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Preface

This tutorial is written for programmers who are interested in developing applications or libraries 
for the Cell Broadband Engine. It is not intended for programmers who want to develop device 
drivers, compilers, or operating systems for the Cell Broadband Engine. 

We assume that you are an experienced C/C++ programmer and are familiar with the basic 
concepts of single-instruction, multiple-data (SIMD) vector instruction sets, such as the 
PowerPC® Architecture™ Vector/SIMD Multimedia Extensions, Intel® MMX™, SSE, 3DNOW!, or 
x86-64 instruction sets.

We also assume a development environment that includes the 64-bit PowerPC Linux® operating 
system and standard Linux toolset (augmented with the Linux extensions that support the Cell 
Broadband Engine), a Cell Broadband Engine software development kit (SDK), and a Cell Broad-
band Engine system or simulator (such as the IBM Full System Simulator for the Cell Broadband 
Engine). The descriptions and examples in this tutorial are from the public SDK. The examples 
are chosen to highlight the general principals required for Cell Broadband Engine programming, 
so that an experienced programmer can apply this knowledge to other environments.

Related Publications

A list of reference materials for the Cell Broadband Engine follows.

Title Version Revision Date

Cell Broadband Engine Architecture 1.0 August 2005

Cell Broadband Engine Linux Reference Implementation 
Application Binary Interface Specification 1.0 October 2005

PowerPC User Instruction Set Architecture, Book I 2.02 January 28, 2005

PowerPC Virtual Environment Architecture, Book II 2.02 January 28, 2005

PowerPC Operating Environment Architecture, Book III 2.02 January 28, 2005

PowerPC Microprocessor Family: The Programming Environments Manual for 
64-bit Microprocessors 3.0 July 2005

PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology 
Programming Environments Manual 1.0 October 2005

Synergistic Processor Unit Instruction Set Architecture 1.0 August 2005

SPU C/C++ Language Extensions 2.0 August 2005

SPU Application Binary Interface Specification 1.3 August 2005

SPU Assembly Language Specification 1.2 August 2005
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1. Overview of the Cell Broadband Engine

1.1 Introduction

The first generation Cell Broadband Engine is the first incarnation of a new family of microproces-
sors conforming to the Cell Broadband Engine Architecture (CBEA). The CBEA is a new archi-
tecture that extends the 64-bit PowerPC Architecture. The CBEA and the Cell Broadband Engine 
are the result of a collaboration between Sony, Toshiba, and IBM, known as STI, formally started 
in early 2001.

1.1.1 Background and Motivations

Although the Cell Broadband Engine is initially intended for application in game consoles and 
media-rich consumer-electronics devices such as high-definition televisions, the architecture and 
the Cell Broadband Engine implementation have been designed to enable fundamental 
advances in processor performance. A much broader use of the architecture is envisioned. 

The Cell Broadband Engine is a single-chip multiprocessor with nine processors operating on a 
shared, coherent memory. In this respect, it extends current trends in PC and server processors. 
The most distinguishing feature of the Cell Broadband Engine is that, although all processors 
share main storage (the effective-address space that includes main memory), their function is 
specialized into two types: the PowerPC Processor Element (PPE), and the Synergistic 
Processor Element (SPE). The Cell Broadband Engine has one PPE and eight SPEs. 

The first type of processor, the PPE, is a 64-bit PowerPC Architecture core. It is fully compliant 
with the 64-bit PowerPC Architecture and can run 32-bit and 64-bit operating systems and appli-
cations. The second type of processor, the SPE, is optimized for running compute-intensive 
applications, and it is not optimized for running an operating system. The SPEs are independent 
processors, each running its own individual application programs. Each SPE has full access to 
coherent shared memory, including the memory-mapped I/O space. The designation synergistic 
for this processor was chosen carefully because there is a mutual dependence between the PPE 
and the SPEs. The SPEs depend on the PPE to run the operating system, and, in many cases, 
the top-level control thread of an application. The PPE depends on the SPEs to provide the bulk 
of the application performance. 

The SPEs are designed to be programmed in high-level languages and support a rich instruction 
set that includes extensive single-instruction, multiple-data (SIMD) functionality. However, just 
like conventional processors with SIMD extensions, use of SIMD data types is preferred, not 
mandatory. For programming convenience, the PPE also supports the PowerPC Architecture 
Vector/SIMD Multimedia Extension. 

To an application programmer, the Cell Broadband Engine looks like a 9-way coherent multipro-
cessor. The PPE is more adept at control-intensive tasks and quicker at task switching. The 
SPEs are more adept at compute-intensive tasks and slower at task switching. However, either 
processor is capable of both types of functions. This specialization has allowed increased effi-
ciency in the implementation of both the PPE and especially the SPEs. It is a significant factor in 
the approximate order-of-magnitude improvement in peak computational performance and area-
and-power efficiency that the Cell Broadband Engine achieves over conventional PC processors.
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A significant difference between the SPEs and the PPE is how they access memory. The PPE 
accesses main storage (the effective-address space that includes main memory) with load and 
store instructions that go between a private register file and main storage (which may be 
cached). However, the SPEs access main storage with direct memory access (DMA) commands 
that go between main storage and a private local memory used to store both instructions and 
data. SPE instruction-fetches and load and store instructions access this private local store, 
rather than shared main storage. This 3-level organization of storage (register file, local store, 
main storage), with asynchronous DMA transfers between local store and main storage, is a 
radical break with conventional architecture and programming models, because it explicitly paral-
lelizes computation and the transfers of data and instructions.

The reason for this radical change is that memory latency, measured in processor cycles, has 
gone up several hundredfold in the last 20 years. The result is that application performance is, in 
most cases, limited by memory latency rather than by peak compute capability or peak band-
width. When a sequential program on a conventional architecture performs a load instruction that 
misses in the caches, program execution now comes to a halt for several hundred cycles. 
Compared to this penalty, the few cycles it takes to set up a DMA transfer for an SPE is quite 
small. Conventional processors, even with deep and costly speculation, manage to get, at best, a 
handful of independent memory accesses in flight. The result can be compared to a bucket 
brigade in which a hundred people are required to cover the distance to the water needed to put 
the fire out, but only a few buckets are available. In contrast, the explicit DMA model allows each 
SPE to have many concurrent memory accesses in flight, without the need for speculation. 

The most productive SPE memory-access model appears to be the one in which a list (such as a 
scatter-gather list) of DMA transfers is constructed in an SPE’s local store, so that the SPE’s 
DMA controller can process the list asynchronously while the SPE operates on previously trans-
ferred data. In several cases, this new approach to accessing memory has led to application 
performance exceeding that of conventional processors by almost two orders of magnitude, 
significantly more than one would expect from the peak performance ratio (about 10x) between 
the Cell Broadband Engine and conventional PC processors.

It is also possible to write compilers that manage an SPE’s local store as a very large second-
level register file or to automatically bring in code when needed and present a conventional 
symmetric multiprocessing (SMP) model. Although such a compiler exists, at least in prototype 
form, it does not today result in the most optimal application performance. Hence, this tutorial 
focuses on approaches to programming the Cell Broadband Engine that expose the local store 
and the asynchronous DMA-transfer commands. 

1.1.2 Scaling the Three Performance-Limiting Walls

The Cell Broadband Engine overcomes three important limiters of contemporary microprocessor 
performance—power use, memory use, and processor frequency. 

1.1.2.1 The Power Wall

Increasingly, microprocessor performance is limited by achievable power dissipation rather than 
by the number of available integrated-circuit resources (transistors and wires). Thus, the only 
way to significantly increase the performance of microprocessors is to improve power efficiency 
at about the same rate as the performance increase.
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One way to increase power efficiency is to differentiate between (a) processors optimized to run 
an operating system and control-intensive code, and (b) processors optimized to run compute-
intensive applications. The Cell Broadband Engine does this by providing a general-purpose 
PPE to run the operating system and other control-plane code, and eight SPEs specialized for 
computing data-rich (data-plane) applications. 

1.1.2.2 The Memory Wall

On multigigahertz symmetric multiprocessors—even those with integrated memory controllers—
latency to DRAM memory is currently approaching 1,000 cycles. As a result, program perfor-
mance is dominated by the activity of moving data between main storage (the effective-address 
space that includes main memory) and the processor. Increasingly, compilers and even applica-
tion writers must manage this movement of data explicitly, even though the hardware cache 
mechanisms are supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long main-memory laten-
cies: (a) a 3-level memory structure (main storage, local stores in each SPE, and large register 
files in each SPE), and (b) asynchronous DMA transfers between main storage and local stores. 

These features allow programmers to schedule simultaneous data and code transfers to cover 
long latencies effectively. Because of this organization, the Cell Broadband Engine can usefully 
support 128 simultaneous transfers between the eight SPE local stores and main storage. This 
surpasses the number of simultaneous transfers on conventional processors by a factor of 
almost twenty. 

1.1.2.3 The Frequency Wall

Conventional processors require increasingly deeper instruction pipelines to achieve higher 
operating frequencies. This technique has reached a point of diminishing returns—and even 
negative returns if power is taken into account. 

By specializing the PPE and the SPEs for control and compute-intensive tasks, respectively, the 
Cell Broadband Engine Architecture, on which the Cell Broadband Engine is based, allows both 
the PPE and the SPEs to be designed for high frequency without excessive overhead. The PPE 
achieves efficiency primarily by executing two threads simultaneously rather than by optimizing 
single-thread performance. Each SPE achieves efficiency by using a large register file, which 
supports many simultaneous in-flight instructions without the overhead of register-renaming or 
out-of-order processing. Each SPE also achieves efficiency by using asynchronous DMA trans-
fers, which support many concurrent memory operations without the overhead of speculation. 

1.1.2.4 The Cell Broadband Engine Solution

By optimizing control-plane and data-plane processors individually, the Cell Broadband Engine 
mitigates the problems posed by the power, memory, and frequency limitations. The net result is 
a processor that, at the power budget of a conventional PC processor, can provide approximately 
ten-fold the peak performance of a conventional processor. Of course, actual application perfor-
mance varies. Some applications may benefit little from the SPEs, whereas others show a perfor-
mance increase well in excess of ten-fold. In general, compute-intensive applications that use 
32-bit or smaller data formats (such as single-precision floating-point and integer) are excellent 
candidates for the Cell Broadband Engine. 
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The remainder of this chapter describes the Cell Broadband Engine hardware, some basic 
programming conventions, a typical software-development sequence, and the major support 
tools available in the software development kit (SDK). 

Programming the PPE is described in Section 2 on page 29. Programming the SPEs is described 
in Section 3 on page 57. Programming models are described in Section 4 on page 127. The IBM 
Full System Simulator for the Cell Broadband Engine is described in Section 5 on page 137. A 
glossary is provided in Section 6 on page 165, and an index in Section 7 on page 179. 
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1.2 Architectural Overview

The Cell Broadband Engine consists of nine processors on a single chip, all connected to each 
other and to external devices by a high-bandwidth, memory-coherent bus. Figure 1-1 shows a 
block diagram of the Cell Broadband Engine. The main blocks include:

• PowerPC Processor Element (PPE)—The PPE is the main processor. It contains a 64-bit 
PowerPC Architecture reduced instruction set computer (RISC) core with a traditional virtual-
memory subsystem. It runs an operating system, manages system resources, and is 
intended primarily for control processing, including the allocation and management of SPE 
threads. It can run legacy PowerPC Architecture software and performs well executing sys-
tem-control code. It supports both the PowerPC instruction set and the Vector/SIMD Multime-
dia Extension instruction set. 

• Synergistic Processor Elements (SPEs)—The eight SPEs are SIMD processors optimized 
for data-rich operations allocated to them by the PPE. Each of these identical elements con-
tains a RISC core, 256-KB, software-controlled local store for instructions and data, and a 
large (128-bit, 128-entry) unified register file. The SPEs support a special SIMD instruction 
set, and they rely on asynchronous DMA transfers to move data and instructions between 
main storage (the effective-address space that includes main memory) and their local stores. 
SPE DMA transfers access main storage using PowerPC effective addresses. As on the 
PPE, address translation is governed by PowerPC Architecture segment and page tables. 
The SPEs are not intended to run an operating system. 

• Element Interconnect Bus (EIB)—The PPE and SPEs communicate coherently with each 
other and with main storage and I/O through the EIB. The EIB is a 4-ring structure (two clock-
wise and two counterclockwise) for data, and a tree structure for commands. The EIB’s inter-
nal bandwidth is 96 bytes per cycle, and it can support more than 100 outstanding DMA 
memory requests between main storage and the SPEs.

Figure 1-1. Cell Broadband Engine Overview 
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The memory-coherent EIB has two external interfaces, shown in Figure 1-1 on page 17:

• Memory Interface Controller (MIC)—The MIC provides the interface between the EIB and 
main storage. It supports two Rambus Extreme Data Rate (XDR) I/O (XIO) memory channels 
and memory accesses on each channel of 1-8, 16, 32, 64, or 128 bytes.

• Cell Broadband Engine Interface (BEI)—The BEI manages data transfers between the EIB 
and I/O devices. It provides address translation, command processing, an internal interrupt 
controller, and bus interfacing. It supports two Rambus FlexIO external I/O channels. One 
channel supports only noncoherent I/O devices. The other channel can be configured to sup-
port either noncoherent transfers or coherent transfers that extend the logical EIB to another 
compatible external device, such as another Cell Broadband Engine. 

The Cell Broadband Engine supports concurrent real-time and non-real-time operating systems 
and resource management. Software development in the C/C++ language is supported by a rich 
set of language extensions that define C/C++ data types for SIMD operations and map C/C++ 
intrinsics (commands, in the form of function calls) to one or more assembly instructions. These 
language extensions give C/C++ programmers much greater control over code performance, 
without the need for assembly-language programming. Software development is further 
supported by a complete Linux-based SDK and a full-system simulator. 

1.2.1 PowerPC Processor Element

The PowerPC Processor Element (PPE) is a general-purpose, dual-threaded, 64-bit RISC 
processor that conforms to the PowerPC Architecture, version 2.02, with the Vector/SIMD Multi-
media Extension. Programs written for the PowerPC 970 processor, for example, should run on 
the Cell Broadband Engine without modification. 

The PPE consists of two main units, the PowerPC Processor Unit (PPU) and the PowerPC 
Processor Storage Subsystem (PPSS), as shown in Figure 1-2. The PPE is responsible for 
overall control of the system. It runs the operating systems for all applications running on the Cell 
Broadband Engine. 

Figure 1-2. PPE Block Diagram 
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The PPU deals with instruction control and execution. It includes the full set of 64-bit PowerPC 
registers, 32 128-bit vector multimedia registers, a 32-KB level 1 (L1) instruction cache, a 32-KB 
level 1 (L1) data cache, an instruction-control unit, a load and store unit, a fixed-point integer unit, 
a floating-point unit, a vector unit, a branch unit, and a virtual-memory management unit. 

The PPU supports two simultaneous threads of execution and can be viewed as a 2-way multi-
processor with shared dataflow. This appears to software as two independent processing units. 
The state for each thread is duplicated, including all architected and special-purpose registers 
except those that deal with system-level resources, such as logical partitions, memory, and 
thread-control. Most nonarchitected resources, such as caches and queues, are shared by both 
threads, except in cases where the resource is small or offers a critical performance improve-
ment to multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the PPE from other 
processors or I/O devices. It includes a unified 512-KB level 2 (L2) instruction and data cache, 
various queues, and a bus interface unit that handles bus arbitration and pacing on the EIB. 
Memory is seen as a linear array of bytes indexed from 0 to 264 - 1. Each byte is identified by its 
index, called an address, and each byte contains a value. One storage access occurs at a time, 
and all accesses appear to occur in program order. 

The L2 cache and the address-translation caches use replacement-management tables that 
allow software to control use of the caches. This software control over cache resources is espe-
cially useful for real-time programming. 

1.2.2 Synergistic Processor Elements

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor special-
ized for data-rich, compute-intensive SIMD applications. It consists of two main units, the Syner-
gistic Processor Unit (SPU) and the Memory Flow Controller (MFC), as shown in Figure 1-3. 

Figure 1-3. SPE Block Diagram 
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The SPU deals with instruction control and execution. It includes a single register file with 128 
registers (each one 128 bits wide), a unified (instructions and data) 256-KB local store (LS), an 
instruction-control unit, a load and store unit, two fixed-point units, a floating-point unit, and a 
channel-and-DMA interface. The SPU implements a new SIMD instruction set, the SPU Instruc-
tion Set Architecture, that is specific to the Cell Broadband Engine Architecture. 

Each SPU is an independent processor with its own program counter and is optimized to run 
SPE threads spawned by the PPE. The SPU fetches instructions from its own LS, and it loads 
and stores data from and to its own LS. With respect to accesses by its SPU, the LS is unpro-
tected and untranslated storage.

