a rich set of language extensions for C/C++,
described in the SPU C/C++ Language Extensions. These extensions define SIMD data types
and intrinsics (commands, in the form of function calls) that map to one or more assembly-
language instructions, giving programmers very convenient and productive control over code
performance without the need for assembly-language programming.

3.1 SPE Configuration

The main components of an SPE are shown in Figure 3-1 on page 58. Their functions include:

• Synergistic Processor Unit (SPU)—The SPU executes SPU instructions fetched from its
256-KB LS. The SPU fills its LS with instructions and data using DMA transfers initiated from
SPU or PPE software.

• Memory Flow Controller (MFC)—The MFC provides the interface, by means of the Element
Interconnect bus (EIB), between the SPU and main storage. The MFC performs DMA trans-
fers between the SPU’s LS and main storage, and it supports mailbox and signal-notification
messaging between the SPE and the PPE and other devices. The SPU communicates with
its MFC through SPU channels. The PPE and other devices (including other SPEs) commu-
nicate with an MFC through memory-mapped I/O (MMIO) registers associated with the
SPU’s channels.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 58 of 183

Version 1.0
October 21, 2005

3.1.1 Synergistic Processor Unit

Each of the eight SPEs is an independent processor with its own program counter, register file,
and 256-KB LS. An SPE operates directly on instructions and data in its LS. It fills its LS by
requesting DMA transfers from its MFC, which manages the DMA transfers. The SPU has
specialized units for executing load and store, fixed-point, floating-point unit (single-precision and
double-precision), and channel-interface instructions.

The large 128-entry, 128-bit wide register file, and its flat architecture (all operand types stored in
a single register file), allows for instruction-latency hiding without speculation. The register file is
unified—meaning that all data types (integer, single-precision and double-precision floating-
point, scalars, vectors, logicals, bytes, and others) use the same register file. The register file
also stores return addresses, results of comparisons, and so forth. As a consequence of the
large, unified register file, expensive hardware techniques such as out-of-order processing or
deep speculation are not needed to achieve high performance.

LS addresses can be aliased by PPE privileged software onto the main-storage (effective-
address) space. DMA transfers between the LS and main storage are coherent in the system. A
pointer to a data structure created on the PPE can be passed to an SPU, and the SPU can use
this pointer to issue a DMA command to bring the data structure into its LS. PPE software can
use locking instructions and mailboxes for synchronization and mutual exclusion.

Figure 3-1. SPE Architectural Block Diagram

SPE

SPU

MFCC
ha

nn
el

s

EIB Element Interconnect Bus
LS Local Store
MFC Memory Flow Controller
SPE Synergistic Processor Element
SPU Synergistic Processor Unit

EIB

Execution
Units

Local Store
LS

DMA ControllerMMIO Registers

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 59 of 183

The SPU architecture has the following restrictions:

• No direct (SPU-program addressable) access to main storage. The SPU accesses main stor-
age only by using the MFC’s DMA transfers.

• No direct access to system control, such as page-table entries. PPE privileged software pro-
vides the SPU with the address-translation information that its MFC needs.

• With respect to accesses by its SPU, the LS is unprotected and untranslated storage.

3.1.1.1 SPE Registers

The complete set of SPE user (problem-state) registers is shown in Figure 3-2. All computational
instructions operate only on registers—there are no computational instructions that modify
storage. The SPE registers include:

• General-Purpose Registers (GPRs)—All data types can be stored in the 128-bit GPRs, of
which there are 128.

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 128-bit
FPSCR after every floating-point operation to record information about the result and any
associated exceptions.

3.1.1.2 Floating-Point Operations

The SPU executes both single-precision and double-precision floating-point operations. Single-
precision instructions are performed in 4-way SIMD fashion, fully pipelined, whereas double-
precision instructions are partially pipelined. The data formats for single-precision and double-
precision instructions are those defined by IEEE Standard 754, but the results calculated by
single-precision instructions are not fully compliant with IEEE Standard 754.

For single-precision operations, the range of normalized numbers is extended beyond the IEEE
standard. The representable, nonzero numbers range from Xmin = 2126 to Xmax = (2 - 2-23)2128.
If the exact result overflows (that is, if it is larger in magnitude than Xmax), the rounded result is

Figure 3-2. SPE User-Register Set

General-Purpose Registers GPR 0

GPR 1

GPR 127

0 127

FPSCR

0 127
Floating-Point Status and Control Register

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 60 of 183

Version 1.0
October 21, 2005

set to Xmax with the appropriate sign. If the exact result underflows (that is, if it is smaller in
magnitude than Xmin), the rounded result is forced to zero. A zero result is always a positive
zero.

Single-precision floating-point operations implement IEEE 754 arithmetic with the following
changes:

• Only one rounding mode is supported: round towards zero, also known as truncation.

• Denormal operands are treated as zero, and denormal results are forced to zero.

• Numbers with an exponent of all ones are interpreted as normalized numbers and not as
infinity or not-a-number (NaN).

Double-precision operations do not support the IEEE precise trap (exception) mode. If a double-
precision denormal or not-a-number (NaN) result does not conform to IEEE Standard 754, then
the deviation is recorded in a sticky bit in the FPSCR register, which can be accessed using the
fscrrd and fscrwr instructions or the spu_mffpscr and spu_mtfpscr intrinsics.

Double-precision instructions are performed as two double-precision operations in 2-way SIMD
fashion. However, the SPU is capable of performing only one double-precision operation per
cycle. Thus, the SPU executes double-precision instructions by breaking up the SIMD operands
and executing the two operations in consecutive instruction slots in the pipeline. Although
double-precision instructions have 13-clock-cycle latencies, only the final seven cycles are pipe-
lined. No other instructions are dual-issued with double-precision instructions, and no instructions
of any kind are issued for six cycles after a double-precision instruction is issued.

3.1.1.3 Local Store

The LS can be regarded as a software-controlled cache that is filled and emptied by DMA trans-
fers. Key features of the LS include:

• Holds instructions and data

• 16-bytes-per-cycle load and store bandwidth, quadword aligned only

• 128-bytes-per-cycle DMA-transfer bandwidth

• 128-byte instruction prefetch per cycle

When there is competition for access to the LS by loads, stores, DMA reads, DMA writes, and
instruction fetches, the SPU arbitrates access to the LS according the following priorities (highest
priority first):

1. DMA reads and writes by the PPE or an I/O device

2. SPU loads and stores

3. Instruction prefetch

Table 3-1 on page 61 summarizes the LS-arbitration priorities and transfer sizes. DMA reads and
writes always have highest priority. Because hardware supports 128-bit DMA reads and writes,
these operations occupy, at most, one of every eight cycles (one of sixteen for DMA reads, and
one of sixteen for DMA writes) to the LS. Thus, except for highly optimized code, the impact of
DMA reads and writes on LS availability for loads, stores, and instruction fetches can be ignored.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 61 of 183

After DMA reads and writes, the next-highest user-initiated priority is given to load and store
instructions. The rationale for doing so is that load and store instructions usually help a program’s
progress, whereas instruction fetches are often speculative. The SPE supports only 16-byte load
and store operations that are 16-byte-aligned. It uses a second instruction (byte shuffle) to place
bytes in a different order if, for example, the program requires only a 4-byte quantity or a quantity
with a different data alignment. To store something that is not aligned, use a read-modify-write
operation.

The lowest priority for LS access is given to instruction fetches, of which there are three types:
flush-initiated fetches, inline prefetches, and hint fetches. Instruction fetches load 32 instructions
per SPU request by accessing all banks of the LS simultaneously. Because the LS is single-
ported, it is important that DMA and instruction-fetch activity transfer as much useful data as
possible in each LS request.

3.1.1.4 Pipelines and Dual-Issue Rules

The SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1), into which it can issue
and complete up to two instructions per cycle, one in each of the pipelines. Whether an instruc-
tion goes to the even or odd pipeline depends on its instruction type, which is related to the
execution unit that performs the function. Each execution unit is assigned to one of the two pipe-
lines. Table 3-2 summarizes the instruction types, latencies, and pipeline assignments.

Table 3-1. LS-Access Arbitration Priority and Transfer Size

Transaction Transfer Size (Bytes) Priority

Maximum
Local Store
Occupancy
(SPU Cycle)

Access Path

MMIO ≤ 16 1-Highest
1/8 Line Interface

DMA ≤ 128 1

DMA-List
Transfer-Element Fetch 128 1 1/4

Quadword InterfaceECC Scrub 16 2 1/10

SPU Load/Store 16 3 1

Hint Fetch 128 3 1
Line Interface

Inline Fetch 128 4-Lowest 1/16 for inline code

Table 3-2. SPU Instruction Latency and Pipeline, by Instruction Class (Page 1 of 2)

Instruction
Class Description Latency

(clock cycles) Pipeline

LS Load and store 6 Odd

HB Branch hints 15 Odd

BR Branch resolution1 4 Odd

CH Channel interface, special-purpose registers 6 Odd

SP Single-precision floating-point 6 Even

DP Double-precision floating-point 132 Even

FI Floating-point integer 7 Even

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 62 of 183

Version 1.0
October 21, 2005

The SPU issues all instructions in program order according to the pipeline assignment. Each
instruction is part of a doubleword-aligned instruction pair called a fetch group. A fetch group can
have one or two valid instructions, but it must be aligned to doubleword boundaries. This means
that the first instruction in the fetch group is from an even word address, and the second instruc-
tion from an odd word address. The SPU processes fetch groups one at a time, continuing to the
next fetch group when the current instruction group becomes empty. An instruction becomes
issueable when register dependencies are satisfied and there is no structural hazard (resource
conflict) with prior instructions or DMA or error-correcting code (ECC) activity.

Dual-issue occurs when a fetch group has two issueable instructions in which the first instruction
can be executed on the even pipeline and the second instruction can be executed on the odd
pipeline. If a fetch group cannot be dual-issued, but the first instruction can be issued, the first
instruction is issued to the proper execution pipeline and the second instruction is held until it can
be issued. A new fetch group is loaded after both instructions of the current fetch group are
issued.

3.1.2 Memory Flow Controller

The primary function of the Memory Flow Controller (MFC), shown in Figure 3-1 on page 58, is to
connect the SPU to the EIB and support DMA transfers between main storage and the LS. The
MFC maintains and processes queues of DMA commands from its SPU or from the PPE or other
devices. The MFC’s DMA controller (DMAC) executes the DMA commands. This allows the SPU
to continue execution in parallel with the MFC’s DMA transfers. The DMA and other MFC
commands, and the command queues, are described in Section 3.4 on page 84.

To make DMA transfers between main storage and the LS possible, privileged software on the
PPE provides the LS and MFC resources, such as memory-mapped I/O (MMIO) registers, with
effective-address aliases in main storage. This enables software on the PPE or other SPUs and
devices to access the MFC resources and control the SPU. Privileged software on the PPE also
provides address-translation information to the MFC for use in DMA transfers. DMA transfers are
coherent with respect to system storage. Attributes of system storage (address translation and
protection) are governed by the page and segment tables of the PowerPC Architecture.

SH Shuffle 4 Odd

FX Simple fixed-point 2 Even

WS Word rotate and shift 4 Even

BO Byte operations 4 Even

NOP No operation (execute) Even

LNOP No operation (load) Odd

1. Inline or correctly hinted branches have zero-cycle delay. The mispredicted branch penalty is approximately
20 clock cycles.

2. The last six cycles of a double-precision floating-point operation are instruction-issue stalls. No instructions
of any kind are issued for six cycles after a double-precision floating-point instruction is issued.

Table 3-2. SPU Instruction Latency and Pipeline, by Instruction Class (Page 2 of 2)

Instruction
Class Description Latency

(clock cycles) Pipeline

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 63 of 183

The MFC supports channels and associated MMIO registers for the purposes of enqueueing and
monitoring DMA commands, monitoring SPU events, performing interprocessor-communication
via mailboxes and signal-notification, accessing auxiliary resources such as the decrementer
(timer), and other functions.

In addition to supporting DMA transfers, channels, and MMIO registers, the MFC also supports
bus-bandwidth reservation features and synchronizes operations between the SPU and other
processing units in the system.

3.1.3 Channels

Channels are a set of unidirectional, function-specific registers or queues maintained by the
MFC. They are the primary means of communication between the SPU and its MFC, which in
turn mediates communication with the PPE and other devices through the MMIO registers asso-
ciated with the channels. Table 3-3 lists the channels and their attributes. Reserved and privi-
leged channels are omitted.

Software on the SPU uses special channel instructions (Table 3-4 on page 65) to read and write
channel registers and queues. Software on the PPE and other devices use load and store
instructions to read and write to MFC’s MMIO registers that are associated with the SPU’s chan-
nels.

Table 3-3. SPE Channels (Page 1 of 2)

Channel Name Mnemonic Size
(bits) R/W Blocking

SPU Events

0 SPU Read Event Status SPU_RdEventStat 32 R Yes

1 SPU Write Event Mask SPU_WrEventMask 32 W No

2 SPU Write Event Acknowledgment SPU_WrEventAck 32 W No

SPU Signal Notification

3 SPU Signal Notification 1 SPU_RdSigNotify1 32 R Yes

4 SPU Signal Notification 2 SPU_RdSigNotify2 32 R Yes

SPU Decrementer

7 SPU Write Decrementer SPU_WrDec 32 W No

8 SPU Read Decrementer SPU_RdDec 32 R No

MFC Multisource Synchronization

9 MFC Write Multisource Synchronization
Request MFC_WrMSSyncReq 32 W Yes

SPU and MFC Read Mask

11 SPU Read Event Mask SPU_RdEventMask 32 R No

12 MFC Read Tag-Group Query Mask MFC_RdTagMask 32 R No

SPU State Management

13 SPU Read Machine Status SPU_RdMachStat 32 R No

14 SPU Write State Save-and-Restore SPU_WrSRR0 32 W No

15 SPU Read State Save-and-Restore SPU_RdSRR0 32 R No

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 64 of 183

Version 1.0
October 21, 2005

SPE channels are implemented as either read-only registers, write-only registers, or queues.
Each channel has a corresponding count that indicates the remaining capacity (the maximum
number of outstanding transfers) in that channel. This count is decremented when a channel
instruction is issued to the channel, and the count increments when an action associated with
that channel completes. Each channel is implemented as either a blocking queue or a
nonblocking register. Blocking channels cause the SPE to stall (suspend execution in a low-
power state) when the SPE reads or writes a channel with a count of zero.

Key features of the SPE channel operations include:

• All transactions on the channel interface are unidirectional.

• Each channel transaction is independent of any other transaction.

• Sequential read and write transactions are supported.

• External access to control MMIO registers has higher priority than channel operations.

• Channel operations are done in program order.

• Channel read operations to reserved channels return zeros.

• Channel write operations to reserved channels have no effect.

• Reading of channel counts on reserved channels returns zero.

MFC Command Parameters

16 MFC Local Store Address MFC_LSA 32 W No

17 MFC Effective Address High MFC_EAH 32 W No

18 MFC Effective Address Low or List Address MFC_EAL 32 W No

19 MFC Transfer Size or List Size MFC_Size 16 W No

20 MFC Command Tag Identification MFC_TagID 16 W No

21 MFC Command Opcode or ClassID MFC_Cmd 32 W Yes

MFC Tag Status

22 MFC Write Tag-Group Query Mask MFC_WrTagMask 32 W No

23 MFC Write Tag Status Update Request MFC_WrTagUpdate 32 W Yes

24 MFC Read Tag-Group Status MFC_RdTagStat 32 R Yes

25 MFC Read List Stall-and-Notify Tag Status MFC_RdListStallStat 32 R Yes

26 MFC Write List Stall-and-Notify Tag Acknowl-
edgement MFC_WrListStallAck 32 W No

27 MFC Read Atomic Command Status MFC_RdAtomicStat 32 R Yes

SPU Mailboxes

28 SPU Write Outbound Mailbox SPU_WrOutMbox 32 W Yes

29 SPU Read Inbound Mailbox SPU_RdInMbox 32 R Yes

30 SPU Write Outbound Interrupt Mailbox SPU_WrOutIntrMbox 32 W Yes

Table 3-3. SPE Channels (Page 2 of 2)

Channel Name Mnemonic Size
(bits) R/W Blocking

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 65 of 183

3.1.3.1 Channel Instructions

The SPU Instruction Set Architecture, summarized in Section 3.2 on page 68, defines three
channel instructions (rdch, wrch, rchcnt), shown in Table 3-4. Software running on an SPE
uses the channel instructions to write parameters and enqueue the MFC commands described in
Section 3.4 on page 84. Table 3-4 includes both the SPU assembly-language instructions and
their corresponding C-language intrinsics. The intrinsics are described in Section 3.3 on page 72.

If the write channel is nonblocking, then a wrch instruction can be issued regardless of the value
of the channel count for that channel. If the write channel is blocking, then a wrch instruction that
is issued when the count for that channel is equal to zero will stall the SPE. Stalling on a wrch
instruction can be useful because it saves power, but to avoid stalling, software should first read
the channel count to ensure that it is not zero before issuing a wrch instruction. The method used
to determine the channel count is dependent on the program. The program can poll the channel
count for that register, using the rchcnt instruction, or the program can issue a wrch instruction.
If the program issues a wrch instruction, the SPE stalls, waiting until an acknowledgment is
received from the write channel.

When an SPE program needs to receive information, it uses a rdch instruction. Usually, this
information is held in an SPE register. The information can be loaded into this register through
the channel interface using a read-data-load transaction. If the read channel is nonblocking, then
a rdch instruction can be issued regardless of the value of the channel count for that channel. In
the SPE, if the channel is a blocking channel, the SPE does not read from this register until the
channel count for that register indicates that the data is valid (that is, when the count is greater
than zero). If the count is zero, then there is no data in the channel and the SPE stalls until
actions associated with that channel occur. These actions can include the updating of the
MFC_RdTagStat channel (Table 3-3 on page 63), the PPE writing data to the corresponding
MMIO register (such as a mailbox channel), or other actions. The method used to determine the
count depends on the program. The program can poll the channel count for that register using
the rchcnt instruction, or the program can issue the rdch instruction. If the program issues a
rdch instruction, the SPE stalls, waiting until valid data is loaded.

The channel instructions are architected as 128 bits wide, but in the Cell Broadband Engine,
channel instructions set use only the 32 bits from the preferred slot (the left-most word) in the
register.

Table 3-4. SPE Channel Instructions

Instruction Assembler
Instruction

C-Language
Intrinsic1

1. See Section 3.3 on page 72.

Description

Read Channel rdch
spu_readch

spu_readchqw

Causes data to be read from the addressed
channel and stored into the selected General-
Purpose Register (GPR).

Write Channel wrch
spu_writech

spu_writechqw
Causes data to be read from the selected
GPR and stored in the addressed channel

Read Channel Count rchcnt spu_readchcnt
Causes the count associated with the
addressed channel to be stored in the
selected GPR.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 66 of 183

Version 1.0
October 21, 2005

3.1.3.2 Mailboxes

Mailboxes are a set of queues that support exchanges of 32-bit messages between an SPE and
other devices. Each mailbox queue has an SPE channel assignment as well as a corresponding
MMIO register assignment. Two 1-entry mailbox queues are provided for sending messages
from the SPE:

• SPU Write Outbound Mailbox

• SPU Write Outbound Interrupt Mailbox

One 4-entry mailbox queue is provided for sending messages to the SPE:

• SPU Read Inbound Mailbox

Each mailbox has an SPE channel assignment (Table 3-3 on page 63) as well as a corre-
sponding MMIO register. To access the mailbox, an SPE program uses rdch and wrch instruc-
tions (Table 3-4 on page 65). The PPE and other processors use load and store instructions to
access the corresponding MMIO addresses.

Data written by an SPE program to one of these mailboxes using a wrch instruction is available
to any processor or device that reads the corresponding MMIO register. Data written by a device
to the SPU Read Inbound Mailbox using an MMIO write is available to an SPE program by
reading that mailbox using a rdch or rchcnt instruction. An MMIO read from either of the SPU
Write Outbound Mailboxes, or a write to the SPU Read Inbound Mailbox, can be programmed to
set an SPE event. The event can in turn cause an SPE interrupt. A wrch instruction to the SPU
Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt to a processor
or other device.

Each time a PPE program writes to the 4-entry SPU Read Inbound Mailbox queue, the channel
count for that channel increments. Each time a SPU program reads the mailbox queue, the
channel count decrements. The mailbox is a FIFO queue; the SPE program reads the oldest data
first. If the PPE program writes more than four times before the SPE program reads the data,
then the channel count stays at four, and the fourth location contains the last data written by the
PPE. For example, if the PPE program writes five times before the SPE program reads the data,
then the data read is the first, second, third, and fifth data elements. The fourth data element has
been overwritten.

Mailbox operations are blocking operations: a write to a PPE mailbox register that is already full
stalls the SPE until a slot is created in the mailbox by a PPE read. Similarly, a read from an
empty mailbox is stalled until the PPE writes to the mailbox. If the channel capacity count is zero
for a channel that is configured as a blocking channel, then a channel instruction issued to that
channel causes the SPE to stall and to stop issuing instructions until the channel is read. To
prevent stalling in this case, the SPE program needs to read the count register associated with
the particular mailbox and decide whether or not to read from or write to the mailbox.

There are at least three ways to deal with anticipated mailbox messages:

• The SPE software reads the channel (rdch), which will block until something arrives.

• The SPE software reads from the channel's count (rchcnt), which will return the count (zero
or one); the software can then decide what to do.

• The SPE software sets up its interrupt facility to respond to mailbox events.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 67 of 183

Although the mailboxes are primarily intended for communication between the PPE and the
SPEs, they can also be used for communication between an SPE and other SPEs, processors,
or devices. For this to happen, however, privileged software needs to allow one SPE to access
the mailbox register in another SPE. If software does not allow this, then only atomic operations
and signal notifications are available for SPE-to-SPE communication.

3.1.3.3 Signal Notification

Signal-notification channels, or signals, are inbound (to an SPE) registers. They can be used by
other SPEs, the PPE, or other devices to send information, such as a buffer-completion synchro-
nization flag, to an SPE. Each SPE has two 32-bit signal-notification registers, each of which has
a corresponding memory-mapped I/O (MMIO) register into which the signal-notification data is
written by the sending processor. Unlike mailbox messaging, signal senders use one of three
special MFC send-signal commands to send a signal: sndsig, sndsigf, and sndsigb, described
in Section 3.4 on page 84.

An SPE can only read its local signal-notification channels. The PPE or other processors can
write or read the corresponding MMIO register. This allows the target SPE to do polling, blocking,
or set up an interrupt as ways of responding to signals. An SPE read of one of its two signal-noti-
fication channels clears the channel atomically. An MMIO read does not clear a channel. An SPE
read from the signaling channel will be stalled when no signal is pending at the time of the read.

A signal-notification channel can be configured by software to be in overwrite mode or OR mode.
In overwrite mode (also called one-to-one signaling), sending a signal (writing to the MMIO
address) overwrites previous contents. In OR mode (also called many-to-one signaling), sending
a signal ORs the new 1 bits into the current contents. In the case of one-to-one signaling, there is
usually no substantial difference in performance between signaling and using a mailbox.

The differences between mailboxes and signal-notification channels include:

• Capacity—Signal-notification channels are registers. Mailboxes are queues.

• Direction—Each SPE supports signal-notification channels that are only inbound (to the
SPE). Their mailboxes support both outbound and inbound communication. However, an
SPE can send signals to another SPE using MFC send-signal commands.

• Interrupts—One of the mailboxes interrupts the PPE. Signal-notification channels have no
such automatic feature.

• Many-to-One—Signal-notification channels (but not mailboxes) can be configured as many-
to-one (OR mode) or as one-to-one (overwrite mode).

• Unique Commands—Signal-notification channels have specific MFC send-signal commands
(sndsig, sndsigf, and sndsigb) for writing to them. See Section 3.4 on page 84.

• Reset—Reading a signal-notification register automatically resets (clears) its bits.

• Count—The channel counts have different meaning. Mailbox channel counts indicate the
number of available (unoccupied) entries in the mailbox queue. The signal-notification chan-
nel count indicates whether there are any pending (unserviced) signals.

• Number—Each SPE has two signal-notification channels versus three mailboxes.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 68 of 183

Version 1.0
October 21, 2005

3.2 SPU Instruction Set

The SPU Instruction Set Architecture (ISA) fully documents the instructions supported by the
SPEs. This section summarizes the ISA. Programmers writing in a high-level language like C or
C++ can use the intrinsics described in Section 3.3 on page 72 to improve their control over the
SPE hardware. Because the functions performed by these intrinsics are closely related to the
assembly-language instructions of the SPU Instruction Set Architecture, this overview may be
helpful in understanding the utility of the intrinsics.

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and floating-point,
with support for some scalar operands. The PPE and the SPE both execute SIMD instructions,
but the two processors execute different instruction sets, and programs for the PPE and SPEs
must be compiled by different compilers.

3.2.1 Data Layout in Registers

The SPE supports big-endian data ordering, an ordering in which the lowest-address byte and
lowest-numbered bit are the most-significant (high) byte and bit, respectively. Bits in registers are
numbered in ascending order from left to right, with bit 0 representing the most-significant bit
(MSb) and bit 127 the least-significant bit (LSb) as shown in the figure below. The SPE architec-
ture does not define or use little endian data ordering.
.

The SPU hardware defines the following data types:

• byte—8 bits

• halfword—16 bits

• word—32 bits

• doubleword—64 bits

• quadword—128 bits

These data types are indicated by shading in Figure 3-3 on page 69. The left-most word (bytes 0,
1, 2, and 3) of a register is called the preferred slot, also shown in Figure 3-3. When instructions
use or produce scalar operands or addresses, the values are in the preferred slot. A set of store
assist instructions is available to help store bytes, halfwords, words, and doublewords.

M
S

b

LS
b

0 1 2 3 4 5 6 7 8 9 10 116 117 118 119 120 121 122 123 124 125 126 127

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 69 of 183

The SPE programming model defines the vector data types shown in Table 3-5 for the C
programming language. These data types are all 128 bits long and contain from 1 to 16 elements
per vector.

3.2.2 Instruction Types

There are 204 instructions in the SPU Instruction Set Architecture, and they are grouped into 11
sets by functionality. These instruction classes are shown in Table 3-6.

Figure 3-3. Register Layout of Data Types and Preferred Slot

Doubleword

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte

Halfword

Address

Quadword

Byte IndexPreferred Slot

Word

Table 3-5. Vector Data Types

Vector Data Type Content

vector unsigned char Sixteen 8-bit unsigned chars

vector signed char Sixteen 8-bit signed chars

vector unsigned short Eight 16-bit unsigned halfwords

vector signed short Eight 16-bit signed halfwords

vector unsigned int Four 32-bit unsigned words

vector signed int Four 32-bit signed words

vector unsigned long long Two 64-bit unsigned doublewords

vector signed long long Two 64-bit signed doublewords

vector float Four 32-bit single-precision floats

vector double Two 64-bit double precision floats

qword quadword (16-byte)

Table 3-6. SPU Instruction Types (Page 1 of 2)

Type Number

Memory Load and Store 16

Constant Formation 6

Integer and Logical Operations 59

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 70 of 183

Version 1.0
October 21, 2005

Figure 3-4 shows one example of an SPU SIMD instruction—the floating-point add instruction,
fa. This instruction simultaneously adds four pairs of floating-point vector elements, stored in
registers ra and rb, and produces four floating-point results, written to register rt.

Depending on the programmer’s performance requirements and code size restraints, advan-
tages can be gained by properly grouping data in an SIMD vector. Figure 3-5 on page 71 shows
a natural way of using SIMD vectors to store the homogenous data values—x, y, z, w—for the
three vertices—a, b, c—of a triangle in a 3D-graphics application. This arrangement is called an
array of structures (AOS), because the data values for each vertex are organized in a single
structure, and the set of all such structures (vertices) is an array.

Shift and Rotate 31

Compare, Branch, and Halt 40

Hint-for-Branch 3

Floating-Point 28

Control 8

SPU Channel 3

SPU Interrupt Facility 7

Synchronization and Ordering 3

Table 3-6. SPU Instruction Types (Page 2 of 2)

Type Number

Figure 3-4. SIMD Floating-Point Add Instruction Function

a rt,ra,rb

ra a.0 a.1 a.2 a.3

rb b.0 b.1 b.2 b.3

rt t.0 t.1 t.2 t.3

+ + + +

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 71 of 183

The data-packing approach shown in Figure 3-5 often produces small code sizes, but it typically
executes poorly and generally requires significant loop-unrolling to improve its efficiency. If the
vertices contain fewer components than the SIMD vector can hold (for example, three compo-
nents instead of four), memory-use is wasted.

Another method of organizing data in SIMD vectors is a structure of arrays (SOA). Here, each
corresponding data value for each vertex is stored in a corresponding location in a set of vectors.
Think of the data as if it were scalar, and the vectors are populated with independent data across
the vector. This is different from the previous example, where the four values of each vertex are
stored in one vector. Figure 3-6 on page 72 shows the use of SIMD vectors to represent the x, y,
z vertices for four triangles. Not only are the data types the same across the vector, but now their
data interpretation is the same. Depending on the algorithm, software might execute more effi-
ciently with this SIMD data organization than with the organization shown in Figure 3-5.

Figure 3-5. Array-of-Structures Data Organization for One Triangle

vector float a, b, c

vertex a x y z w

x y z wvertex b

x y z wvertex c

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 72 of 183

Version 1.0
October 21, 2005

For more about the SPU instructions, see the SPU Instruction Set Architecture and the SPU
Assembly Language Specification.

3.3 SPU C/C++ Language Extensions (Intrinsics)

A large set of SPU C/C++ Language Extensions (intrinsics) make the underlying SPU Instruction
Set Architecture and hardware features conveniently available to C programmers. These intrin-
sics can be used in place of assembly-language code when writing in the C or C++ languages.

The intrinsics are essentially in-line assembly-language instructions in the form of C-language
function calls. They provide the programmer with explicit control of the SPE SIMD instructions
without directly managing registers. A well-written compiler that supports these intrinsics will emit
efficient code for the SPE architecture. The techniques used by compilers to generate efficient
code include:

• Register coloring

• Instruction scheduling (dual-issue optimization)

• Data loads and stores

• Loop blocking, fusion, unrolling

• Correct up-stream placement of branch hints

• Literal vector construction

Figure 3-6. Structure-of-Arrays Data Organization for Four Triangles

vector float a, b, c

vertex a[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex a[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex a[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex b[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex b[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex b[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex c[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex c[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex c[2]:z triangle 1 triangle 2 triangle 3 triangle 4

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 73 of 183

For example, the gcc compiler provides the intrinsic t = spu_add(a, b) as a substitute for the
assembly-language instruction fa rt,ra,rb. The compiler will generate a floating-point add
instruction (fa rt, ra, rb) for the SPU intrinsic t = spu_add(a, b), assuming t, a, and b are vector
float variables. The system header file, spu_intrinsics.h, defines the SPU language extensions.

The intrinsics are defined fully in the SPU C/C++ Language Extensions document. The PPE and
the SPU instruction sets have similar, but distinct, SIMD intrinsics. It is important to understand
the mapping between the PPE and SPU SIMD intrinsics when developing applications on the
PPE that will eventually be ported to the SPEs.

3.3.1 Assembly Language versus Intrinsics Comparison: An Example

The ease of implementing a DMA transfer using intrinsics versus assembly-language instructions
is illustrated in the following example implementation of the dma_transfer subroutine. This
subroutine issues a DMA command with transfer size bytes from the LS address, lsa, to or from
the 64-bit effective address specified by eah | eal. The DMA command specified by the dma
parameter is tagged using the specified tag_id parameter.

extern void dma_transfer(volatile void *lsa, // local store address
 unsigned int eah, // high 32-bit effective address
 unsigned int eal, // low 32-bit effective address
 unsigned int size, // transfer size in bytes
 unsigned int tag_id, // tag identifier (0-31)
 unsigned int cmd); // DMA command

The Application Binary Interface (ABI)-compliant assembly-language implementation of the
subroutine would be:

 .text
 .global dma_transfer
dma_transfer:
 wrch $MFC_LSA, $3
 wrch $MFC_EAH, $4
 wrch $MFC_EAL, $5
 wrch $MFC_Size, $6
 wrch $MFC_TagID, $7
 wrch $MFC_Cmd, $8
 bi $0

A comparable C implementation using the SPU intrinsic, spu_writech, for the write-channel
(wrch) instruction would be:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,
 unsigned int size, unsigned int tag_id, unsigned int cmd)
{
 spu_writech(MFC_LSA, (unsigned int)lsa);
 spu_writech(MFC_EAH, eah);

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 74 of 183

Version 1.0
October 21, 2005

 spu_writech(MFC_EAL, eal);
 spu_writech(MFC_Size, size);
 spu_writech(MFC_TagID, tag_id);
 spu_writech(MFC_Cmd, cmd);
}

This particular function could be more simply written using the spu_mfcdma64 composite intrinsic,
as:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,
 unsigned int size, unsigned int tag_id, unsigned int cmd)
{
 spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);
}

3.3.2 Intrinsic Classes

SPU intrinsics are grouped into the following three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction. Programmers rarely need these intrinsics for implementing inline assem-
bly code because the Joint Software Reference Environment (JSRE) has adopted gcc-style
inline assembly.

• Generic Intrinsics and Built-Ins—Intrinsics that map to one or more assembly-language
instructions as a function of the type of input parameters. Built-ins are a subset of generic
intrinsics that map to more than one assembly-language instruction.

• Composite Intrinsics—Convenience intrinsics constructed from a sequence of specific or
generic intrinsics.

Intrinsics are not provided for all assembly-language instructions. Some assembly-language
instructions (for example, branches, branch hints, and interrupt return) are naturally accessible
through the C/C++ language semantics. Many SPU intrinsics are different than PPE intrinsics
(see Section 3.3.4 on page 81).

3.3.2.1 Specific Intrinsics

Specific intrinsics have a one-to-one mapping with a single assembly-language instruction. All
specific intrinsics are named using the SPU assembly instruction prefixed by the string, si_. For
example, the specific intrinsic that implements the stop assembly instruction is named si_stop.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 75 of 183

Specific intrinsics are provided for all instructions except branch, branch-hint, and interrupt-return
instructions. All specific intrinsics are also available in the form of generic intrinsics, except for the
specific intrinsics shown in Table 3-7. The specific intrinsics shown in this table fall into three
categories:

• Instructions generated using basic variable-referencing (that is, using vector and scalar loads
and stores)

• Instructions used for immediate vector construction

• Instructions that have limited usefulness and are not expected to be used except in rare con-
ditions

Table 3-7. Specific Intrinsics Not Available as Generic Intrinsics (Page 1 of 2)

Intrinsic Description

Generate Controls for Sub-Quadword Insertion Intrinsics

 d = si_cbd(a, imm) Generate controls for byte insertion (d form)

d = si_cbx(a, b) Generate controls for byte insertion (x form)

d = si_cdd(a, imm) Generate controls for doubleword insertion (d form)

d = si_cdx(a, b) Generate controls for doubleword insertion (x form)

d = si_chd(a, imm) Generate controls for halfword insertion (d form)

d = si_chx(a, b) Generate controls for halfword insertion (x form)

d = si_cwd(a, imm) Generate controls for word insertion (d form)

d = si_cwx(a, b) Generate controls for word insertion (x form)

Constant Formation Intrinsics

d = si_il(imm) Immediate load word

d = si_ila(imm) Immediate load address

d = si_ilh(imm) Immediate load halfword

d = si_ilhu(imm) Immediate load halfword upper

d = si_iohl(a, imm) Immediate or halfword lower

No Operation Intrinsics

si_lnop() No operation (load)

si_nop() No operation (execute)

Memory Load and Store Intrinsics

d = si_lqa(imm) Load quadword (a form)

d = si_lqd(a, imm) Load quadword (d form)

d = si_lqr(imm) Load quadword instruction relative

d = si_lqx(a, b) Load quadword (x form)

si_stqa(a, imm) Store quadword (a form)

si_stqd(a, b, imm) Store quadword (d form)

si_stqr(a, imm) Store quadword instruction relative

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 76 of 183

Version 1.0
October 21, 2005

Specific intrinsics accept only the following types of arguments:

• Immediate literals, as an explicit constant expression or as a symbolic address

• Enumerations

• Quadword arguments

Arguments of other types must be cast to the qword data type. When using specific intrinsics, it
might be necessary to cast from scalar types to the qword data type, or from the qword data type to
scalar types. Similar to casting between vector data types, specific cast intrinsics have no effect
on an argument that is stored in a register. All specific casting intrinsics are of the following form:

d = casting_intrinsic(a)

For example, to add 3 to the integer i:

int i;
i = si_to_int (si_ai (si_from_int(i), 3));

Table 3-8 lists the specific casting intrinsics.

si_stqx(a, b, c) Store quadword (x form)

Control Intrinsics

si_stopd(a, b, c) Stop and signal with dependencies

Table 3-8. Specific Casting Intrinsics (Page 1 of 2)

Intrinsic Description

si_to_char Cast byte element 3 of qword to char.

si_to_uchar Cast byte element 3 of qword to unsigned char.

si_to_short Cast halfword element 1 of qword to short.

si_to_ushort Cast halfword element 1 of qword to unsigned short.

si_to_int Cast word element 0 of qword to int.

si_to_uint Cast word element 0 of qword to unsigned int.

si_to_ptr Cast word element 0 of qword to a void pointer.

si_to_llong Cast doubleword element 0 of qword to long long.

si_to_ullong Cast doubleword element 0 of qword to unsigned long long.

si_to_float Cast word element 0 of qword to float.

si_to_double Cast doubleword element 0 of qword to double.

si_from_char Cast char to byte element 3 of qword.

si_from_uchar Cast unsigned char to byte element 3 of qword.

si_from_short Cast short to halfword element 1 of qword.

si_from_ushort Cast unsigned short to halfword element 1 of qword.

Table 3-7. Specific Intrinsics Not Available as Generic Intrinsics (Page 2 of 2)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 77 of 183

3.3.2.2 Generic Intrinsics

Generic intrinsics map to one or more assembly-language instructions, as a function of the type
of its input parameters. Built-ins are a subset of generic intrinsics that map to more than one SPU
instruction. All of the generic intrinsics and built-ins are prefixed by the string, spu_. For example,
the intrinsic that implements the stop assembly instruction is named spu_stop.

Generic intrinsics are provided for all SPU instruction, except the following:

• branch

• branch hint

• interrupt return

• generate control for insertion (used for scalar stores)

• constant formation

• no-op

• memory load and store

• stop and signal with dependencies (stopd)

Many generic intrinsics accept scalars as one of their operands. These correspond to intrinsics
that map to instructions with immediate values.

Table 3-9 lists the generic intrinsics.

si_from_int Cast int to word element 0 of qword.

si_from_uint Cast unsigned int to word element 0 of qword.

si_from_ptr Cast void pointer to word element 0 of qword.

si_from_llong Cast long long to doubleword element 0 of qword.

si_from_ullong Cast unsigned long long to doubleword element 0 of qword.

si_from_float Cast float to word element 0 of qword.

si_from_double Cast double to doubleword element 0 of qword.

Table 3-9. Generic SPU Intrinsics (Page 1 of 4)

Intrinsic Description

Constant Formation Intrinsics

d = spu_splats(a) Replicate scalar a into all elements of vector d

Conversion Intrinsics

 d = spu_convtf(a, scale) Convert integer vector to float vector

 d = spu_convts(a, scale) Convert float vector to signed int vector

 d = spu_convtu(a, scale) Convert float vector to unsigned float vector

 d = spu_extend(a) Sign extend vector

 d = spu_rountf(a) Round double vector to float vector

Table 3-8. Specific Casting Intrinsics (Page 2 of 2)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 78 of 183

Version 1.0
October 21, 2005

Arithmetic Intrinsics

 d = spu_add(a, b) Vector add

 d = spu_addx(a, b, c) Vector add extended

 d = spu_genb(a, b) Vector generate borrow

 d = spu_genbx(a, b, c) Vector generate borrow extended

 d = spu_genc(a, b) Vector generate carry

 d = spu_gencx(a, b, c) Vector generate carry extended

 d = spu_madd(a, b, c) Vector multiply and add

 d = spu_mhhadd(a, b, c) Vector multiply high high and add

 d = spu_msub(a, b, c) Vector multiply and subtract

 d = spu_mul(a, b) Vector multiply

 d = spu_mulh(a, b) Vector multiply high

 d = spu_mulhh(a, b) Vector multiply high high

 d = spu_mulo(a, b) Vector multiply odd

 d = spu_mulsr(a, b) Vector multiply and shift right

 d = spu_nmadd(a, b, c) Negative vector multiply and add

 d = spu_nmsub(a, b, c) Negative vector multiply and subtract

 d = spu_re(a) Vector floating-point reciprocal estimate

 d = spu_rsqrte(a) Vector floating-point reciprocal square root estimate

 d = spu_sub(a, b) Vector subtract

 d = spu_subx(a, b, c) Vector subtract extended

Byte Operation Intrinsics

 d = spu_absd(a, b) Vector absolute difference

 d = spu_avg(a, b) Vector average

 d = spu_sumb(a, b) Vector sum bytes into shorts

Compare, Branch, and Halt Intrinsics

 d = spu_bisled(func) Branch indirect and set link if external data

 d = spu_cmpabseq(a, b) Vector compare absolute equal

 d = spu_cmpabsgt(a, b) Vector compare absolute greater than

 d = spu_cmpeq(a, b) Vector compare equal

 d = spu_cmpgt(a, b) Vector compare greater than

(void) spu_hcmpeq(a, b) Halt if compare equal

(void) spu_hcmpgt(a, b) Halt if compare greater than

Bit and Mask Intrinsics

 d = spu_cntb(a) Vector count ones for bytes

 d = spu_cntlz(a) Vector count leading zeros

 d = spu_gather(a) Gather bits from elements

Table 3-9. Generic SPU Intrinsics (Page 2 of 4)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 79 of 183

 d = spu_maskb(a) Form select byte mask

 d = spu_maskh(a) Form select halfword mask

 d = spu_maskw(a) Form select word mask

 d = spu_sel(a, b, pattern) Select bits

 d = spu_shuffle(a, b, pattern) Shuffle bytes of a vector

Logical Intrinsics

 d = spu_and(a, b) Vector bit-wise AND

 d = spu_andc(a, b) Vector bit-wise AND with complement

 d = spu_eqv(a, b) Vector bit-wise equivalent

 d = spu_nand(a, b) Vector bit-wise complement of AND

 d = spu_nor(a, b) Vector bit-wise complement of OR

 d = spu_or(a, b) Vector bit-wise OR

 d = spu_orc(a, b) Vector bit-wise OR with complement

 d = spu_orx(a) Bit-wise OR word elements

 d = spu_xor(a, b) Vector bit-wise exclusive OR

Rotate Intrinsics

 d = spu_rl(a, count) Element-wise bit rotate left

 d = spu_rlmask(a, count) Element-wise bit rotate left and mask

 d = spu_rlmaska(a, count) Element-wise bit algebraic rotate and mask

 d = spu_rlmaskqw(a, count) Bit rotate and mask quadword

 d = spu_rlmaskqwbyte(a, count) Byte rotate and mask quadword

 d = spu_rlmaskqwbytebc(a, count) Byte rotate and mask quadword using bit rotate count

 d = spu_rlqw(a, count) Bit rotate quadword left

 d = spu_rlqwbyte(a, count) Byte rotate quadword left

 d = spu_rlqwbytebc(a, count) Byte rotate quadword left using bit rotate count

Shift Intrinsics

 d = spu_sl(a, count) Element-wise bit shift left

 d = spu_slqw(a, count) Bit shift quadword left

 d = spu_slqwbyte(a, count) Byte shift quadword left

 d = spu_slqwbytebc(a, count) Byte shift quadword left using bit shift count

Control Intrinsics

(void) spu_idisable() Disable interrupts

(void) spu_ienable() Enable interrupts

(void) spu_mffpscr() Move from floating-point status and control register

(void) spu_mfspr(register) Move from special-purpose register

(void) spu_mtfpscr(a) Move to floating-point status and control register

(void) spu_mtspr(register, a) Move to special-purpose register

Table 3-9. Generic SPU Intrinsics (Page 3 of 4)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 80 of 183

Version 1.0
October 21, 2005

3.3.2.3 Composite Intrinsics

Composite intrinsics are constructed from a sequence of specific or generic intrinsics. All of the
composite intrinsics are prefixed by the string, spu_. Table 3-10 lists the composite intrinsics.

For further information about the SPU intrinsics, see the SPU C/C++ Language Extensions docu-
ment.

3.3.3 Promoting Scalar Data Types to Vector Data Types

The SPU only loads and stores a quadword at a time. When instructions use or produce scalar
operands (including addresses), the value is kept in the preferred slot of an SIMD register. Scalar
(subquadword) loads and stores require several instructions to format the data for use on the
SIMD architecture of the SPE. Scalar loads must be rotated into the preferred slot. Scalar stores
require a read, scalar insert, and write operation. These extra formatting instructions reduce
performance.

Vector operations on scalar data are not efficient. The following strategies can be used to make
operations on scalar data more efficient:

• Change the scalars to quadword vectors. By eliminating the three extra instructions associ-
ated with loading and storing scalars, code size and execution time can be reduced.

(void) spu_dsync() Synchronize data

(void) spu_stop(type) Stop and signal

(void) spu_sync() Synchronize

Scalar Intrinsics

d = spu_extract(a, element) Extract vector element from vector

d = spu_insert(a, b, element) Insert scalar into specified vector element

d = spu_promote(a, element) Promote scalar to vector

Channel Control Intrinsics

d = spu_readch(channel) Read word channel

d = spu_readchqw(channel) Read quadword channel

d = spu_readchcnt(channel) Read channel count

(void) spu_writech(channel, a) Write word channel

(void) spu_writechqw(channel, a) Write quadword channel

Table 3-10. Composite SPU Intrinsics

Intrinsic Description

spu_mfcdma32(ls, ea, size, tagid, cmd) Initiate DMA to or from 32-bit effective address

spu_mfcdma64(ls, eahi, ealow, size, tagid, cmd) Initiate DMA to or from 64-bit effective address

spu_mfcstat(type) Read MFC tag status

Table 3-9. Generic SPU Intrinsics (Page 4 of 4)

Intrinsic Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 81 of 183

• Cluster scalars into groups, and load multiple scalars at a time using a quadword memory
access. Manually extract or insert the scalars as needed. This will eliminate redundant loads
and stores.

SPU intrinsics are provided in the C/C++ Language Extensions to efficiently promote scalars to
vectors, or vectors to scalars. These intrinsics are listed in Table 3-11.

3.3.4 Differences Between PPE and SPE SIMD Support

3.3.4.1 Architectural Differences

The PPE processes SIMD operations in the VXU within its PPU. The operations are those of the
Vector/SIMD Multimedia Extension instruction set. The SPEs process SIMD operations in their
SPU. The operations are those of the SPU instruction set.

The major differences between the PPE and SPE architectures are summarized in Table 3-12.

3.3.4.2 Language-Extension Differences

The SPE’s SPU instruction set is similar to that of the PPE’s Vector/SIMD Multimedia Extension
instruction set, in that both operate on 128-bit SIMD vectors. However, from a programmer’s
perspective, these instruction sets are quite different, and their respective language extensions
have different intrinsics and data types.

Table 3-13 on page 82 specifies the supported vector data types for each of the SIMD engines
(PPE and SPE) in the Cell Broadband Engine (an “x” signifies support; a “—” signifies no
support):

Table 3-11. Intrinsics for Changing Scalar and Vector Data Types

Instruction Description

d = spu_insert Insert a scalar into a specified vector element.

d = spu_promote Promote a scalar to a vector.

d = spu_extract Extract a vector element from its vector.

Table 3-12. PPE and SPE Architectural Comparison

Feature PPE SPE

Number of SIMD registers 32 (128-bit) 128 (128-bit)

Organization of register files separate fixed-point, floating-point, and
vector multimedia registers unified

Load latency variable (cache) fixed

Addressability 264 bytes
256-KB local store

264 bytes DMA

Instruction set more orthogonal optimized for single-precision float

Single-precision IEEE 754-1985 extended range

Doubleword no doubleword SIMD double-precision floating-point SIMD

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 82 of 183

Version 1.0
October 21, 2005

The key differences are:

• Only the Vector/SIMD Multimedia Extension instruction set supports pixel vectors.

• Only the SPU instruction set supports doubleword vectors.

The SPUs quadword data type is excluded from the list because it is a type-agnostic register
reference instead of a specific vector data type. The quadword data type is used exclusively as
an operand in specific intrinsics—those which have a one-to-one mapping with a single
assembly-language instruction. See Section 3.3.2 on page 74.

Also, the Vector/SIMD Multimedia Extension instruction set provides these operations that are
not directly supported by a single instruction in the SPU instruction set:

• Saturating math

• Sum-across

• Log2 and 2x

• Ceiling and floor

• Complete byte instructions

Likewise, the SPU instruction set provides these operations that are not directly supported by a
single instruction in the Vector/SIMD Multimedia Extension instruction set:

• Immediate operands

• Double-precision floating-point

• Sum of absolute difference

• Count ones in bytes

• Count leading zeros

Table 3-13. PPE versus SPU Vector Data Types

Vector Data Type PPE SPU

vector unsigned char x x

vector signed char x x

vector bool char x —

vector unsigned short x x

vector signed short x x

vector bool short x —

vector pixel x —

vector unsigned int x x

vector signed int x x

vector bool int x —

vector float x x

vector unsigned long long — x

vector signed long long — x

vector double — x

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 83 of 183

• Equivalence

• Nand

• Or complement

• Extend sign

• Gather bits

• Form select mask

• Integer multiply and accumulate

• Multiply subtract

• Multiply float

• Shuffle byte special conditions

• Carry and borrow generate

• Sum bytes across

• Extended shift range

These differences between the Vector/SIMD Multimedia Extension and SPU instruction sets
must be kept in mind when porting code from the PPE to the SPE. Ported programs need to
consider not only equivalent instructions but also code performance. See Section 3.6 on page 98
for more on porting code.

To improve code portability between PPE and SPU programs, spu_intrinsics.h provides
single-token typedefs for vector keyword data types. These typedefs are shown in Table 3-14.
These single-token types serve as class names for extending generic intrinsics for mapping to-
and-from Vector/SIMD Multimedia Extension intrinsics and SPU intrinsics.

Table 3-14. Single-Token Vector Keyword Data Types

Vector Keyword Data Type Single-Token Typedef

vector unsigned char vec_uchar16

vector signed char vec_char16

vector unsigned short vec_ushort8

vector signed short vec_short8

vector unsigned int vec_unit4

vector signed int vec_int4

vector unsigned long long vec_ullong2

vector signed long long vec_llong2

vector float vec_float4

vector double vec_double2

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 84 of 183

Version 1.0
October 21, 2005

3.3.5 Compiler Directives

Like compiler intrinsics, compiler directives are crucial programming elements. The restrict
qualifier is well-known in many C/C++ implementations, and it is part of the SPU language exten-
sion. When the restrict keyword is used to qualify a pointer, it specifies that all accesses to the
object pointed to are done through the pointer. For example:

void *memcpy(void * restrict s1, void * restrict s2, size_t n);

By specifying s1 and s2 as pointers that are restricted, the programmer is specifying that the
source and destination objects (for the memory copy) do not overlap.

Another directive is __builtin_expect. Since branch mispredicts are relatively expensive,
__builtin_expect provides a way for the programmer to direct branch prediction. This example:

int __builtin_expect(int exp, int value)

returns the result of evaluating exp, and means that the programmer expects exp to equal value.
The value can be a constant for compile-time prediction, or a variable used for run-time predic-
tion.

Two more directives are the aligned attribute, and the _align_hint directive. The aligned
attribute is used to ensure proper DMA alignment, for efficient data transfer. The syntax is the
same as in many implementations of gcc:

float factor __attribute__((aligned (16)); //aligns “factor” to a quadword

The _align_hint directive helps compilers auto-vectorize. Although it looks like an intrinsic, it is
more properly described as a compiler directive, since no code is generated as a result of using
the directive. The example

_align_hint(ptr, base, offset)

informs the compiler that the pointer, ptr, points to data with a base alignment of base, with a
byte offset from the base alignment of offset. The base alignment must be a power of two.
Giving 0 as the base alignment implies that the pointer has no known alignment. The offset must
be less than the base, or, zero. The _align_hint directive should not be used with pointers that
are not naturally aligned.

3.4 MFC Commands

The MFC, described in Section 3.1.2 on page 62, supports a set of MFC commands. These
commands provide the main mechanism that enables code executing in an SPU to access main
storage and maintain synchronization with other processors and devices in the system. MFC
commands can be issued either by code running on the MFC’s associated SPU or by code
running on the PPE or other device, as follows:

• Code running on the SPU issues an MFC command by executing a series of writes and/or
reads using channel instructions, described in Table 3-4 on page 65.

• Code running on the PPE or other devices issues an MFC command by performing a series
of stores and/or loads to memory-mapped I/O (MMIO) registers in the MFC.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 85 of 183

The commands are queued in one of two independent MFC command queues:

• MFC SPU Command Queue—For channel-initiated commands by the associated SPU

• MFC Proxy Command Queue—For MMIO-initiated commands by the PPE or other device

MFC commands that transfer data are referred to as DMA commands. The data-transfer direc-
tion for MFC DMA commands is always referenced from the perspective of an SPE. Therefore,
commands that transfer data into an SPE (from main storage to local store), are considered get
commands, and transfers of data out of an SPE (from local store to main storage) are considered
put commands.