The MFC contains a DMA controller that supports DMA transfers. Programs running on the SPU, 
the PPE, or another SPU, use the MFC’s DMA transfers to move instructions and data between 
the SPU’s LS and main storage. (Main storage is the effective-address space that includes main 
memory, other SPEs’ LS, and memory-mapped registers such as memory-mapped I/O [MMIO] 
registers.) The MFC interfaces the SPU to the EIB, implements bus bandwidth-reservation 
features, and synchronizes operations between the SPU and all other processors in the system. 

To support DMA transfers, the MFC maintains and processes queues of DMA commands. After 
a DMA command has been queued to the MFC, the SPU can continue to execute instructions 
while the MFC processes the DMA command autonomously and asynchronously. The MFC also 
can autonomously execute a sequence of DMA transfers, such as scatter-gather lists, in 
response to a DMA-list command. This autonomous execution of MFC DMA commands and 
SPU instructions allows DMA transfers to be conveniently scheduled to hide memory latency.

Each DMA transfer can be up to 16 KB in size. However, only the MFC’s associated SPU can 
issue DMA-list commands. These can represent up to 2,048 DMA transfers, each one up to 
16 KB in size. DMA transfers are coherent with respect to main storage. Virtual-memory address-
translation information is provided to each MFC by the operating system running on the PPE. 
Attributes of system storage (address translation and protection) are governed by the page and 
segment tables of the PowerPC Architecture. Although privileged software on the PPE can map 
LS addresses and certain MFC resources to the main-storage address space, enabling the PPE 
or other SPUs in the system to access these resources, this aliased memory is not coherent in 
the system.

The SPEs provide a deterministic operating environment. They do not have caches, so cache 
misses are not a factor in their performance. Pipeline-scheduling rules are simple, so it is easy to 
statically determine the performance of code. Although the LS is shared between DMA read and 
write operations, load and store operations, and instruction prefetch, DMA operations are accu-
mulated and can only access the LS for at most one of every eight cycles. Instruction prefetch 
delivers at least 17 instructions sequentially from the branch target. Thus, the impact of DMA 
operations on loads and stores and program-execution times is, by design, limited. 

1.3 Programming Overview

The instruction set for the PPE is an extended version of the PowerPC instruction set. The exten-
sions consist of the Vector/SIMD Multimedia Extension instruction set plus a few additions and 
changes to PowerPC instructions. The instruction set for the SPE is similar to that of the PPE’s 
Vector/SIMD Multimedia Extension instruction set. Although the PPE and the SPEs execute 
SIMD instructions, the two instruction sets are different, and programs for the PPE and SPEs 
must be compiled by different compilers. 



Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Overview of the Cell Broadband Engine
Page 21 of 183

1.3.1 Byte Ordering and Bit Numbering

Storage of data and instructions in the Cell Broadband Engine is big-endian. Big-endian ordering 
has the following characteristics:

• Most-significant byte is stored at the lowest address, and least-significant byte is stored at 
the highest address.

• Bit numbering within a byte goes from most-significant bit (bit 0) to least-significant bit (bit n). 
This differs from some other big-endian processors.

A summary of the byte-ordering and bit-ordering in memory, as well as the bit-numbering 
conventions, is shown in Figure 1-4. 

1.3.2 SIMD Vectorization

A vector is an instruction operand containing a set of data elements packed into a one-dimen-
sional array. The elements can be integer or floating-point values. Most Vector/SIMD Multimedia 
Extension and SPU instructions operate on vector operands. Vectors are also called SIMD oper-
ands or packed operands. 

SIMD processing exploits data-level parallelism. Data-level parallelism means that the opera-
tions required to transform a set of vector elements can be performed on all elements of the 
vector at the same time. That is, a single instruction can be applied to multiple data elements in 
parallel. 

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they are 
supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs, they are 
supported by the SPU instruction set.

In both the PPE and SPEs, vector multimedia registers hold multiple data elements as a single 
vector. The data paths and registers supporting SIMD operations are 128 bits wide, corre-
sponding to four full 32-bit words. This means that four 32-bit words can be loaded into a single 
register, and, for example, added to four other words in a different register in a single operation. 
Figure 1-5 on page 22 shows such an operation. Similar operations can be performed on vector 
operands containing 16 bytes, 8 halfwords, or 2 doublewords.

Figure 1-4. Big-Endian Byte and Bit Ordering 

Byte 0 Byte 3Byte 2Byte 1

0 31302928272625242322212019181716151413121110987654321

Bit and Byte Order for a 32-bit Word

MSB LSB

Byte 0 Byte 15Byte 1

0 127151413121110987654321

Bit and Byte Order for a 128-bit Register

MSB LSB
120



Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 22 of 183

Version 1.0
October 21, 2005

The process of preparing a program for use on a vector processor is called vectorization or 
SIMDization. It can be done manually by the programmer, or it can be done by a compiler that 
does auto-vectorization.

Figure 1-6 shows another example of an SIMD operation—in this case, a byte-shuffle operation. 
Here, the bytes selected for the shuffle from the source registers, VA and VB, are based on byte 
entries in the control vector, VC, in which a 0 specifies VA and a 1 specifies VB. The result of the 
shuffle is placed in register VT. 

1.3.3 SIMD C-Language Intrinsics

Both the Vector/SIMD Multimedia Extension and SPU instruction sets have extensions that 
support C-language intrinsics. Intrinsics are C-language commands, in the form of function calls, 
that are convenient substitutes for one or more inline assembly-language instructions. 

Figure 1-5. Four Concurrent Add Operations 
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Figure 1-6. Byte-Shuffle Operation 
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In a specific instruction set, most intrinsic names use a standard prefix in their mnemonic, and 
some intrinsic names incorporate the mnemonic of an associated assembly-language instruction. 
For example, the Vector/SIMD Multimedia Extension intrinsic that implements the add 
Vector/SIMD Multimedia Extension assembly-language instruction is named vec_add, and the 
SPU intrinsic that implements the stop SPU assembly-language instruction is named spu_stop. 

The PPE’s Vector/SIMD Multimedia Extension instruction set and the SPE’s SPU instruction set 
both have extensions that define somewhat different sets of intrinsics, but they all fall into four 
types of intrinsics. These are listed in Table 1-1. Although the intrinsics provided by the two 
instruction sets are similar in function, their naming conventions and function-call forms are 
different. 

For more information about the PPE intrinsics, see Section 2.2.3 on page 35. For more informa-
tion about the SPE intrinsics, see Section 3.3 on page 72. 

1.3.4 Threads and Tasks

In a system running the Linux operating system, the main thread of a program is a Linux thread 
running on the PPE. The program’s main Linux thread can spawn one or more Cell Broadband 
Engine Linux tasks. A Cell Broadband Engine Linux task has one or more Linux threads associ-
ated with it, along with some number of SPE threads. An SPE thread is a thread that is spawned 
to run on an available SPE. These terms are defined in Table 1-2. 

The software threads described in this section are unrelated to the hardware multithreading 
capability of the PPE. 

A Linux thread can interact directly with an SPE thread through the SPE’s local store. It can 
interact indirectly through effective-address (EA) memory. A thread can poll or sleep, waiting for 
SPE threads, using the spe_get_event() or spe_wait() intrinsic subroutines.

Table 1-1. PPE and SPE Intrinsic Classes  

Types of Intrinsic Definition PPE SPE

Specific One-to-one mapping to a single assembly-language instruction. X X

Generic Map to one or more assembly-language instructions, depending on types of input 
parameters. X X

Composite Constructed from a sequence of Specific or Generic intrinsics. X

Predicates Evaluate SIMD conditionals. X

Table 1-2. Definition of Threads and Tasks  

Term Definition

Linux Thread A thread running on the PPE in the Linux operating-system environment.

Cell Broadband Engine Linux Task

A task running on the PPE and SPE. Each such task:
• Has one or more Linux thread and some number of SPE threads.
• All the Linux threads within the task share the task’s resources, including 

access to the SPE threads.

SPE Thread

A thread running on an SPE. Each such thread:
• Has its own 128 x 128-bit register file, program counter, and MFC Com-

mand Queues.
• Can communicate with other execution units (or with effective-address 

memory through the MFC channel interface).
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The operating system defines the mechanism and policy for selecting an available SPE. It must 
prioritize among all the Cell Broadband Engine Linux applications in the system, and it must 
schedule SPE execution independent from regular Linux threads. It is also responsible for run-
time loading, passing parameters to SPE programs, notification of SPE events and errors, and 
debugger support.

1.3.5 Runtime Environment

The PPE runs PowerPC applications and operating systems, which may include Vector/SIMD 
Multimedia Extension instructions. The PPE requires an operating system that is extended to 
support the hardware features of Cell Broadband Engines, such as multiprocessing with the 
SPEs, access to the PPE Vector/SIMD Multimedia Extension functions, the Cell Broadband 
Engine interrupt controller, and all other functions on the Cell Broadband Engine.

The assumed development and operating-system environment for this tutorial are described in 
the Preface on page 11. In this operating environment, the PPE handles thread allocation and 
resource management among SPEs. The PPE’s Linux kernel controls the SPUs’ execution of 
programs. 

SPE threads follow the M:N thread model, meaning M threads distributed over N processor 
elements. SPE threads run to completion. The SDK Linux kernel supports a run-to-completion 
model, except for certain preemptive debugging services.

The Linux kernel manages virtual memory, including mapping each SPE’s local store (LS) into 
the effective-address space. The kernel also controls virtual-memory mapping of MFC resources, 
as well as MFC segment-fault and page-fault handling. Large pages (16-MB pages, using the 
hugetlbfs Linux extension) are supported. 

The Linux release has also been modified to support performance monitoring, thermal manage-
ment, and power management. 

1.3.6 Application Partitioning

Programs running on the Cell Broadband Engine’s nine processor elements typically partition the 
work among the available processor elements. In determining when and how to distribute the 
workload and data, take into account the following considerations:

• Processing-load distribution

• Program structure

• Program data flow and data access patterns

• Cost, in time and complexity of code movement and data movement among processors

• Cost of loading the bus and bus attachments

The main model for partitioning an application is PPE-centric, as shown in Figure 1-7 on 
page 25.
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In the PPE-centric model, the main application runs on the PPE, and individual tasks are off-
loaded to the SPEs. The PPE then waits for, and coordinates, the results returning from the 
SPEs. This model fits an application with serial data and parallel computation. In the SPE-centric 
model, most of the application code is distributed among the SPEs. The PPE acts as a central-
ized resource manager for the SPEs. Each SPE fetches its next work item from main storage (or 
its own local store) when it completes its current work. 

There are three ways in which the SPEs can be used in the PPE-centric model—the Multistage 
Pipeline Model, the Parallel Stages Model, and the Services Model. The first two of these are 
shown in Figure 1-8. 

If a task requires sequential stages, the SPEs can act as a multistage pipeline. The left side of 
Figure 1-8 shows a multistage pipeline. Here, the stream of data is sent into the first SPE, which 
performs the first stage of the processing. The first SPE then passes the data to the next SPE for 
the next stage of processing. After the last SPE has done the final stage of processing on its 
data, that data is returned to the PPE. As with any pipeline architecture, parallel processing 
occurs, with various portions of data in different stages of being processed. Multistage pipelining 
is typically avoided because of the difficulty of load balancing. In addition, the Multistage Model 
increases the data-movement requirement because data must be moved for each stage of the 
pipeline.

Figure 1-7. Application Partitioning Model 

Multistage
Pipleline
Model

Parallel
Stages
Model

Services
Model

SPE-centric
Model

PPE-centric

Models

Figure 1-8. PPE-Centric Multistage Pipeline Model and Parallel Stages Model 

PPE

SPE

SPE

SPE

PPE

SPE SPESPE

Multistage Pipeline Model Parallel Stages Model



Programming Tutorial

Cell Broadband Engine

Overview of the Cell Broadband Engine
Page 26 of 183

Version 1.0
October 21, 2005

If the task to be performed is not a multistage task, but a task in which there is a large amount of 
data that can be partitioned and acted on at the same time, then it might make sense to use 
SPEs to process different portions of that data in parallel. This Parallel Stages Model is shown on 
the right side of Figure 1-8 on page 25. 

The third way in which SPEs can be used in a PPE-centric model is the Services Model. In the 
Services Model, the PPE assigns different services to different SPEs, and the PPE’s main 
process calls upon the appropriate SPE when a particular service is needed. 

Figure 1-9 shows the PPE-centric Services Model. Here, one SPE processes data encryption, 
another SPE processes MPEG encoding, and a third SPE processes curve analysis. Fixed static 
allocation of SPU services should be avoided. These services should be virtualized and 
managed on a demand-initiated basis.

For a more detailed view of programming models, see Section 4 Programming Models on 
page 127.

1.4 Software Development Kit

An SDK is available for the Cell Broadband Engine. The SDK contains the essential tools 
required for developing programs for the Cell Broadband Engine. The preface to this tutorial, on 
page 11, describes the assumptions with respect to the available SDK. 

1.4.1 Tools

The many tools in the SDK include the full range of standard UNIX® tools plus other tools that 
support special features of the Cell Broadband Engine, including such things as:

• systemsim - The IBM Full System Simulator for the Cell Broadband Engine (see Section 5 on 
page 137)

• idl - The compiler for the remote-procedure-call interface between the PPE and the SPEs

The SDK contains two versions of the gcc compiler, ppu-gcc and spu-gcc. ppu-gcc compiles 
code for the PPE’s Vector/SIMD Multimedia Extension instruction set and associated C intrinsics. 
spu-gcc compiles code for the SPE’s SPU instruction set and associated C intrinsics. 

Figure 1-9. PPE-Centric Services Model 
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gdb, the GNU debugger, has been enhanced to support SPE debugging. gdb handles PPE and 
SPE multithreading and supports multiple PPE and SPE threads that interact (see Section 1.3.4 
on page 23). There are two ways to debug SPE threads:

• gdb can attach to the SPE thread.

• gdb can launch a new debug session for each SPE thread.

Additional tools familiar to UNIX programmers are available for SPE coding: ar for managing 
libraries or archives, and nm for getting symbols from object files. The gas (assembler) and gld 
(link and load) utilities are available, although C/C++ programmers usually do not use these 
directly. 

1.4.2 Directory Structure

The main SDK directory includes the following subdirectories:

• docs—Contains documents and papers that have wide applicability, beyond a single SDK 
component. Documentation is provided in PDF format. Documentation on particular compo-
nents of the SDK is in the related directories as appropriate.

• include—Contains the system header (.h) files required for compiling programs for the Cell 
Broadband Engine.

• lib—Contains the object code for the libraries as well as a set of reusable source header files. 
Complete documentation for all the library functions is in the sdk/docs/lib/libraries.pdf 
file.

• samples—Contains a set of programs used to demonstrate the use of tools, libraries, and 
hardware features. The subdirectories are named according to the feature or software being 
demonstrated.

• tests—Contains a set of self-verifying tests used to validate the hardware, standards, librar-
ies, and tools.

• tools—Contains a set of utilities used to generate content or make programming easier.

• workloads—Contains a set of code samples used to characterize the performance of the 
architecture, algorithms, libraries, tools, and compilers.

The SDK contains standardized directory names that reflect the processor, function, or environ-
ment for which the code is meant to run, as follows:

• CPU

– spu—Code compiled for execution in a Linux environment on an SPE.

– ppu—Code compiled for execution on the PPE.

– spu_sim—Code compiled for execution on an SPE in a simulated (systemsim), stand-
alone (without Linux) environment.

1.4.3 Libraries

The SDK contains a set of libraries for use in multiprocessing tasks, including the computation of 
curves and surfaces, game mathematics, and matrix math. There are also libraries covering Cell 
Broadband Engine-specific tasks, such as SPE management of the MFC. A summary of the 
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most important libraries is given in Table 1-3. The table also indicates the processors—PPE or 
SPE—on which the libraries are supported. For libraries supported on both processors, the 
routines implemented on each platform may be different.

Table 1-3. SDK Libraries  

Library PPE SPE Description

Audio_resample X X Support for audio resampling of monophonic and stereophonic audio data. 

C X X A set of functions that can all be found in stdlib. All functions are C99 
compliant

FFT X X Support for Fast Fourier Transforms.

Game Math X X Mathematical routines applicable to game needs, where precision and 
mathematical accuracy can be sacrificed for performance.

Images X X Routines for image processing.

Large Matrix X Routines for operating on large vectors as well as large matrices of single 
precision floating-point numbers.

Math X X
General-purpose math routines similar to those found in the standard math 
library, but tuned to support SIMD features. These generally only support 
single precision.

Matrix X X Routines for operating on small (4 x 4) matrices and quaternions.

Miscellaneous X X
General-purpose routines that do not fit logically within any of the specific 
libraries. Includes clamping, finding minimum/maximum, random number 
calculation, printing, splatting, set/longjumping. 

Multiprecision Math X Routines that perform mathematical functions on unsigned integers of a 
large number of bits (up to 4,096 bits). 

Noise X X Routines that implement lattice noise, turbulence, and fractal operations.

Oscillator X X Routines that support the creation of a synthetic environment consisting of 
one or more configurable directional microphones.

Simulation X X Routines useful only in the simulation environments. These include stan-
dard library subroutines and connection subroutines.

Surface X X
Support for evaluating curves and surfaces, including quadratic and Bezier
curves, and biquadratic and bicubic Bezier surfaces.

Sync X X Simple, general-purpose atomic update operations for programs executing 
on either the SPE or PPE.

Vector X X General-purpose routines that operate on vectors.
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2. The PPE and the Programming Process

Section 1.2.1 on page 18 introduced the organization and functions of the PPE. This chapter 
describes the PPE registers, the PPE’s two instruction sets, and the C-language intrinsics for the 
Vector/SIMD Multimedia Extension instructions. The relation between PPE and SPE address 
spaces is described. Examples are provided of PPE-initiated DMA transfers between main 
storage and an SPE’s local store (LS) and of PPE thread-creation for the SPE. 

2.1 PPE Registers

The complete set of PPE user (problem-state) registers is shown in Figure 2-1. All computational 
instructions operate only on registers—there are no computational instructions that modify 
storage. To use a storage operand in a computation and then modify the same or another 
storage location, the contents of the storage operand must be loaded into a register, modified, 
and then stored back to the target location. 

Figure 2-1. PPE User-Register Set 
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The PPE registers include:

• General-Purpose Registers (GPRs)—Fixed-point instructions operate on the full 64-bit width 
of the GPRs, of which there are 32. The instructions are mode-independent, except that in 
32-bit mode, the processor uses only the low-order 32 bits for determination of a memory 
address and the carry, overflow, and record status bits.

• Floating-Point Registers (FPRs)—The 32 FPRs are 64 bits wide. The internal format of float-
ing-point data is the IEEE 754 double-precision format. Single-precision results are main-
tained internally in the double-precision format.

• Link Register (LR)—The 64-bit LR can be used to hold the effective address of a branch tar-
get. Branch instructions with the link bit (LK) set to 1 (that is, subroutine-call instructions) 
copy the next instruction address into the LR. A Move To Special-Purpose Register instruc-
tion can copy the contents of a GPR into the LR.

• Count Register (CTR)—The 64-bit CTR can be used to hold either a loop counter or the 
effective address of a branch target. Some conditional-branch instruction forms decrement 
the CTR and test it for a zero value. A Move To Special-Purpose Register instruction can 
copy the contents of a GPR into the CTR.

• Fixed-Point Exception Register (XER)—The 64-bit XER contains the carry and overflow bits 
and the byte count for the move-assist instructions. Most arithmetic operations have instruc-
tion forms for setting the carry and overflow bit.

• Condition Register (CR)—Conditional comparisons are performed by first setting a condition 
code in the 32-bit CR with a compare instruction or with a recording instruction. The condition 
code is then available as a value or can be tested by a branch instruction to control program 
flow. The CR consists of eight independent 4-bit fields grouped together for convenient save 
or restore during a context switch. Each field can hold status information from a comparison, 
arithmetic, or logical operation. The compiler can schedule CR fields to avoid data hazards in 
the same way that it schedules the use of GPRs. Writes to the CR occur only for instructions 
that explicitly request them; most operations have recording and nonrecording instruction 
forms.

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 32-bit 
FPSCR after every floating-point operation to record information about the result and any 
associated exceptions. The status information required by IEEE 754 is included, plus some 
additional information for exception handling.

• Vector Multimedia Registers (VMRs)—There are 32 128-bit-wide VMRs. They serve as 
source and destination registers for all vector instructions. 

• Vector Status and Control Register (VSCR)—The 32-bit VSCR is read and written in a man-
ner similar to the FPSCR. It has 2 defined bits, a non-Java™ mode bit and a saturation bit; 
the remaining bits are reserved. Special instructions are provided to move the VSCR to a 
VMR register. 

• Vector Save Register (VRSAVE)—The 32-bit VRSAVE register assists user and privileged 
software in saving and restoring the architectural state across context switches. 
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2.2 PPE Instruction Sets

The PPE supports two instruction sets: the PowerPC instruction set and the Vector/SIMD Multi-
media Extension instruction set. Although most of the coding for the Cell Broadband Engine will 
be in a high-level language like C or C++, an understanding of the PPE architecture and instruc-
tion sets adds considerably to a developer’s ability to produce efficient, optimized code. This is 
particularly true because C-language intrinsics are provided for the PPE’s Vector/SIMD Multi-
media Extension instruction set, and these intrinsics map directly to one or more Vector/SIMD 
Multimedia Extension assembly-language instructions. 

The PowerPC instruction set uses instructions that are 4 bytes long and word-aligned. It supports 
byte, halfword, word, and doubleword operand accesses between storage and its 32 general-
purpose registers (GPRs). The instruction set also supports word and doubleword operand 
accesses between storage and a set of 32 floating-point registers (FPRs). Signed integers are 
represented in twos-complement form.

The Vector/SIMD Multimedia Extension instruction set uses instructions that, like PowerPC 
instructions, are 4 bytes long and word-aligned. However, all of its operands are 128 bits wide. 
Most of the Vector/SIMD Multimedia Extension operands are vectors, including single-precision 
floating-point, integer, scalar, and fixed-point of vector-element sizes of 8,16, and 32 bits. 

The sections that follow briefly summarize key points of the instruction sets. For a complete 
description of the PowerPC instruction sets, see:

• PowerPC Microprocessor Family: Programming Environments Manual for 64-Bit Micropro-
cessors

• PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Program-
ming Environments Manual

2.2.1 PowerPC Instructions

Whenever instruction addresses are presented to the processor, the low-order 2 bits are ignored. 
Similarly, whenever the processor develops an instruction address, the low-order 2 bits are zero. 
The address of either an instruction or a multiple-byte data value is its lowest-numbered byte. 
This address points to the most-significant end (big-endian convention). The little-endian conven-
tion is not supported. Arithmetic for address computation is unsigned and ignores any carry out of 
bit 0 (the MSb). See Section 1.3.1 on page 21 for an overview of the big-endian bit and byte 
numbering used by the PPE. 

2.2.1.1 Addressing Modes

All instructions, except branches, generate addresses by incrementing a program counter. All 
load and store instructions specify a base register. The effective address in memory for a data 
value is calculated relative to the base register in one of three ways:

• Register + Displacement—The displacement forms of the load and store instructions calcu-
late an address that is the sum of a displacement specified by the sign-extended 16-bit 
immediate field of the instruction plus the contents of the base register. 

• Register + Register—The indexed forms of the load and store instructions calculate an 
address that is the sum of the contents of the index register, which is a GPR, plus the con-
tents of the base register.
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• Register—The Load String Immediate and Store String Immediate instructions use the 
unmodified contents of the base register to calculate an address.

Loads and stores can specify an update form that reloads the base register with the computed 
address, unless the base register is the target register of the load.

Branches are the only instructions that explicitly specify the address of the next instruction. A 
branch instruction specifies the effective address of the branch target in one of the following 
ways:

• Branch Not Taken—The byte address of the next instruction is the byte address of the current 
instruction, plus 4.

• Absolute—The word address of the next instruction is given in an immediate field of the 
branch instruction. 

• Relative—The word address of the next instruction is given by the sum of the immediate field 
of the branch instruction and the word address of the branch instruction itself. 

• Link Register or Count Register—The byte address of the next instruction is the effective byte 
address of the branch target specified in the Link Register or Count Register, respectively. 

2.2.1.2 Instruction Types

The PPE’s PowerPC instructions can have up to three operands. Most computational instruc-
tions specify two source operands and one destination operand. The instructions include the 
following types:

• Integer Instructions—These include arithmetic, compare, logical, and rotate/shift instructions. 
They operate on byte, halfword, word, and doubleword operands. 

• Floating-Point Instructions—These include floating-point arithmetic, multiply-add, compare, 
and move instructions, as well as instructions that affect the Floating-Point Status and Con-
trol Register (FPSCR). Floating-point instructions operate on single-precision and double-
precision floating-point operands.

• Load and Store Instructions—These include integer and floating-point load and store instruc-
tions, with byte-reverse, multiple, and string options for the integer loads and stores. 

• Memory Synchronization Instructions—These instructions control the order in which memory 
operations are completed with respect to asynchronous events, and the order in which mem-
ory operations are seen by other processors or memory-access mechanisms. The instruction 
types include load and store with reservation, synchronization, and enforce in-order execu-
tion of I/O. They are especially useful for multiprocessing. 

• Flow Control Instructions—These include branch, Condition-Register logical, trap, and other 
instructions that affect the instruction flow. 

• Processor Control Instructions—These instructions are used for synchronizing memory 
accesses and managing caches, Translation Lookaside Buffers (TLBs), segment registers, 
and other privileged processor states. They include move-to/from special-purpose register 
instructions. 

• Memory and Cache Control Instructions—These instructions control caches, TLBs, and seg-
ment registers.

• External Control Instructions—These instructions allow a user-level program to communicate 
with a special-purpose device. 
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2.2.1.3 Compatibility with Existing PowerPC Code

The PPE complies with version 2.0.2 of the PowerPC Architecture, with only minor exceptions. 

The following optional user-mode instructions are implemented:

• fsqrt(.)—Floating-point square root
• fsqrts(.)—Floating-point square root single
• fres(.)—Floating-point reciprocal estimate single, A-form
• frsqrte(.)—Floating-point reciprocal square root estimate, A-form
• fsel(.)—Floating-point select
• mtocrf —Move to one condition register field, XFX-form
• mfocrf —Move from one condition register field, XFX-form

The following optional instructions that are defined in PowerPC Book I are not implemented. Use 
of these instructions will cause an illegal-instruction interrupt:

• mcrxr—Move to condition register from XER
• bccbr—Branch condition to CBR

The following instructions that are not defined in the PowerPC Architecture are implemented. 
Since these instructions are not part of the architecture, they should be considered highly imple-
mentation-specific. 

• ldbrx—Load doubleword byte reverse indexed, X-form
• sdbrx—Store doubleword byte reverse indexed, X-form

In addition, the little endian option for data ordering is not available. A complete list of differences 
can be found in the PowerPC Architecture Compliance chapter of the PowerPC Processor 
Element, Book IV. This document is confidential; your IBM representative can give you access to 
the document. 

2.2.2 Vector/SIMD Multimedia Extension Instructions

The 128-bit Vector/SIMD Multimedia Extension unit (VXU) operates concurrently with the PPU’s 
fixed-point integer unit (FXU) and floating-point execution unit (FPU), as shown Figure 2-2 on 
page 34. Like PowerPC instructions, the Vector/SIMD Multimedia Extension instructions are 4 
bytes long and word-aligned. The Vector/SIMD Multimedia Extension instructions support simul-
taneous execution on multiple elements that make up the 128-bit vector operands. These vector 
elements may be byte, halfword, or word.

The Vector/SIMD Multimedia Extension instructions are fully described in the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments 
Manual. 
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All Vector/SIMD Multimedia Extension instructions are designed to be easily pipelined. Parallel 
execution with the PPE’s integer and floating-point instructions is simplified by the fact that 
Vector/SIMD Multimedia Extension instructions do not generate exceptions (other than data-
storage interrupt exceptions on loads and stores), do not support unaligned memory accesses or 
complex functions, and share few resources or communication paths with the other PPE execu-
tion units. 

2.2.2.1 Addressing Modes

The PPE supports not only basic load and store operations but also load and store vector left or 
right indexed forms. All Vector/SIMD Multimedia Extension load and store operations use the 
register + register indexed addressing mode, which forms the sum of the contents of an index 
GPR plus the contents of a base-address GPR. This addressing mode is very useful for 
accessing arrays. 

In addition to the load and store operations, the Vector/SIMD Multimedia Extension instruction 
set provides a powerful set of element-manipulation instructions—for example, shuffle, permute 
(similar to the SPEs’ shuffle), rotate, and shift—to manipulate vector elements into the desired 
alignment and arrangement after the vectors have been loaded into vector multimedia registers. 

2.2.2.2 Instruction Types

Most Vector/SIMD Multimedia Extension instructions have three or four 128-bit vector oper-
ands—two or three source operands and one result. Also, most instructions are SIMD in nature. 
The instructions have been chosen for their utility in digital signal processing (DSP) algorithms, 
including 3D graphics. 

The Vector/SIMD Multimedia Extension instructions include the following types:

• Vector Integer Instructions—These include vector arithmetic, compare, logical, rotate, and 
shift instructions. They operate on byte, halfword, and word vector elements. The instructions 
use saturation-clamping. 

Figure 2-2. Concurrent Execution of Integer, Floating-Point, and Vector Units 
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• Vector Floating-Point Instructions—These include floating-point arithmetic, multiply/add, 
rounding and conversion, compare, and estimate instructions. They operate on single-preci-
sion floating-point vector elements.

• Vector Load and Store Instructions—These include only basic integer and floating-point load 
and store instructions. No update forms of the load and store instruction are provided. They 
operate on 128-bit vectors. 

• Vector Permutation and Formatting Instructions—These include vector pack, unpack, merge, 
splat, permute, select, and shift instructions.

• Processor Control Instructions—These include instructions that read and write the vector 
status and control register (VSCR). 

• Memory Control Instructions—These include instructions for managing caches (user-level 
and supervisor-level). These instructions are no-ops. 

2.2.3 C/C++ Language Extensions (Intrinsics)

A set of C-language extensions are available for Vector/SIMD Multimedia Extension program-
ming. These extensions include vector data types and a large set of vector commands (intrin-
sics).

The intrinsics are essentially inline assembly-language instructions, in the form of function calls, 
that have syntax familiar to high-level programmers using the C language. The intrinsics provide 
explicit control of the Vector/SIMD Multimedia Extension instructions without directly managing 
registers and scheduling instructions, as assembly-language programming requires. A compiler 
that supports these C-language extensions will emit code optimized for the Vector/SIMD Multi-
media Extension architecture. 

2.2.3.1 Vector Data Types

The Vector/SIMD Multimedia Extension programming model adds a set of fundamental data 
types, called vector types, as shown in Table 2-1 on page 36. The represented values are in 
decimal (base-10) notation. The vector multimedia registers are 128 bits and can contain:

• Sixteen 8-bit values, signed or unsigned

• Eight 16-bit values, signed or unsigned

• Four 32-bit values, signed or unsigned

• Four single-precision IEEE-754 floating-point values

The vector types use the prefix vector in front of one of standard C data types—for example 
vector signed int and vector unsigned short. A vector type represents a vector of as many of 
the specified C data type as will fit in a 128-bit register. Hence, the vector signed int is a 
128-bit operand containing four 32-bit signed ints. The vector unsigned short is a 128-bit 
operand containing eight unsigned values.

Note:  Since the token, vector, is a keyword in the Vector/SIMD Multimedia Extension data types, 
it is recommended that the term not be used elsewhere in the program as, for example, a vari-
able name.
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Introducing fundamental vector data types permits the compiler to provide stronger type-
checking and supports overloaded operations on vector types.

2.2.3.2 Vector Intrinsics

Vector/SIMD Multimedia Extension intrinsics are grouped into the following three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction

• Generic Intrinsics—Intrinsics that map to one or more assembly-language instructions as a 
function of the type of input parameters 

• Predicates Intrinsics—Intrinsics that compare values and return an integer that may be used 
directly as a value or as a condition for branching

The Vector/SIMD Multimedia Extension intrinsics and predicates use the prefix, “vec_” in front of 
an assembly-language or operation mnemonic; predicate intrinsics use the prefixes “vec_all” 
and “vec_any”. When complied, the intrinsics generate one or more Vector/SIMD Multimedia 
Extension assembly-language instructions. 

The specific and generic intrinsics are shown in Table 2-2 on page 37. The predicate intrinsics 
are shown in Table 2-3 on page 39.