The MFC DMA commands are shown in Table 3-15. This table also indicates whether the
commands are supported for SPEs (by means of a corresponding channel) and for the PPE (by
means of a corresponding MMIO register), or both. The suffixes associated with the MFC DMA
commands are shown in Table 3-16 on page 86. The MFC synchronization commands are
shown in Table 3-17 on page 87. The MFC atomic commands are shown in Table 3-18 on
page 87.

Table 3-15. MFC DMA Commands (Page 1 of 2)

Mnemonic Supported By1 Description

Put Commands

put PPE, SPE Moves data from local store to the effective address.

puts PPE Moves data from local store to the effective address and starts the SPU after the
DMA operation completes.

putf PPE, SPE
Moves data from local store to the effective address with fence (this command is
locally ordered with respect to all previously issued commands within the same tag
group and command queue).

putb PPE, SPE

Moves data from local store to the effective address with barrier (this command
and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queue).

putfs PPE

Moves data from local store to the effective address with fence (this command is
locally ordered with respect to all previously issued commands within the same tag
group and command queue) and starts the SPU after the DMA operation com-
pletes.

putbs PPE

Moves data from local store to the effective address with barrier (this command
and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queue) and starts the SPU after the DMA operation completes.

putl SPE Moves data from local store to the effective address using an MFC list.

putlf SPE
Moves data from local store to the effective address using an MFC list with fence
(this command is locally ordered with respect to all previously issued commands
within the same tag group and command queue).

putlb SPE

Moves data from local store to the effective address using an MFC list with barrier
(this command and all subsequent commands with the same tag ID as this com-
mand are locally ordered with respect to all previously issued commands within the
same tag group and command queue).

Get Commands

get PPE, SPE Moves data from the effective address to local store.

gets PPE Moves data from the effective address to local store, and starts the SPU after the
DMA operation completes.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 86 of 183

Version 1.0
October 21, 2005

The suffixes in Table 3-16 are associated with the MFC DMA commands, and extend or refine
the function of a command. For example, a put command moves data from local store to the
effective address. A puts command moves data from local store to the effective address and
starts the SPU after the DMA operation completes. Commands with an “s” suffix can only be
issued to the MFC Proxy command queue. Commands with an “l” suffix and all the MFC atomic
commands can only be issued by the SPE (to the MFC SPU command queue). All other
commands described in this section can be issued by either the SPE or the PPE. Commands
issued by the PPE are issued on behalf of the SPE and are sent to the MFC Proxy command
queue.

getf PPE, SPE
Moves data from the effective address to local store with fence (this command is
locally ordered with respect to all previously issued commands within the same tag
group and command queue).

getb PPE, SPE

Moves data from the effective address to local store with barrier (this command
and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queue).

getfs PPE
Moves data from the effective address to local store with fence (this command is
locally ordered with respect to all previously issued commands within the same tag
group), and starts the SPU after the DMA operation completes.

getbs PPE

Moves data from the effective address to local store with barrier (this command
and all subsequent commands with the same tag ID as this command are locally
ordered with respect to all previously issued commands within the same tag group
and command queue), and starts the SPU after the DMA operation completes.

getl SPE Moves data from the effective address to local store using an MFC list.

getlf SPE
Moves data from the effective address to local store using an MFC list with fence
(this command is locally ordered with respect to all previously issued commands
within the same tag group and command queue).

getlb SPE

Moves data from the effective address to local store using an MFC list with barrier
(this command and all subsequent commands with the same tag ID as this com-
mand are locally ordered with respect to all previously issued commands within the
same tag group and command queue).

1. There is a channel (for SPEs) and/or MMIO register (for PPE) to support the operation.

Table 3-16. MFC Command Suffixes

Suffix Description

s Starts the execution of the SPU at the current location indicated by the SPU Next Program Counter
Register after the data has been transferred into or out of the local store.

f Tag-specific fence. Commands with a tag-specific fence are locally ordered with respect to all previ-
ously-issued commands within the same tag group and command queue.

b
Tag-specific barrier. Commands with a tag-specific barrier are locally ordered with respect to all previ-
ously-issued commands within the same tag group and command queue and all subsequently-issued
commands to the same command queue with the same tag.

l List command. Executes a list of DMA transfer elements located in local store. The maximum number
of elements is 2,048, and each element describes a transfer of up to 16 KB.

Table 3-15. MFC DMA Commands (Page 2 of 2)

Mnemonic Supported By1 Description

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 87 of 183

3.4.1 DMA-Command Tag Groups

All DMA commands except getllar, putllc, and putlluc can be tagged with a 5-bit Tag Group ID.
By assigning a DMA command or group of commands to different tag groups, the status of the
entire tag group can be determined within a single command queue (the MFC SPU Command
Queue or the MFC Proxy Command Queue).

Software can use this identifier to check or wait on the completion of all queued commands in
one or more tag groups. Tagging is optional but can be useful when using barriers to control the
ordering of MFC commands within a single command queue.

DMA commands within a tag group can be synchronized with a fence or barrier option by
appending an f or b, respectively, to the command mnemonic. Execution of a fenced command
option is delayed until all previously issued commands within the same tag group have been
performed. Execution of a barrier command option and all subsequent commands is delayed
until all previously issued commands in the same tag group have been performed.

Table 3-17. MFC Synchronization Commands

Command Supported By1

1. There is a channel (for SPEs) and/or MMIO register (for PPE) to support the operation.

Description

barrier PPE, SPE

Barrier type ordering. Ensures ordering of all preceding, nonimmediate DMA com-
mands with respect to all commands following the barrier command within the
same command queue. The barrier command has no effect on the immediate DMA
commands: getllar, putllc, and putlluc.

mfceieio PPE, SPE

Controls the ordering of get commands with respect to put commands, and of get
commands with respect to get commands accessing storage that is caching inhib-
ited and guarded. Also controls the ordering of put commands with respect to put
commands accessing storage that is memory coherence required and not caching
inhibited.

mfcsync PPE, SPE Controls the ordering of DMA put and get operations within the specified tag group
with respect to other processing units and mechanisms in the system.

sndsig PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE.

sndsigb PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE with bar-
rier.

sndsigf PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE with
fence.

Table 3-18. MFC Atomic Commands

Command Supported By1

1. There is a channel to support the operation.

Description

getllar SPE Get lock line and create a reservation (executed immediately).

putllc SPE Put lock line conditional on a reservation (executed immediately).

putlluc SPE Put lock line unconditional (executed immediately).

putqlluc SPE Put lock line unconditional (queued form).

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 88 of 183

Version 1.0
October 21, 2005

3.4.2 Synchronizing DMA Transfers

The MFC synchronization commands are shown inTable 3-17 on page 87. These commands
can be used to control the order in which DMA storage accesses are performed. There are four
atomic commands (getllar, putllc, putlluc, and putqlluc), three send-signal commands
(sndsig, sndsigf, and sndsigb), and three barrier commands (barrier, mfcsync, and
mfceieio).

3.5 Coding Methods and Examples

The sections below describe some coding methods, with examples in SPU assembly language,
C language, SPU C-language intrinsics, and MFC commands, or in a combination thereof. These
instruction and command sets are summarized in:

• SPU assembly language—Section 3.2 on page 68

• SPU C-language intrinsics—Section 3.3 on page 72

• MFC commands—Section 3.4 on page 84

3.5.1 DMA Transfers

DMA commands transfer data between the LS and main storage. Main storage is addressed by
an effective address (EA) operand in a DMA command. The LS is addressed by the local store
address (LSA) operand in a DMA command. The size of a single DMA transfer is limited to 16
KB. put commands move data from LS to main storage, and get commands move data from
main storage to LS. The LS data is accessed sequentially with a minimum step of one quadword.

Software on an SPE accesses its MFC’s DMA-transfer facilities through the channels listed in
Table 3-3 on page 63. To enqueue a DMA command, SPE software writes the MFC Command
Parameter Channel Registers with the wrch instruction (Section 3.1.3.1 on page 65) in the
following sequence:

1. Write the LS address to the MFC_LSA channel.

2. Write the EA-high (EAH) to the MFC_EAH channel.

3. Write the EA-low (EAL) to the MFC_EAL channel.

4. Write the transfer size to the MFC_Size channel.

5. Write the tag ID to the MFC_TagID channel.

6. Write the class ID and command opcode to the MFC_Cmd channel.

The following examples shows how to initiate a DMA transfer from an SPE.

extern void dma_transfer(volatile void *lsa, // local store address
 unsigned int eah, // high 32-bit effective address
 unsigned int eal, // low 32-bit effective address
 unsigned int size, // transfer size in bytes
 unsigned int tag_id, // tag identifier (0-31)
 unsigned int cmd); // DMA command

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 89 of 183

An ABI-compliant assembly-language implementation of the subroutine is:

 .text
 .global dma_transfer
dma_transfer:
 wrch $MFC_LSA, $3
 wrch $MFC_EAH, $4
 wrch $MFC_EAL, $5
 wrch $MFC_Size, $6
 wrch $MFC_TagID, $7
 wrch $MFC_Cmd, $8
 bi $0

A comparable C implementation using the SPU composite intrinsic, spu_mfcdma64, is:

#include <spu_intrinsics.h>

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal,
 unsigned int size, unsigned int tag_id, unsigned int cmd)
{
 spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);
}

The performance of a DMA data transfer is best when the source and destination addresses
have the same quadword offsets within a PPE cache line. Quadword-offset-aligned data trans-
fers generate full cache-line bus requests for every unrolling, except possibly the first and last
unrolling. Transfers that start or end in the middle of a cache line transfer a partial cache line
(less than 8 quadwords) in the first or last bus request, respectively.

3.5.2 DMA-List Transfers

A DMA list is a sequence of transfer elements (or list elements) that, together with an initiating
DMA-list command, specifies a sequence of DMA transfers between a single area of LS and
possibly discontinuous areas in main storage. Such lists are stored in an SPE’s LS, and the
sequence of transfers is initiated with a DMA-list command such as getl or putl. DMA-list
commands can only be issued by programs running on an SPE, but the PPE or other devices
can create and store the lists in an SPE’s LS. DMA lists can be used to implement scatter-gather
functions between main storage and the LS.

3.5.2.1 Creating the List

Each transfer element in the list contains a transfer size, the low half of an effective address, and
a stall-and-notify bit that can be used to suspend list execution after transferring a list element
whose stall-and-notify bit is set. Each DMA transfer specified in a list can transfer up to 16 KB of
data, and the list can have up to 2,048 (2 K) transfer elements.

Software creates the list and stores it in the LS. Lists must be stored in the LS on an 8-byte
boundary. The form of a transfer element is {LTS, EAL}. The first word (LTS) is the list transfer
size, the most-significant bit of which serves as an optional stall-and-notify flag. The second word

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 90 of 183

Version 1.0
October 21, 2005

(EAL) is the low-order 32-bits of an EA. Transfer elements are processed sequentially, in the
order they are stored. If the stall-and-notify flag is set for a transfer element, the MFC will stop
processing the DMA list after performing the transfer for that element until the SPE program
clears the DMA List Command Stall-And-Notify Event from the SPU Read Event Status Channel.
This gives programs an opportunity to modify subsequent transfer elements before they are
processed by the MFC.

3.5.2.2 Initiating the Transfers Specified in the List

After the list is stored in the LS, the execution of the list is initiated by a DMA-list command, such
as getl or putl, from the SPE whose LS contains the list. DMA-list commands, like single-transfer
DMA commands, require that parameters be written to the MFC Command Parameter channels
in the manner described in Section 3.5.1 on page 88. However, a DMA-list command requires
two different types of parameters than those required by a single-transfer DMA command:

• MFC_EAL: This parameter must be written with the starting local store address (LSA) of the
list, rather then with the EAL. (The EAL is specified in each transfer element.)

• MFC_Size: This parameter must be written with the size of the list, rather then the transfer
size. (The transfer size is specified in each transfer element.) The list size is equal to the
number of transfer elements, multiplied by the size of the transfer-element structure (8 bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list command that
initiates the transfers. The LSA is internally incremented based on the amount of data transferred
by each transfer element. However, if the starting LSA for each transfer element in a list does not
begin on a 16-byte boundary, then hardware automatically increments the LSA to the next 16-
byte boundary.

The EAL for each transfer element is in the 4-GB area defined by EAH. Although each EAL
starting address is in a single 4-GB area, individual transfers may cross the 4-GB boundary.

3.5.2.3 Programming Example

This C-language sample program creates a DMA list and, in the last line, uses an spu_mfcdma32
intrinsic to issue a single DMA-list command (getl) to transfer a main-storage region into LS.

/* dma_list_sample.c - SPU MFC-DMA list sample code.
 *
 * This sample defines a transfer-element data structure, which
 * contains the element's transfer size and low-order 32 bytes of the effective
 * address. Also defined in the structure, but not used by this sample,
 * is the DMA-list stall-and-notify bit, which can be used to indicate
 * that the MFC should suspend list execution after transferring a list
 * element whose stall-and-notify bit is set.
 */

#include <cbe_mfc.h>

struct dma_list_elem {
 union {

unsigned int all32;
struct {

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 91 of 183

 unsigned nbytes: 31;
 unsigned stall: 1;

 } bits;
 } size;
 unsigned int ea_low;
};

struct dma_list_elem list[16] __attribute__ ((aligned (8)));

void get_large_region(void *dst, unsigned int ea_low, unsigned int nbytes)
{
 unsigned int i = 0;
 unsigned int tagid = 0;
 unsigned int listsize;

 /* get_large_region
 * Use a single DMA list command request to transfer
 * a "large" memory region into LS. The total size to
 * be copied may be larger than the MFC's single element
 * transfer limit of 16kb.
 */

 if (!nbytes)
return;

 while (nbytes > 0) {
unsigned int sz;

sz = (nbytes < 16384) ? nbytes : 16384;
list[i].size.all32 = sz;
list[i].ea_low = ea_low;

nbytes -= sz;
ea_low += sz;
i++;

 }

/* Specify the list size and initiate the list transfer */

 listsize = i * sizeof(struct dma_list_elem);
 spu_mfcdma32(dst, (unsigned int) &list[0], listsize, tagid, MFC_GETL_CMD);
}

3.5.3 Moving Double-Buffered Data

SPE programs use DMA transfers to move data and instructions between main storage and the
local store (LS) in the SPE. Consider an SPE program that requires large amounts of data from
main storage. The following is a simple scheme to achieve that data transfer:

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 92 of 183

Version 1.0
October 21, 2005

1. Start a DMA data transfer from main storage to buffer B in the LS.

2. Wait for the transfer to complete.

3. Use the data in buffer B.

4. Repeat.

This method wastes a great deal of time waiting for DMA transfers to complete. We can speed up
the process significantly by allocating two buffers, B0 and B1, and overlapping computation on
one buffer with data transfer in the other. This technique is called double buffering. Figure 3-7
shows a flow diagram for this double buffering scheme. Double buffering is a form of multi-
buffering, which is the method of using multiple buffers in a circular queue to overlap processing
and data transfer.

The following C-language example illustrates double buffering:

/* Example C code demonstrating double buffering using
 * buffers B[0] and B[1]. In this example, an array of data
 * starting at the effective address eahi|ealow is DMAed
 * into the SPU's local store in 4-KB chunks and processed
 * by the use_data subroutine.
 */
#include <spu_intrinsics.h>
#include "cbe_mfc.h"

#define BUFFER_SIZE 4096

volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));

void double_buffer_example(unsigned int eahi, unsigned int ealow, int buffers)
{
 int next_idx, buf_idx = 0;

 // Initiate DMA transfer
 spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD);
 ealow += BUFFER_SIZE;

Figure 3-7. DMA Transfers Using a Double-Buffering Method

Wait for DMA transfer
to buffer B0 to complete

Initiate DMA transfer
to buffer B0

Initiate DMA transfer
to buffer B1

Use data in
buffer B0

Use data in
buffer B1

Initiate DMA transfer
to buffer B0

Wait for DMA transfer
to buffer B1 to complete

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 93 of 183

 while (--buffers) {
 next_idx = buf_idx ^ 1;

 // Initiate next DMA transfer
 spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD);
 ealow += BUFFER_SIZE;

 // Wait for previous transfer to complete
 spu_writech(MFC_WrTagMask, 1 << buf_idx);
 (void)spu_mfcstat(2);

 // Use the data from the previous transfer
 use_data(B[buf_idx]);

 buf_idx = next_idx;
 }

 // Wait for last transfer to complete
 spu_writech(MFC_WrTagMask, 1 << buf_idx);
 (void)spu_mfcstat(2);

 // Use the data from the last transfer
 use_data(B[buf_idx]);
}

To use double buffering effectively, follow these rules for DMA transfers on the SPE:

• Use multiple LS buffers.

• Use unique DMA tag IDs, one for each LS buffer.

• Use fenced command options to order the DMA transfers within a tag group.

• Use barrier command options to order DMA transfers within the MFC’s DMA controller.

The purpose of double buffering is to maximize the time spent in the compute phase of a
program and minimize the time spent waiting for DMA transfers to complete. Let τt represent the
time required to transfer a buffer B, and let τc represent the time required to compute on data
contained in that buffer. In general, the higher the ratio τt/τc, the more performance benefit an
application will realize from a double-buffering scheme.

3.5.4 Vectorizing a Loop

A compiler that automatically merges scalar data into a parallel-packed SIMD data structure is
called an auto-vectorizing compiler. Such compilers must handle all the high-level language
constructs, and therefore do not always produce optimal code.

A simple example of vectorizing a loop is shown below. The original loop multiplies two arrays,
term by term. The arrays are assumed to remain scalar outside of the subroutine vmult.

/* Scalar version */
int mult(float *array1, float *array2, float *out, int arraySize) {

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 94 of 183

Version 1.0
October 21, 2005

int i;
for (i = 0; i < arraySize; i++) {

out[i] = array1[i] * array2[i];
}
return 0;

}

/* Vectorized version */
int vmult(float *array1, float *array2, float *out, int arraySize) {

/* This code assumes that the arrays are quadword-aligned. */
/* This code assumes that the arraySize is divisible by 4. */

int i, arraySizebyfour;
arraySizebyfour = arraySize >> 2; /* arraySize/4 vectors */
vector float *varray1 = (vector float *) (array1);
vector float *varray2 = (vector float *) (array2);
vector float *vout = (vector float *) (out);

for (i = 0; i < arraySizebyfour; i++) {
/*spu_mul is an intrinsic that multiplies vectors */
vout[i] = spu_mul(varray1[i], varray2[i]);

}

return 0;
}

3.5.5 Reducing the Impact of Branches

The SPU hardware assumes linear instruction flow and no stall penalties from sequential instruc-
tion execution. A branch instruction has the potential of disrupting the assumed sequential flow.
Correctly predicted branches execute in one cycle, but a mispredicted branch (conditional or
unconditional) incurs a penalty of approximately 20 cycles. Considering the typical SPU instruc-
tion latency of two-to-seven cycles, mispredicted branches can seriously degrade program
performance. Branches also create scheduling barriers.

The most effective means of reducing the impact of branches is to eliminate them using three
primary methods—inlining, unrolling, and predication. The next effective means of reducing the
impact of branches is to use the branch-hint instructions.

If a branch hint is provided, software speculates that the instruction branches to the target path. If
a hint is not provided, software speculates that the branch is not taken (that is, instruction execu-
tion continues sequentially). If either speculation is incorrect, there is a large penalty (flush and
refetch).

3.5.5.1 Function-Inlining and Loop-Unrolling

Function-inlining and loop-unrolling are two techniques often used to increase the size of basic
blocks (sequences of consecutive instructions without branches), which increases scheduling
opportunities.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 95 of 183

Function-inlining eliminates the two branches associated with function-call linkage. These
include the branch and set link for function-call entry, and the branch indirect for function-call
return. Loop-unrolling eliminates branches by decreasing the number of loop iterations. Loop
unrolling can be manual, compiler directed, or compiler automated. Typically, branches associ-
ated with looping are inexpensive because they are highly predictable. However, if a loop can be
fully unrolled, then all branches can be eliminated—including the final nonpredicted branch.

Care should be taken when exploiting function inlining and loop unrolling. Over-aggressive use of
these techniques can result in code that is too large to fit in the LS.

3.5.5.2 Predication Using Select-Bits Instruction

The select-bits (selb) instruction is the key to eliminating branches for simple control-flow state-
ments (for example, if and if-then-else constructs). An if-then-else statement can be made
branchless by computing the results of both the then and else clauses and using select bits
(selb) to choose the result as a function of the conditional. If computing both results costs less
than a mispredicted branch, then there are additional savings.

For example, consider the following simple if-then-else statement:

unsigned int a, b, c;
. . .
if (a > b) d += a;
else d += 1;

This code sequence when directly converted to an SPU instruction sequence without branch
optimizations would look like:

clgt cc, a, b
brz cc, else

then:
a d, d, a
br done

else:
ai d, d, 1

done:

Using the select bits instruction, this simple conditional becomes:

clgt cc, a, b /* compute the greater-than condition */
a d_plus_a, d, a /* add d + a */
ai d_plus_1, d, 1 /* add d + 1 */
selb d, d_plus_1, d_plus_a, cc /* select proper result */

This example shows:

• Both branches were eliminated, and the correct result was placed in d.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 96 of 183

Version 1.0
October 21, 2005

• New registers were needed to maintain potential values of d (d_plus_a and d_plus_1). This
does not put significant pressure on the register file because the register file is so large and
the life of these variables is very short.

• The rewritten code sequence is smaller.

• The latency of the operations permits the scheduler to cover most of the cost of computing
both conditions. Further scheduling these instructions with those before and after this code
sequence will likely improve performance even further.

Here is another example of using the select bit—this time with C intrinsics. This code fragment
shows how to use SPU intrinsics, including spu_cmpgt, spu_add, and spu_sel, to eliminate condi-
tional branches.

The following sequence generates four instructions, assuming a, b, c are already in registers
(because we are promoting and extracting to and from the preferred integer element, the
spu_promote and spu_extract intrinsics produce no additional instructions):

 unsigned int a,b,c;
 vector unsigned int vc1, vab, va, vb, vc;

 va = spu_promote(a, 0);
 vb = spu_promote(b, 0);
 vc = spu_promote(c, 0);
 vc1 = spu_add(vc, 1);
 vab = spu_add(va, vb);
 vc = spu_select(vab, vc1, spu_cmpgt(va, vb));
 c = spu_extract(c, 0);

Instead of using the above sequence, use this:

select = spu_cmpgt(a, b); /* element-wise compare between two vectors */
c1 = spu_add(c, 1);
ab = spu_add(a, b);
c = spu_sel(ab, c1, select);

3.5.5.3 Reducing Branch Mispredicts with Branch Hint

General-purpose processors have typically addressed branch prediction by supporting hardware
look-asides with branch history tables (BHT), branch target address caches (BTAC), or branch
target instruction caches (BTIC).

The SPU addresses branch prediction through a set of hint for branch (HBR) instructions that
facilitate efficient branch processing by allowing programs to avoid the penalty of taken
branches. If a branch hint is provided, software speculates that the instruction branches to the
target path. If a hint is not provided, software speculates that the instruction does not branch to a
new location (that is, it stays inline). If speculation is incorrect, the speculated branch is flushed
and refetched. It is possible to sequence multiple hints in advance of multiple branches. As with
all programmer-provided hints, care must be exercised when using branch hints because, if the
information provided is incorrect, performance might degrade.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 97 of 183

Branch-hint instructions can provide three kinds of advance knowledge about future branches:

• Address of the branch target (that is, where will the branch take the flow of control)

• Address of the actual branch instruction (known as the hint-trigger address)

• Prefetch schedule (when to initiate prefetching instructions at the branch target)

Branch-hint instructions load a branch-target buffer (BTB) in the SPU. When the BTB is loaded
with a branch target, the hint-trigger address and branch address are also loaded into the BTB.
After loading, the BTB monitors the instruction stream as it goes into the issue stage of the pipe-
line. When the address of the instruction going into issue matches the hint trigger address, the
hint is triggered, and the SPU speculates to the target address in the hint buffer.

Branch-hint instructions have no program-visible effects. They provide a hint to the SPE architec-
ture about a future branch instruction, with the intention that the information be used to improve
performance by prefetching the branch target. The SPE branch-hint instructions are shown in
Table 3-19. There are immediate and indirect forms for this instruction class. The location of the
branch is always specified by an immediate operand in the instruction.

The following rules apply to the hint for branch (HBR) instructions:

• An HBR instruction should be placed at least 11 cycles followed by four instruction pairs
before the branch instructions being hinted by the HBR instruction. In other words, an HBR
instruction must be followed by at least 11 cycles of instructions, followed by eight instruc-
tions aligned on an even address boundary. More separation between the hint and branch
improves the performance of applications on future SPU implementations.

• If an HBR instruction is placed too close to the branch, then a hint stall will result. This results
in the branch instruction stalling until the timing requirement of the HBR instruction is satis-
fied.

• If an HBR instruction is placed closer to the hint-trigger address than four instruction pairs
plus one cycle, then the hint stall does not occur and the HBR is not used.

• Only one HBR instruction can be active at a time. Issuing another HBR cancels the current
one.

• An HBR instruction can be moved outside of a loop and will be effective on each loop itera-
tion as long as another HBR instruction is not executed.

• The HBR instruction must be placed within 64 instructions of the branch instruction.

Table 3-19. Branch-Hint Instructions

Instruction Description

hbr s11, ra

Hint for branch (r-form). Hint that the instruction addressed by the sum of the
address of the current instruction and the signed extended, 11-bit value s11
will branch to the address contained in word element 0 of register ra. This form
is used to hint function returns, pointer function calls, and other situations that
give rise to indirect branches.

hbra s11, s18
Hint for branch (a-form). Hint that the instruction addressed by the sum of the
address of the current instruction and the signed extended, 11-bit value s11
will branch to the address specified by the sign extended, 18-bit value s18.

hbrr s11, s18

Hint for branch relative. Hint that the instruction addressed by the sum of the
address of the current instruction and the signed extended, 11-bit value s11
will branch to the address specified by the sum of the address of the current
instruction and sign extended, 18-bit value s18.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 98 of 183

Version 1.0
October 21, 2005

• The HBR instruction only affects performance.

The HBR instructions can be used to support multiple strategies of branch prediction. These
include:

• Static Branch Prediction—Prediction based upon branch type or displacement, and predic-
tion based upon profiling or linguistic hints.

• Dynamic Branch Prediction—Software caching of branch-target addresses, and using con-
trol flow to record branching history.

A common approach to generating static branch prediction is to use expert knowledge that is
obtained either by feedback-directed optimization techniques or using linguistic hints supplied by
the programmer.

The SPU C/C++ Language Extensions define a mechanism for directing branch prediction. The
__builtin_expect directive allows programmers to predict conditional program statements. The
following example demonstrates how a programmer can predict that a conditional statement is
false (a is not larger than b).

if(__builtin_expect((a>b),0))
 c += a;
else
 d += 1;

Not only can the __builtin_expect directive be used for static branch prediction, it can be used for
dynamic branch prediction.

3.6 Porting SIMD Code from the PPE to the SPEs

It is often easier to write SIMD programs by writing them first for the PPE, and then porting them
to the SPEs. This approach postpones some SPE-related considerations of dealing with the local
store (LS) size, data movements, and debug until after the port. The approach can also allow
partitioning of the work into simpler (perhaps more digestible) steps on the SPEs.

After the Vector/SIMD Multimedia Extension code is working properly on the PPE, a strategy for
parallelizing the algorithm across multiple SPEs can be developed. This is often, but not always,
a data-partitioning method. The effort might involve converting from Vector/SIMD Multimedia
Extension intrinsics to SPU intrinsics, adding data-transfer and synchronization constructs, and
tuning for performance. It might be useful to test the impact of various techniques, such as DMA
double buffering, loop unrolling, branch elimination, alternative intrinsics, number of SPEs, and
so forth. Debugging tools such as the static timing-analysis tool and the IBM Full System Simu-
lator for the Cell Broadband Engine are available to assist this effort, as described in Section 3.7
on page 112.

Alternatively, experienced Cell Broadband Engine programmers may prefer to skip the
Vector/SIMD Multimedia Extension coding phase and go directly to SPU programming. In some
cases, SIMD programming can be easier on an SPE than the PPE because of the SPE’s unified
register file.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 99 of 183

The earlier chapters in this tutorial describe the Vector/SIMD Multimedia Extension and SPU
programming environments and some of their differences. Armed with knowledge of these differ-
ences, one can devise a strategy for developing code that is portable between the PPE and the
SPEs. The strategy one should employ depends upon the type of instructions to be executed, the
variety of vector data types, and the performance objectives. Solutions span the range of simple
macro translation to full functional mapping.

3.6.1 Code-Mapping Considerations

There are several challenges associated with mapping code designed for one instruction set and
compiled for another instruction set. These including performance, unmappable constructs,
limited size of LS, and equivalent precision, as described below.

3.6.1.1 Performance

Simple remapping of low-level intrinsics can result in less-than-optimal performance, depending
upon the intrinsics used. Understanding the dynamic range of the remapping’s operands can
reduce the performance impact of simple remapping.

3.6.1.2 Unmappable Constructs

Differences in the processing of intrinsics make simple translation of certain intrinsics unmap-
pable. The unmappable SPU intrinsics include:

• stop and stopd

• conditional halt

• interrupt enable and disable

• move to and from status control and special-purpose registers

• channel instructions

• branch on external data

3.6.1.3 Limited Size of LS

Vector/SIMD Multimedia Extension programs mapped to SPU programs might not fit within the
LS of the SPE, either because the program is initially too big or because mapping expands the
code.

3.6.1.4 Equivalent Precision

The SPU instruction set does not fully implement the IEEE 754 single-precision floating-point
standard (default rounding mode is round to zero, denormals are treated as zero, and there are
no infinities or NaNs). Therefore, floating-point results on an SPE may differ slightly from floating-
point results using the PPE’s PowerPC instruction set. In addition, all estimation intrinsics (for
example, ceiling, floor, reciprocal estimate, reciprocal square root estimate, exponent estimate,
and log estimate) do not have equivalent accuracy on the SPU and PPE PowerPC instruction
sets.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 100 of 183

Version 1.0
October 21, 2005

However, the instructions in the PPE’s Vector/SIMD Multimedia Extension have a graphics
rounding mode (enabled by default) that allows programs written with Vector/SIMD Multimedia
Extension instructions to produce floating-point results that are equivalent in precision to those
written in the SPU instruction set. In this Vector/SIMD Multimedia Extension mode, as in the SPU
environment, the default rounding mode is round to zero, denormals are treated as zero, and
there are no infinities or NaNs. Details on the graphics rounding mode can be found in
Vector/SIMD Multimedia Extension chapter of the PowerPC Processor Element, Book IV. This
document is confidential; your IBM representative can give you access to the document.

3.6.2 Simple Macro Translation

For many programs, it is possible to use a simple macro translation strategy for developing code
that is portable between the Vector/SIMD Multimedia Extension and SPU instruction sets. The
keys to simple macro translation are:

• Use a Compatible Vector-Literal Construction Format—The PPE Vector/SIMD Multimedia
Extension and the SPE’s SPU instruction set support two styles of constructing literal vec-
tors: curly brace and parenthesis. Most compilers support both styles. A set of construction
macros can be used to insulate programs from any differences in the tools.

• Use Single-Token Vector Data Types—The SPU C/C++ Language Extensions document
specifies a set of single-token vector data types. Because these are single-token, the data
types can be easily redefined by a preprocessor to the desired target processor. Additional
single-token data types must be standardized for the unique Vector/SIMD Multimedia Exten-
sion data types. Table 3-20 lists the proposed data types. Also, see Table 3-13 on page 82
and Table 3-14 on page 83.

• Use Intrinsics that Map One-to-One—Regardless of the technique used to provide portability,
performance will be optimized if the operations map one-to-one between Vector/SIMD Multi-
media Extension intrinsics and SPU intrinsics. The SPU intrinsics that map one-to-one with
Vector/SIMD Multimedia Extension (except Specific Intrinsics, Section 3.3.2 on page 74) are
shown in Table 3-21. The Vector/SIMD Multimedia Extension intrinsics that map one-to-one
with SPU are shown in Table 3-22.

Table 3-20. Proposed Vector/SIMD Multimedia Extension Single-Token Data Types

Vector Data Type Single-Token Data Type

vector bool char vec_bchar16

vector bool short vec_bshort8

vector bool int vec_bint4

vector pixel vec_pixel8

Table 3-21. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping (Page
1 of 2)

SPU
Intrinsic

Vector/SIMD Multimedia Extension
Intrinsic For Data Types

spu_add vec_add vector operands only, no scalar operands

spu_genc vec_addc all

spu_and vec_and vector operands only, no scalar operands

spu_andc vec_andc all

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 101 of 183

spu_avg vec_avg all

spu_cmpeq vec_cmpeq vector operands only, no scalar operands

spu_cmpgt vec_cmpgt vector operands only, no scalar operands

spu_convtf vec_ctf limited scale range (5 bits)

spu_convts vec_cts limited scale range (5 bits)

spu_convtu vec_ctu limited scale range (5 bits)

spu_madd vec_madd float only

spu_mulhh vec_mule all

spu_mulo vec_mulo halfword vector operands only, no scalar operands

spu_nmsub vec_nmsub float only

spu_nor vec_nor all

spu_or vec_or vector operands only, no scalar operands

spu_re vec_re all

spu_rl vec_rl vector operands only, no scalar operands

spu_rsqrte vec_rsqrte all

spu_sel vec_sel all

spu_sub vec_sub vector operands only, no scalar operands

spu_genb vec_subc vector operands only, no scalar operands

spu_xor vec_xor vector operands only, no scalar operands

Table 3-22. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping (Page 1
of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types

vec_add spu_add halfwords, words, and floats only (not bytes)

vec_addc spu_genc all

vec_and spu_and all

vec_andc spu_andc all

vec_avg spu_avg unsigned chars only

vec_cmpeq spu_cmpeq all

vec_cmpgt spu_cmpgt all

vec_ctf spu_convtf all

vec_cts spu_convts all

vec_ctu spu_convtu all

vec_madd spu_madd all

vec_mulo spu_mulo halfwords only (not bytes)

Table 3-21. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping (Page
2 of 2)

SPU
Intrinsic

Vector/SIMD Multimedia Extension
Intrinsic For Data Types

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 102 of 183

Version 1.0
October 21, 2005

3.6.3 Example 1: Euler Particle-System Simulation

This programming example illustrates many of the concepts discussed earlier in this chapter. It
can be found in the SDK under src/samples/tutorial/euler.

This programming example—a simple Euler-based particle-system simulation—illustrates the
following steps involved in coding for the Cell Broadband Engine:

1. Transform scaler code to vector code (SIMDize) for execution on the PPE’s VXU.

2. Port the code for execution on the SPE’s SPU unit.

3. Parallelize the code for execution across multiple SPEs.

A subsequent step—tuning the code for performance on the SPE—is covered in Section 3.7 on
page 112. The above steps are only one example of coding for the Cell Broadband Engine. The
steps can be reordered or combined, depending upon the skill and comfort level of the
programmer.

This example shows a particle-system simulation using numerical integration techniques to
animate a large set of particles. Numerical integration is implemented using Euler's method of
integration. It computes the next value of a function of time, F(t), by incrementing the current
value of the function by the product of the time step and the derivative of the function:

F(t + dt) = F(t) + dt*F'(t);

Our simple particle system consists of:

• An array of 3-D positions for each particle (pos[])

• An array of 3-D velocities for each particle (vel[])

• An array of masses for each particle (mass[])

• A force vector that varies over time (force)

vec_nmsub spu_nmsub all

vec_nor spu_nor all

vec_or spu_or all

vec_re spu_re all

vec_rl spu_rl halfwords and words only (not bytes)

vec_rsqrte spu_rsqrte all

vec_sel spu_sel all

vec_sub spu_sub halfwords, words, and floats only

vec_subc spu_genb all

vec_xor spu_xor all

Table 3-22. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping (Page 2
of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 103 of 183

This programming example is intended to illustrate programming concepts for the Cell Broad-
band Engine, and is not meant to be a physically realistic simulation. For example, it does not
consider how the time-variant force function and the time step, dt, is computed; instead, the
example treats them as constants. Nor does the example consider particle collisions. In addition,
we assume that all 3-D vectors (x,y,z) are expressed as 4-D homogeneous coordinates (x,y,z,1).

3.6.3.1 Initial Scalar Code

The following code shows a C implementation of the Euler algorithm, implemented for a unipro-
cessor using scalar data. There are no intrinsics calls in this listing.

#define END_OF_TIME 10
#define PARTICLES 100000

typedef struct {
 float x, y, z, w;
} vec4D;

vec4D pos[PARTICLES]; // particle positions
vec4D vel[PARTICLES]; // particle velocities
vec4D force; // current force being applied to the particles
float inv_mass[PARTICLES]; // inverse mass of the particles
float dt = 1.0f; // step in time

int main()
{
 int i;
 float time;
 float dt_inv_mass;

 // For each step in time
 for (time=0; time<END_OF_TIME; time += dt) {
 // For each particle
 for (i=0; i<PARTICLES; i++) {
 // Compute the new position and velocity as acted upon by the force f.
 pos[i].x = vel[i].x * dt + pos[i].x;
 pos[i].y = vel[i].y * dt + pos[i].y;
 pos[i].z = vel[i].z * dt + pos[i].z;

 dt_inv_mass = dt * inv_mass[i];

 vel[i].x = dt_inv_mass * force.x + vel[i].x;
 vel[i].y = dt_inv_mass * force.y + vel[i].y;
 vel[i].z = dt_inv_mass * force.z + vel[i].z;
 }
 }
 return (0);
}

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 104 of 183

Version 1.0
October 21, 2005

3.6.3.2 Step 1: SIMDize the Code for Execution on the PPE

There are multiple strategies for SIMDizing code for execution either on the PPE’s VXU or on an
SPE’s SPU unit. The technique chosen depends upon the type of data being operated on and
the interdependencies of the data computations. There are several strategies to consider:

• Let the Compiler Do It—This will work effectively for some code samples (like this simple
example), but it tends to be unsuccessful for more complicated code. Results will vary
depending upon the algorithm, the language the code is expressed in, coding style, and
capabilities of the compiler.

• Array-of-Structures (AOS) Form—This is the most common technique when the input data is
naturally expressed as a vector (also call vector-across form). 3-D graphic applications
express geometry as 3-component or 4-component vectors. These components naturally fit
within a 4-component, single-precision floating-point vector. (See Figure 3-5 on page 71.)

• Structure-of-Arrays (SOA) Form—In this form, you collect the individual elements of the natu-
ral vectors into separate arrays (also called parallel-array form). The code is then written as if
it were to execute scalar instructions, but it will be executing SIMD instructions. This results in
code that computes four single-precision floats results simultaneously. (Figure 3-6 on
page 72.)

• Hybrid Forms—Often it is important that the input vector format remain unchanged. But SOA
solutions are easier to code and more efficient than the AOS solutions. In this case, one can:

– Input the data in its natural, AOS form.

– Transform each data element on the fly into SOA form, using either the vec_perm (Vec-
tor/SIMD Multimedia Extension) or the spu_shuffle (SPU) intrinsic.

– Perform computation using the SOA technique.

– Translate each output back into its natural, AOS form.

Assuming the compiler auto-SIMDization is either unavailable or ineffective, you must adjust the
data structures for efficient SIMD access. This decision cannot be made without also considering
the SPE data-accessing method and the data-parallelization method. In addition, data should be
aligned or padded for efficient quadword accesses, using the aligned attribute.

Step 1a: SIMDize in Array-of-Structures Form for Vector/SIMD Multimedia Extension

The following example shows how to SIMDize in the AOS form. Vector/SIMD Multimedia Exten-
sion intrinsics are used, and they can be identified by their prefix, “vec_”. The algorithm assumes
that the number of particles is a multiple of four. Special code must be included to handle the last
number of particles that is not a multiple of four.

#define END_OF_TIME 10
#define PARTICLES 100000

typedef struct {
 float x, y, z, w;
} vec4D;
vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 105 of 183

float dt __attribute__ ((aligned (16))) = 1.0f;

int main()
{
 int i;
 float time;
 float dt_inv_mass __attribute__ ((aligned (16)));
 vector float dt_v, dt_inv_mass_v;
 vector float *pos_v, *vel_v, force_v;
 vector float zero = (vector float)(0.0f);

 pos_v = (vector float *)pos;
 vel_v = (vector float *)vel;
 force_v = *((vector float *)&force);

 // Replicate the variable time step across elements 0-2 of
 // a floating point vector. Force the last element (3) to zero.
 dt_v = vec_sld(vec_splat(vec_lde(0, &dt), 0), zero, 4);

 // For each step in time
 for (time=0; time<END_OF_TIME; time += dt) {
 // For each particle
 for (i=0; i<PARTICLES; i++) {
 // Compute the new position and velocity as acted upon by the force f.
 pos_v[i] = vec_madd(vel_v[i], dt_v, pos_v[i]);

 dt_inv_mass = dt * inv_mass[i];
 dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

 vel_v[i] = vec_madd(dt_inv_mass_v, force_v, vel_v[i]);
 }
 }
 return (0);
}

Step 1b: SIMDize in Structure-of-Arrays Form for Vector/SIMD Multimedia Extension

The following example shows how to SIMDize in the SOA form. As in Step 1a, the algorithm
assumes that the number of particles is a multiple of 4.

#define END_OF_TIME 10
#define PARTICLES 100000

typedef struct {
 float x, y, z, w;
} vec4D;

// Separate arrays for each component of the vector.
vector float pos_x[PARTICLES/4], pos_y[PARTICLES/4], pos_z[PARTICLES/4];

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 106 of 183

Version 1.0
October 21, 2005

vector float vel_x[PARTICLES/4], vel_y[PARTICLES/4], vel_z[PARTICLES/4];
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

int main()
{
 int i;
 float time;
 float dt_inv_mass __attribute__ ((aligned (16)));
 vector float force_v, force_x, force_y, force_z;
 vector float dt_v, dt_inv_mass_v;

 // Create a replicated vector for each component of the force vector.
 force_v = *(vector float *)(&force);
 force_x = vec_splat(force_v, 0);
 force_y = vec_splat(force_v, 1);
 force_z = vec_splat(force_v, 2);

 // Replicate the variable time step across all elements.
 dt_v = vec_splat(vec_lde(0, &dt), 0);

 // For each step in time
 for (time=0; time<END_OF_TIME; time += dt) {
 // For each particle
 for (i=0; i<PARTICLES/4; i++) {
 // Compute the new position and velocity as acted upon by the force f.
 pos_x[i] = vec_madd(vel_x[i], dt_v, pos_x[i]);
 pos_y[i] = vec_madd(vel_y[i], dt_v, pos_y[i]);
 pos_z[i] = vec_madd(vel_z[i], dt_v, pos_z[i]);

 dt_inv_mass = dt * inv_mass[i];
 dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

 vel_x[i] = vec_madd(dt_inv_mass_v, force_x, vel_x[i]);
 vel_y[i] = vec_madd(dt_inv_mass_v, force_y, vel_y[i]);
 vel_z[i] = vec_madd(dt_inv_mass_v, force_z, vel_z[i]);
 }
 }
 return (0);
}

3.6.3.3 Step 2: Port the PPE Code for Execution on the SPE

This step entails:

1. Creating an SPE thread of execution on the PPE

2. Migrating the computation loops from Vector/SIMD Multimedia Extension intrinsics to SPU
intrinsics

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 107 of 183

3. Adding DMA transfers to move data in and out of the SPE's local store (LS)

We assume that the particle data structures cannot be restructured into SOA form. Therefore, we
use Step 1a on page 104 (the AOS form). SPU intrinsics are used, and they can be identified by
their prefix, “spu_”.

Moving the code from the PPE to the SPE requires:

• Creating a control-structure, called context, that defines the parameters to be computed on
the SPE. This includes pointers to the particle array data, current force information, and so
forth. The pointer to the context control-structure defined in the PPE is passed to the SPE
thread by using the parameter passing mechanism in spe_create_thread. Alternatively, this
information could have been passed via the mailbox.

• Porting the computation for execution on the SPE. The complexity of this operation depends
upon the types of data and types of intrinsics used. For this case, some of the intrinsics only
require a simple name translation (for example, vec_madd to spu_madd). The translation of the
scalar values is a little more extensive.

• Adding an additional looping construct to partition the data arrays into smaller blocks. This is
required because all the data does not fit within the SPE's local store.

• Adding DMA transfers to move data in and out of the SPE's local store.

Particle.h:

#define END_OF_TIME 10
#define PARTICLES 100000

typedef struct {
 float x, y, z, w;
} vec4D;

typedef struct {
 int particles; // number of particles to process
 vector float *pos_v; // pointer to array of position vectors
 vector float *vel_v; // pointer to array of velocity vectors
 float *inv_mass; // pointer to array of mass vectors
 vector float force_v; // force vector
 float dt; // current step in time
} context;

PPE Makefile:

##
Subdirectories
##

DIRS := spu

##
Target

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 108 of 183

Version 1.0
October 21, 2005

##

PROGRAM_ppu := euler_spe

##
Local Defines
##

IMPORTS := spu/lib_particle_spu.a -lspe

##
make.footer
##

include ../../../../../make.footer

PPE Code:

#include <stdio.h>
#include <libspe.h>
#include "particle.h"

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

extern spe_program_handle_t particle;

int main()
{
 int status;
 speid_t spe_id;
 context ctx __attribute__ ((aligned (16)));

 ctx.particles = PARTICLES;
 ctx.pos_v = (vector float *)pos;
 ctx.vel_v = (vector float *)vel;
 ctx.force_v = *((vector float *)&force);
 ctx.inv_mass = inv_mass;
 ctx.dt = dt;

 // Create an SPE thread of execution passing the context as a parameter.
 spe_id = spe_create_thread(0, &particle, &ctx, NULL, -1, 0);
 if (spe_id) {
 // Wait for the SPE to finish
 (void)spe_wait(spe_id, &status, 0);
 } else {
 perror("Unable to create SPE thread");
 return (1);

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 109 of 183

 }
 return (0);
}

SPE Makefile:

##
Target
##

PROGRAM_spu := particle
LIBRARY_embed := lib_particle_spu.a

##
Local Defines
##

INCLUDE := -I ..

##
make.footer
##

include ../../../../../../make.footer

SPE Code:

#include <spu_intrinsics.h>
#include <cbe_mfc.h>
#include "particle.h"

#define PARTICLES_PER_BLOCK 1024

// Local store structures and buffers.
volatile context ctx;
volatile vector float pos[PARTICLES_PER_BLOCK];
volatile vector float vel[PARTICLES_PER_BLOCK];
volatile float inv_mass[PARTICLES_PER_BLOCK];

int main(unsigned long long spe_id, unsigned long long parm)
{
 int i, j;
 int left, cnt;
 float time;
 unsigned int tag_id = 0;
 vector float dt_v, dt_inv_mass_v;

 spu_writech(MFC_WrTagMask, -1);

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 110 of 183

Version 1.0
October 21, 2005

 // Input parameter parm is a pointer to the particle context.
 // Fetch the context, waiting for it to complete.
 spu_mfcdma32((void *)(&ctx), (unsigned int)parm, sizeof(context), tag_id,

MFC_GET_CMD);
 (void)spu_mfcstat(2);

 dt_v = spu_splats(ctx.dt);

 // For each step in time
 for (time=0; time<END_OF_TIME; time += ctx.dt) {
 // For each block of particles
 for (i=0; i<ctx.particles; i+=PARTICLES_PER_BLOCK) {
 // Determine the number of particles in this block.
 left = ctx.particles - i;
 cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 // Fetch the data - position, velocity, inverse_mass. Wait for DMA to complete
 // before performing computation.
 spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * sizeof(vector

float), tag_id, MFC_GET_CMD);
 spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * sizeof(vector

float), tag_id, MFC_GET_CMD);
 spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx.inv_mass+i), cnt *

sizeof(float), tag_id, MFC_GET_CMD);
 (void)spu_mfcstat(2);

 // Compute the step in time for the block of particles
 for (j=0; j<cnt; j++) {
 pos[j] = spu_madd(vel[j], dt_v, pos[j]);
 dt_inv_mass_v = spu_mul(dt_v, spu_splats(inv_mass[j]));
 vel[j] = spu_madd(dt_inv_mass_v, ctx.force_v, vel[j]);
 }

 // Put the position and velocity data back into main storage
 spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * sizeof(vector

float), tag_id, MFC_PUT_CMD);
 spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * sizeof(vector

float), tag_id, MFC_PUT_CMD);
 }
 }
 // Wait for final DMAs to complete before terminating SPE thread.
 (void)spu_mfcstat(2);
 return (0);
}

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 111 of 183

3.6.3.4 Step 3: Parallelize Code For Execution Across Multiple SPEs

The most common and practical method of parallelizing computation across multiple SPEs is to
partition the data. This works well for applications with little or no data dependency. In our
example, we can partition the Euler integration of the particle equally among the available SPEs.
If there are four available SPEs, then the first quarter of the particles is processed by the first
SPE, the second quarter of the particles is processed by the second SPE, and so forth.

The SPE code for this step is the same as that in Step 2, so only the PPE code is shown below.

PPE Code:

#include <stdio.h>
#include <libspe.h>
#include "particle.h"

#define SPE_THREADS 7

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

extern spe_program_handle_t particle;

int main()
{
 int i, offset, count;
 int status;
 speid_t spe_ids[SPE_THREADS];
 context ctxs[SPE_THREADS] __attribute__ ((aligned (16)));

 // Construct a context and thread for each SPE thread. Make sure
 // that each SPE’s (excluding the last) particle count is a multiple
 // of 4 so that inv_mass context pointer is always quadword aligned.

 for (i=0, offset=0; i<SPE_THREADS; i++, offset+=count) {
 count = (PARTICLES / SPE_THREADS + 3) & ~3;
 ctxs[i].particles = (i==(SPE_THREADS-1)) ? PARTICLES - offset : count;
 ctxs[i].pos_v = (vector float *)&pos[offset];
 ctxs[i].vel_v = (vector float *)&vel[offset];
 ctxs[i].force_v = *((vector float *)&force);
 ctxs[i].inv_mass = &inv_mass[offset];
 ctxs[i].dt = dt;

 // Create an SPE thread of execution passing the context as a parameter.
 spe_ids[i] = spe_create_thread(0, &particle, &ctxs[i], NULL, -1, 0);
 if (spe_ids[i] == -1) {
 perror("Unable to create SPE thread");
 return (1);

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 112 of 183

Version 1.0
October 21, 2005

 }
 }

 // Wait for all the SPEs to complete.
 for (i=0; i<SPE_THREADS; i++) {
 (void)spe_wait(spe_ids[i], &status, 0);
 }

 return (0);
}

Now that the program has been migrated to the SPEs, you can analyze and tune its perfor-
mance. This is discussed in Section 3.7.

3.7 Performance Analysis

After a Cell Broadband Engine program executes without errors on the PPE and the SPEs, opti-
mization through parameter-tuning can begin. Programmers typically tune for performance using
algorithmic methods. This is important for SPE programming also. But equally important for SPE
programming is performance tuning through the elimination of stalls. There are two forms of
stalls to consider: instruction dependency stalls and data stalls. Instruction stalls can be analyzed
statically or dynamically.

3.7.1 Performance Issues

Two software tools are available in the SDK to assist in measuring the performance of programs:
the spu-gcc_timing static timing analyzer, and the IBM Full System Simulator for the Cell Broad-
band Engine.

The spu-gcc_timing analyzer performs a static timing analysis of a program by annotating its
assembly instructions with the instruction-pipeline state. This analysis is useful for coarsely spot-
ting dual-issue rates (odd and even pipeline use) and assessing what program sections may be
experiencing instruction-dependency and data-dependency stalls. It is useful, for example, for
determining whether or not dependencies might be mitigated by unrolling, or whether reordering
of instructions or better placement of no-ops will improve the dual-issue behavior in a loop.
However, static analysis outputs typically do not provide numerical performance information
about program execution. Thus, it cannot report anything definitive about cycle counts, branches
taken or not taken, branches hinted or not hinted, DMA transfers, and so forth.

The IBM Full System Simulator for the Cell Broadband Engine performs a dynamic analysis of
program execution. It is available in the SDK. Any part of a program, from a single line to the
entire program, can be studied. Performance numbers are provided for:

• Instruction histograms (for example, branch, hint, and prefetch)

• Cycles per instruction (CPI)

• Single-issue and dual-issue rates

• Stall statistics

• Register use

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 113 of 183

The output of the IBM Full System Simulator for the Cell Broadband Engine can be a text listing
or a graphic plot.

3.7.2 Example 1: Tuning SPE Performance with Static and Dynamic Timing Analysis

3.7.2.1 Static Analysis of SPE Threads

The listing below shows an spu-gcc_timing static timing analysis for the inner loop of the SPE
code illustrated in Section 3.6.3.3 on page 106, the Euler Particle-System Simulation example.
This listing shows significant dependency stalls (indicated by the “-”) and poor dual-issue rates.
The inner loop has an instruction mix of eight even-pipeline (pipe 0) instructions and ten odd-
pipeline (pipe 1) instructions. Therefore, any program changes that minimize data dependencies
will improve dual-issue rates and lower the cycle per instruction (CPI).

.L19:
0D 78 a $49,$8,$10
1D 012 789 lqx $51,$6,$9
0D 89 ila $47,66051
1D 0123 89 lqx $52,$6,$11
0 0 9 ai $7,$7,-1
0 ----456789 fma $50,$51,$12,$52
1 -----012345 stqx $50,$6,$11
1 123456 lqx $48,$8,$10
0D 23 ai $8,$8,4
1D 234567 lqa $44,ctx+16
1 345678 lqx $43,$6,$9
1 ---7890 rotqby $46,$48,$49
1 ---1234 shufb $45,$46,$46,$47
0 ---567890 fm $42,$12,$45
0d -----123456 fma $41,$42,$44,$43
1d ------789012 stqx $41,$6,$9
0D 89 ai $6,$6,16
 .L39:
1D 8901 brnz $7,.L19

The character columns in the above static-analysis listing have the following meanings:

• Column 1—The first column shows the pipeline that issued an instruction. Pipeline 0 is repre-
sented by “0” in the first column and pipeline 1 is represented by “1.”