Table 2-1. Vector/SIMD Multimedia Extension Data Types  

Vector Data Type Meaning Values

vector unsigned char Sixteen 8-bit unsigned values 0 ... 255

vector signed char Sixteen 8-bit signed values -128 ... 127

vector bool char Sixteen 8-bit unsigned boolean 0 (false), 255 (true)

vector unsigned short Eight 16-bit unsigned values 0 ... 65535

vector unsigned short int Eight 16-bit unsigned values 0 ... 65535

vector signed short Eight 16-bit signed values -32768 ... 32767

vector signed short int Eight 16-bit signed values -32768 ... 32767

vector bool short Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector bool short int Eight 16-bit unsigned boolean 0 (false), 65535 (true)

vector unsigned int Four 32-bit unsigned values 0 ... 232 - 1

vector signed int Four 32-bit signed values -231 ... 231 - 1

vector bool int Four 32-bit unsigned values 0 (false), 231 - 1 (true)

vector float Four 32-bit single precision IEEE-754 values

vector pixel Eight 16-bit unsigned values 1/5/5/5 pixel
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Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 1 of 3) 

Intrinsic Description

Arithmetic Intrinsics

d = vec_abs(a) Vector Absolute Value

d = vec_abss(a) Vector Absolute Value Saturated

d = vec_add(a,b) Vector Add

d = vec_addc(a,b) Vector Add Carryout Unsigned Word

d = vec_adds(a,b) Vector Add Saturated

d = vec_avg(a,b) Vector Average

d = vec_madd(a,b,c) Vector Multiply Add

d = vec_madds(a,b,c) Vector Multiply Add Saturated

d = vec_max(a,b) Vector Maximum

d = vec_min(a,b) Vector Minimum

d = vec_mladd(a,b,c) Vector Multiply Low and Add Unsigned Half Word

d = vec_mradds(a,b,c) Vector Multiply Round and Add Saturated

d = vec_msum(a,b,c) Vector Multiply Sum

d = vec_msums(a,b,c) Vector Multiply Sum Saturated

d = vec_mule(a,b) Vector Multiply Even

d = vec_mulo(a,b) Vector Multiply Odd

d = vec_nmsub(a,b,c) Vector Negative Multiply Subtract

d = vec_sub(a,b) Vector Subtract

d = vec_subc(a,b) Vector Subtract Carryout

d = vec_subs(a,b) Vector Subtract Saturated

d = vec_sum4s(a,b) Vector Sum Across Partial (1/4) Saturated

d = vec_sum2s(a,b) Vector Sum Across Partial (1/2) Saturated

d = vec_sums(a,b) Vector Sum Saturated

Rounding And Conversion Intrinsics

d = vec_ceil(a) Vector Ceiling

d = vec_ctf(a,b) Vector Convert from Fixed-Point Word

d = vec_cts(a,b) Vector Convert to Signed Fixed-Point Word Saturated

d = vec_ctu(a,b) Vector Convert to Unsigned Fixed-Point Word Saturated

d = vec_floor(a) Vector Floor

d = vec_trunc(a) Vector Truncate

Floating-Point Estimate Intrinsics

d = vec_expte(a) Vector Is 2 Raised to the Exponent Estimate Floating-Point

d = vec_loge(a) Vector Log2 Estimate Floating-Point

d = vec_re(a) Vector Reciprocal Estimate

d = vec_rsqrte(a) Vector Reciprocal Square Root Estimate
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Compare Intrinsics

d = vec_cmpb(a,b) Vector Compare Bounds Floating-Point

d = vec_cmpeq(a,b) Vector Compare Equal

d = vec_cmpge(a,b) Vector Compare Greater Than or Equal

d = vec_cmpgt(a,b) Vector Compare Greater Than

d = vec_cmple(a,b) Vector Compare Less Than or Equal

d = vec_cmplt(a,b) Vector Compare Less Than

Logical Intrinsics

d = vec_and(a,b) Vector Logical AND

d = vec_andc(a,b) Vector Logical AND with Complement

d = vec_nor(a,b) Vector Logical NOR

d = vec_or(a,b) Vector Logical OR

d = vec_xor(a,b) Vector Logical XOR

Rotate and Shift Intrinsics

d = vec_rl(a,b) Vector Rotate Left

d = vec_round(a) Vector Round

d = vec_sl(a,b) Vector Shift Left

d = vec_sld(a,b,c) Vector Shift Left Double

d = vec_sll(a,b) Vector Shift Left Long

d = vec_slo(a,b) Vector Shift Left by Octet

d = vec_sr(a,b) Vector Shift Right

d = vec_sra(a,b) Vector Shift Right Algebraic

d = vec_srl(a,b) Vector Shift Right Long

d = vec_sro(a,b) Vector Shift Right by Octet

Load and Store Intrinsics

d = vec_ld(a,b) Vector Load Indexed

d = vec_lde(a,b) Vector Load Element Indexed

d = vec_ldl(a,b) Vector Load Indexed LRU

d = vec_lvsl(a,b) Vector Load for Shift Left

d = vec_lvsr(a,b) Vector Load Shift Right

vec_st(a,b,c) Vector Store Indexed

vec_ste(a,b,c) Vector Store Element Indexed

vec_stl(a,b,c) Vector Store Indexed LRU

Pack and Unpack Intrinsics

d = vec_pack(a,b) Vector Pack

d = vec_packpx(a,b) Vector Pack Pixel

d = vec_packs(a,b) Vector Pack Saturated

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 2 of 3) 

Intrinsic Description
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d = vec_packsu(a,b) Vector Pack Saturated Unsigned

d = vec_unpackh(a) Vector Unpack High Element

d = vec_unpackl(a) Vector Unpack Low Element

Merge Intrinsics

d = vec_mergeh(a,b) Vector Merge High

d = vec_mergel(a,b) Vector Merge Low

Permute and Select Intrinsics

d = vec_perm(a,b,c) Vector Permute

d = vec_sel(a,b,c) Vector Select

Stream Intrinsics

vec_dss(a) Vector Data Stream Stop

vec_dssall() Vector Stream Stop All

vec_dst(a,b,c) Vector Data Stream Touch

vec_dstst(a,b,c) Vector Data Stream Touch for Store

vec_dststt(a,b,c) Vector Data Stream Touch for Store Transient

vec_dstt(a,b,c) Vector Data Stream Touch Transient

Move Intrinsics

d = vec_mfvscr Vector Move from Vector Status and Control Register

vec_mtvscr(a) Vector Move to Vector Status and Control Register

Replicate Intrinsics

d = vec_splat(a,b) Vector Splat

d = vec_splat_s8(a) Vector Splat Signed Byte

d = vec_splat_s16(a) Vector Splat Signed Half-Word

d = vec_splat_s32(a) Vector Splat Signed Word

d = vec_splat_u8(a) Vector Splat Unsigned Byte

d = vec_splat_u16(a) Vector Splat Unsigned Half-Word

d = vec_splat_u32(a) Vector Splat Unsigned Word

Table 2-3. Vector/SIMD Multimedia Extension Predicate Intrinsics (Page 1 of 2)

Predicate Description

All Predicates

d = vec_all_eq(a,b) All Elements Equal

d = vec_all_ge(a,b) All Elements Greater Than or Equal

d = vec_all_gt(a,b) All Elements Greater Than

d = vec_all_in(a,b) All Elements in Bounds

d = vec_all_le(a,b) All Elements Less Than or Equal

Table 2-2. Vector/SIMD Multimedia Extension Specific and Generic Intrinsics (Page 3 of 3) 

Intrinsic Description
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2.2.4 Programming with Vector/SIMD Multimedia Extension Intrinsics

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia Extension intrinsics 
can be used seamlessly throughout a C-language program. There is no need for setup, or to 
enter a special mode, or to include a special header file. 

2.2.4.1 A Simple Example

The sample program below, vmx_sample, illustrates the ease with which vector instructions can 
be incorporated into a PPE program. The program first typedefs a union of an array of four ints, 
and a vector of signed ints. This is only done so we can refer to the values in two different ways. 
(Vector elements can also be accessed using the SPU intrinsic, spu_extract. For more informa-
tion about SPU intrinsics, see Section 3.3.2 Intrinsic Classes on page 74.) The program then 
loads the literal value 2 into each of the four 32-bit fields of vector vConst. It then loads four 
different integer values into the fields of vector v1. The vec_add intrinsic is then called, and the 
two vectors are added with the result being assigned to v2.

#include <stdio.h>

d = vec_all_lt(a,b) All Elements Less Than

d = vec_all_nan(a) All Elements Not a Number

d = vec_all_ne(a,b) All Elements Not Equal

d = vec_all_nge(a,b) All Elements Not Greater Than or Equal

d = vec_all_ngt(a,b) All Elements Not Greater Than

d = vec_all_nle(a,b) All Elements Not Less Than or Equal

d = vec_all_nlt(a,b) All Elements Not Less Than

d = vec_all_numeric(a) All Elements Numeric

Any Predicates

d = vec_any_eq(a,b) Any Element Equal

d = vec_any_ge(a,b) Any Element Greater Than or Equal

d = vec_any_gt(a,b) Any Element Greater Than

d = vec_any_le(a,b) Any Element Less Than or Equal

d = vec_any_lt(a,b) Any Element Less Than

d = vec_any_nan(a) Any Element Not a Number

d = vec_any_ne(a,b) Any Element Not Equal

d = vec_any_nge(a,b) Any Element Not Greater Than or Equal

d = vec_any_ngt(a,b) Any Element Not Greater Than

d = vec_any_nle(a,b) Any Element Not Less Than or Equal

d = vec_any_nlt(a,b) Any Element Not Less Than

d = vec_any_numeric(a) Any Element Numeric

d = vec_any_out(a,b) Any Element Out of Bounds

Table 2-3. Vector/SIMD Multimedia Extension Predicate Intrinsics (Page 2 of 2)

Predicate Description
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// Define a type we can look at either as an array of ints or as a vector.
typedef union {

int iVals[4];
vector signed int myVec;

} vecVar;

int main()
{

vecVar v1, v2, vConst;  // define variables

// load the literal value 2 into the 4 positions in vConst,
vConst.myVec = (vector signed int)(2);

// load 4 values into the 4 positions in vector v1
v1.myVec = (vector signed int)(10, 20, 30, 40);

// call vector add function
v2.myVec = vec_add( v1.myVec, vConst.myVec );

// see what we got!
printf("\nResults:\nv2[0] = %d, v2[1] = %d, v2[2] = %d, v2[3] = %d\n\n",

v2.iVals[0], v2.iVals[1], v2.iVals[2], v2.iVals[3]);

return 0;
}

See Section 2.4 on page 47 for more information on how to run the example on the simulator. 
Figure 2-3 shows the results of running the sample program.

2.2.4.2 An Array-Summing Example

The following code contains three versions of a function that sums an input array of 16 byte 
values. For this kind of array-summing function, you have several options. You can unroll the 
scalar code to slightly improve the performance, you can use the Vector/SIMD Multimedia Exten-
sion to significantly improve the performance, or you can eliminate the loop entirely. 

Figure 2-3. Running the Vector/SIMD Multimedia Extension Sample Program 
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The first version, below, performs 16 iterations of the loop. The second version performs only 
four iterations of the loop but with four additions in each iteration. The third version uses 
Vector/SIMD Multimedia Extension intrinsics to eliminate the loop entirely. 

// 16 iterations of a loop
int rolled_sum(unsigned char bytes[16])
{

int i;
int sum = 0;
for (i = 0; i < 16; ++i)
{

sum += bytes[i];
}
return sum;

}

// 4 iterations of a loop, with 4 additions in each iteration
int unrolled_sum(unsigned char bytes[16])
{

int i;
int sum[4] = {0, 0, 0, 0};
for (i = 0; i < 16; i += 4)
{

sum[0] += bytes[i + 0];
sum[1] += bytes[i + 1];
sum[2] += bytes[i + 2];
sum[3] += bytes[i + 3];

}
return sum[0] + sum[1] + sum[2] + sum[3];

} 

// Vectorized for Vector/SIMD Multimedia Extension
int vectorized_sum(unsigned char bytes[16]) 
{ 
  vector unsigned char vbytes; 
  union { 
    int i[4]; 
    vector signed int v; 
  } sum; 
  vector unsigned int zero = (vector unsigned int)(0); 

  // Perform a misaligned vector load of the 16 bytes. 
  vbytes = vec_perm(vec_ld(0, bytes), vec_ld(16, bytes), vec_lvsl(0, bytes)); 

  // Sum the 16 bytes of the vector 
  sum.v = vec_sums((vector signed int)vec_sum4s(vbytes, zero), (vector signed 

int)zero); 

  // Extract the sum and return the result. 
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  return (sum.i[3]); 
} 

2.3 The PPE and the SPEs

2.3.1 Storage Domains

Three types of storage domains are defined in the Cell Broadband Engine—one main-storage 
domain, eight SPE local store domains, and eight SPE channel domains, as shown in Figure 2-4. 
The main-storage domain, which is the entire effective-address space, can be configured by the 
PPE operating system to be shared by all processors and memory-mapped devices in the 
system (all I/O is memory-mapped). However, the local-storage and channel problem-state 
(user-state) domains are private to the SPU, LS, and MFC of each SPE. 

An SPE can only fetch instructions from its own LS, and loads and stores can only access the 
LS. An SPE or PPE performs data transfers between the SPE’s LS and main storage primarily 
using DMA transfers controlled by the MFC DMA controller for that SPE. Software on the SPE’s 
SPU interacts with the MFC through channels, which enqueue DMA commands and provide 
other facilities, such as mailboxes, signal notification, and access auxiliary resources. 

Figure 2-4. Storage Domains 
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An SPE program references its own LS using a Local Store Address (LSA). The LS of each SPE 
is also assigned a Real Address (RA) range within the system's memory map. This allows privi-
leged software to map LS areas into the effective address (EA) space, where the PPE, other 
SPEs, and other devices that generate EAs can access the LS. 

Each SPE’s MFC serves as a data-transfer engine. DMA transfer requests contain both an LSA 
and an EA. Thus, they can address both an SPE’s LS and main storage and thereby initiate DMA 
transfers between the domains. The MFC accomplishes this by maintaining and processing an 
MFC command queue. DMA requests can be sent to an MFC either by software on its associ-
ated SPU or on the PPE, or by any other processing device that has access to the MFC's MMIO 
problem-state registers.

The queued requests are converted into DMA transfers. Each MFC can maintain and process 
multiple in-progress DMA command requests and DMA transfers. The MFC can also autono-
mously manage a sequence of DMA transfers in response to a DMA-list command from its asso-
ciated SPU. Each DMA command is tagged with a 5-bit Tag Group ID. Software can use this 
identifier to check or wait on the completion of all queued commands in one or more tag groups.

The MFC supports naturally aligned transfer sizes of 1, 2, 4, or 8 bytes, and multiples of 
16-bytes, with a maximum transfer size of 16 KB. Peak performance can be achieved for trans-
fers when both the EA and LSA are 128-byte aligned and the size of the transfer is an even 
multiple of 128 bytes.

Each MFC has an associated memory management unit (MMU) that holds and processes 
address-translation and access-permission information supplied by the PPE operating system. 
This MMU is distinct from the one used by the PPE. To process an effective address provided by 
a DMA command, the MMU uses the same method as the PPE memory-management functions. 
Thus, DMA transfers are coherent with respect to system storage. Attributes of system storage 
are governed by the page and segment tables of the PowerPC Architecture.

The PPE or other processing devices can initiate MFC commands on a particular MFC by 
accessing its MFC Command-Parameter Registers, shown in Table 2-4. These registers are 
mapped to the system’s real-address space. The PPE performs MMIO reads and writes to 
access these registers. The registers are contained in each SPE’s memory region, and DMA 
command requests are made by writing parameters to the registers. 

Table 2-4. MFC Command-Parameter Registers for PPE-Initiated DMA Transfers 

Name Mnemonic Maximum
Entries R/W Width

(bits)

MFC Local-Storage Address MFC_LSA 1 W 32

MFC Effective Address High MFC_EAH 1 W 32

MFC Effective Address Low MFC_EAL 1 W 32

MFC Transfer Size 
MFC Command Tag Identification

MFC_Size
MFC_TagID

1 W 32

MFC Class ID and Command Opcode MFC_ClassID_CMD 8 W 32

MFC Command Status MFC_CMDStatus 1 R 32
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2.3.2 Issuing DMA Commands from the PPE

To enqueue a DMA command from the PPE, access the MFC Command-Parameter Registers in 
the following sequence:

1. Write the LS address to the MFC_LSA register.

2. Write the effective address high and low parts to the MFC_EAH and MFC_EAL registers.

3. Write the transfer size and tag ID to the MFC_Size and MFC_TagID registers.

4. Write the class ID and command opcode to the MFC_ClassID_CMD registers.

5. Read the MFC_CMDStatus register to determine the success or failure of the attempt to 
enqueue a DMA command.

The least-significant 2 bits of the command status value returned from the read of the 
MFC_CMDStatus register indicate the success or error of the attempt to enqueue a DMA. The 
values of these two bits have the following meanings:

• 0—Indicates that the enqueue was successful.

• 1—Indicates that a sequence error occurred while enqueuing the DMA. For example, an 
interrupt occurred, then another DMA was started within an interrupt handler. In this case, 
the DMA enqueue sequence must be restarted at step 1.

• 2—Indicates that the enqueue failed due to insufficient space in the command queue.

• 3—Indicates that both errors occurred.

In the case of insufficient space, software could wait for space to become available before 
attempting the DMA transfer again, or software could simply continue attempting to enqueue the 
DMA until successful.