• Column 2—The second column can contain a “D”, “d”, or nothing. A “D” signifies a successful
dual-issue was accomplished by the two instructions listed in row-pairs. A “d” signifies a dual-
issue was possible, but did not occur due to dependencies; for example, operands being in
flight. If there is no entry in the second column, dual-issue could not be performed because
the issue rules were not satisfied (for example, an even-pipeline instruction was fetched from
an odd LS address or an odd-pipeline instruction was fetched from an even LS address). See
Section 3.1.1.4 Pipelines and Dual-Issue Rules on page 61.

• Column 3—The third column is always blank.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 114 of 183

Version 1.0
October 21, 2005

• Columns 4 through 53—The next 50 columns represent clock cycles and are repeated as
“0123456789” five times. A digit is displayed in these columns whenever the instruction exe-
cutes during that clock cycle. Therefore, an <n>-cycle instruction will display <n> digits.
Dependency stalls are flagged by a dash (“-”).

• Columns 54 through 80—The remaining entries on the row are the assembly-language
instructions or assembler-line addresses (for example, “.L19”) of the program's assembly
code.

Static-analysis timing files can be quickly interpreted by:

• Scanning the columns of digits. Small slopes (more horizontal) are bad. Large slopes (more
vertical) are good.

• Looking for instructions with dependencies (those with dashes in the listing).

• Looking for instructions with poor dual-issue rates—either a “d” or nothing in column 2.

This information can be used to understand what areas of code are scheduled well and which are
poorly scheduled.

About SPU_TIMING

If you are using a Bash shell, you can set SPU_TIMING as a shell variable by using the command
export SPU_TIMING=1. You can also set SPU_TIMING in the makefile and build the .s file by using
the following statement:

SPU_TIMING=1 make foo.s

This creates the timing file for file foo.c. It sets the SPU_TIMING variable only in the sub-shell of
the makefile. It generates foo.s and then invokes spu-gcc_timing or spuxlc-timing on foo.s to
produce a foo.s.timing file.

Another way to invoke the performance tool is by entering one of the following statements in the
command prompt, depending on which compiler generated that assembly:

spu-gcc_timing foo.s
spu-xlc-timing foo.s

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 115 of 183

3.7.2.2 Dynamic Analysis of SPE Threads

The listing below shows a dynamic timing analysis on the same SPE inner loop using the IBM
Full System Simulator for the Cell Broadband Engine. The results confirm the view of program
execution from the static timing analysis. It shows poor dual-issue rates (7%) and large depen-
dency stalls (65%), resulting in a overall CPI of 2.39. Most workloads should be capable of
achieving a CPI of 0.7 to 0.9, roughly 3 times better than this. The number of used registers is 73,
a 57.03% utilization of the full 128 register set.

 SPU DD1.0

 Total Cycle count 43120454
 Total Instruction count 18068949
 Total CPI 2.39

 Performance Cycle count 43120454
 Performance Instruction count 18068949 (18062968)
 Performance CPI 2.39 (2.39)

 Branch instructions 1001990
 Branch taken 1000007
 Branch not taken 1983

 Hint instructions 1973
 Hint hit 1000001

 Contention at LS between Load/Store and Prefetch 2000986

 Single cycle 12049144 (27.9%)
 Dual cycle 3006912 (7.0%)
 Nop cycle 4003 (0.0%)
 Stall due to branch miss 17977 (0.0%)
 Stall due to prefetch miss 0 (0.0%)
 Stall due to dependency 28042299 (65.0%)
 Stall due to fp resource conflict 0 (0.0%)
 Stall due to waiting for hint target 110 (0.0%)
 Stall due to dp pipeline 0 (0.0%)
 Channel stall cycle 0 (0.0%)
 SPU Initialization cycle 9 (0.0%)

 Total cycle 43120454 (100.0%)

 Stall cycles due to dependency on each pipelines
 FX2 5909
 SHUF 6011772
 FX3 1960
 LS 7022608
 BR 0
 SPR 0
 LNOP 0
 NOP 0

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 116 of 183

Version 1.0
October 21, 2005

 FXB 0
 FP6 15000050
 FP7 0
 FPD 0

 The number of used registers are 73; the used ratio is 57.03

3.7.2.3 Optimizations

To eliminate stalls and improve the CPI—and ultimately the performance—the compiler needs
more instructions to schedule, so that the program does not stall. The SPE's large register file
allows the compiler or the programmer to unroll loops. In our example program, there are no
inter-loop dependencies (loop-carried dependencies), and our dynamic analysis shows that the
register usage is fairly small, so moderately aggressive unrolling will not produce register spilling
(that is, registers having to be written into temporary stack storage).

Most compilers can automatically unroll loops. Sometimes this is effective. But because auto-
matic loop unrolling is not always effective, or because the programmer wants explicit control to
manage the limited local store, this example shows how to manually unroll the loop.

The first pass of optimizations include:

• Unroll the loop to provide additional instructions for interleaving.

• Load DMA-buffer contents into local nonvolatile registers to eliminate volatile migration con-
straints.

• Eliminate scalar loads (the inv_mass variable).

• Eliminate extra multiplies of dt*inv_mass and splat the products after the SIMD multiply,
instead of before the multiply.

• Interleave DMA transfers with computation by multibuffering the inputs and outputs to elimi-
nate (or reduce) DMA stalls. These stalls are not reflected in the static and dynamic analy-
ses. In the process of adding double buffering, the inner loop is moved into a function, so that
the code need not be repeated.

The following SPE code results from these optimizations. Among the changes are the addition of
a GET instruction with a barrier suffix (B), accomplished by the spu_mfcdma32() intrinsic with the
MFC_GETB_CMD parameter. This GET is the barrier form of MFC_GET_CMD. The barrier form is used to
ensure that previously computed results are put before the get for the next buffer’s data.

#include <spu_intrinsics.h>
#include <cbe_mfc.h>
#include "particle.h"

#define PARTICLES_PER_BLOCK 1024

// Local store structures and buffers.
volatile context ctx;
volatile vector float pos[2][PARTICLES_PER_BLOCK];
volatile vector float vel[2][PARTICLES_PER_BLOCK];
volatile float inv_mass[2][PARTICLES_PER_BLOCK/4];

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 117 of 183

void process_buffer(int buffer, int cnt, vector float dt_v)
{
 int i;
 volatile vector float *p_inv_mass_v;
 vector float force_v, inv_mass_v;
 vector float pos0, pos1, pos2, pos3;
 vector float vel0, vel1, vel2, vel3;
 vector float dt_inv_mass_v, dt_inv_mass_v_0, dt_inv_mass_v_1, dt_inv_mass_v_2,

dt_inv_mass_v_3;
 vector unsigned char splat_word_0 =

(vector unsigned char)(0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3);
 vector unsigned char splat_word_1 =

(vector unsigned char)(4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7);
 vector unsigned char splat_word_2 =

(vector unsigned char)(8, 9,10,11, 8, 9,10,11, 8, 9,10,11, 8, 9,10,11);
 vector unsigned char splat_word_3 =

(vector unsigned char)(12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15);

 p_inv_mass_v = (volatile vector float *)&inv_mass[buffer][0];
 force_v = ctx.force_v;

 // Compute the step in time for the block of particles, four
 // particle at a time.
 for (i=0; i<cnt; i+=4) {
 inv_mass_v = *p_inv_mass_v++;

 pos0 = pos[buffer][i+0];
 pos1 = pos[buffer][i+1];
 pos2 = pos[buffer][i+2];
 pos3 = pos[buffer][i+3];

 vel0 = vel[buffer][i+0];
 vel1 = vel[buffer][i+1];
 vel2 = vel[buffer][i+2];
 vel3 = vel[buffer][i+3];

 dt_inv_mass_v = spu_mul(dt_v, inv_mass_v);

 pos0 = spu_madd(vel0, dt_v, pos0);
 pos1 = spu_madd(vel1, dt_v, pos1);
 pos2 = spu_madd(vel2, dt_v, pos2);
 pos3 = spu_madd(vel3, dt_v, pos3);

 dt_inv_mass_v_0 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_0);
 dt_inv_mass_v_1 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_1);
 dt_inv_mass_v_2 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_2);
 dt_inv_mass_v_3 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_3);

 vel0 = spu_madd(dt_inv_mass_v_0, force_v, vel0);
 vel1 = spu_madd(dt_inv_mass_v_1, force_v, vel1);

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 118 of 183

Version 1.0
October 21, 2005

 vel2 = spu_madd(dt_inv_mass_v_2, force_v, vel2);
 vel3 = spu_madd(dt_inv_mass_v_3, force_v, vel3);

 pos[buffer][i+0] = pos0;
 pos[buffer][i+1] = pos1;
 pos[buffer][i+2] = pos2;
 pos[buffer][i+3] = pos3;

 vel[buffer][i+0] = vel0;
 vel[buffer][i+1] = vel1;
 vel[buffer][i+2] = vel2;
 vel[buffer][i+3] = vel3;
 }
}

int main(unsigned long long spe_id, unsigned long long argv)
{
 int buffer, next_buffer;
 int cnt, next_cnt, left;
 float time, dt;
 vector float dt_v;
 volatile vector float *ctx_pos_v, *ctx_vel_v;
 volatile vector float *next_ctx_pos_v, *next_ctx_vel_v;
 volatile float *ctx_inv_mass, *next_ctx_inv_mass;

 // Input parameter argv is a pointer to the particle context.
 // Fetch the context, waiting for it to complete.
 spu_writech(MFC_WrTagMask, 1 << 0);
 spu_mfcdma32((void *)(&ctx), (unsigned int)argv, sizeof(context), 0, MFC_GET_CMD);
 (void)spu_mfcstat(2);

 dt = ctx.dt;
 dt_v = spu_splats(dt);

 // For each step in time
 for (time=0; time<END_OF_TIME; time += dt) {
 // For each double buffered block of particles
 left = ctx.particles;

 cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 ctx_pos_v = ctx.pos_v;
 ctx_vel_v = ctx.vel_v;
 ctx_inv_mass = ctx.inv_mass;

 // Prefetch first buffer of input data
 buffer = 0;
 spu_mfcdma32((void *)(pos), (unsigned int)(ctx_pos_v), cnt * sizeof(vector float),

0, MFC_GETB_CMD);

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 119 of 183

 spu_mfcdma32((void *)(vel), (unsigned int)(ctx_vel_v), cnt * sizeof(vector float),
0, MFC_GET_CMD);

 spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx_inv_mass), cnt *
sizeof(float), 0, MFC_GET_CMD);

 while (cnt < left) {
 left -= cnt;

 next_ctx_pos_v = ctx_pos_v + cnt;
 next_ctx_vel_v = ctx_vel_v + cnt;
 next_ctx_inv_mass = ctx_inv_mass + cnt;
 next_cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

 // Prefetch next buffer so the data is available for computation on next loop
iteration.

 // The first DMA is barriered so that we don't GET data before the previous iter-
ation's

 // data is PUT.
 next_buffer = buffer^1;

 spu_mfcdma32((void *)(&pos[next_buffer][0]), (unsigned int)(next_ctx_pos_v),
next_cnt * sizeof(vector float), next_buffer, MFC_GETB_CMD);

 spu_mfcdma32((void *)(&vel[next_buffer][0]), (unsigned int)(next_ctx_vel_v),
next_cnt * sizeof(vector float), next_buffer, MFC_GET_CMD);

 spu_mfcdma32((void *)(&inv_mass[next_buffer][0]), (unsigned
int)(next_ctx_inv_mass), next_cnt * sizeof(float), next_buffer, MFC_GET_CMD);

 // Wait for previously prefetched data
 spu_writech(MFC_WrTagMask, 1 << buffer);
 (void)spu_mfcstat(2);

 process_buffer(buffer, cnt, dt_v);

 // Put the buffer's position and velocity data back into main storage
 spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt *

sizeof(vector float), buffer, MFC_PUT_CMD);
 spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt *

sizeof(vector float), buffer, MFC_PUT_CMD);

 ctx_pos_v = next_ctx_pos_v;
 ctx_vel_v = next_ctx_vel_v;
 ctx_inv_mass = next_ctx_inv_mass;

 buffer = next_buffer;
 cnt = next_cnt;
 }

 // Wait for previously prefetched data
 spu_writech(MFC_WrTagMask, 1 << buffer);
 (void)spu_mfcstat(2);

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 120 of 183

Version 1.0
October 21, 2005

 process_buffer(buffer, cnt, dt_v);

 // Put the buffer's position and velocity data back into main storage
 spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt *

sizeof(vector float), buffer, MFC_PUT_CMD);
 spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt *

sizeof(vector float), buffer, MFC_PUT_CMD);

 // Wait for DMAs to complete before starting the next step in time.
 spu_writech(MFC_WrTagMask, 1 << buffer);
 (void)spu_mfcstat(2);
 }

 return (0);
}

3.7.2.4 Static Analysis of Optimizations

The listing below shows a spuxlc_timing static timing analysis for the optimized SPE thread
(process _buffer subroutine only).

.type process_buffer, @function
 process_buffer:
0D 0123 shli $2,$3,10
1D 012345 lqa $19,ctx+16
0D 12 ori $6,$3,0
1D 1234 shlqbyi $24,$4,0
0D 23 cgti $3,$4,0
1D 2345 shlqbyi $18,$5,0
0D 34 ila $4,inv_mass
1D 3456 fsmbi $21,0
0 45 ilhu $27,1029
0 56 ilhu $26,2057
0 67 ilhu $25,3085
0 78 ila $28,66051
0 89 a $20,$2,$4
0 90 iohl $27,1543
0D 01 iohl $26,2571
1D 0 lnop
0D 12 iohl $25,3599
1D 1234 brz $3,.L7
0 2345 shli $17,$6,14
0 34 ila $23,pos
0D 45 ila $22,vel
1D 456789 hbra .L10,.L5
1 5 lnop
0 6 nop $127
 .L5:

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 121 of 183

0D 78 ila $43,pos
1D 789012 lqd $41,0($20)
0D 89 ila $42,vel
1D 890123 lqx $40,$17,$23
0 90 a $6,$17,$43
0 01 a $7,$17,$42
0D 12 ai $21,$21,4
1D 123456 lqd $39,16($6)
0D 23 ai $20,$20,16
1D 234567 lqd $38,32($6)
0D 345678 fm $36,$18,$41
1D 345678 lqd $37,48($6)
0D 45 cgt $16,$24,$21
1D 456789 lqx $13,$17,$22
1 567890 lqd $34,16($7)
1 678901 lqd $14,32($7)
1 789012 lqd $15,48($7)
1 -9012 shufb $35,$36,$36,$28
0D 012345 fma $32,$13,$18,$40
1D 0123 shufb $33,$36,$36,$27
0D 123456 fma $10,$34,$18,$39
1D 1234 shufb $31,$36,$36,$26
0D 234567 fma $11,$14,$18,$38
1D 2345 shufb $30,$36,$36,$25
0 345678 fma $8,$15,$18,$37
0 456789 fma $29,$35,$19,$13
0D 567890 fma $5,$33,$19,$34
1D 5 lnop
0D 678901 fma $12,$31,$19,$14
1D 678901 stqx $32,$17,$23
0D 789012 fma $9,$30,$19,$15
1D 789012 stqd $10,16($6)
1 890123 stqd $11,32($6)
1 901234 stqd $8,48($6)
0D 0 nop $127
1D 012345 stqx $29,$17,$22
0D 12 ai $17,$17,64
1D 123456 stqd $5,16($7)
1 234567 stqd $12,32($7)
1 345678 stqd $9,48($7)
0D 4 nop $127
 .L10:
1D 4567 brnz $16,.L5
 .L7:
0D 5 nop $127
1D 5678 bi $lr

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 122 of 183

Version 1.0
October 21, 2005

3.7.2.5 Dynamic Analysis of Optimizations

The listing below shows a dynamic timing analysis on the IBM Full System Simulator for the Cell
Broadband Engine simulator for the optimized SPE thread (process buffer only). It shows that 78
registers are used, so the used ratio is 60.94.

 SPU DD1.0

 Total Cycle count 7134843
 Total Instruction count 10602009
 Total CPI 0.67

 Performance Cycle count 7134843
 Performance Instruction count 10602009 (9839265)
 Performance CPI 0.67 (0.73)

 Branch instructions 253940
 Branch taken 251967
 Branch not taken 1973

 Hint instructions 2952
 Hint hit 250980

 Contention at LS between Load/Store and Prefetch 6871

 Single cycle 3815689 (53.5%)
 Dual cycle 3011788 (42.2%)
 Nop cycle 5898 (0.1%)
 Stall due to branch miss 34655 (0.5%)
 Stall due to prefetch miss 0 (0.0%)
 Stall due to dependency 266732 (3.7%)
 Stall due to fp resource conflict 0 (0.0%)
 Stall due to waiting for hint target 72 (0.0%)
 Stall due to dp pipeline 0 (0.0%)
 Channel stall cycle 0 (0.0%)
 SPU Initialization cycle 9 (0.0%)

 Total cycle 7134843 (100.0%)

 Stall cycles due to dependency on each pipelines
 FX2 8808
 SHUF 1971
 FX3 5870
 LS 32
 BR 0
 SPR 1
 LNOP 0
 NOP 0
 FXB 0

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 123 of 183

 FP6 250050
 FP7 0
 FPD 0

 The number of used registers are 78, the used ratio is 60.94

The above static and dynamic timing analysis of the optimized SPE code reveals:

• Significant increase in dual-issue rate and reduction in dependency stalls. The static analysis
shows that the process_buffer inner loop still contains a single-cycle stall and some instruc-
tions that are not dual-issued. Further performance improvements could likely be achieved by
either more loop unrolling or software loop-pipelining.

• The number of instructions has decreased by 41% from the initial instruction count.

• The CPI has dropped from 2.39 to a more typical 0.73.

• The performance of the SPE code, measured in total cycle count, has gone from approxi-
mately 43 M cycles to 7 M cycles, an improvement of more than 6x. This improvement does
not take into account the DMA latency-hiding (stall elimination) provided by double buffering.

For details about performance simulation, including examples of coding for simulations, see
Section 5 on page 137. The IBM Full System Simulator for the Cell Broadband Engine described
in that chapter supports performance simulation for a full system, including the MFCs, caches,
bus, and memory controller.

3.8 General SPE Programming Tips

Here is a short summary of general tips for optimizing the performance of SPE programs:

• Local Store

– Design for the LS size. The LS holds up to 256 KB for the program, stack, local data
structures, and DMA buffers. One can do a lot with 256 KB, but be aware of this size.

– Use plug-ins (runtime download program kernels) to build complex function servers in
the LS. See Section 4.8 on page 135.

• DMA Transfers

– Use SPE-initiated DMA transfers rather than PPE-initiated DMA transfers. There are
more SPEs than the one PPE, and the PPE can enqueue only eight DMA requests
whereas each SPE can enqueue 16.

– Overlap DMA with computation by double buffering or multibuffering (see Section 3.5.3
on page 91). Multibuffer code or (typically) data.

– Use double buffering to hide memory latency.

– Use fence command options to order DMA transfers within a tag group.

– Use barrier command options to order DMA transfers within the queue.

• Loops

– Unroll loops to reduce dependencies and increase dual-issue rates. This exploits the
large SPU register file.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 124 of 183

Version 1.0
October 21, 2005

– Compiler auto-unrolling is not perfect, but pretty good.

• SIMD Strategy

– Choose an SIMD strategy appropriate for your algorithm. For example:

• Evaluate array-of-structure (AOS) organization. For graphics vertices, this organiza-
tion (also called or vector-across) can have more-efficient code size and simpler
DMA needs, but less-efficient computation unless the code is unrolled.

• Evaluate structure-of-arrays (SOA) organization. For graphics vertices, this organiza-
tion (also called parallel-array) can be easier to SIMDize, but the data must be main-
tained in separate arrays or the SPU must shuffle AOS data into an SOA form.

– Consider the effects of unrolling when choosing an SIMD strategy.

• Load/Store

– Scalar loads and stores are slow, with long latency.

– SPUs only support quadword loads and stores.

– Consider making scalars into quadword integer vectors.

– Load or store scalar arrays as quadwords, and perform your own extraction and insertion
to eliminate load and store instructions.

• Branches

– Eliminate nonpredicted branches.

– Use feedback-directed optimization.

– Use the __builtin_expect language directive when you can explicitly direct branch predic-
tion.

• Multiplies

– Avoid integer multiplies on operands greater than 16 bits in size. The SPU supports only
a 16-bit x16-bit multiply. A 32-bit multiply requires five instructions (three 16-bit multiplies
and two adds).

– Keep array elements sized to a power-of-2 to avoid multiplies when indexing.

– Cast operands to unsigned short prior to multiplying. Constants are of type int and also
require casting. Use a macro to explicitly perform 16-bit multiplies. This can avoid inad-
vertent introduction of signed extends and masks due to casting.

• Pointers

– Use the PPE’s load/store with update instructions. These allow sequential indexing
through an array without the need of additional instructions to increment the array
pointer.

– For the SPEs (which do not support load/store with update instructions), use the d-form
instructions to specify an immediate offset from a base array pointer.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 125 of 183

• Dual-Issue

– Choose intrinsics carefully to maximize dual-issue rates or reduce latencies.

– Dual issue will occur if a pipe-0 instruction is even-addressed, a pipe-1 instruction is odd-
addressed, and there are no dependencies (operands are available).

– Code generators use nops to align instructions for dual-issue.

– Use software pipeline loops to improve dual-issues rates.

Programming Tutorial

Cell Broadband Engine

Programming the SPEs
Page 126 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming Models
Page 127 of 183

4. Programming Models

On any processor, coding optimizations are achieved by exploiting the unique features of the
hardware. In the case of the Cell Broadband Engine, the large number of SPEs, their large
register file, and their ability to hide main-storage latency with concurrent computation and DMA
transfers support many interesting programming models. With the computational efficiency of the
SPEs, software developers can create programs that manage dataflow as opposed to leaving
dataflow to a compiler or to later optimizations.

Many of the unique features of the SPE are handled by the compiler, although programmers
looking for the best performance can take advantage of the features independently of the
compiler. It is almost never necessary to program the SPE in assembly language. C intrinsics
provide a convenient way to program the efficient movement and buffering of data.

Section 1.3.6 on page 24 introduced some concepts for application programming. This chapter
introduces seven types of programming models—the Function-Offload Model, the Device-Exten-
sion Model, the Computation-Acceleration Model, the Streaming Model, the Shared-Memory
Multiprocessor Model, the Asymmetric-Thread Runtime Model, and the User-Mode Thread
Model.

4.1 Function-Offload Model

In the Function-Offload Model, the SPEs are used as accelerators for performance-critical proce-
dures. This model is the quickest way to effectively use the Cell Broadband Engine with an
existing application. In this model, the main application runs on the PPE and calls selected proce-
dures to run on one or more SPEs.

The Function-Offload Model is sometimes called the Remote Procedure Call (RPC) Model. The
model allows a PPE program to call a procedure located on an SPE as if it were calling a local
procedure on the PPE. This provides an easy way for programmers to use the asynchronous
parallelism of the SPEs without having to understand the low-level workings of the MFC DMA
layer.

In this model, you identify which procedures should execute on the PPE and which should
execute on the SPEs. The PPE and SPE source modules must be compiled separately, by
different compilers.

4.1.1 Remote Procedure Call

The Function Offload or Remote Procedure Call (RPC) Model is implemented using stubs as
proxies. A method stub, or simply stub, is a small piece of code used to stand in for some other
code. The stub or proxy acts as a local surrogate for the remote procedure, hiding the details of
server communication. The main code on the PPE contains a stub for each remote procedure on
the SPEs. Each procedure on an SPE has a stub that takes care of running the procedure and
communicating with the PPE.

Programming Tutorial

Cell Broadband Engine

Programming Models
Page 128 of 183

Version 1.0
October 21, 2005

The Interface Definition Language (IDL) compiler, available in the SDK, facilitates the RPC func-
tion offload. The stub code, together with the runtime code, controls the execution, data transfer,
and program coordination between the PPE and SPE during program execution. A procedure is
loaded onto an SPE only once, and the program on the PPE can then make multiple calls to that
procedure without having to reload it.

When the program on the PPE calls a remote procedure, it actually calls that procedure’s stub
located on the PPE. The stub code initializes the SPE with the necessary data and code, packs
the procedure’s parameters, and sends a mailbox message to the SPE to start its stub proce-
dure.

The SPE stub retrieves the parameters and executes the procedure locally on the SPE. The PPE
program then retrieves the output parameters. Figure 4-1 shows an example of a program using
this method.

Converting a PPE program to use RPCs requires the following steps:

1. Determine which parts of the program will run on the PPE, and which procedures and func-
tions will run on the SPEs. (Functions return in-place values; procedures do not.)

2. For any function chosen in step 1 to run on the SPEs, change the function to a procedure by
changing the return value to an output parameter. These procedures will become RPC func-
tions, but the return values will be used for RPC synchronization rather than as computa-
tional values.

3. Produce an Interface Definition Language file (IDL file). The IDL file defines the interface
between the main program on the PPE and the remote procedures on the SPEs. This speci-
fication of the program’s remote procedures is defined using the Cell Broadband Engine’s
IDL. For more information, see Section 4.1.2 on page 130.

4. Process the IDL file using the IDL compiler. The IDL compiler produces three files to be used
in the program-compilation phase. One file is a C header file and the other two are C source
files—one to be compiled with the PPE program and the other to be compiled with the SPE
procedures. The generated header file contains the declarations and data structures required
by both stubs for data transfer between the PPE and the SPE.

5. Compile the PPE and SPE code into separate programs. The PPE code must be compiled
with the PPE stub code produced by the IDL compiler, and the SPE code must be compiled
with its stub code, thus producing two program files.

Figure 4-2 on page 129 shows the production flow for producing an application. Boxes with bold
borders represent source-code files.

Figure 4-1. Example of the Function-Offload (or RPC) Model

main() image

f1() image

f3() image

f2() PPE stub

PPE SPE

f2() SPE stub

f2() image

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming Models
Page 129 of 183

4.1.1.1 The RPC Runtime Library

The RPC runtime library coordinates the interaction between the PPE and the SPEs, and it
manages the task queues. PPE requests for SPE executions are represented in the RPC runtime
code as task structures. As each remote procedure is invoked, a new task is created and placed
in a task queue. Each SPE has its own task queue, so having the procedure loaded on multiple
SPEs does not increase the size of the queue, it only enables the procedure to execute on
multiple SPEs at the same time. The number of slots in a queue is fixed. If the PPE requests a
remote procedure call and the queue is full, the application must wait for a free slot in the queue.
When a remote procedure call returns, a slot in the queue becomes available.