2.3.3 Creating Threads for the SPEs

Programs to be run on an SPE are written in C or C++ (or assembly language) and can use the 
SPE data types and intrinsics defined in the SPU C/C++ Language Extensions (see Section 3.3 
on page 72). The SPE code modules must be written and compiled separately from the PPE 
code modules, using different compilers. A PPE module starts an SPE module running by 
creating a thread on the SPE, using the spe_create_thread call, which calls an SPE runtime 
management library. 

The spe_create_thread call loads the program image into the SPE local store (LS), sets up the 
SPE environment, starts the SPE program, and then returns a pointer to the SPE's new thread 
ID.

The signature and parameters synopsis for the spe_create_thread system call are:

speid_t spe_create_thread( spe_gid_t gid, spe_program_handle_t *spe_program_handle,
  void *argp, void *envp, unsigned long * mask, int flags)

• gid—The identifier of the SPU group to which the new thread will belong. SPU group identifi-
ers are returned by spe_create_group. The new SPE thread inherits memory access privi-
leges and scheduling attributes from the designated SPU group.
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• spe_program_handle - Indicates the program to be executed on the SPE. This is an opaque 
pointer to an SPE Executable and Linking Format (ELF) image that has already been loaded 
and mapped into system memory. This pointer is normally provided as a symbol reference to 
an SPE ELF executable image that has been embedded into a PPE ELF object and linked 
with the calling PPE program. This pointer can also be established dynamically by loading a 
shared library containing an embedded SPE ELF executable, using dlopen(2) and dlsym(2), 
or by using the spe_open_image function to load and map a raw SPE ELF executable.

• argp—An optional pointer to application specific data. It is passed as the second parameter 
of the SPU program.

• envp—An optional pointer to environment specific data. It is passed as the third parameter of 
the SPU program.

• mask—The processor affinity mask for the new thread. Each bit in the mask enables (1) or 
disables (0) thread execution on a CPU. At least 1 bit in the affinity mask must be enabled. If 
equal to NULL, the new thread can be scheduled for execution on any processor.

• flags—This is a bit-wise OR of modifiers that is applied when the new thread is created. The 
following values are accepted:

• 0—No modifiers are applied.

• SPE_CFG_SIGNOTIFY1_OR—Configure the SPU Signal Notification 1 Register to be in “logi-
cal OR” mode instead of the default “Overwrite” mode.

• SPE_CFG_SIGNOTIFY2_OR—Configure the SPU Signal Notification 2 Register to be in “logi-
cal OR” mode instead of the default “Overwrite” mode.

• SPE_MAP_PS—Request permission for memory-mapped access to the SPE thread’s prob-
lem state area. 

• SPE_USER_REGS—Specifies that the SPE setup registers, r3, r4, and r5, are initialized with 
the 48 bytes pointed to by argp. 

The following code sample shows PPE code creating threads on each of the SPEs.

#include <libspe.h>
#define NUM_SPES 8
for (i = 0; i < NUM_SPES; i++)

spe_ids[i] = spe_create_thread(gid, &spe_code, NULL, NULL, -1, 0);

2.3.4 Communication Between the PPE and SPEs

The PPE communicates with the SPEs through privileged-state and problem-state MMIO regis-
ters supported by the MFC of each SPE. These registers are accessed by the associated SPE 
through its channel mechanism (see Section 3.1.3 on page 63), which consist of unidirectional 
registers and queues and support logic. The two primary communication mechanisms between 
the PPE and SPEs are mailboxes and signal notification registers.

Mailboxes are queues for exchanging 32-bit messages. Two mailboxes (the SPU Write 
Outbound Mailbox and the SPU Write Outbound Interrupt Mailbox) are provided for sending 
messages from the SPE to the PPE. One mailbox (the SPU Read Inbound Mailbox) is provided 
for sending messages to the SPE. Table 2-5 lists the mailbox channels and their associated 
MMIO registers. 
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SPU signal-notification channels are inbound (to an SPE) 32-bit registers. They can be config-
ured for one-to-one signaling or many-to-one signaling. An SPE read of one of its two signal-noti-
fication channels clears the channel. A PPE MMIO read does not clear the channel. Table 2-6 
lists the signal-notification channels and associated MMIO registers. 

The PPE is often used as an application controller, managing and distributing work to the SPEs. 
A large part of this task is loading main storage with the data to be processed, and then notifying 
the SPE by either writing to the SPU Read Inbound Mailbox or writing to one of the SPE’s signal 
notification registers. 

Mailboxes are also useful when the SPE places computational results in main storage via DMA. 
After requesting the DMA transfer, the SPE waits for the DMAs to complete, and then writes to an 
SPU Write Outbound Mailbox to notify the PPE that its computation is complete. The PPE can 
use either a mailbox or a signal to let an SPE know that the PPE has placed computational 
results in main storage via DMA. 

2.4 Developing Code for the Cell Broadband Engine

There can be several types of programs, including PPE programs, SPE programs, and Cell 
Broadband Engine programs (PPE programs with embedded SPE programs). The PPE and SPE 
programs use different compilers. The correct compiler, compiler flags, and libraries must be 
used for the intended processor and program type. The PPE typically sets up, starts, and stops 
an SPE. Communication between the PPE and SPEs is an important consideration. 

Table 2-5. Mailbox Channels and MMIO Registers  

Name

Channel MMIO Register

Mnemonic

M
ax

. E
nt
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s

R/W Width
(bits) Mnemonic

M
ax

. E
nt

rie
s

R/W Width
(bits)

SPU Write Outbound 
Mailbox SPU_WrOutMbox 1 W 32 SPU_Out_Mbox 1 R 32

SPU Read Inbound Mailbox SPU_RdInMbox 4 R 32 SPU_In_Mbox 4 W 32

SPU Write Outbound 
Interrupt Mailbox SPU_WrOutIntrMbox 1 W 32 SPU_Out_Intr_Mbox 1 R 32

Table 2-6. Signal Notification Channels and MMIO Registers  

Name

Channel MMIO Register

Mnemonic

M
ax

. E
nt

ri
es

R/W Width
(bits) Mnemonic

M
ax

. E
nt

ri
es

R/W Width
(bits)

SPU Signal Notification 1 SPU_RdSigNotify1 1 R 32 SPU_Sig_Notify_1 1 R/W 32

SPU Signal Notification 2 SPU_RdSigNotify2 1 R 32 SPU_Sig_Notify_2 1 R/W 32
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To aid in simplifying the process of producing programs for the Cell Broadband Engine, the SDK 
(see Section 1.4 on page 26) includes the standard make utility. The SDK also provides a build 
environment with the rules used by the make utility for producing basic Cell Broadband Engine 
program types.

Software can declare the types of programs in the makefile, and the correct compiler, compiler 
options, and libraries will be used for the build. The most important target types are PROGRAM_ppu 
and PROGRAM_spu, for building PPE programs and SPE programs, respectively. To use makefile 
definitions supplied by the SDK for producing programs, include the following line at the bottom 
of the makefile:

include ../../../make.footer

Insert as many instances of “../” as necessary to reach the top of the SDK directory tree.

Figure 2-5 shows a sample directory structure and makefiles for a system with a PPE program 
and an SPE program. This sample project, sampleproj, has a project directory and two subdirec-
tories. The ppu directory contains the source code and makefile for the PPE program. The spu 
directory has the source code and makefile for the SPE program. The makefile in the project 
directory executes the makefiles in the two subdirectories. This is only one of the possible project 
directory structures.

2.4.1 Producing a Simple CBE Program

To produce a simple program for the CBE, follow the steps listed below. (This example is 
included in the SDK in src/samples/tutorial/simple.) The project is called simple.

1. Create a directory named “simple”.

Figure 2-5. Sample Project Directory Structure and Makefiles 

# Subdirectories
DIRS = ppu spu

# make.footer
include ../../../make.footer

# Target
PROGRAM_ppu = sample_ppe

# make.footer
include ../../../../make.footer

# Target
PROGRAM_spu = sample_spe

# make.footer
include ../../../../make.footer

Makefile in directory sampleproj

Makefile in directory ppu Makefile in directory spu
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2. In directory simple, create a file “Makefile” with the following code:

########################################################################
# Subdirectories
########################################################################

DIRS := spu

########################################################################
#                       Target
########################################################################

PROGRAM_ppu:= simple

########################################################################
#                       Local Defines
########################################################################

IMPORTS         := spu/lib_simple_spu.a -lspe
# imports the embedded simple_spu library
# allows consolidation of spu program into ppe binary

########################################################################
# make.footer
########################################################################

# make.footer is in the top of the SDK
include ../../../../make.footer

3. In directory simple, create a file "simple.c" with the following code:

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <libspe.h>

extern spe_program_handle_t simple_spu;

#define SPU_THREADS 8

int main(int argc, char **argv)
{
    speid_t spe_ids[SPU_THREADS];
    int i,  status = 0;

    /* Create several SPE-threads to execute 'simple_spu'.
     */
    for(i=0; i<SPU_THREADS; i++){
      spe_ids[i] = spe_create_thread(0, &simple_spu, NULL, NULL, -1, 0);
      if (spe_ids[i] == 0) {
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fprintf(stderr, "Failed spe_create_thread(rc=%d, errno=%d)\n", 
                spe_ids[i], errno);

exit(1);
      }
    }

    /* Wait for SPU-thread to complete execution.
     */
    for (i=0; i<SPU_THREADS; i++) {
      (void)spe_wait(spe_ids[i], &status, 0);
    }

    printf("\nThe program has successfully executed.\n");

    return (0);
}

4. Create a directory named "spu."

5. In the directory spu, create a file named "Makefile" with the following code:

########################################################################
# Target
########################################################################

PROGRAMS_spu := simple_spu

# created embedded library
LIBRARY_embed:= lib_simple_spu.a

########################################################################
# Local Defines
########################################################################

IMPORTS = $(SDKLIB_spu)/libc.a

########################################################################
# make.footer
########################################################################

# make.footer is in the top of the SDK
include ../../../../../make.footer

6. In the same directory, create a file "simple_spu.c", with the following code:

#include <stdio.h>

int main(unsigned long long id)
{
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// the first parameter of an spu program will always be the spe_id of the spe thread 
that issued it

printf("Hello Cell (0x%llx)\n", id);

  return 0;
}

7. Produce the program by entering the following command at the command line while in the 
simple directory:

make

This CBE program creates SPE threads that output “Hello Cell (#)\n” to the systemsim output 
window, where # is the spe_id of the SPE thread that issued the print.

2.4.2 Running the Program in the Simulator

Now that we have produced a program in the base simulator hosting environment, we need to 
start the simulator—the IBM Full System Simulator for the Cell Broadband Engine—and import 
the program. 

To start the IBM Full System Simulator for the Cell Broadband Engine:

1. Copy the program file simple to the Linux run directory located in the SDK at systemsim-sti-
release/run/cell/linux.

2. In the Liux run directory, start the simulator using the following command:

../run_gui

3. Two new windows will appear on the screen. The first is a command-line window labeled 
UART0 in the window’s title bar. The second is the simulator graphical user interface (GUI) 
console window. These windows are shown in Figure 2-6 on page 52.
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The window labeled UART0 is a UART window that, when Linux boots effectively, becomes 
a Linux console window. The window in which the simulator was started (../run_gui) is the 
simulator command-line window. This is a command-line window (usually the serial port I/O) 
in the simulated Linux operating system on the simulated system. When the console window 
first appears, it is empty and there is no user prompt, because Linux has not yet been booted 
on the simulated system.

4. Boot the Linux operating system on the simulator by clicking the Go button on the graphical 
user interface (GUI) console window. The console window will begin to display the Linux 
booting process. When Linux has finished booting on the simulator, a command prompt will 
be visible in the window. Figure 2-7 on page 53 shows the window on completion of the boot 
process.

Figure 2-6. Windows Visible on Starting the GUI 
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The simulator is now ready to import the sample program into its environment. Before doing 
that, however, you can confirm that the program is not in the simulator environment, by 
entering the ls command at the prompt in the console window, and observing that simple is 
not listed in the directory listing.

5. Import the program from the base simulator hosting environment into the simulator environ-
ment by entering the following command:

callthru source simple > simple

This command tells the simulator environment to “call through” to the base simulator hosting 
environment, retrieve the file called simple, and copy that file to the simulator file system. If 
you now enter an ls command in the console window, you will see simple listed in the cur-
rent directory. Figure 2-8 on page 54 shows the process of loading the program into the sim-
ulation environment.

Figure 2-7. Console Window on Completion of Linux Boot 
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Even though the file had execute permissions in the base simulator hosting environment, the 
newly imported file in the emulator environment does not.

6. Add execute permissions to the program file simple by issuing the following command:

chmod +x simple

7. Execute the program by issuing the following command:

./simple

The output of the program will appear in the console window. Figure 2-9 on page 55 shows the 
output of running the sample program.

Figure 2-8. Loading the Program into the Simulation Environment 
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2.4.3 Debugging Programs

Debugging a program is often the most challenging part of programming, especially with multi-
threaded programs. The SDK contains several tools for debugging, the most important of which 
are the gbd debugger and the IBM Full System Simulator for the Cell Broadband Engine.

The gbd debugger is a command-line debugger available as part of the GNU development envi-
ronment. Because of the Cell Broadband Engine’s unique characteristics, gdb has been modified 
so that there are actually two versions of the debugger—ppu-gdb for debugging PPE processes, 
and spu-gdb for debugging SPE processes. To run gbd on the Cell Broadband Engine in which 
gbd supports SPE-program debugging, attach spu-gdb to a running SPE process.

The other tool for debugging a Cell Broadband Engine program is the IBM Full System Simulator 
for the Cell Broadband Engine. This simulator lets you view many aspects of the simulated 
running program in GUI mode. You can also control many aspects of the simulator using Tcl 
commands. The simulator is described more fully in Section 5 on page 137. 

Figure 2-9. Running the Sample Program 



Programming Tutorial

Cell Broadband Engine

The PPE and the Programming Process
Page 56 of 183

Version 1.0
October 21, 2005



Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 57 of 183

3. Programming the SPEs

The eight identical Synergistic Processor Elements (SPEs) are optimized for compute-intensive 
applications in which a program’s data and instruction needs can be anticipated and transferred 
into the local store (LS) by DMA while the SPE computes using previously transferred data and 
instructions. The streaming data sets in 3D graphics, media, and broadband communications are 
examples of applications that run well on SPEs. However, the SPEs are not optimized for running 
programs that have much branching, such as an operating system. Each SPE supports only a 
single program context at any one time. Typically, the operating system runs on the PPE, and 
user-mode threads are spawned to the SPEs. 

The SPEs achieve high performance, in part, by eliminating the overhead of load and store 
address translation, hardware-managed caches, out-of-order instruction issue, and branch 
prediction. Instead, the SPEs capitalize on the high computational efficiencies that can be 
obtained for streaming-data applications by providing a large (128-entry by 128-bit) unified 
register file, dual-instruction issue, and high DMA bandwidth between the LS and main storage. 

Each SPE supports the single-instruction, multiple-data (SIMD) instruction architecture, 
described in the SPU Instruction Set Architecture. Although details of this instruction set are 
given in the sections that follow, an SPE is normally programmed in a high-level language like C 
or C++. The SPU instruction set is supported by a rich set of language extensions for C/C++, 
described in the SPU C/C++ Language Extensions. These extensions define SIMD data types 
and intrinsics (commands, in the form of function calls) that map to one or more assembly-
language instructions, giving programmers very convenient and productive control over code 
performance without the need for assembly-language programming. 

3.1 SPE Configuration

The main components of an SPE are shown in Figure 3-1 on page 58. Their functions include: 

• Synergistic Processor Unit (SPU)—The SPU executes SPU instructions fetched from its 
256-KB LS. The SPU fills its LS with instructions and data using DMA transfers initiated from 
SPU or PPE software. 

• Memory Flow Controller (MFC)—The MFC provides the interface, by means of the Element 
Interconnect bus (EIB), between the SPU and main storage. The MFC performs DMA trans-
fers between the SPU’s LS and main storage, and it supports mailbox and signal-notification 
messaging between the SPE and the PPE and other devices. The SPU communicates with 
its MFC through SPU channels. The PPE and other devices (including other SPEs) commu-
nicate with an MFC through memory-mapped I/O (MMIO) registers associated with the 
SPU’s channels. 
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3.1.1 Synergistic Processor Unit

Each of the eight SPEs is an independent processor with its own program counter, register file, 
and 256-KB LS. An SPE operates directly on instructions and data in its LS. It fills its LS by 
requesting DMA transfers from its MFC, which manages the DMA transfers. The SPU has 
specialized units for executing load and store, fixed-point, floating-point unit (single-precision and 
double-precision), and channel-interface instructions. 

The large 128-entry, 128-bit wide register file, and its flat architecture (all operand types stored in 
a single register file), allows for instruction-latency hiding without speculation. The register file is 
unified—meaning that all data types (integer, single-precision and double-precision floating-
point, scalars, vectors, logicals, bytes, and others) use the same register file. The register file 
also stores return addresses, results of comparisons, and so forth. As a consequence of the 
large, unified register file, expensive hardware techniques such as out-of-order processing or 
deep speculation are not needed to achieve high performance. 

LS addresses can be aliased by PPE privileged software onto the main-storage (effective-
address) space. DMA transfers between the LS and main storage are coherent in the system. A 
pointer to a data structure created on the PPE can be passed to an SPU, and the SPU can use 
this pointer to issue a DMA command to bring the data structure into its LS. PPE software can 
use locking instructions and mailboxes for synchronization and mutual exclusion.

Figure 3-1. SPE Architectural Block Diagram 
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The SPU architecture has the following restrictions:

• No direct (SPU-program addressable) access to main storage. The SPU accesses main stor-
age only by using the MFC’s DMA transfers.

• No direct access to system control, such as page-table entries. PPE privileged software pro-
vides the SPU with the address-translation information that its MFC needs.

• With respect to accesses by its SPU, the LS is unprotected and untranslated storage.

3.1.1.1 SPE Registers

The complete set of SPE user (problem-state) registers is shown in Figure 3-2. All computational 
instructions operate only on registers—there are no computational instructions that modify 
storage. The SPE registers include:

• General-Purpose Registers (GPRs)—All data types can be stored in the 128-bit GPRs, of 
which there are 128. 

• Floating-Point Status and Control Register (FPSCR)—The processor updates the 128-bit 
FPSCR after every floating-point operation to record information about the result and any 
associated exceptions. 

3.1.1.2 Floating-Point Operations

The SPU executes both single-precision and double-precision floating-point operations. Single-
precision instructions are performed in 4-way SIMD fashion, fully pipelined, whereas double-
precision instructions are partially pipelined. The data formats for single-precision and double-
precision instructions are those defined by IEEE Standard 754, but the results calculated by 
single-precision instructions are not fully compliant with IEEE Standard 754. 

For single-precision operations, the range of normalized numbers is extended beyond the IEEE 
standard. The representable, nonzero numbers range from Xmin = 2126 to Xmax = (2 - 2-23)2128. 
If the exact result overflows (that is, if it is larger in magnitude than Xmax), the rounded result is 

Figure 3-2. SPE User-Register Set 
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set to Xmax with the appropriate sign. If the exact result underflows (that is, if it is smaller in 
magnitude than Xmin), the rounded result is forced to zero. A zero result is always a positive 
zero. 

Single-precision floating-point operations implement IEEE 754 arithmetic with the following 
changes:

• Only one rounding mode is supported: round towards zero, also known as truncation.

• Denormal operands are treated as zero, and denormal results are forced to zero.

• Numbers with an exponent of all ones are interpreted as normalized numbers and not as 
infinity or not-a-number (NaN).

Double-precision operations do not support the IEEE precise trap (exception) mode. If a double-
precision denormal or not-a-number (NaN) result does not conform to IEEE Standard 754, then 
the deviation is recorded in a sticky bit in the FPSCR register, which can be accessed using the 
fscrrd and fscrwr instructions or the spu_mffpscr and spu_mtfpscr intrinsics. 

Double-precision instructions are performed as two double-precision operations in 2-way SIMD 
fashion. However, the SPU is capable of performing only one double-precision operation per 
cycle. Thus, the SPU executes double-precision instructions by breaking up the SIMD operands 
and executing the two operations in consecutive instruction slots in the pipeline. Although 
double-precision instructions have 13-clock-cycle latencies, only the final seven cycles are pipe-
lined. No other instructions are dual-issued with double-precision instructions, and no instructions 
of any kind are issued for six cycles after a double-precision instruction is issued. 

3.1.1.3 Local Store

The LS can be regarded as a software-controlled cache that is filled and emptied by DMA trans-
fers. Key features of the LS include:

• Holds instructions and data 

• 16-bytes-per-cycle load and store bandwidth, quadword aligned only

• 128-bytes-per-cycle DMA-transfer bandwidth

• 128-byte instruction prefetch per cycle

When there is competition for access to the LS by loads, stores, DMA reads, DMA writes, and 
instruction fetches, the SPU arbitrates access to the LS according the following priorities (highest 
priority first):

1. DMA reads and writes by the PPE or an I/O device

2. SPU loads and stores

3. Instruction prefetch

Table 3-1 on page 61 summarizes the LS-arbitration priorities and transfer sizes. DMA reads and 
writes always have highest priority. Because hardware supports 128-bit DMA reads and writes, 
these operations occupy, at most, one of every eight cycles (one of sixteen for DMA reads, and 
one of sixteen for DMA writes) to the LS. Thus, except for highly optimized code, the impact of 
DMA reads and writes on LS availability for loads, stores, and instruction fetches can be ignored. 
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After DMA reads and writes, the next-highest user-initiated priority is given to load and store 
instructions. The rationale for doing so is that load and store instructions usually help a program’s 
progress, whereas instruction fetches are often speculative. The SPE supports only 16-byte load 
and store operations that are 16-byte-aligned. It uses a second instruction (byte shuffle) to place 
bytes in a different order if, for example, the program requires only a 4-byte quantity or a quantity 
with a different data alignment. To store something that is not aligned, use a read-modify-write 
operation.

The lowest priority for LS access is given to instruction fetches, of which there are three types: 
flush-initiated fetches, inline prefetches, and hint fetches. Instruction fetches load 32 instructions 
per SPU request by accessing all banks of the LS simultaneously. Because the LS is single-
ported, it is important that DMA and instruction-fetch activity transfer as much useful data as 
possible in each LS request. 

3.1.1.4 Pipelines and Dual-Issue Rules

The SPU has two pipelines, named even (pipeline 0) and odd (pipeline 1), into which it can issue 
and complete up to two instructions per cycle, one in each of the pipelines. Whether an instruc-
tion goes to the even or odd pipeline depends on its instruction type, which is related to the 
execution unit that performs the function. Each execution unit is assigned to one of the two pipe-
lines. Table 3-2 summarizes the instruction types, latencies, and pipeline assignments. 

Table 3-1. LS-Access Arbitration Priority and Transfer Size 

Transaction Transfer Size (Bytes) Priority

Maximum
Local Store
Occupancy
(SPU Cycle)

Access Path

MMIO ≤ 16 1-Highest
1/8 Line Interface

DMA ≤ 128 1

DMA-List
Transfer-Element Fetch 128 1 1/4

Quadword InterfaceECC Scrub 16 2 1/10

SPU Load/Store 16 3 1

Hint Fetch 128 3 1
Line Interface

Inline Fetch 128 4-Lowest 1/16 for inline code

Table 3-2. SPU Instruction Latency and Pipeline, by Instruction Class  (Page 1 of 2)

Instruction
Class Description Latency

(clock cycles) Pipeline

LS Load and store 6 Odd

HB Branch hints 15 Odd

BR Branch resolution1 4 Odd

CH Channel interface, special-purpose registers 6 Odd

SP Single-precision floating-point 6 Even

DP Double-precision floating-point 132 Even

FI Floating-point integer 7 Even
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The SPU issues all instructions in program order according to the pipeline assignment. Each 
instruction is part of a doubleword-aligned instruction pair called a fetch group. A fetch group can 
have one or two valid instructions, but it must be aligned to doubleword boundaries. This means 
that the first instruction in the fetch group is from an even word address, and the second instruc-
tion from an odd word address. The SPU processes fetch groups one at a time, continuing to the 
next fetch group when the current instruction group becomes empty. An instruction becomes 
issueable when register dependencies are satisfied and there is no structural hazard (resource 
conflict) with prior instructions or DMA or error-correcting code (ECC) activity. 

Dual-issue occurs when a fetch group has two issueable instructions in which the first instruction 
can be executed on the even pipeline and the second instruction can be executed on the odd 
pipeline. If a fetch group cannot be dual-issued, but the first instruction can be issued, the first 
instruction is issued to the proper execution pipeline and the second instruction is held until it can 
be issued. A new fetch group is loaded after both instructions of the current fetch group are 
issued.

3.1.2 Memory Flow Controller

The primary function of the Memory Flow Controller (MFC), shown in Figure 3-1 on page 58, is to 
connect the SPU to the EIB and support DMA transfers between main storage and the LS. The 
MFC maintains and processes queues of DMA commands from its SPU or from the PPE or other 
devices. The MFC’s DMA controller (DMAC) executes the DMA commands. This allows the SPU 
to continue execution in parallel with the MFC’s DMA transfers. The DMA and other MFC 
commands, and the command queues, are described in Section 3.4 on page 84. 

To make DMA transfers between main storage and the LS possible, privileged software on the 
PPE provides the LS and MFC resources, such as memory-mapped I/O (MMIO) registers, with 
effective-address aliases in main storage. This enables software on the PPE or other SPUs and 
devices to access the MFC resources and control the SPU. Privileged software on the PPE also 
provides address-translation information to the MFC for use in DMA transfers. DMA transfers are 
coherent with respect to system storage. Attributes of system storage (address translation and 
protection) are governed by the page and segment tables of the PowerPC Architecture. 

SH Shuffle 4 Odd

FX Simple fixed-point 2 Even

WS Word rotate and shift 4 Even

BO Byte operations 4 Even

NOP No operation (execute) Even

LNOP No operation (load) Odd

1. Inline or correctly hinted branches have zero-cycle delay. The mispredicted branch penalty is approximately 
20 clock cycles.

2. The last six cycles of a double-precision floating-point operation are instruction-issue stalls. No instructions 
of any kind are issued for six cycles after a double-precision floating-point instruction is issued. 

Table 3-2. SPU Instruction Latency and Pipeline, by Instruction Class  (Page 2 of 2)

Instruction
Class Description Latency

(clock cycles) Pipeline
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The MFC supports channels and associated MMIO registers for the purposes of enqueueing and 
monitoring DMA commands, monitoring SPU events, performing interprocessor-communication 
via mailboxes and signal-notification, accessing auxiliary resources such as the decrementer 
(timer), and other functions. 

In addition to supporting DMA transfers, channels, and MMIO registers, the MFC also supports 
bus-bandwidth reservation features and synchronizes operations between the SPU and other 
processing units in the system.

3.1.3 Channels

Channels are a set of unidirectional, function-specific registers or queues maintained by the 
MFC. They are the primary means of communication between the SPU and its MFC, which in 
turn mediates communication with the PPE and other devices through the MMIO registers asso-
ciated with the channels. Table 3-3 lists the channels and their attributes. Reserved and privi-
leged channels are omitted. 

Software on the SPU uses special channel instructions (Table 3-4 on page 65) to read and write 
channel registers and queues. Software on the PPE and other devices use load and store 
instructions to read and write to MFC’s MMIO registers that are associated with the SPU’s chan-
nels. 

Table 3-3. SPE Channels (Page 1 of 2) 

Channel Name Mnemonic Size 
(bits) R/W Blocking

SPU Events

0 SPU Read Event Status SPU_RdEventStat 32 R Yes

1 SPU Write Event Mask SPU_WrEventMask 32 W No

2 SPU Write Event Acknowledgment SPU_WrEventAck 32 W No

SPU Signal Notification

3 SPU Signal Notification 1 SPU_RdSigNotify1 32 R Yes

4 SPU Signal Notification 2 SPU_RdSigNotify2 32 R Yes

SPU Decrementer

7 SPU Write Decrementer SPU_WrDec 32 W No

8 SPU Read Decrementer SPU_RdDec 32 R No

MFC Multisource Synchronization

9 MFC Write Multisource Synchronization 
Request MFC_WrMSSyncReq 32 W Yes

SPU and MFC Read Mask

11 SPU Read Event Mask SPU_RdEventMask 32 R No

12 MFC Read Tag-Group Query Mask MFC_RdTagMask 32 R No

SPU State Management

13 SPU Read Machine Status SPU_RdMachStat 32 R No

14 SPU Write State Save-and-Restore SPU_WrSRR0 32 W No

15 SPU Read State Save-and-Restore SPU_RdSRR0 32 R No
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SPE channels are implemented as either read-only registers, write-only registers, or queues. 
Each channel has a corresponding count that indicates the remaining capacity (the maximum 
number of outstanding transfers) in that channel. This count is decremented when a channel 
instruction is issued to the channel, and the count increments when an action associated with 
that channel completes. Each channel is implemented as either a blocking queue or a 
nonblocking register. Blocking channels cause the SPE to stall (suspend execution in a low-
power state) when the SPE reads or writes a channel with a count of zero. 

Key features of the SPE channel operations include:

• All transactions on the channel interface are unidirectional.

• Each channel transaction is independent of any other transaction.

• Sequential read and write transactions are supported.

• External access to control MMIO registers has higher priority than channel operations.

• Channel operations are done in program order.

• Channel read operations to reserved channels return zeros.

• Channel write operations to reserved channels have no effect. 

• Reading of channel counts on reserved channels returns zero.

MFC Command Parameters

16 MFC Local Store Address MFC_LSA 32 W No

17 MFC Effective Address High MFC_EAH 32 W No

18 MFC Effective Address Low or List Address MFC_EAL 32 W No

19 MFC Transfer Size or List Size MFC_Size 16 W No

20 MFC Command Tag Identification MFC_TagID 16 W No

21 MFC Command Opcode or ClassID MFC_Cmd 32 W Yes

MFC Tag Status

22 MFC Write Tag-Group Query Mask MFC_WrTagMask 32 W No

23 MFC Write Tag Status Update Request MFC_WrTagUpdate 32 W Yes

24 MFC Read Tag-Group Status MFC_RdTagStat 32 R Yes

25 MFC Read List Stall-and-Notify Tag Status MFC_RdListStallStat 32 R Yes

26 MFC Write List Stall-and-Notify Tag Acknowl-
edgement MFC_WrListStallAck 32 W No

27 MFC Read Atomic Command Status MFC_RdAtomicStat 32 R Yes

SPU Mailboxes

28 SPU Write Outbound Mailbox SPU_WrOutMbox 32 W Yes

29 SPU Read Inbound Mailbox SPU_RdInMbox 32 R Yes

30 SPU Write Outbound Interrupt Mailbox SPU_WrOutIntrMbox 32 W Yes

Table 3-3. SPE Channels (Page 2 of 2) 

Channel Name Mnemonic Size 
(bits) R/W Blocking
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3.1.3.1 Channel Instructions

The SPU Instruction Set Architecture, summarized in Section 3.2 on page 68, defines three 
channel instructions (rdch, wrch, rchcnt), shown in Table 3-4. Software running on an SPE 
uses the channel instructions to write parameters and enqueue the MFC commands described in 
Section 3.4 on page 84. Table 3-4 includes both the SPU assembly-language instructions and 
their corresponding C-language intrinsics. The intrinsics are described in Section 3.3 on page 72. 

If the write channel is nonblocking, then a wrch instruction can be issued regardless of the value 
of the channel count for that channel. If the write channel is blocking, then a wrch instruction that 
is issued when the count for that channel is equal to zero will stall the SPE. Stalling on a wrch 
instruction can be useful because it saves power, but to avoid stalling, software should first read 
the channel count to ensure that it is not zero before issuing a wrch instruction. The method used 
to determine the channel count is dependent on the program. The program can poll the channel 
count for that register, using the rchcnt instruction, or the program can issue a wrch instruction. 
If the program issues a wrch instruction, the SPE stalls, waiting until an acknowledgment is 
received from the write channel. 

When an SPE program needs to receive information, it uses a rdch instruction. Usually, this 
information is held in an SPE register. The information can be loaded into this register through 
the channel interface using a read-data-load transaction. If the read channel is nonblocking, then 
a rdch instruction can be issued regardless of the value of the channel count for that channel. In 
the SPE, if the channel is a blocking channel, the SPE does not read from this register until the 
channel count for that register indicates that the data is valid (that is, when the count is greater 
than zero). If the count is zero, then there is no data in the channel and the SPE stalls until 
actions associated with that channel occur. These actions can include the updating of the 
MFC_RdTagStat channel (Table 3-3 on page 63), the PPE writing data to the corresponding 
MMIO register (such as a mailbox channel), or other actions. The method used to determine the 
count depends on the program. The program can poll the channel count for that register using 
the rchcnt instruction, or the program can issue the rdch instruction. If the program issues a 
rdch instruction, the SPE stalls, waiting until valid data is loaded.

The channel instructions are architected as 128 bits wide, but in the Cell Broadband Engine, 
channel instructions set use only the 32 bits from the preferred slot (the left-most word) in the 
register.

Table 3-4. SPE Channel Instructions 

Instruction Assembler
Instruction

C-Language
Intrinsic1

1. See Section 3.3 on page 72. 

Description

Read Channel rdch
spu_readch

spu_readchqw

Causes data to be read from the addressed 
channel and stored into the selected General-
Purpose Register (GPR).