On invocation of a remote procedure call, the PPE program can either wait for the procedure to
return (synchronous execution), or continue processing and synchronize with the procedure later
(asynchronous execution). Whether a remote procedure is synchronous or asynchronous is
specified by the procedure’s definition in the IDL file.

All remote procedure calls are RPC functions that return a value of type idl_id_t. The value
returned is unique, and identifies that instance of the procedure call. This value is used by the
PPE program to synchronize with asynchronous procedure calls.

If the main program has called a procedure asynchronously, it must, at some point, synchronize
with the procedure and read the return values. There are three synchronization functions used
for this purpose: join, poll, and join all.

The actual names of the synchronization functions are created by the IDL compiler and contain
the embedded name of the remote procedure. If, for example, the name of the remote procedure
is foo, then the following would be the signatures of foo’s synchronization functions:

int idl_join_foo(idl_id_t id)

This function blocks until the remote procedure with the idl_id_t value of id completes
execution on the SPE. When the SPE function finishes, it sends a signal to the PPE.

Figure 4-2. Production Flow for Function Offload (or RPC) Model

spu_stub.cppu_stub.c stub.h

.idl file

IDL Compiler

PPE binary

PPE compiler

linker

SPE compiler
and linker

SPE binary
RPC Runtime

Library

function.cprogram.c

Programming Tutorial

Cell Broadband Engine

Programming Models
Page 130 of 183

Version 1.0
October 21, 2005

int idl_poll_foo(idl_id_t id)

This function polls to see if the SPE remote procedure with the idl_id_t value of id has
finished.

int idl_join_all_foo()

This function blocks and waits for all instances of remote procedure foo to complete.

When the PPE program will issue no more calls to remote procedure foo and all current invoca-
tions of the program have completed, the program should call the idl_foo_interface_cleanup()
function. This function returns void, and releases all of the allocated resources.

4.1.2 IDL Specification and Compilation

The Cell Broadband Engine’s Interface Definition Language (IDL) is a subset of the Distributed
Computing Environment (DCE) Interface Description Language. DCE is a collection of industry-
standard, vendor-neutral, distributed-computing technologies. DCE is defined and supported by
the Open Group, http://www.opengroup.org. Because the Open Group was formerly known as
the Open Systems Foundation, DCE is often known as OSF DCE. The goal of DCE is to provide
an interoperable and flexible distributed environment for programs running on a large variety of
systems.

An IDL file contains the specification of the interfaces between the PPE program and the SPE
procedures. IDL files are named with an extension of .idl. Here is an example of invoking the
IDL compiler:

./idl -p ppe_stub_euler.c -s spe_stub_euler.c euler.idl

In this example, the IDL compiler processes file euler.idl and names the PPE stub source file
ppe_stub_euler.c and the SPE stub source file spe_stub_euler.c

The general structure of an IDL file is:

interface identifier
{

import statements
constant, type and operation declarations

}

Import statements include the contents of other files in a manner similar to include statements in
C/C++.

http://www.opengroup.org

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming Models
Page 131 of 183

4.1.2.1 Operation Declarations

Operation declarations are declarations of the remote procedures. Each operation declaration
has four main components: the synchronization type, the return type (which is always idl_id_t),
the name of the procedure, and a description of the parameters. An operation declaration has the
following form:

[<op_attribute>] idl_id_t <identifier> <parameter_declarators>

• op_attribute—specifies one of the four types of procedure synchronization:

– sync—Specifies synchronous execution. The PPE application must wait for the SPE to
finish execution of the procedure before continuing.

– async_b—Specifies asynchronous execution. The PPE application returns as soon as
the input parameters are copied. The program can reuse the input buffer immediately
after the function returns. The return value of the procedure call, idl_id_t, can be used
later by the PPE program in the join_func(idl_id_t id) function to read any output
parameter results.

– async_i—Specifies asynchronous execution. The PPE application returns as soon as
the input parameters are copied. The return value of the procedure call, idl_id_t, can be
used later by the PPE program in the join_func(idl_id_t id) function to read any out-
put parameter results. The program cannot reuse the in buffer until after the join_func
function returns successfully.

– async—Has the same semantics as async_i.

• idl_id_t—The return type for all remote procedures. It is a unique ID used by the program for
synchronization.

• identifier—The procedure name.

• parameter declarators—The names and types of the parameters and the direction of data
transfer.

4.1.2.2 Parameter Declarators

A parameter to a remote procedure can be of any standard type or a one-dimension array. A
parameter can be used for procedure input, output, or both. A parameter declaration takes the
following form:

[<parameter_attributes>] <type_specifier> <parameter_declarator>

A parameter attribute can be any of the following:

• in—Specifies that the parameter is an input parameter. Data is passed from the PPE pro-
gram to the SPE procedure.

• out—Specifies that the parameter is an output parameter. Data is passed from the SPE pro-
cedure to the PPE program.

An output parameter must be passed by reference and therefore must be declared either as
an array or a pointer.

Programming Tutorial

Cell Broadband Engine

Programming Models
Page 132 of 183

Version 1.0
October 21, 2005

• size_is(val)—Specifies that the parameter has a size of val, where val can be an integer,
a parameter, or a previously declared constant.

• dbuf_size(val)—If the specified parameter is an array, this parameter is considered for dou-
ble buffering. The parameter has a size of val, where val can be an integer, a parameter, or
a previously declared constant. This value must agree with the array size or the double buff-
ering request is ignored.

One-dimension arrays can be used as input or output parameters. The size of the array must be
included in the size_is attribute.

[in, size_is (array_a_size)] int array_a

For arrays whose size is determined at runtime, there must also be an input parameter
containing the size of the array, prior to the array parameter. For example:

[async] idl_id_t foo ([in] int size, [out, size_is(size)] int ret_array[])

The above example declares an input parameter named size of type int. This value is then refer-
enced in the declaration of the output parameter.

4.1.3 Simple Function-Offload Example

The following program illustrates the components of a function-offload (RPC) program using the
IDL compiler. The three components include:

• The SPE program, spu_hello.c, that defines the remote procedure, hello. The hello proce-
dure prints the string passed by the calling function.

• The interface description, hello.idl, for the remote SPU procedure hello. The hello proce-
dure is defined to be a synchronous call with input parameters, nbytes, specifying the num-
ber of characters in the string, and message, the string of size nbytes to be printed. As a
synchronous RPC function, the RPC caller will stall while hello is executed.

• The PPE program, hello.c, that makes a remote procedure call to the SPU procedure,
hello.

/* file hello.idl */

interface greeting
{

[sync] idl_id_t hello ([in] int nbytes,
 [in, size_is(nbytes)] char message[]);

}

/* file hello.c */
#include <stub.h>

int main()
{

char* str = “Hi, from the Cell!”;

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming Models
Page 133 of 183

/* ... */

hello(strlen(str), str);
}

/* file spu_hello.c */
#include <stdio.h>
#include <stub.h>

idl_id_t hello(int nbytes, char msg[])
{

printf(“SPE: %s\n”, ms);
return 0;

}

4.2 Device-Extension Model

The Device Extension Model is a special case of the Function-Offload Model in which the SPEs
act like I/O devices. SPEs can also act as intelligent front ends to an I/O device. Mailboxes can
be used as command and response FIFOs between the PPE and SPEs.

The SPEs can interact with I/O devices because all I/O devices are memory-mapped, and the
SPEs DMA transfers support transfer sizes of a single byte. I/O devices can use an SPE’s signal-
notification facility (Section 3.1.3.3 on page 67) to tell the SPE when commands complete.

When SPEs are used in the Device-Extension Model, they usually run privileged software that is
part of the operating system. As such, this code is trusted and may be given access to privileged
registers for a physical device. For example, a secure file system may be treated as a device.
The operating system’s device driver can be written to use the SPE for encryption and decryption
and for responding to disk-controller requests on all file reads and writes to this virtual device.

4.3 Computation-Acceleration Model

The Computation-Acceleration Model is an SPE-centric model that provides a smaller-grained
and more integrated use of SPEs. The model speeds up applications that use computation-inten-
sive mathematical functions without requiring significant rewrite of the applications. Most compu-
tation-intensive sections of the application run on SPEs. The PPE acts as a control and system-
service facility. Multiple SPEs work in parallel. The work is partitioned manually by the
programmer, or automatically by the compilers. The SPEs must efficiently schedule MFC DMA
commands that move instructions and data. This model either uses shared memory to communi-
cate among SPEs, or it uses a message-passing model.

4.4 Streaming Model

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes data that
streams through. The PPE acts as a stream controller, and the SPEs act as stream-data proces-
sors. For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-transfer bandwidth
by an order of magnitude. If each SPE has an equivalent amount of work, this model can be an

Programming Tutorial

Cell Broadband Engine

Programming Models
Page 134 of 183

Version 1.0
October 21, 2005

efficient way to use the Cell Broadband Engine because data remains inside the Cell Broadband
Engine as long as possible. The PPE and SPEs support message-passing between the PPE, the
processing SPE, and other SPEs.

Although the SDK does not support a formal streaming language, most of the programs written
for the Cell Broadband Engine are likely to use the streaming model to some extent. For
example, the Euler particle-system simulation in Section 3.6.3 on page 102 implements the
streaming model. This particle-system simulation contains a computational kernel that streams
packets of data through the kernel for each step in time.

4.5 Shared-Memory Multiprocessor Model

The Cell Broadband Engine can be programmed as a shared-memory multiprocessor, using two
different instruction sets. The SPEs and the PPE fully interoperate in a cache-coherent Shared-
Memory Multiprocessor Model. All DMA operations in the SPEs are cache-coherent. Shared-
memory load instructions are replaced by DMA operations from shared memory to local store
(LS), followed by a load from LS to the register file. The DMA operations use an effective address
that is common to the PPE and all the SPEs. Shared-memory store instructions are replaced by
a store from the register file to the LS, followed by a DMA operation from LS to shared memory.
The SPE’s DMA lock-line commands provide the equivalent of the PowerPC Architecture atomic-
update primitives (load with reservation and store conditional).

A compiler or interpreter could manage part of the LS as a local cache for instructions and data
obtained from shared memory.

4.6 Asymmetric-Thread Runtime Model

Threads can be scheduled to run on either the PPE or on the SPEs, and threads interact with
one another in the same way they do in a conventional symmetric multiprocessor. The Asym-
metric-Thread Runtime Model extends thread task models and lightweight task models to include
the different instruction sets supported by the PPE and SPE.

Scheduling policies are applied to the PPE and SPE threads to optimize performance. Although
preemptive task-switching is supported on SPEs for debugging purposes, there is a runtime
performance and resource-allocation cost. FIFO run-to-completion models, or lightweight coop-
eratively-yielding models, can be used for efficient task-scheduling. A single SPE can run only
one thread at a time; it cannot support multiple simultaneous threads.

The Asymmetric-Thread Runtime Model is flexible and supports all of the other programming
models described in this chapter. Any program that explicitly calls spe_create_thread is an
example of the Asymmetric-Thread Runtime Model. (See Section 2.3.3 on page 45 for an
example of calling spe_create_thread.) This is the fundamental model provided by the SDK’s
SPU Runtime Management Library, and it is identified by user threads (both PPE and SPE)
running on the Cell Broadband Engine’s heterogeneous processing complex.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming Models
Page 135 of 183

4.7 User-Mode Thread Model

The User-Mode Thread Model refers to one SPE thread managing a set of user-level functions
running in parallel. The user-level functions are called microthreads (and also user threads and
user-level tasks). The SPE thread is supported by the operating system. The microthreads are
created and supported by user software; the operating system is not involved. However, the set
of microthreads can run across a set of SPUs.

The SPU application schedules tasks in shared memory, and the tasks are processed by avail-
able SPUs. For example, in game programming, the tasks can refer to scene objects that need
updating. Microthreads can complete at any time, and new microthreads can be spawned at any
time.

One advantage of this programming model is that the microthreads, running on a set of SPUs
under the control of an SPE thread, have predictable overhead. A single SPE cannot save and
restore the MFC commands queues without assistance from the PPE.

4.8 SPE Plugins

When code does not fit in an SPE’s local store, overlays can be useful. An overlay is SPU code
that is dynamically loaded and executed by a running SPU program. It cannot be independently
loaded or run on an SPE.

SPE Plugins allow the programmer to manage SPU code in a modular fashion. The specific SPU
code that is needed at runtime is dynamically loaded. This differs from other SPE programming
models in that the required code cannot be known ahead of time. The SPE Plugin uses the stack
of the running SPU program, and it cannot make global external references. The SPE Plugin
cannot communicate with the running SPU program other than through parameters passed in
and out.

Programming Tutorial

Cell Broadband Engine

Programming Models
Page 136 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 137 of 183

5. The Simulator

The IBM Full System Simulator for the Cell Broadband Engine is a generalized simulator that can
be configured to simulate a broad range of full-system configurations. It supports both functional
simulation and cycle-accurate simulation (performance or timing simulation) of full systems,
including the PPE, SPEs, MFCs, PPE caches, bus, and memory controller. It can simulate and
capture many levels of operational details on instruction execution, cache and memory
subsystems, interrupt subsystems, communications, and other important system functions.

Figure 5-1 shows the simulation stack. The simulator is part of the software development kit
(SDK), which is available through developerWorks at http://www-128.ibm.com/developer-
works/power/cell

If accurate timing and cycle-level simulation are not required, the simulator can be used in its
functional-only mode, running as a debugger to test the functions and features of a program. If
cycle-level analysis is required, it can be used in performance simulation (or timing simulation)
mode, to get accurate performance analyses. Simulator configurations are extensible and can be
modified using Tool Command Language (Tcl) commands to produce the type and level of anal-
ysis required.

The simulator itself is a general tool that can be configured for a broad range of microprocessors
and hardware simulations. The SDK, however, provides a ready-made configuration of the simu-
lator for Cell Broadband Engine system development and analysis.

Figure 5-1. Simulation Stack

Intel® x86

Simulator
PowerPC

Caches (L1/L2)
Memory

ROM

Executables

UART
Int Ctrlr

PowerPC

AIX 4.3.x

x86-64

MacOS-X

Runtime and Libraries

PowerPCPowerPCCell
Processors

Bus

Linux

System Software: Hypervisor, Linux

Real Systems

Simulation of
Hardware

Modified
Software Stack
Running
On Simulator

DMADisks

Console Window

GUI Window

Application Source Code

Programming Tools

Compilers

Programming Model OpenMP MPI
Modified
Development
Environment

Traces

http://www-128.ibm.com/developerworks/power/cell
http://www-128.ibm.com/developerworks/power/cell
http://www-128.ibm.com/developerworks/power/cell

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 138 of 183

Version 1.0
October 21, 2005

5.1 Simulator Basics

5.1.1 Operating-System Modes

The simulator has two modes of operation, with regard to operating systems: Linux mode and
standalone mode.

5.1.1.1 Linux Mode

In Linux mode, after the simulator is configured and loaded, the simulator boots the Linux oper-
ating system on the simulated system. At runtime, the operating system is simulated along with
the running programs. The simulated operating system takes care of all the system calls, just as
it would in a nonsimulation (real) environment.

5.1.1.2 Standalone Mode

In standalone mode, the application is loaded without an operating system. Standalone applica-
tions are user-mode applications that are normally run on an operating system. On a real system,
these applications rely on the operating system to perform certain tasks, including loading the
program, address translation, and system-call support. In standalone mode, the simulator
provides some of this support, allowing applications to run without having to first boot an oper-
ating system on the simulator.

There are, however, limitations that apply when building an application to be loaded and run by
the simulator without an operating system. Typically, the operating system provides address-
translation support. Since an operating system is not present in this mode, the simulator loads
executables without address translation, so that the effective address is the same as the real
address. Therefore, all addresses referenced in the executable must be valid real addresses. If
the simulator has been configured with 64 MB of memory, all addresses must fit in the range of
x‘0’ to x‘3FFFFFF’.

5.1.2 Interacting with the Simulator

There are two ways to interact with the simulator:

• Issuing commands to the simulated system

• Issuing commands to the simulator

The simulated system is the Linux environment on top of the simulated Cell Broadband Engine,
where you run and debug programs. You interact with it by entering commands at the Linux
command prompt, in the console window. The console window is a Linux shell of the simulated
Linux operating system.

You can also control the simulator itself, configuring it to do such tasks as collect and display
performance statistics on particular SPEs, or set breakpoints in code. These commands are
entered at the simulator command line in the simulator command window, or using the equivalent
actions in the graphical user interface (GUI). The GUI is a graphical means of interacting with the
simulator. The GUI is described in Section 5.3 on page 140.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 139 of 183

Figure 5-2 shows the simulator windows, and the layers with which they communicate.

5.2 Command-Line Interface

Before starting the simulator, move to the Linux run directory located in the SDK at systemsim-
sti-release/run/cell/linux. To start the simulator in command-line mode, enter the following
command:

../run_cmdline

This command starts the simulator, which initializes the simulation and displays the prompt:

systemsim %

The window displaying the simulator prompt is the command window. While starting the simula-
tion, the simulator creates the console window, which is initially labeled UART0 in the window’s
title bar.

All commands must be entered at the prompt in the command window (that is, the window in
which the simulator was started). Some of the important commands are shown in Table 5-1 on
page 140.

Figure 5-2. Simulator Structure and Screens

Linux operating system

Linux on Simulation

}Simulator

Base Simulator
Hosting Environment

mysim Cell Simulation

Base processor }

systemsim %

Command Window

[user@bringup /]#

Console WindowGUI Window

IBM Full System Simulator

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 140 of 183

Version 1.0
October 21, 2005

The simulator prompt is displayed in the command window when the simulation is stopped, or
paused. When the simulation is running, the command window, instead, displays a copy of the
output to the console window and simulation-cycle information every few seconds, and the
prompt is not available. To stop the simulation and get back the prompt—use the Ctrl-c key
sequence. This will stop the simulation, and the prompt will reappear.

5.3 Graphical User Interface

The simulator’s GUI offers a visual display of the state of the simulated system, including the
PPE and the eight SPEs. You can view the values of the registers, memory, and channels, as
well as viewing performance statistics. The GUI also offers an alternate method of interacting
with the simulator. Figure 5-3 on page 141 shows the main GUI window that appears when the
GUI is launched.

Table 5-1. Important Commands for the IBM Full System Simulator for the Cell Broadband
Engine

Simulator Command Meaning

quit Closes the simulation and exits the simulator.

help Displays a list of the available simulator commands.

mysim go Starts or continues the simulation. The first time it is issued, the simulator boots
the Linux operating system on the simulation.

mysim spu n set model mode Sets SPEn into model mode, where n is a value from 0 to 7 and mode is either
pipeline or instruction.

mysim spu n display statistics
Displays to the simulator command window, the performance analysis statistics
collected on SPEn, where n is a value from 0 to 7. Statistics are only collected
when the SPE is executing in pipeline mode.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 141 of 183

The main GUI window has two basic areas: the vertical panel on the left, and the rows of buttons
on the right. The vertical panel represents the simulated system and its components. The rows of
buttons are used to control the simulator.

To start the GUI from the Linux run directory, enter:

../run_gui

The simulator will then configure the simulator as a Cell Broadband Engine and display the main
GUI window, labeled with the name of the application program. When the GUI window first
appears, click the Go button to boot the Linux operating system. For a detailed description of
starting the simulator and running a program see Section 2.4.2 Running the Program in the
Simulator on page 51.

5.3.1 The Simulation Panel

When the main GUI window first appears, the vertical panel contains a single folder labeled
mysim. To see its contents, click on the plus sign (+) in front of the folder icon. When the folder is
expanded, you can see its contents; these include a PPE (labelled PPE0 and PPE1, the two
threads of the PPE), and eight SPEs (SPE0... SPE7). The folders representing the processors
can be further expanded to show the viewable objects and the options and actions available.
Figure 5-4 on page 142 shows the vertical panel with several of the processor folders expanded.

Figure 5-3. Main Graphical User Interface for the Simulator

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 142 of 183

Version 1.0
October 21, 2005

5.3.1.1 PPE Components

There are five PPE components visible in the expanded PPE folder: PCTrack, PCCCore,
GPRegs, FPRegs and PCAddressing. Double-clicking a folder icon brings up a window
displaying the program-state data. Several of the available windows are shown in the following
figures.

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be viewed
separately by double-clicking on the GPRegs and the FPRegs folders respectively. Figure 5-5
shows the GPR window, and Figure 5-6 on page 143 shows the FPR window. As data changes
in the simulated registers, the data in the windows is updated and registers that have changed
state are highlighted.

Figure 5-4. Project and Processor Folders

Figure 5-5. PPE General-Purpose Registers Window

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 143 of 183

The PPE Core window (PPCCore) shows the contents of all the registers of the PPE, including
the Vector/SIMD Multimedia Extension registers. Figure 5-7 shows the PPE Core window.

5.3.1.2 SPE Components

The SPE folders (SPE0 ... SPE7) each have ten subitems. Five of the subitems—(SPUTrack,
SPUCore, SPEChannel, LS_Stats, and SPUMemory)—represent windows that show data in the
registers, channels, and memory. Two of the sub-items, MFC and MFC_XLate, represent
windows that show state information on the MFC. The last three sub-items—SPUStats, Mode,
and Load-Exec—represent actions to perform on the SPE.

Several interesting SPE data windows are shown in the following figures. Figure 5-8 on page 144
shows the MFC window, which provides internal MFC state information. Figure 5-9 on page 144
shows the MFC_XLate window, which provides translation structure state information.
Figure 5-10 on page 145 shows the SPEChannel window, which provides information about the
SPE’s channels. Figure 5-11 on page 146 shows the LS_Stats window, which brings up the new
local store display map.

Figure 5-6. PPE Floating-Point Registers Window

Figure 5-7. PPE Core Window

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 144 of 183

Version 1.0
October 21, 2005

Figure 5-8. SPE MFC Window

Figure 5-9. SPE MFC Address Translation Window

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 145 of 183

Figure 5-10. SPE Channels Window

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 146 of 183

Version 1.0
October 21, 2005

The last three items in an SPE folder represent actions to perform, with respect to the associated
SPE. The first of these is SPUStats. When the system is stopped and you double-click on this
item, the simulator displays program performance statistics in its own pop-up window.
Figure 5-12 on page 147 shows an example of a statistics dump. These statistics are only
collected when the Model is set to pipeline mode.

Figure 5-11. SPE Local Store Statistics Window

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 147 of 183

The next item in the SPE folder is labelled either Model: instruction or Model: pipeline. The label
indicates whether the simulation is in instruction mode, for checking and debugging the function-
ality of a program, or pipeline mode, for collecting performance statistics on the program. The
mode can be toggled by double-clicking the item. The SPU Modes button on the GUI can also be
used as a more efficient way to set the modes of all of the SPEs simultaneously.

The last item in the SPE folder, Load-Exec, is used for loading an executable onto an SPE. When
you double-click the item, a file-browsing window is displayed, allowing you to find and select the
executable file to load.

Figure 5-12. SPU Statistics

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 148 of 183

Version 1.0
October 21, 2005

5.3.2 GUI Buttons

On the right side of the GUI screen (Figure 5-3 on page 141) are five rows of buttons. These are
used to manipulate the simulation process. The buttons do the following:

• Advance Cycle—Advances the simulation by a set number of cycles. The default value is 1
cycle, but it can be changed by entering an integer value in the textbox above the buttons, or
by moving the slider next to the textbox. The drop-down menu at the top of the GUI allows the
user to select the time domain for cycle stepping. The time units to use for cycles are
expressed in terms of various system components. The simulation must be stopped for this
button to work; if the simulation is not stopped, the button is inactive.

• Go—Starts or continues the simulation. In the SDK’s simulator, the first time the Go button is
clicked it initiates the Linux boot process. (In general, the action of the Go button is deter-
mined by the startup tcl file located in the directory from which the simulator is started.)

• Stop—Pauses the simulation.

• Service GDB—Allows the external gdb debugger to attach to the running program. This but-
ton is also inactive while the simulation is running.

• Triggers/Breakpoints—Displays a window showing the current triggers and breakpoints.

• Update GUI—Refreshes all of the GUI screens. By default, the GUI screens are updated
automatically every four seconds. Click this button to force an update.

• Debug Controls—Displays a window of the available debug controls and allows you to select
which ones should be active. Once enabled, corresponding information messages will be dis-
played. Figure 5-13 on page 149 shows the Debug Controls window.

• Options—Displays a window allowing you to select fonts for the GUI display. On a separate
tab, you can enter the memory size for the simulated system and the gdb debugger port.

• Emitters—Displays a window with the defined emitters, with separate tabs for writers and
readers. Figure 5-21 on page 160 shows the Emitters window. For more on emitters, see
Section 5.4.4 on page 159.

• Cycle Mode—This button is not functional in the current release.

• Fast Mode—Toggles fast mode on and off. Fast mode accelerates the execution of the PPE
at the expense of disabling certain system-analysis features. It is useful for quickly advancing
the simulation to a point of interest. When fast mode is on, the button appears depressed;
otherwise it appears normal. Fast mode can also be enabled with the “mysim fast on” com-
mand and disabled with the “mysim fast off” command.

• SPE Visualization—Plots histograms of SPU and DMA event counts. The counts are sam-
pled at user defined intervals, and are continuously displayed. Two modes of display are pro-
vided: a “scroll” view, which tracks only the most recent time segment, and a “compress”
view, which accumulates samples to provide an overview of the event counts during the time
elapsed. Users can view collected data in either detail or summary panels. The detailed, sin-
gle-SPE panel tracks SPU pipeline phenomena (such as stalls, instructions executed by
type, and issue events), and DMA transaction counts by type (gets, puts, atomics, and so
forth). The summary panel tracks all eight SPEs for the CBE, with each plot showing a subset
of the detailed event count data available. Figure 5-14 on page 150 shows the SPE Visual-
ization window.

• Process-Tree-Stats—Figure 5-15 on page 151 shows the Process Tree Statistics window.

• Track All PCs—Figure 5-16 on page 152 shows the Track All PCs window.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 149 of 183

• SPU Modes—Provides a convenient means to set each SPU's simulation mode to either
cycle accurate pipeline mode or fast functional-only mode. The same capabilities are avail-
able using the Model:instruction or Model:pipeline toggle menu sub-item under each SPE in
the tree menu at the left of the main control panel. Figure 5-17 on page 153 shows the SPU
Modes window.

• Exit—Exits the simulator and closes the GUI window.

Figure 5-13. Debug Controls

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 150 of 183

Version 1.0
October 21, 2005

Figure 5-14. SPE Visualization Window

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 151 of 183

Figure 5-15. Process Tree Statistics Window

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 152 of 183

Version 1.0
October 21, 2005

Figure 5-16. Track All PCs Window

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 153 of 183

5.4 Performance Monitoring

The simulator provides both functional-only and cycle-accurate simulation modes.