Write Channel wrch
spu_writech

spu_writechqw
Causes data to be read from the selected 
GPR and stored in the addressed channel

Read Channel Count rchcnt  spu_readchcnt
Causes the count associated with the 
addressed channel to be stored in the 
selected GPR.
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3.1.3.2 Mailboxes

Mailboxes are a set of queues that support exchanges of 32-bit messages between an SPE and 
other devices. Each mailbox queue has an SPE channel assignment as well as a corresponding 
MMIO register assignment. Two 1-entry mailbox queues are provided for sending messages 
from the SPE: 

• SPU Write Outbound Mailbox

• SPU Write Outbound Interrupt Mailbox 

One 4-entry mailbox queue is provided for sending messages to the SPE: 

• SPU Read Inbound Mailbox 

Each mailbox has an SPE channel assignment (Table 3-3 on page 63) as well as a corre-
sponding MMIO register. To access the mailbox, an SPE program uses rdch and wrch instruc-
tions (Table 3-4 on page 65). The PPE and other processors use load and store instructions to 
access the corresponding MMIO addresses. 

Data written by an SPE program to one of these mailboxes using a wrch instruction is available 
to any processor or device that reads the corresponding MMIO register. Data written by a device 
to the SPU Read Inbound Mailbox using an MMIO write is available to an SPE program by 
reading that mailbox using a rdch or rchcnt instruction. An MMIO read from either of the SPU 
Write Outbound Mailboxes, or a write to the SPU Read Inbound Mailbox, can be programmed to 
set an SPE event. The event can in turn cause an SPE interrupt. A wrch instruction to the SPU 
Write Outbound Interrupt Mailbox can also be programmed to cause an interrupt to a processor 
or other device. 

Each time a PPE program writes to the 4-entry SPU Read Inbound Mailbox queue, the channel 
count for that channel increments. Each time a SPU program reads the mailbox queue, the 
channel count decrements. The mailbox is a FIFO queue; the SPE program reads the oldest data 
first. If the PPE program writes more than four times before the SPE program reads the data, 
then the channel count stays at four, and the fourth location contains the last data written by the 
PPE. For example, if the PPE program writes five times before the SPE program reads the data, 
then the data read is the first, second, third, and fifth data elements. The fourth data element has 
been overwritten.

Mailbox operations are blocking operations: a write to a PPE mailbox register that is already full 
stalls the SPE until a slot is created in the mailbox by a PPE read. Similarly, a read from an 
empty mailbox is stalled until the PPE writes to the mailbox. If the channel capacity count is zero 
for a channel that is configured as a blocking channel, then a channel instruction issued to that 
channel causes the SPE to stall and to stop issuing instructions until the channel is read. To 
prevent stalling in this case, the SPE program needs to read the count register associated with 
the particular mailbox and decide whether or not to read from or write to the mailbox.

There are at least three ways to deal with anticipated mailbox messages:

• The SPE software reads the channel (rdch), which will block until something arrives.

• The SPE software reads from the channel's count (rchcnt), which will return the count (zero 
or one); the software can then decide what to do.

• The SPE software sets up its interrupt facility to respond to mailbox events.
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Although the mailboxes are primarily intended for communication between the PPE and the 
SPEs, they can also be used for communication between an SPE and other SPEs, processors, 
or devices. For this to happen, however, privileged software needs to allow one SPE to access 
the mailbox register in another SPE. If software does not allow this, then only atomic operations 
and signal notifications are available for SPE-to-SPE communication. 

3.1.3.3 Signal Notification

Signal-notification channels, or signals, are inbound (to an SPE) registers. They can be used by 
other SPEs, the PPE, or other devices to send information, such as a buffer-completion synchro-
nization flag, to an SPE. Each SPE has two 32-bit signal-notification registers, each of which has 
a corresponding memory-mapped I/O (MMIO) register into which the signal-notification data is 
written by the sending processor. Unlike mailbox messaging, signal senders use one of three 
special MFC send-signal commands to send a signal: sndsig, sndsigf, and sndsigb, described 
in Section 3.4 on page 84. 

An SPE can only read its local signal-notification channels. The PPE or other processors can 
write or read the corresponding MMIO register. This allows the target SPE to do polling, blocking, 
or set up an interrupt as ways of responding to signals. An SPE read of one of its two signal-noti-
fication channels clears the channel atomically. An MMIO read does not clear a channel. An SPE 
read from the signaling channel will be stalled when no signal is pending at the time of the read.

A signal-notification channel can be configured by software to be in overwrite mode or OR mode. 
In overwrite mode (also called one-to-one signaling), sending a signal (writing to the MMIO 
address) overwrites previous contents. In OR mode (also called many-to-one signaling), sending 
a signal ORs the new 1 bits into the current contents. In the case of one-to-one signaling, there is 
usually no substantial difference in performance between signaling and using a mailbox.

The differences between mailboxes and signal-notification channels include: 

• Capacity—Signal-notification channels are registers. Mailboxes are queues. 

• Direction—Each SPE supports signal-notification channels that are only inbound (to the 
SPE). Their mailboxes support both outbound and inbound communication. However, an 
SPE can send signals to another SPE using MFC send-signal commands.

• Interrupts—One of the mailboxes interrupts the PPE. Signal-notification channels have no 
such automatic feature. 

• Many-to-One—Signal-notification channels (but not mailboxes) can be configured as many-
to-one (OR mode) or as one-to-one (overwrite mode). 

• Unique Commands—Signal-notification channels have specific MFC send-signal commands 
(sndsig, sndsigf, and sndsigb) for writing to them. See Section 3.4 on page 84. 

• Reset—Reading a signal-notification register automatically resets (clears) its bits. 

• Count—The channel counts have different meaning. Mailbox channel counts indicate the 
number of available (unoccupied) entries in the mailbox queue. The signal-notification chan-
nel count indicates whether there are any pending (unserviced) signals. 

• Number—Each SPE has two signal-notification channels versus three mailboxes. 
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3.2 SPU Instruction Set

The SPU Instruction Set Architecture (ISA) fully documents the instructions supported by the 
SPEs. This section summarizes the ISA. Programmers writing in a high-level language like C or 
C++ can use the intrinsics described in Section 3.3 on page 72 to improve their control over the 
SPE hardware. Because the functions performed by these intrinsics are closely related to the 
assembly-language instructions of the SPU Instruction Set Architecture, this overview may be 
helpful in understanding the utility of the intrinsics. 

The SPU ISA operates primarily on SIMD vector operands, both fixed-point and floating-point, 
with support for some scalar operands. The PPE and the SPE both execute SIMD instructions, 
but the two processors execute different instruction sets, and programs for the PPE and SPEs 
must be compiled by different compilers. 

3.2.1 Data Layout in Registers

The SPE supports big-endian data ordering, an ordering in which the lowest-address byte and 
lowest-numbered bit are the most-significant (high) byte and bit, respectively. Bits in registers are 
numbered in ascending order from left to right, with bit 0 representing the most-significant bit 
(MSb) and bit 127 the least-significant bit (LSb) as shown in the figure below. The SPE architec-
ture does not define or use little endian data ordering. 
.

The SPU hardware defines the following data types:

• byte—8 bits

• halfword—16 bits

• word—32 bits

• doubleword—64 bits

• quadword—128 bits

These data types are indicated by shading in Figure 3-3 on page 69. The left-most word (bytes 0, 
1, 2, and 3) of a register is called the preferred slot, also shown in Figure 3-3. When instructions 
use or produce scalar operands or addresses, the values are in the preferred slot. A set of store 
assist instructions is available to help store bytes, halfwords, words, and doublewords. 

M
S

b

LS
b

0 1 2 3 4 5 6 7 8 9 10 .... .... .... .... .... 116 117 118 119 120 121 122 123 124 125 126 127
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The SPE programming model defines the vector data types shown in Table 3-5 for the C 
programming language. These data types are all 128 bits long and contain from 1 to 16 elements 
per vector. 

3.2.2 Instruction Types

There are 204 instructions in the SPU Instruction Set Architecture, and they are grouped into 11 
sets by functionality. These instruction classes are shown in Table 3-6. 

Figure 3-3. Register Layout of Data Types and Preferred Slot 

Doubleword

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte

Halfword

Address

Quadword

Byte IndexPreferred Slot

Word

Table 3-5. Vector Data Types 

Vector Data Type Content

vector unsigned char Sixteen 8-bit unsigned chars

vector signed char Sixteen 8-bit signed chars

vector unsigned short Eight 16-bit unsigned halfwords

vector signed short Eight 16-bit signed halfwords

vector unsigned int Four 32-bit unsigned words

vector signed int Four 32-bit signed words

vector unsigned long long Two 64-bit unsigned doublewords

vector signed long long Two 64-bit signed doublewords

vector float Four 32-bit single-precision floats

vector double Two 64-bit double precision floats

qword quadword (16-byte)

Table 3-6. SPU Instruction Types (Page 1 of 2) 

Type Number

Memory Load and Store 16

Constant Formation 6

Integer and Logical Operations 59
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Figure 3-4 shows one example of an SPU SIMD instruction—the floating-point add instruction, 
fa. This instruction simultaneously adds four pairs of floating-point vector elements, stored in 
registers ra and rb, and produces four floating-point results, written to register rt. 

Depending on the programmer’s performance requirements and code size restraints, advan-
tages can be gained by properly grouping data in an SIMD vector. Figure 3-5 on page 71 shows 
a natural way of using SIMD vectors to store the homogenous data values—x, y, z, w—for the 
three vertices—a, b, c—of a triangle in a 3D-graphics application. This arrangement is called an 
array of structures (AOS), because the data values for each vertex are organized in a single 
structure, and the set of all such structures (vertices) is an array. 

Shift and Rotate 31

Compare, Branch, and Halt 40

Hint-for-Branch 3

Floating-Point 28

Control 8

SPU Channel 3

SPU Interrupt Facility 7

Synchronization and Ordering 3

Table 3-6. SPU Instruction Types (Page 2 of 2) 

Type Number

Figure 3-4. SIMD Floating-Point Add Instruction Function 

a rt,ra,rb

ra a.0 a.1 a.2 a.3

rb b.0 b.1 b.2 b.3

rt t.0 t.1 t.2 t.3

+ + + +
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The data-packing approach shown in Figure 3-5 often produces small code sizes, but it typically 
executes poorly and generally requires significant loop-unrolling to improve its efficiency. If the 
vertices contain fewer components than the SIMD vector can hold (for example, three compo-
nents instead of four), memory-use is wasted.

Another method of organizing data in SIMD vectors is a structure of arrays (SOA). Here, each 
corresponding data value for each vertex is stored in a corresponding location in a set of vectors. 
Think of the data as if it were scalar, and the vectors are populated with independent data across 
the vector. This is different from the previous example, where the four values of each vertex are 
stored in one vector. Figure 3-6 on page 72 shows the use of SIMD vectors to represent the x, y, 
z vertices for four triangles. Not only are the data types the same across the vector, but now their 
data interpretation is the same. Depending on the algorithm, software might execute more effi-
ciently with this SIMD data organization than with the organization shown in Figure 3-5. 

Figure 3-5. Array-of-Structures Data Organization for One Triangle 

vector float a, b, c

vertex a x y z w

x y z wvertex b

x y z wvertex c
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For more about the SPU instructions, see the SPU Instruction Set Architecture and the SPU 
Assembly Language Specification. 

3.3 SPU C/C++ Language Extensions (Intrinsics)

A large set of SPU C/C++ Language Extensions (intrinsics) make the underlying SPU Instruction 
Set Architecture and hardware features conveniently available to C programmers. These intrin-
sics can be used in place of assembly-language code when writing in the C or C++ languages. 

The intrinsics are essentially in-line assembly-language instructions in the form of C-language 
function calls. They provide the programmer with explicit control of the SPE SIMD instructions 
without directly managing registers. A well-written compiler that supports these intrinsics will emit 
efficient code for the SPE architecture. The techniques used by compilers to generate efficient 
code include: 

• Register coloring

• Instruction scheduling (dual-issue optimization)

• Data loads and stores

• Loop blocking, fusion, unrolling

• Correct up-stream placement of branch hints

• Literal vector construction

Figure 3-6. Structure-of-Arrays Data Organization for Four Triangles 

vector float a, b, c

vertex a[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex a[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex a[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex b[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex b[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex b[2]:z triangle 1 triangle 2 triangle 3 triangle 4

vertex c[0]:x triangle 1 triangle 2 triangle 3 triangle 4

vertex c[1]:y triangle 1 triangle 2 triangle 3 triangle 4

vertex c[2]:z triangle 1 triangle 2 triangle 3 triangle 4
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For example, the gcc compiler provides the intrinsic t = spu_add(a, b) as a substitute for the 
assembly-language instruction fa rt,ra,rb. The compiler will generate a floating-point add 
instruction (fa rt, ra, rb) for the SPU intrinsic t = spu_add(a, b), assuming t, a, and b are vector 
float variables. The system header file, spu_intrinsics.h, defines the SPU language extensions. 

The intrinsics are defined fully in the SPU C/C++ Language Extensions document. The PPE and 
the SPU instruction sets have similar, but distinct, SIMD intrinsics. It is important to understand 
the mapping between the PPE and SPU SIMD intrinsics when developing applications on the 
PPE that will eventually be ported to the SPEs. 

3.3.1 Assembly Language versus Intrinsics Comparison: An Example

The ease of implementing a DMA transfer using intrinsics versus assembly-language instructions 
is illustrated in the following example implementation of the dma_transfer subroutine. This 
subroutine issues a DMA command with transfer size bytes from the LS address, lsa, to or from 
the 64-bit effective address specified by eah | eal. The DMA command specified by the dma 
parameter is tagged using the specified tag_id parameter. 

extern void dma_transfer(volatile void *lsa,     // local store address
                        unsigned int eah,        // high 32-bit effective address
                        unsigned int eal,        // low 32-bit effective address
                        unsigned int size,       // transfer size in bytes
                        unsigned int tag_id,     // tag identifier (0-31)
                        unsigned int cmd);       // DMA command
                   

The Application Binary Interface (ABI)-compliant assembly-language implementation of the 
subroutine would be: 

       .text
       .global      dma_transfer
dma_transfer:
       wrch         $MFC_LSA, $3
       wrch         $MFC_EAH, $4
       wrch         $MFC_EAL, $5
       wrch         $MFC_Size, $6
       wrch         $MFC_TagID, $7
       wrch         $MFC_Cmd, $8
       bi           $0 

A comparable C implementation using the SPU intrinsic, spu_writech, for the write-channel 
(wrch) instruction would be:

#include <spu_intrinsics.h> 

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 
                        unsigned int size, unsigned int tag_id, unsigned int cmd)
{
       spu_writech(MFC_LSA, (unsigned int)lsa);
       spu_writech(MFC_EAH, eah);
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       spu_writech(MFC_EAL, eal);
       spu_writech(MFC_Size, size);
       spu_writech(MFC_TagID, tag_id);
       spu_writech(MFC_Cmd, cmd);
} 

This particular function could be more simply written using the spu_mfcdma64 composite intrinsic, 
as:

#include <spu_intrinsics.h> 

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 
                        unsigned int size, unsigned int tag_id, unsigned int cmd)
{
       spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);
} 

3.3.2 Intrinsic Classes

SPU intrinsics are grouped into the following three classes:

• Specific Intrinsics—Intrinsics that have a one-to-one mapping with a single assembly-lan-
guage instruction. Programmers rarely need these intrinsics for implementing inline assem-
bly code because the Joint Software Reference Environment (JSRE) has adopted gcc-style 
inline assembly.

• Generic Intrinsics and Built-Ins—Intrinsics that map to one or more assembly-language 
instructions as a function of the type of input parameters. Built-ins are a subset of generic 
intrinsics that map to more than one assembly-language instruction. 

• Composite Intrinsics—Convenience intrinsics constructed from a sequence of specific or 
generic intrinsics. 

Intrinsics are not provided for all assembly-language instructions. Some assembly-language 
instructions (for example, branches, branch hints, and interrupt return) are naturally accessible 
through the C/C++ language semantics. Many SPU intrinsics are different than PPE intrinsics 
(see Section 3.3.4 on page 81).