Functional-only mode models the effects of instructions, without accurately modeling the time
required to execute the instructions. In functional-only mode, a fixed latency is assigned to each
instruction; the latency can be arbitrarily altered by the user. Since latency is fixed, it does not
account for processor implementation and resource conflict effects that cause instruction laten-
cies to vary. Functional-only mode assumes that memory accesses are synchronous and instan-
taneous. This mode is useful for software development and debugging, when a precise measure
of execution time is not required.

The cycle-accurate mode models not only functional accuracy but also timing. It considers
internal execution and timing policies as well as the mechanisms of system components, such as
arbiters, queues, and pipelines. Operations may take several cycles to complete, accounting for
both processing time and resource constraints.

The cycle-accurate mode allows you to:

• Gather and compare performance statistics on full systems, including the PPE, SPEs, MFCs,
PPE caches, bus, and memory controller.

• Determine precise values for system validation and tuning parameters, such as cache
latency.

• Characterize the system workload.

Figure 5-17. SPU Modes Window

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 154 of 183

Version 1.0
October 21, 2005

• Forecast performance at future loads, and fine-tune performance benchmarks for future vali-
dation.

In the cycle-accurate mode, the simulator automatically collects many performance statistics.
Some of the more important SPE statistics are:

• Total cycle count

• Count of branch instructions

• Count of branches taken

• Count of branches not taken

• Count of branch-hint instructions

• Count of branch-hints taken

• Contention for an SPE’s local store

• Stall cycles due to dependencies on various pipelines

5.4.1 Displaying Performance Statistics

You can collect and display simple performance statistics on a program without performing any
instrumentation of the program code. Collection of more complex statistics requires program
instrumentation.

The following steps demonstrate how to collect and display simple performance statistics. The
example PPE program starts (spawns) the same thread on three SPEs. When an SPE thread is
spawned, its SPE number (any number between 0 and 7) is passed in a data structure as a
parameter to the main function. The SPE program contains a for-loop that is executed zero or
more times. The number of times it is executed is equal to three times the value passed to its
main function.

The names of the PPE and SPE programs are tpa1 and tpa1_spu, respectively. Excerpts of the
noteworthy sections of the programs are shown in Section 5.4.3 on page 159.

The following steps are marked as to whether they are performed in the simulator’s command
window or its console window. To collect and display simple performance statistics, do the
following:

1. Start the simulator. While in the Linux run directory, start the simulator by entering the fol-
lowing command:

../run_cmdline

This command starts the simulator in command-line mode, and displays the simulator
prompt.

systemsim %

2. In the command window, set the SPUs to pipeline mode. An SPU must be in pipeline
mode to collect performance statistics from that SPU. If, instead, the SPU is in instruction

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 155 of 183

mode, it will only report the total instruction count. Use the mysim spu command to set those
processors to pipeline mode, as follows:

mysim spu 0 set model pipeline
mysim spu 1 set model pipeline
mysim spu 2 set model pipeline

Note: The specific SPU numbers are only examples. The operating system may assign the
SPU programs to execute on a different set of SPUs. You can also use the “SPU Modes”
button or the folder under each SPE labled “Model” to set the model to pipeline mode.

3. In the command window, boot Linux. Boot the Linux operating system on the simulated
PPE by entering:

mysim go

4. In the console window, load the executables. Load the PPE and SPE executables from
the base environment into the simulated environment, and set their file permissions to exe-
cutable, as follows:

callthru source tpa1 > tpa1
callthru source tpa1_spu > tpa1_spu
chmod +x tpa1
chmod +x tpa1_spu

5. In the console window, run the PPE program. Run the PPE program in the simulation by
entering the name of the executable file, as follows:

tpa1

6. In the command window, pause the simulation and display statistics. When the pro-
gram finishes execution, select the simulator control window. Pause the simulator by entering
the Ctrl-c key sequence. To display the performance statistics for the three SPEs, enter the
following commands:

mysim spu 0 display statistics
mysim spu 1 display statistics
mysim spu 2 display statistics

As each command is entered, the simulator displays the performance statistics in the simula-
tor command window. Figure 5-18 on page 156 shows a screen image of the SPE 0 perfor-
mance statistics.

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 156 of 183

Version 1.0
October 21, 2005

Although the programs on SPE 0 and SPE 2 are the same, the program on SPE 0 executed
the loop zero times, but the program on SPE 2 executed the loop six times. You can com-
pare the performance statistics of SPE 0 (Figure 5-18) with those of SPE 2, which are shown
in Figure 5-19 on page 157.

Note: The statistics collected in this manner include the SPU cycles required to load the
SPE thread, start the SPE thread, and cleanup the SPE thread upon completion.

Figure 5-18. tpa1 Statistics for SPE 0

systemsim % mysim spu 0 display statistics

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 157 of 183

5.4.2 Performance Profile Checkpoints

The simulator can automatically capture system-wide performance statistics that are useful in
determining the sources of performance degradation, such as channel stalls and instruction-
scheduling problems. You can also use performance profile checkpoints to delimit a specific
region of code over which performance statistics are to be gathered.

Performance profile checkpoints (such as prof_clear, prof_start and prof_stop in the code
samples below) can be used to capture higher-level statistics such as the total number of instruc-
tions, the number of instructions other than no-op instructions, and the total number of cycles
executed by the profiled code segment. The checkpoints are special no-op instructions that indi-
cate to the simulator that some special action should be performed. No-op instructions are used
because they allow the same program to be executed on real hardware. A header file, profile.h,
provides a convenient function-call-like interface to invoke these instructions. In addition to
displaying performance information, certain performance profile checkpoints can control the
statistics-gathering functions of the SPU.

For example, profile checkpoints can be used to capture the total cycle count on a specific SPE.
The resulting statistic can then be used to further guide the tuning of an algorithm or structure of
the SPE. The following example illustrates the profile-checkpoint code that can be added to an
SPE program in order to clear, start, and stop a performance counter:

Figure 5-19. tpa1 Statistics for SPE 2

systemsim % mysim spu 2 display statistics

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 158 of 183

Version 1.0
October 21, 2005

#include <profile.h>
. . .
prof_clear(); // clear performance counter
prof_start(); // start recording performance statistics
. . .

<code_to_be_profiled>
. . .
prof_stop(); // stop recording performance statistics

When a profile checkpoint is encountered in the code, an instruction is issued to the simulator,
causing the simulator to print data identifying the calling SPE and the associated timing event.
The data is displayed on the simulator control window in the following format:

SPUn: CPm, xxxxx(yyyyy), zzzzzzz

where n is the number of the SPE on which the profile checkpoint has been issued, m is the
checkpoint number, xxxxx is the instruction counter, yyyyy is the instruction count excluding no-
ops, and zzzzzz is the cycle counter.

The following example uses the tpa1_spu program and instruments the loop with the prof_clear,
prof_start and prof_stop profile checkpoints. The relevant code is shown here.

// file tpa2_spu.c

#include <sim_printf.h>
#include <profile.h>

...

prof_clear();
prof_start();
for(i=0; i<tinfo.spe_num*3; i++)

sim_printf("SPE#: %d, Count: %d\n", tinfo.spe_num, i);
prof_stop();

Figure 5-20 shows the output produced by the program.

Figure 5-20. Profile Checkpoint Output for SPE 2

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 159 of 183

5.4.3 Example Program: tpa1

The following example program, tpa1, is used in the sections above to show the basic perfor-
mance statistics that can be collected and displayed without instrumentation of the code. tpa1.c
is the source code for the PPE, which spawns three copies of program tpa1_spu on SPEs 0, 1
and 2. The code in tpa1_spu executes the for-loop a different number of times in each of the
SPEs. For each SPE, the loop is executed three times the number passed in as the parameter.

// file tpa1.c

#include <sim_printf.h>

...

// the value of nr_spus is 3
for (i = 0; i < nr_spus; i++)
{

tinfo.spe_num = i;
sim_printf("Spawning thread: %d\n", i);
spuids[i] =

spe_create_thread(gid, &tpa1_spu, (void*) &tinfo, NULL, -1, 0);
}

// file tpa1_spu.c

...

for(i=0; i<tinfo.spe_num*3; i++)
sim_printf("SPE#: %d, Count: %d\n", tinfo.spe_num, i);

5.4.4 Emitters

In addition to the basic cycle-count and summary statistics provided by its profile checkpoints
and triggers, the simulator also supports a user-extensible event-analysis system, called emit-
ters. The emitters, selected on the GUI screen (Figure 5-3 on page 141), decouple performance
event-collection from performance analysis tools. The emitter event-analysis system has two
primary functions:

• Event Data Production—During simulation, the simulator can identify a wide variety of archi-
tectural and programmatic events that influence system and software performance. Using
configuration commands, you can request the simulator to emit records for a specific set of
events into a circular, shared memory buffer. Reader programs attach to the shared memory
buffer to consume these event records. Examples of emitter events include instruction execu-
tion, memory-reference addresses, and cache hits and misses.

• Event Processing—There are one or more readers that analyze event records from this
buffer. The readers typically compute performance measurements and statistics, visualize
system and application behavior, and capture traces for post-processing. The simulator is

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 160 of 183

Version 1.0
October 21, 2005

prepackaged with a set of prebuilt sample emitter readers, and users can develop and cus-
tomize their own emitter readers.

Figure 5-21 shows the emitter selections available by clicking the Emitters button on the GUI
screen. Figure 5-22 on page 161 shows the emitter architecture. Emitters can be used in any
simulator mode. The writer toggle buttons in the GUI are used to enable or disable production of
the associated event to the circular buffer. An emitter reader program is needed to receive the
events from the circular buffer using the emitter reader API.

The emitter framework is meant for programmers who wish to conduct performance analyses or
capture traces by developing custom reader programs.

Figure 5-21. Emitters

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 161 of 183

The types of events that can be tracked are described in systemsim-sti-
release/emitter/systemsim-sti-release/emitter/emitter/sti_emitter_data_t.h. The cate-
gories of events are:

• Begin/end markers (Header, Footer)

• PPU and SPU instructions

• Cache hits or misses

• Process/thread state (create, resume, kill, and so forth)

• Translation Lookaside Buffer (TLB), Segment Lookaside Buffer (SLB), Effective-to-Real
Address Translation (ERAT) operations

• Device operations (disk)

• Annotations

• Transactions

5.5 SPU Performance Statistics and Semantics

The simulator collects several statistics related to SPU performance. Table 5-2 lists the perfor-
mance statistics that are available in the public SDK.

Figure 5-22. Emitter Architecture

Traces

Shared
Memory:
Circular
Buffer

of Events

Simulator
with

Emitters

Strip-Chart
Generator

Software
Profiler

Qtrace
Generator

Memory
Tracer

Table 5-2. Simulator Performance Statistics for the SPU (Page 1 of 3)

Statistic Name Meaning

performance_inst_count Instruction count (profile checkpoint sensitive), including and not including
no-ops.

performance_cycle_count Cycle count (profile checkpoint sensitive).

branch_taken Count of branch instructions taken.

branch_not_taken Count of branch instructions not taken.

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 162 of 183

Version 1.0
October 21, 2005

hint_instructions Count of branch hint instructions.

hint_instruction_hits Number of times a hint instruction predicted correctly.

ls_contention Number of cycles in which local store load/store instructions prevented
prefetch.

sbi_contention Number of cycles in which the Synergistic Bus Interface (SBI) DMA operations
prevented SPU local store access.

single_cycle Number of cycles in which only one pipeline executed an instruction.

dual_cycle Number of cycles in which both pipelines executed an instruction.

sp_issue_block Number of cycles in which dual-issue was prevented, due to an SP-class
instruction not being available to issue.

dp_issue_block Number of cycles in which dual-issue was prevented, due to a DP-class
instruction not being available to issue.

cross_issue_cycle Number of cycles in which issue pipe{0,1} sent an instruction to the opposite
issue pipe{1, 0}.

nop_inst_count Number of NOP instructions executed (NOP, LNOP, HBR, and HBC).

src0_dep_cycle Number of cycles in which dual-issue was prevented, due to operand depen-
dencies between the two instructions that were ready to issue simultaneously.

nop_cycle Number of cycles in which a NOP was executed in either pipeline.

branch_stall_cycles Number of cycles stalled due to branch miss.

prefetch_miss_stall_cycles Number of cycles instruction issue stalled due to prefetch miss.

pipe_dep_stall_cycles Number of cycles instruction issue stalled, due to source operand dependen-
cies on target operands in any execution pipeline.

pipe_busy_cycles Number of cycles all execution pipelines were expected to be busy processing
in-flight instructions (unaffected by flush).

fp_resource_conflict_stall_cycles Number of cycles stalled due to floating-point unit resource conflict.

hint_stall_cycles Number of cycles stalled due to waiting for hint target.

siss_stall_cycles Number of cycles stalled due to structural execution pipe dependencies.

channel_stall_cycles Number of cycles stalled waiting for a channel operation to complete.

XXX_inst_count (see below) Number of XXX instructions executed.

XXX_dep_stall_cycles Number of cycles stalled due to a source operand dependency on a target
operand of an in-flight instruction in the XXX execution pipeline.

XXX_iss_stall_cycles Number of cycles stalled due to a structural dependency on an XXX class
instruction.

XXX_busy_cycle Total cycles the XXX execution pipeline was expected to be busy processing
in-flight instructions (unaffected by flush).

Where XXX_ (above) is one of:

FX2 SPX fixed-point unit (fixed [FX] class) instructions.

SHUF SFS shuffle and quad-rotate fixed-point unit (shuffle [SH] class) instructions.

FX3 SFX 4-cycle fixed-point unit (word rotate and shift [WS] class) instructions.

LS SLS load and store unit (load and store [LS] class) instructions.

BR SCN branch and control unit and sequencer (branch resolution [BR] class)
instructions.

Table 5-2. Simulator Performance Statistics for the SPU (Page 2 of 3)

Statistic Name Meaning

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

The Simulator
Page 163 of 183

SPR SSC Channel and DMA unit (channel interface [CH] class) instructions.

LNOP Odd pipeline (load no operation [LNOP] class) no-ops.

NOP Even pipeline (NOP class) no-ops.

FXB SFP byte operations (byte operations [BO] class) instructions.

FP6 SFP FPU single-precision (single-precision floating-point [SP] class) instruc-
tions.

FP7 SFP integer (floating-point integer [FI] class) instructions.

FPD SFP FPU double-precision (double-precision floating-point [DP] class) instruc-
tions.

Table 5-2. Simulator Performance Statistics for the SPU (Page 3 of 3)

Statistic Name Meaning

Programming Tutorial

Cell Broadband Engine

The Simulator
Page 164 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 165 of 183

6. Glossary

ABI Application Binary Interface. This is the standard that a program follows to
ensure that code generated by different compilers (and perhaps linking
with various, third-party libraries) will run correctly on the Cell Broadband
Engine. The ABI defines data types, register use, calling conventions,
object formats.

API Application Program Interface.

AOS Array of structures. A method of organizing related data values. Also
called vector-across form. See SOA.

ATO Atomic Unit. Part of an SPE’s MFC. It is used to synchronize with other
processor units.

atomic operation A set of operations, such as read-write, that are performed as an uninter-
rupted unit.

atomic access A bus access that attempts to be part of an atomic operation.

b Bit.

B Byte.

BIC Bus Interface Controller. Part of the Cell Broadband Engine Interface
(BEI) to I/O.

BIF Cell Broadband Engine Interface. The EIB’s internal communication
protocol. It supports coherent interconnection to other Cell Broadband
Engines and BIF-compliant I/O devices, such as memory subsystems,
switches, and bridge chips. See IOIF.

BIU Bus Interface Unit. Part of the PPE’s interface to the EIB.

branch hint A type of branch instruction that provides a hint of the address of the
branch instruction and the address of the target instruction. Hints are
coded by the programmer or inserted by the compiler. The branch is
assumed taken to the target. Hints are used in place of branch prediction
in the SPU.

built-ins A type of C and C++ programming language intrinsic that is similar to
generic intrinsics, except built-ins map to more than one SPU instruction.
These intrinsics are prefaced by spu_.

cache High-speed memory close to a processor. A cache usually contains
recently-accessed data or instructions, but certain cache-control instruc-
tions can lock, evict, or otherwise modify the caching of data or instruc-
tions.

caching-inhibited A memory update policy in which the cache is bypassed, and the load or
store is performed to or from main memory.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 166 of 183

Version 1.0
October 21, 2005

CBEA Cell Broadband Engine Architecture. The Cell Broadband Engine is one
implementation of the Cell Broadband Engine Architecture.

Cell Broadband
Engine Linux task

A task running on the PPE and SPE. Each such task has one or more
Linux threads and some number of SPE threads. All the Linux threads
within the task share the task’s resources, including access to the SPE
threads.

Cell Broadband
Engine program

A PPE program with one or more embedded SPE programs.

channel Channels are unidirectional, function-specific registers or queues. They
are the primary means of communication between an SPE’s SPU and its
MFC, which in turn mediates communication with the PPE, other SPEs,
and other devices. These other devices use MMIO registers in the desti-
nation SPE to transfer information on the channel interface of that desti-
nation SPE.

Specific channels have read or write properties, and blocking or
nonblocking properties. Software on the SPU uses channel commands to
enqueue DMA commands, query DMA and processor status, perform
MFC synchronization, access auxiliary resources such as the decre-
menter (timer), and perform interprocessor-communication via mailboxes
and signal-notification.

CL The class-ID parameter in an MFC command.

coherence Refers to memory and cache coherence. The correct ordering of stores to
a memory address, and the enforcement of any required cache write-
backs during accesses to that memory address. Cache coherence is
implemented by a hardware snoop (or inquire) method, which compares
the memory addresses of a load request with all cached copies of the
data at that address. If a cache contains a modified copy of the requested
data, the modified data is written back to memory before the pending load
request is serviced.

control plane Refers to software or hardware that manages the operation of data-plane
software or hardware, by allocating resources, updating tables, handling
errors, and so forth. See data-plane.

cycle Unless otherwise specified, one tick of the PPE clock.

data plane Refers to software or hardware that operates on a stream or other large
body of data and is managed by control-plane software or hardware. See
control-plane.

decrementer A register that counts down each time an event occurs. Each SPU
contains dedicated 32-bit decrementers for scheduling or performance
monitoring, by the program or by the SPU itself.

D-ERAT Data ERAT.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 167 of 183

DMA Direct Memory Access. A technique for using a special-purpose controller
to generate the source and destination addresses for a memory or I/O
transfer.

DMAC Direct Memory Access Controller. A controller that performs DMA trans-
fers.

DMA command A type of MFC command that transfers or controls the transfer of a
memory location containing data or instructions. See MFC command.

DMA list A sequence of transfer elements (or list entries) that, together with an
initiating DMA-list command, specifies a sequence of DMA transfers
between a single area of LS and discontinuous areas in main storage.
Such lists are stored in an SPE’s LS, and the sequence of transfers is
initiated with a DMA-list command such as getl or putl. DMA-list
commands can only be issued by programs running on an SPE, but the
PPE or other devices can create and store the lists in an SPE’s LS. DMA
lists can be used to implement scatter-gather functions between main
storage and the LS.

DMA-list command A type of MFC command that initiates a sequence of DMA transfers spec-
ified by a DMA list stored in an SPE’s LS. See DMA list.

DMA queue A set of two queues for holding DMA-transfer commands. The SPE’s
queue has 16 entries. The PPE’s queue has four entries (two plus an
additional two for the L2 cache) for SPE-requested DMA commands, and
eight entries for PPE-requested DMA commands.

dual-issue Issuing two instructions at once, under certain conditions. See fetch
group.

EA Effective address.

ECC Error-Correcting Code.

effective address An address generated or used by a program to reference memory. A
memory-management unit translates an effective address (EA) to a
virtual address (VA), which it then translates to a real address (RA) that
accesses real (physical) memory. The maximum size of the effective-
address space is 264 bytes.

EIB Element Interconnect Bus. The on-chip coherent bus that handles
communication between the PPE, SPEs, memory, and I/O devices (or a
second Cell Broadband Engine). The EIB is organized as four unidirec-
tional data rings (two clockwise and two counterclockwise).

ELF Executable and Linking Format. The standard object format for many
UNIX operating systems, including Linux. Originally defined by AT&T and
placed in public domain. Compilers generate ELF files. Linkers link to files
with ELF files in libraries. Systems run ELF files.

ERAT Effective-to-Real Address Translation, or a buffer or table that contains
such translations, or a table entry that contains such a translation.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 168 of 183

Version 1.0
October 21, 2005

even pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 0.

exception An error, unusual condition, or external signal that may alter a status bit
and will cause a corresponding interrupt, if the interrupt is enabled. See
interrupt.

fence An option for a barrier ordering command that causes the processor to
wait for completion of all MFC commands before starting any commands
queued after the fence command. It does not apply to these immediate
commands: getllar, putllc, and putlluc.

fetch group A doubleword-aligned instruction pair. Dual-issue occurs when a fetch
group has two instructions that are ready to issue, and when the first
instruction can be issued on the even pipeline and the second instruction
can be issued on the odd pipeline.

FIFO First In First Out. Refers to one way elements in a queue are processed.
It is analogous to “people standing in line.”

flat register
architecture

An architecture with only one register file, in which all types of operands
are stored. Also called a unified register file. By contrast, conventional
register architectures have separate sets of special-purpose registers for
such things as scalar operands, floating-point operands, vectors, branch-
and-link values, conditions, and so forth. The SPEs have a flat register
architecture. The PPE has a conventional register architecture.

FlexIO Rambus FlexIO bus, a high performance I/O bus.

FPU Floating-point unit.

FXU In the PPE, the fixed-point integer unit. In the SPU, the fixed-point excep-
tion unit.

gdb GNU debugger. A modified version of gdb, ppu-gdb, starts a Cell Broad-
band Engine program. The PPE component runs first and uses system
calls, hidden by the SPU programming library, to move the SPU compo-
nent of the Cell Broadband Engine program into the local store of the
SPU and start it running.

generic intrinsics C and C++ language extensions that map to one or more specific intrin-
sics. (See intrinsic.) All generic SPU intrinsics are prefaced by the string,
spu_. For example, the generic intrinsic that implements the stop
assembly instruction is named spu_stop.

guarded Prevented from responding to speculative loads and instruction fetches.
The operating system typically implements guarding, for example, on all
I/O devices.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 169 of 183

hypervisor A control (or virtualization) layer between hardware and the operating
system. It allocates resources, reserves resources, and protects
resources among (for example) sets of SPEs that may be running under
different operating systems.

The Cell Broadband Engine has three operating modes: user, supervisor
and hypervisor. The hypervisor performs a meta-supervisor role that
allows multiple independent supervisors’ software to run on the same
hardware platform.

For example, the hypervisor allows both a real-time operating system and
a traditional operating system to run on a single PPE. The PPE can then
operate a subset of the SPEs in the Cell Broadband Engine with the real-
time operating system, while the other SPEs run under the traditional
operating system.

IEEE 754 The IEEE 754 floating-point standard. A standard written by the Institute
of Electrical and Electronics Engineers that defines operations and repre-
sentations of binary floating-point arithmetic.

I-ERAT Instruction ERAT.

imprecise exception A synchronous exception that does not adhere to the precise exception
model. In the Cell Broadband Engine, single-precision floating-point oper-
ations generate imprecise exceptions. See precise exception.

in-order In program order. The PPE and SPEs execute instructions in-order; that
is, they do not rearrange them (out-of-order).

instruction latency The total number of clock cycles necessary to execute an instruction and
produce the results of that instruction.

interrupt A change in machine state in response to an exception. See exception.

intrinsic A C-language command, in the form of a function call, that is a convenient
substitute for one or more inline assembly-language instructions. Intrin-
sics make the underlying ISA accessible from the C and C++ program-
ming languages.

IOC I/O Interface Controller.

I/O device Input/output device. From software’s viewpoint, I/O devices exist as
memory-mapped registers that are accessed in main-storage space by
load/store instructions. The operating system typically configures access
to I/O devices as caching-inhibited and guarded.

IOIF Cell Broadband Engine I/O Interface. The EIB’s noncoherent protocol for
interconnection to I/O devices. See BIF.

JSRE Joint Software Reference Environment. An organization of the Cell
Broadband Engine developers pursuing the development of reference
software and standards for the Cell Broadband Engine.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 170 of 183

Version 1.0
October 21, 2005

JTAG Joint Test Action Group. A test-access port defined by the IEEE 1149
standard.

KB Kilobyte.

L1 Level-1 cache memory. The closest cache to a processor, measured in
access time.

L2 Level-2 cache memory. The second-closest cache to a processor,
measured in access time. An L2 cache is typically larger than an L1
cache.

LA An LS address of a DMA list. It is used as a parameter in an MFC
command.

latency The time between when a function (or instruction) is called and when it
returns. Programmers often optimize code so that functions return as
quickly as possible; this is referred to as the low-latency approach to opti-
mization. Low-latency designs often leave the processor data-starved,
and performance can suffer.

libspe.a An SPU-thread runtime management library.

list element See transfer element.

lnop A NOP in an SPU’s odd pipeline. It can be inserted in code to align for
dual issue of subsequent instructions.

local store The 256-KB local store (LS) associated with each SPE. It holds both
instructions and data.

loop unrolling A programming optimization that increases the step of a loop, and dupli-
cates the expressions within a loop to reflect the increase in the step. This
can improve instruction scheduling and memory access time.

LS See local store.

LSA Local Store Address. An address in the LS of an SPU, by which programs
running in the SPU and DMA transfers managed by the MFC access the
LS.

Linux thread A thread running on the PPE in the Linux operating-system environment.

list element Same as transfer element. See DMA list.

mailbox A queue in an SPE’s MFC for exchanging 32-bit messages between the
SPE and the PPE or other devices. Two mailboxes (the SPU Write
Outbound Mailbox and SPU Write Outbound Interrupt Mailbox) are
provided for sending messages from the SPE. One mailbox (the SPU
Read Inbound Mailbox) is provided for sending messages to the SPE.

main memory See main storage.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 171 of 183

main storage The effective-address (EA) space. It consists physically of real memory
(whatever is external to the memory-interface controller, including both
volatile and nonvolatile memory), SPU LSs, memory-mapped registers
and arrays, memory-mapped I/O devices (all I/O is memory-mapped),
and pages of virtual memory that reside on disk. It does not include
caches or execution-unit register files.

See local store.

makefile A descriptive file used by the make command in which the user specifies:
(a) target program or library, (b) rules about how the target is to be built,
(c) dependencies which, if updated, require that the target be rebuilt.

MB Megabyte.

memory channel An interface to external memory chips. The Cell Broadband Engine
supports two Rambus Extreme Data Rate (XDR) memory channels.

memory-mapped Mapped into the Cell Broadband Engine’s addressable-memory space.
Registers, SPE local stores (LSs), I/O devices, and other readable or writ-
able storage can be memory-mapped. Privileged software does the
mapping.

method stub A small piece of code used to stand in for some other code.

MIC Memory Interface Controller. The Cell Broadband Engine’s MIC supports
two memory channels.

MFC Memory Flow Controller. It is part of an SPE and provides two main func-
tions: moves data via DMA between the SPE’s local store (LS) and main
storage, and synchronizes the SPU with the rest of the processing units in
the system.

MFC proxy
commands

MFC commands issued using the MMIO interface.

MMIO Memory-Mapped Input/Output. See memory-mapped.

MMU Memory Management Unit. A functional unit that translates between
effective addresses (EAs) used by programs and real addresses (RAs)
used by physical memory. The MMU also provides protection mecha-
nisms and other functions.

M:N thread model A programming model in which M threads are distributed over N
processor elements.

MPI Message Passing Interface.

MSR Machine State Register.

MT Multithreading. See multithreading.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 172 of 183

Version 1.0
October 21, 2005

multithreading Simultaneous execution of more than one program thread. It is imple-
mented by sharing one software process and set of execution resources
but duplicating the architectural state (registers, program counter, flags,
and so forth) of each thread.

NaN Not-a-Number. A special string of bits encoded according to the IEEE 754
Floating-Point Standard. A NaN is the proper result for certain arithmetic
operations; for example, 0/0 = NaN. There are two types of NaNs, quiet
NaNs and signaling NaNs. Only the signaling NaN raises a floating-point
exception when it is generated.

NCU Non-Cacheable Unit.

odd pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 1.

OpenMP An API that supports multiplatform, shared-memory parallel program-
ming.

overlay SPU code that is dynamically loaded and executed by a running SPU
program.

page table A table that maps virtual addresses (VAs) to real addresses (RA) and
contains related protection parameters and other information about
memory locations.

PC Personal Computer.

performance
simulation

Simulation by the IBM Full System Simulator for the Cell Broadband
Engine in which both the functional behavior of operations and the time
required to perform the operations is simulated. Also called cycle-accu-
rate simulation.

pervasive logic Logic that provides power management, thermal management, clock
control, software-performance monitoring, trace analysis, and so forth.

pipelining A technique that breaks operations, such as instruction processing or bus
transactions, into smaller stages so that a subsequent stage in the pipe-
line can begin before the previous stage has completed.

plugin SPU code that is dynamically loaded and executed by running an SPU
program. Plugins facilitate code overlays.

PMD Power Management and Debug.

POSIX Portable Operating System Interface.

PowerPC Of or relating to the PowerPC Architecture or the microprocessors that
implement this architecture.

PowerPC
Architecture

A computer architecture that is based on the third generation of RISC
processors. The PowerPC architecture was developed jointly by Apple,
Motorola, and IBM.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 173 of 183

PowerPC 970 A 64-bit microprocessor from IBM in the PowerPC family. It supports both
the PowerPC and Vector/SIMD Multimedia Extension instruction sets.

PPE PowerPC Processor Element. The general-purpose processor in the Cell
Broadband Engine.

PPSS PowerPC Processor Storage Subsystem. Part of the PPE. It operates at
half the frequency of the PPU and includes an L2 cache and Bus Inter-
face Unit (BIU).

PPU PowerPC Processor Unit. The part of the PPE that includes the execution
units, memory-management unit, and L1 cache.

precise exception An exception for which the pipeline can be stopped, so instructions that
preceded the faulting instruction can complete, and subsequent instruc-
tions can be flushed and redispatched after exception handling has
completed.

preferred slot The left-most word (bytes 0, 1, 2, and 3) of a 128-bit register in an SPE.
The SIMD element in which scalar values are naturally maintained.

privileged mode Also known as supervisor mode. The permission level of operating
system instructions. The instructions are described in PowerPC Architec-
ture, Book III and are required of software that accesses system-critical
resources.

problem state The permission level of user instructions. The instructions are described
in PowerPC Architecture, Books I and II and are required of software that
implements application programs.

PTE Page Table Entry. See page table.

QoS Quality of Service. It usually relates to a guarantee of minimum bandwidth
for streaming applications.

RA Real Address.

real address An address for physical storage, which includes physical memory, the
PPE’s L1 and L2 caches, and the SPE’s local stores (LSs) if the operating
system has mapped the LSs to the real-address space. The maximum
size of the real-address space is 242 bytes.

scalar An instruction operand characterized by a single value.

scarf hint A performance hint for DMA put operations. The hint is intended to allow
another processor or device, such as the PPE, to capture the data into its
cache as the data is transferred to storage.

SCN SPU Control Unit. A unit in the SPU that handles branches and program
control.

SDK Software Development Kit. Sample software for the Cell Broadband
Engine that includes the Linux operating system.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 174 of 183

Version 1.0
October 21, 2005

semi-pipelined A processor is semi-pipelined if it fetches the next instruction while
decoding and executing the current instruction.

SFP SPU Floating-Point Unit. It handles single-precision and double-precision
floating-point operations.

SFX SPU Even Fixed-Point Unit. It handles arithmetic, logical, and shift opera-
tions.

SFS SPU Odd Fixed-Point Unit. It handles shuffle operations.

signal Information sent on a signal-notification channel. These channels are
inbound (to an SPE) registers. They can be used by the PPE or other
processor to send information to an SPE. Each SPE has two 32-bit
signal-notification registers, each of which has a corresponding memory-
mapped I/O (MMIO) register into which the signal-notification data is
written by the sending processor. Unlike mailboxes, they can be config-
ured for either one-to-one or many-to-one signalling.

These signals are unrelated to UNIX signals. See channel and mailbox.

signal notification See signal.

SIMD Single Instruction Multiple Data. Processing in which a single instruction
operates on multiple data elements that make up a vector data-type. Also
known as vector processing. This style of programming implements data-
level parallelism.

SIMDize Transform scaler code to vector code.

single-ported Single-ported memory allows only one access at a time.

SLB Segment Lookaside Buffer. It is used to map an effective address (EA) to
a virtual address (VA).

SLS SPU Load and Store Unit. It handles loads, stores, and branch hints, and
it includes the SPE’s local store (LS).

SMM Synergistic Memory Management Unit. It translates EAs to RAs in an
SPU.

snoop To compare an address on a bus with a tag in a cache, in order to detect
operations that violate memory coherency. Also called inquire.

SOA Structure of arrays. A method of organizing related data values. Also
called parallel-array form. See AOS.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 175 of 183

software-managed
memory

An SPE’s local store (LS), which is filled from main memory using soft-
ware-initiated DMA transfers. Although most processors reduce latency
to memory by using caches, an SPE uses its DMA-filled LS. This
approach provides a high degree of control for real-time programming.
However, this approach is advantageous only if the DMA transfer-size is
sufficiently large and the DMA command is issued well before the data is
needed, because the latency and instruction overhead associated with
DMA transfers exceeds the latency of servicing a cache miss.

specific intrinsic A type of C and C++ language extension that maps one-to-one with a
single SPU assembly instruction. All SPU specific intrinsics are named by
prefacing the SPU assembly instruction with si_.

SPE Synergistic Processor Element. It includes an SPU, an MFC, and an LS.

SPE thread A thread running on an SPE. Each such thread has its own 128 x 128-bit
register file, program counter, and MFC Command Queues, and it can
communicate with other execution units (or with effective-address
memory through the MFC channel interface).

SPI Serial Peripheral Interface. Connects to pervasive logic elements.

splat To replicate, as when a single scalar value is replicated across all
elements of an SIMD vector.

SPR Special-Purpose Register

SPU Synergistic Processor Unit. The part of an SPE that executes instructions
from its local store (LS).

SPU ISA SPU Instruction Set Architecture. An SIMD instruction set executed in
SPEs that is similar to the Vector/SIMD Multimedia Extension instruction
set executed by the PPE.

spulet A standalone SPU program that is managed by a PPE executive.

SPE thread A thread scheduled and run on an SPE. A program has one or more SPE
threads. Each thread has its own SPU local store (LS), register file,
program counter, and MFC command queues.

SSC SPU Channel and DMA Unit. It handles all input and output functions for
an SPU.

SSE Single SIMD Extensions. An Intel instruction set.

sticky bit A bit that is set by hardware and remains set until cleared by software.

stub See method stub.

supervisor mode See privileged mode.

synchronization The order in which storage accesses are performed.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 176 of 183

Version 1.0
October 21, 2005

system storage All program-addressable memory in a system, including main storage
(main memory), the PPE’s L1 and L2 caches, and the SPE’s local store
(LS).

tag group A group of DMA commands. Each DMA command is tagged with a 5-bit
tag group identifier. Software can use this identifier to check or wait on the
completion of all queued commands in one or more tag groups. All DMA
commands except getllar, putllc, and putlluc are associated with a Tag
Group.

Tcl Tool Command Language. An interpreted script language used to
develop GUIs, application prototypes, Common Gateway Interface (CGI)
scripts, and other scripts.

TG A tag-group ID parameter in an MFC command.

thread A sequence of instructions executed within the global context (shared
memory space and other global resources) of a process that has created
(spawned) the thread. Multiple threads (including multiple instances of the
same sequence of instructions) can run simultaneously, if each thread
has its own architectural state (registers, program counter, flags, and
other program-visible state).

Each SPE can support only a single thread at any one time. The multiple
SPEs can simultaneously support multiple threads. The PPE supports
two threads at any one time, without the need for software to create the
threads. The PPE does this by duplicating architectural state.

throughput The number of instructions completed per cycle. A high-throughput appli-
cation design seeks to keep pipelines full. To improve throughput, func-
tions may need to do nontrivial amounts of work and operate with good
locality of data reference.

TKM Token Management Unit. Part of the Element Interconnect Bus (EIB) that
software can program to regulate the rate at which particular devices are
allowed to make EIB command requests.

TLB Translation Lookaside Buffer. An on-chip cache that translates virtual
addresses (VAs) to real addresses (RAs). A TLB caches page-table
entries for the most recently accessed pages, thereby eliminating the
necessity to access the page table from memory during load/store opera-
tions.

transfer element See DMA list.

TS The transfer-size parameter in an MFC command.

unified register file A register file in which all data types—integer, single-precision and
double- floating-point, logicals, bytes, and others—use the same register
file. The SPEs (but not the PPE) have unified register files.

user mode The mode in which problem state software runs. See problem state.

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Glossary
Page 177 of 183

VA Virtual Address.

vector An instruction operand containing a set of data elements packed into a
one-dimensional array. The elements can be fixed-point or floating-point
values. Most Vector/SIMD Multimedia Extension and SPU SIMD instruc-
tions operate on vector operands. Vectors are also called SIMD operands
or packed operands.

Vector/SIMD
Multimedia
Extension

The SIMD instruction set of the PowerPC Architecture, supported on the
PPE.

virtual address An address to the virtual-memory space, which is much larger than the
physical address space and includes pages stored on disk. It is translated
from an effective address (EA) by a segmentation mechanism and used
by the paging mechanism to obtain the real address (RA). The maximum
size of the virtual-address space is 265 bytes.

virtual memory The address space created using the memory management facilities of a
processor.

virtual mode The mode in which virtual-address translation is enabled.

VPN Virtual Page Number. The number of the page in virtual memory.

VXU Vector/SIMD Multimedia Extension unit.

word Four bytes.

workload A set of code samples in the SDK that characterizes the performance of
the architecture, algorithms, libraries, tools, and compilers.

writeback flag A flag written by an SPE to main storage that notifies the PPE of a
specific event.

XDR Rambus XDR DRAM memory technology

XIO A Rambus XDR Extreme Data Rate I/O (XIO) memory channel.

xlc An IBM optimizing C compiler.

Programming Tutorial

Cell Broadband Engine

Glossary
Page 178 of 183

Version 1.0
October 21, 2005

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Index
Page 179 of 183

7. Index

Symbols

__builtin_expect, 84
_align_hint, 84

A

ABI (Application Binary Interface), 73, 89
addressing modes, 31, 34
aligned, 84
AOS (array of structures), 70, 104
Application Binary Interface (ABI), 73, 89
array of structures (AOS), 70, 104
asymmetric-thread runtime model, 134
asynchronous execution, 129
auto-vectorizing compiler, 93

B

barrier commands, 93
barriers and fences, 87
basic blocks, 94
BHT (branch history table), 96
big-endian ordering, 21, 68
blocking channel, 65
branch hints, 94, 96
branch history table (BHT), 96
branch mispredicts, 96
branch target instruction cache (BTIC), 96
BTIC (branch target instruction cache), 96
built-Ins, 74
byte ordering, 21

C

C/C++ language extensions, 35
CBEA (Cell Broadband Engine Architecture), 13, 20
Cell Broadband Engine Architecture (CBEA), 13, 20
Cell Broadband Engine Linux task, 23
channel domains, 43
channels, 63
checkpoints, 157
clamping, 34
clock cycles, 114
command-line mode, 154
commands, 85, 87
communication between PPE and SPEs, 46
compatibility, 33
compiler directives, 84
composite intrinsics, 74, 80

computation acceleration model, 133
Condition Register (CR), 30
console window, 138
control plane, 15
Count Register (CTR), 30
CR (Condition Register), 30
CTR (Count Register), 30
cycle-accurate simulation, 137, 153

D

data plane, 15
data types, 35
DCE (Distributed Computing Environment), 130
debugging, 55
decrementer, 63
denormals, 60
dependencies, 113, 116
device extension model, 133
Direct Memory Access Controller (DMAC), 62
directives, 84
directory structure, 48
Distributed Computing Environment (DCE), 130
DMA commands, 45, 85
DMA list, 89
DMA list programming examples, 89
DMA transfers, 43, 57, 116
DMAC (Direct Memory Access Controller), 62
double buffering, 92
dual-issue, 62, 113
dynamic branch prediction, 98
dynamic timing analysis, 115

E

EA (effective address), 30, 31, 44, 73, 88, 138
ECC (error-correcting code), 62
effective address (EA), 30, 31, 44, 73, 88, 138
Effective-to-Real Address Translation, 161
EIB (element interconnect bus), 17
element interconnect bus (EIB), 17
emitters, 159
error-correcting code (ECC), 62
executables, 47

F

fast mode, 148
fenced command option, 93

Programming Tutorial

Cell Broadband Engine

Index
Page 180 of 183

Version 1.0
October 21, 2005

fetch group, 62
Fixed-Point Exception Register (XER), 30
Floating-Point Registers (FPRs), 30
Floating-Point Status and Control Register (FPSCR), 30,

59
FPRegs, 142
FPRs (Floating-Point Registers), 30
FPSCR (Floating-Point Status and Control Register), 30,

59
frequency, 15
fscrrd instruction, 60
fscrwr instruction, 60
function offload model, 127
functional simulation, 137
functions, 128

G

General-Purpose Registers (GPRs), 30, 59
generic intrinsics, 36, 74, 77
get commands, 85
GPRegs, 142
GPRs (General-Purpose Registers), 30, 59
graphics rounding mode, 100

H, I, J, K

HBR (hint for branch), 97
hint for branch (HBR), 97
hint-trigger address, 97
I/O devices, 18
IBM Full System Simulator for the Cell Broadband Engine,

51, 122, 137
IDL (Interface Definition Language), 128, 130
IEEE 754, 59, 99
in-order, 19, 32, 62, 64
instruction mode, 147
instruction types, 32, 34
Interface Definition Language (IDL), 128, 130
inter-loop dependencies, 116
intrinsics, 22, 35, 40
issue, 113
Joint Software Reference Environment (JSRE), 74
JSRE (Joint Software Reference Environment), 74

L

latency, 61
libraries, 27, 129
Link Register (LR), 30
Linux, 11
Linux command prompt, 138
Linux mode, 138

Linux run directory, 51, 139, 141, 154
Linux task, 23
Linux threads, 23
list element, 89
Load-Exec, 147
local store domains, 43
loop unrolling, 116
loop-carried dependencies, 116
LR (Link Register), 30

M

M:N thread model, 24
mailboxes, 66
main storage domain, 43
many-to-one signaling, 67
mapping PPE to SPEs, 99
memory, 15
Memory Flow Controller (MFC), 43, 57
method stub, 127
MFC (Memory Flow Controller), 43, 57
MFC Command-Parameter Registers, 44
MFC commands, 84
microthreads, 135
model instruction, 147
model pipeline, 147
multibuffering, 92, 116
multi-stage pipeline model, 25

N

NaN (not-a-number), 60
non-blocking channel, 65
not-a-number (NaN), 60

O

one-to-one signaling, 67
Open Group, 130
Open Systems Foundation, 130
optimizations, 116
OR mode, 67
OSF DCE, 130
overlay, 135
overwrite mode, 67

P

packed operands, 21
parallel-array form, 104
parallel-stages model, 25
partitioning, 24

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Index
Page 181 of 183

PCAddressing, 142
PCC Core window, 143
PCCCore, 142
PCTrack, 142
performance, 14
performance monitoring, 153
performance simulation, 137
pipeline, 113
pipeline mode, 147
plugin, 135
power, 14
PowerPC instructions, 31
PowerPC Processor Element (PPE), 18
PPE (PowerPC Processor Element), 18
PPE instruction set, 31
PPE registers, 29
PPE vs. SPE, 81
PPE-centric models, 25
ppu-gdb, 55
precise trap, 60
precision, 99
predication, 95
preferred slot, 68, 80
problem-state registers, 29, 59
procedures, 128
profile checkpoints, 157
programming, 20
programming models, 127
programming tips, 123
put commands, 85

R

registers, 29, 59
remote procedure call (RPC) model, 127
restrict, 84
rounding, 60
RPC (remote procedure call), 127
RPC runtime library, 129
runtime environment, 24

S

saturation, 34
scalar loads, 116
scalar operands, 80
scatter-gather, 89
SDK (software development kit), 26
Segment Lookaside Buffer, 161
select-bits (selb) instruction, 95
select-bits intrinsic, 95
service model, 25, 26
SFP (SPU Floating-Point Unit), 59
shared-memory multiprocessor model, 134

signal notification, 47, 67
signals, 67, 133
SIMD (single-instruction, multiple-data vectorization), 21
SIMD operands, 21
SIMDization, 22
SIMDize, 102
simulation, 137
simulator, 51, 122, 137
simulator command window, 138
simulator prompt, 154
single-instruction, multiple-data vectorization (SIMD), 21
SOA (structure of arrays), 71, 104, 105
software development kit (SDK), 26
Sony, Toshiba, and IBM (STI), 13
SPE (Synergistic Processor Element), 19, 57
SPE channels, 63
SPE plugins, 135
SPE programming, 45
SPE registers, 59
SPE thread, 23, 135
SPE vs. PPE, 81
SPE-centric model, 25
specific intrinsics, 36, 74
SPU (Synergistic Processor Unit), 57
SPU Floating-Point Unit (SFP), 59
SPU instruction set, 68
SPU Instruction Set Architecture (SPU ISA), 68
SPU ISA (SPU Instruction Set Architecture), 68
spu_mffpscr intrinsic, 60
spu_mtfpscr intrinsic, 60
SPUChannel, 143
SPUCore, 143
spu-gdb, 55
SPUMemory, 143
SPUStats, 146
SPUTrack, 143
standalone mode, 138
static branch prediction, 98
static timing analysis, 113
STI (Sony, Toshiba, and IBM), 13
sticky bit, 60
storage barriers, 47
storage domains, 43
streaming model, 133
structure of arrays (SOA), 71, 104, 105
stub, 127
synchronization commands, 87
synchronous execution, 129
Synergistic Processor Element (SPE), 19, 57
Synergistic Processor Unit (SPU), 57

T

tag group, 87
task, 23

Programming Tutorial

Cell Broadband Engine

Index
Page 182 of 183

Version 1.0
October 21, 2005

Tcl (Tool Command Language), 137
Tcl commands, 137
thread, 23, 135
thread model, 23, 24
timing analysis, 113, 115
timing simulation, 137
Tool Command Language (Tcl), 137
transfer elements, 86, 89
truncation, 60

U, V, W

unified register file, 58
user threads, 135
user-level tasks, 135
user-mode thread model, 135
vector, 21
vector data types, 35, 36
Vector Multimedia Registers (VMRs), 30
vector operands, 21

Vector Save Register (VRSAVE), 30
Vector Status and Control Register (VSCR), 30
vector types, 35
vector/SIMD multimedia extension intrinsics, 40
vector/SIMD multimedia extension vector types, 35
vector/SIMD multimedia extensions, 18
vector-across form, 104
vectorization, 22
VMRs (Vector Multimedia Registers), 30
VRSAVE (Vector Save Register), 30
VSCR (Vector Status and Control Register), 30

X

XER (Fixed-Point Exception Register), 30

Z

zero, 60

Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Revision Log
Page 183 of 183

8. Revision Log

Revision Date Version Contents of Modification

October 21, 2005 1.0 Initial release.

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Preface
	Related Publications

	1. Overview of the Cell Broadband Engine
	1.1 Introduction
	1.1.1 Background and Motivations
	1.1.2 Scaling the Three Performance-Limiting Walls
	1.1.2.1 The Power Wall
	1.1.2.2 The Memory Wall
	1.1.2.3 The Frequency Wall
	1.1.2.4 The Cell Broadband Engine Solution

	1.2 Architectural Overview
	1.2.1 PowerPC Processor Element
	1.2.2 Synergistic Processor Elements

	1.3 Programming Overview
	1.3.1 Byte Ordering and Bit Numbering
	1.3.2 SIMD Vectorization
	1.3.3 SIMD C-Language Intrinsics
	1.3.4 Threads and Tasks
	1.3.5 Runtime Environment
	1.3.6 Application Partitioning

	1.4 Software Development Kit
	1.4.1 Tools
	1.4.2 Directory Structure
	1.4.3 Libraries

	2. The PPE and the Programming Process
	2.1 PPE Registers
	2.2 PPE Instruction Sets
	2.2.1 PowerPC Instructions
	2.2.1.1 Addressing Modes
	2.2.1.2 Instruction Types
	2.2.1.3 Compatibility with Existing PowerPC Code

	2.2.2 Vector/SIMD Multimedia Extension Instructions
	2.2.2.1 Addressing Modes
	2.2.2.2 Instruction Types

	2.2.3 C/C++ Language Extensions (Intrinsics)
	2.2.3.1 Vector Data Types
	2.2.3.2 Vector Intrinsics

	2.2.4 Programming with Vector/SIMD Multimedia Extension Intrinsics
	2.2.4.1 A Simple Example
	2.2.4.2 An Array-Summing Example

	2.3 The PPE and the SPEs
	2.3.1 Storage Domains
	2.3.2 Issuing DMA Commands from the PPE
	2.3.3 Creating Threads for the SPEs
	2.3.4 Communication Between the PPE and SPEs

	2.4 Developing Code for the Cell Broadband Engine
	2.4.1 Producing a Simple CBE Program
	2.4.2 Running the Program in the Simulator
	2.4.3 Debugging Programs

	3. Programming the SPEs
	3.1 SPE Configuration
	3.1.1 Synergistic Processor Unit
	3.1.1.1 SPE Registers
	3.1.1.2 Floating-Point Operations
	3.1.1.3 Local Store
	3.1.1.4 Pipelines and Dual-Issue Rules

	3.1.2 Memory Flow Controller
	3.1.3 Channels
	3.1.3.1 Channel Instructions
	3.1.3.2 Mailboxes
	3.1.3.3 Signal Notification

	3.2 SPU Instruction Set
	3.2.1 Data Layout in Registers
	3.2.2 Instruction Types

	3.3 SPU C/C++ Language Extensions (Intrinsics)
	3.3.1 Assembly Language versus Intrinsics Comparison: An Example
	3.3.2 Intrinsic Classes
	3.3.2.1 Specific Intrinsics
	3.3.2.2 Generic Intrinsics
	3.3.2.3 Composite Intrinsics

	3.3.3 Promoting Scalar Data Types to Vector Data Types
	3.3.4 Differences Between PPE and SPE SIMD Support
	3.3.4.1 Architectural Differences
	3.3.4.2 Language-Extension Differences

	3.3.5 Compiler Directives

	3.4 MFC Commands
	3.4.1 DMA-Command Tag Groups
	3.4.2 Synchronizing DMA Transfers

	3.5 Coding Methods and Examples
	3.5.1 DMA Transfers
	3.5.2 DMA-List Transfers
	3.5.2.1 Creating the List
	3.5.2.2 Initiating the Transfers Specified in the List
	3.5.2.3 Programming Example

	3.5.3 Moving Double-Buffered Data
	3.5.4 Vectorizing a Loop
	3.5.5 Reducing the Impact of Branches
	3.5.5.1 Function-Inlining and Loop-Unrolling
	3.5.5.2 Predication Using Select-Bits Instruction
	3.5.5.3 Reducing Branch Mispredicts with Branch Hint

	3.6 Porting SIMD Code from the PPE to the SPEs
	3.6.1 Code-Mapping Considerations
	3.6.1.1 Performance
	3.6.1.2 Unmappable Constructs
	3.6.1.3 Limited Size of LS
	3.6.1.4 Equivalent Precision

	3.6.2 Simple Macro Translation
	3.6.3 Example 1: Euler Particle-System Simulation
	3.6.3.1 Initial Scalar Code
	3.6.3.2 Step 1: SIMDize the Code for Execution on the PPE
	3.6.3.3 Step 2: Port the PPE Code for Execution on the SPE
	3.6.3.4 Step 3: Parallelize Code For Execution Across Multiple SPEs

	3.7 Performance Analysis
	3.7.1 Performance Issues
	3.7.2 Example 1: Tuning SPE Performance with Static and Dynamic Timing Analysis
	3.7.2.1 Static Analysis of SPE Threads
	3.7.2.2 Dynamic Analysis of SPE Threads
	3.7.2.3 Optimizations
	3.7.2.4 Static Analysis of Optimizations
	3.7.2.5 Dynamic Analysis of Optimizations

	3.8 General SPE Programming Tips

	4. Programming Models
	4.1 Function-Offload Model
	4.1.1 Remote Procedure Call
	4.1.1.1 The RPC Runtime Library

	4.1.2 IDL Specification and Compilation
	4.1.2.1 Operation Declarations
	4.1.2.2 Parameter Declarators

	4.1.3 Simple Function-Offload Example

	4.2 Device-Extension Model
	4.3 Computation-Acceleration Model
	4.4 Streaming Model
	4.5 Shared-Memory Multiprocessor Model
	4.6 Asymmetric-Thread Runtime Model
	4.7 User-Mode Thread Model
	4.8 SPE Plugins

	5. The Simulator
	5.1 Simulator Basics
	5.1.1 Operating-System Modes
	5.1.1.1 Linux Mode
	5.1.1.2 Standalone Mode

	5.1.2 Interacting with the Simulator

	5.2 Command-Line Interface
	5.3 Graphical User Interface
	5.3.1 The Simulation Panel
	5.3.1.1 PPE Components
	5.3.1.2 SPE Components

	5.3.2 GUI Buttons

	5.4 Performance Monitoring
	5.4.1 Displaying Performance Statistics
	5.4.2 Performance Profile Checkpoints
	5.4.3 Example Program: tpa1
	5.4.4 Emitters

	5.5 SPU Performance Statistics and Semantics

	6. Glossary
	7. Index
	8. Revision Log