3.3.2.1 Specific Intrinsics

Specific intrinsics have a one-to-one mapping with a single assembly-language instruction. All 
specific intrinsics are named using the SPU assembly instruction prefixed by the string, si_. For 
example, the specific intrinsic that implements the stop assembly instruction is named si_stop. 
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Specific intrinsics are provided for all instructions except branch, branch-hint, and interrupt-return 
instructions. All specific intrinsics are also available in the form of generic intrinsics, except for the 
specific intrinsics shown in Table 3-7. The specific intrinsics shown in this table fall into three 
categories:

• Instructions generated using basic variable-referencing (that is, using vector and scalar loads 
and stores)

• Instructions used for immediate vector construction

• Instructions that have limited usefulness and are not expected to be used except in rare con-
ditions

Table 3-7. Specific Intrinsics Not Available as Generic Intrinsics (Page 1 of 2) 

Intrinsic Description

Generate Controls for Sub-Quadword Insertion Intrinsics

 d = si_cbd(a, imm) Generate controls for byte insertion (d form)

d = si_cbx(a, b) Generate controls for byte insertion (x form)

d = si_cdd(a, imm) Generate controls for doubleword insertion (d form)

d = si_cdx(a, b) Generate controls for doubleword insertion (x form)

d = si_chd(a, imm) Generate controls for halfword insertion (d form)

d = si_chx(a, b) Generate controls for halfword insertion (x form)

d = si_cwd(a, imm) Generate controls for word insertion (d form)

d = si_cwx(a, b) Generate controls for word insertion (x form)

Constant Formation Intrinsics

d = si_il(imm) Immediate load word

d = si_ila(imm) Immediate load address 

d = si_ilh(imm) Immediate load halfword 

d = si_ilhu(imm) Immediate load halfword upper 

d = si_iohl(a, imm) Immediate or halfword lower

No Operation Intrinsics

si_lnop() No operation (load)

si_nop() No operation (execute)

Memory Load and Store Intrinsics

d = si_lqa(imm) Load quadword (a form)

d = si_lqd(a, imm) Load quadword (d form)

d = si_lqr(imm) Load quadword instruction relative 

d = si_lqx(a, b) Load quadword (x form)

si_stqa(a, imm) Store quadword (a form)

si_stqd(a, b, imm) Store quadword (d form)

si_stqr(a, imm) Store quadword instruction relative 
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Specific intrinsics accept only the following types of arguments:

• Immediate literals, as an explicit constant expression or as a symbolic address

• Enumerations

• Quadword arguments

Arguments of other types must be cast to the qword data type.  When using specific intrinsics, it 
might be necessary to cast from scalar types to the qword data type, or from the qword data type to 
scalar types. Similar to casting between vector data types, specific cast intrinsics have no effect 
on an argument that is stored in a register. All specific casting intrinsics are of the following form:

d = casting_intrinsic(a)

For example, to add 3 to the integer i:

int i;
i = si_to_int (si_ai (si_from_int(i), 3));

Table 3-8 lists the specific casting intrinsics.

si_stqx(a, b, c) Store quadword (x form)

Control Intrinsics

si_stopd(a, b, c) Stop and signal with dependencies

Table 3-8. Specific Casting Intrinsics (Page 1 of 2) 

Intrinsic Description

si_to_char Cast byte element 3 of qword to char.

si_to_uchar Cast byte element 3 of qword to unsigned char.

si_to_short Cast halfword element 1 of qword to short.

si_to_ushort Cast halfword element 1 of qword to unsigned short.

si_to_int Cast word element 0 of qword to int.

si_to_uint Cast word element 0 of qword to unsigned int.

si_to_ptr Cast word element 0 of qword to a void pointer.

si_to_llong Cast doubleword element 0 of qword to long long.

si_to_ullong Cast doubleword element 0 of qword to unsigned long long.

si_to_float Cast word element 0 of qword to float.

si_to_double Cast doubleword element 0 of qword to double.

si_from_char Cast char to byte element 3 of qword.

si_from_uchar Cast unsigned char to byte element 3 of qword.

si_from_short Cast short to halfword element 1 of qword.

si_from_ushort Cast unsigned short to halfword element 1 of qword.

Table 3-7. Specific Intrinsics Not Available as Generic Intrinsics (Page 2 of 2) 

Intrinsic Description
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3.3.2.2 Generic Intrinsics

Generic intrinsics map to one or more assembly-language instructions, as a function of the type 
of its input parameters. Built-ins are a subset of generic intrinsics that map to more than one SPU 
instruction. All of the generic intrinsics and built-ins are prefixed by the string, spu_. For example, 
the intrinsic that implements the stop assembly instruction is named spu_stop.

Generic intrinsics are provided for all SPU instruction, except the following:

• branch

• branch hint

• interrupt return

• generate control for insertion (used for scalar stores)

• constant formation

• no-op

• memory load and store

• stop and signal with dependencies (stopd)

Many generic intrinsics accept scalars as one of their operands. These correspond to intrinsics 
that map to instructions with immediate values.

Table 3-9 lists the generic intrinsics.

si_from_int Cast int to word element 0 of qword.

si_from_uint Cast unsigned int to word element 0 of qword.

si_from_ptr Cast void pointer to word element 0 of qword.

si_from_llong Cast long long to doubleword element 0 of qword.

si_from_ullong Cast unsigned long long to doubleword element 0 of qword.

si_from_float Cast float to word element 0 of qword.

si_from_double Cast double to doubleword element 0 of qword.

Table 3-9. Generic SPU Intrinsics (Page 1 of 4) 

Intrinsic Description

Constant Formation Intrinsics

d = spu_splats(a) Replicate scalar a into all elements of vector d

Conversion Intrinsics

 d = spu_convtf(a, scale) Convert integer vector to float vector

 d = spu_convts(a, scale) Convert float vector to signed int vector

 d = spu_convtu(a, scale) Convert float vector to unsigned float vector

 d = spu_extend(a) Sign extend vector

 d = spu_rountf(a) Round double vector to float vector

Table 3-8. Specific Casting Intrinsics (Page 2 of 2) 

Intrinsic Description
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Arithmetic Intrinsics

 d = spu_add(a, b) Vector add

 d = spu_addx(a, b, c) Vector add extended

 d = spu_genb(a, b) Vector generate borrow

 d = spu_genbx(a, b, c) Vector generate borrow extended

 d = spu_genc(a, b) Vector generate carry

 d = spu_gencx(a, b, c) Vector generate carry extended

 d = spu_madd(a, b, c) Vector multiply and add

 d = spu_mhhadd(a, b, c) Vector multiply high high and add

 d = spu_msub(a, b, c) Vector multiply and subtract

 d = spu_mul(a, b) Vector multiply

 d = spu_mulh(a, b) Vector multiply high

 d = spu_mulhh(a, b) Vector multiply high high

 d = spu_mulo(a, b) Vector multiply odd

 d = spu_mulsr(a, b) Vector multiply and shift right

 d = spu_nmadd(a, b, c) Negative vector multiply and add

 d = spu_nmsub(a, b, c) Negative vector multiply and subtract

 d = spu_re(a) Vector floating-point reciprocal estimate

 d = spu_rsqrte(a) Vector floating-point reciprocal square root estimate

 d = spu_sub(a, b) Vector subtract

 d = spu_subx(a, b, c) Vector subtract extended

Byte Operation Intrinsics

 d = spu_absd(a, b) Vector absolute difference

 d = spu_avg(a, b) Vector average

 d = spu_sumb(a, b) Vector sum bytes into shorts

Compare, Branch, and Halt Intrinsics

 d = spu_bisled(func) Branch indirect and set link if external data

 d = spu_cmpabseq(a, b) Vector compare absolute equal

 d = spu_cmpabsgt(a, b) Vector compare absolute greater than

 d = spu_cmpeq(a, b) Vector compare equal

 d = spu_cmpgt(a, b) Vector compare greater than

(void) spu_hcmpeq(a, b) Halt if compare equal

(void) spu_hcmpgt(a, b) Halt if compare greater than

Bit and Mask Intrinsics

 d = spu_cntb(a) Vector count ones for bytes

 d = spu_cntlz(a) Vector count leading zeros

 d = spu_gather(a) Gather bits from elements

Table 3-9. Generic SPU Intrinsics (Page 2 of 4) 

Intrinsic Description
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 d = spu_maskb(a) Form select byte mask

 d = spu_maskh(a) Form select halfword mask

 d = spu_maskw(a) Form select word mask

 d = spu_sel(a, b, pattern) Select bits

 d = spu_shuffle(a, b, pattern) Shuffle bytes of a vector

Logical Intrinsics

 d = spu_and(a, b) Vector bit-wise AND

 d = spu_andc(a, b) Vector bit-wise AND with complement

 d = spu_eqv(a, b) Vector bit-wise equivalent

 d = spu_nand(a, b) Vector bit-wise complement of AND

 d = spu_nor(a, b) Vector bit-wise complement of OR

 d = spu_or(a, b) Vector bit-wise OR

 d = spu_orc(a, b) Vector bit-wise OR with complement

 d = spu_orx(a) Bit-wise OR word elements

 d = spu_xor(a, b) Vector bit-wise exclusive OR

Rotate Intrinsics

 d = spu_rl(a, count) Element-wise bit rotate left

 d = spu_rlmask(a, count) Element-wise bit rotate left and mask

 d = spu_rlmaska(a, count) Element-wise bit algebraic rotate and mask

 d = spu_rlmaskqw(a, count) Bit rotate and mask quadword

 d = spu_rlmaskqwbyte(a, count) Byte rotate and mask quadword

 d = spu_rlmaskqwbytebc(a, count) Byte rotate and mask quadword using bit rotate count

 d = spu_rlqw(a, count) Bit rotate quadword left

 d = spu_rlqwbyte(a, count) Byte rotate quadword left

 d = spu_rlqwbytebc(a, count) Byte rotate quadword left using bit rotate count

Shift Intrinsics

 d = spu_sl(a, count) Element-wise bit shift left

 d = spu_slqw(a, count) Bit shift quadword left

 d = spu_slqwbyte(a, count) Byte shift quadword left

 d = spu_slqwbytebc(a, count) Byte shift quadword left using bit shift count

Control Intrinsics

(void) spu_idisable() Disable interrupts

(void) spu_ienable() Enable interrupts

(void) spu_mffpscr() Move from floating-point status and control register

(void) spu_mfspr(register) Move from special-purpose register

(void) spu_mtfpscr(a) Move to floating-point status and control register

(void) spu_mtspr(register, a) Move to special-purpose register

Table 3-9. Generic SPU Intrinsics (Page 3 of 4) 

Intrinsic Description
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3.3.2.3 Composite Intrinsics

Composite intrinsics are constructed from a sequence of specific or generic intrinsics. All of the 
composite intrinsics are prefixed by the string, spu_. Table 3-10 lists the composite intrinsics.

For further information about the SPU intrinsics, see the SPU C/C++ Language Extensions docu-
ment. 

3.3.3 Promoting Scalar Data Types to Vector Data Types

The SPU only loads and stores a quadword at a time. When instructions use or produce scalar 
operands (including addresses), the value is kept in the preferred slot of an SIMD register. Scalar 
(subquadword) loads and stores require several instructions to format the data for use on the 
SIMD architecture of the SPE. Scalar loads must be rotated into the preferred slot. Scalar stores 
require a read, scalar insert, and write operation. These extra formatting instructions reduce 
performance.

Vector operations on scalar data are not efficient. The following strategies can be used to make 
operations on scalar data more efficient:

• Change the scalars to quadword vectors. By eliminating the three extra instructions associ-
ated with loading and storing scalars, code size and execution time can be reduced.

(void) spu_dsync() Synchronize data

(void) spu_stop(type) Stop and signal

(void) spu_sync() Synchronize

Scalar Intrinsics

d = spu_extract(a, element) Extract vector element from vector

d = spu_insert(a, b, element) Insert scalar into specified vector element

d = spu_promote(a, element) Promote scalar to vector

Channel Control Intrinsics

d = spu_readch(channel) Read word channel

d = spu_readchqw(channel) Read quadword channel

d = spu_readchcnt(channel) Read channel count

(void) spu_writech(channel, a) Write word channel

(void) spu_writechqw(channel, a) Write quadword channel

Table 3-10. Composite SPU Intrinsics  

Intrinsic Description

spu_mfcdma32(ls, ea, size, tagid, cmd) Initiate DMA to or from 32-bit effective address

spu_mfcdma64(ls, eahi, ealow, size, tagid, cmd) Initiate DMA to or from 64-bit effective address

spu_mfcstat(type) Read MFC tag status

Table 3-9. Generic SPU Intrinsics (Page 4 of 4) 

Intrinsic Description
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• Cluster scalars into groups, and load multiple scalars at a time using a quadword memory 
access. Manually extract or insert the scalars as needed. This will eliminate redundant loads 
and stores.

SPU intrinsics are provided in the C/C++ Language Extensions to efficiently promote scalars to 
vectors, or vectors to scalars. These intrinsics are listed in Table 3-11. 

3.3.4 Differences Between PPE and SPE SIMD Support

3.3.4.1 Architectural Differences

The PPE processes SIMD operations in the VXU within its PPU. The operations are those of the 
Vector/SIMD Multimedia Extension instruction set. The SPEs process SIMD operations in their 
SPU. The operations are those of the SPU instruction set. 

The major differences between the PPE and SPE architectures are summarized in Table 3-12.

3.3.4.2 Language-Extension Differences

The SPE’s SPU instruction set is similar to that of the PPE’s Vector/SIMD Multimedia Extension 
instruction set, in that both operate on 128-bit SIMD vectors. However, from a programmer’s 
perspective, these instruction sets are quite different, and their respective language extensions 
have different intrinsics and data types. 

Table 3-13 on page 82 specifies the supported vector data types for each of the SIMD engines 
(PPE and SPE) in the Cell Broadband Engine (an “x” signifies support; a “—” signifies no 
support):

Table 3-11. Intrinsics for Changing Scalar and Vector Data Types  

Instruction Description

d = spu_insert Insert a scalar into a specified vector element.

d = spu_promote Promote a scalar to a vector.

d = spu_extract Extract a vector element from its vector.

Table 3-12. PPE and SPE Architectural Comparison  

Feature PPE SPE

Number of SIMD registers 32 (128-bit) 128 (128-bit)

Organization of register files separate fixed-point, floating-point, and 
vector multimedia registers unified

Load latency variable (cache) fixed

Addressability 264 bytes
256-KB local store

264 bytes DMA

Instruction set more orthogonal optimized for single-precision float

Single-precision IEEE 754-1985 extended range

Doubleword no doubleword SIMD double-precision floating-point SIMD
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The key differences are:

• Only the Vector/SIMD Multimedia Extension instruction set supports pixel vectors.

• Only the SPU instruction set supports doubleword vectors. 

The SPUs quadword data type is excluded from the list because it is a type-agnostic register 
reference instead of a specific vector data type. The quadword data type is used exclusively as 
an operand in specific intrinsics—those which have a one-to-one mapping with a single 
assembly-language instruction. See Section 3.3.2 on page 74.

Also, the Vector/SIMD Multimedia Extension instruction set provides these operations that are 
not directly supported by a single instruction in the SPU instruction set:

• Saturating math

• Sum-across

• Log2 and 2x

• Ceiling and floor

• Complete byte instructions

Likewise, the SPU instruction set provides these operations that are not directly supported by a 
single instruction in the Vector/SIMD Multimedia Extension instruction set:

• Immediate operands

• Double-precision floating-point

• Sum of absolute difference

• Count ones in bytes

• Count leading zeros

Table 3-13. PPE versus SPU Vector Data Types  

Vector Data Type PPE SPU

vector unsigned char x x

vector signed char x x

vector bool char x —

vector unsigned short x x

vector signed short x x

vector bool short x —

vector pixel x —

vector unsigned int x x

vector signed int x x

vector bool int x —

vector float x x

vector unsigned long long — x

vector signed long long — x

vector double — x
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• Equivalence

• Nand

• Or complement

• Extend sign

• Gather bits

• Form select mask

• Integer multiply and accumulate

• Multiply subtract

• Multiply float

• Shuffle byte special conditions

• Carry and borrow generate

• Sum bytes across

• Extended shift range

These differences between the Vector/SIMD Multimedia Extension and SPU instruction sets 
must be kept in mind when porting code from the PPE to the SPE. Ported programs need to 
consider not only equivalent instructions but also code performance. See Section 3.6 on page 98 
for more on porting code.

To improve code portability between PPE and SPU programs, spu_intrinsics.h provides 
single-token typedefs for vector keyword data types. These typedefs are shown in Table 3-14. 
These single-token types serve as class names for extending generic intrinsics for mapping to-
and-from Vector/SIMD Multimedia Extension intrinsics and SPU intrinsics.

Table 3-14. Single-Token Vector Keyword Data Types 

Vector Keyword Data Type Single-Token Typedef

vector unsigned char vec_uchar16

vector signed char vec_char16

vector unsigned short vec_ushort8

vector signed short vec_short8

vector unsigned int vec_unit4

vector signed int vec_int4

vector unsigned long long vec_ullong2

vector signed long long vec_llong2

vector float vec_float4

vector double vec_double2
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3.3.5 Compiler Directives

Like compiler intrinsics, compiler directives are crucial programming elements. The restrict 
qualifier is well-known in many C/C++ implementations, and it is part of the SPU language exten-
sion. When the restrict keyword is used to qualify a pointer, it specifies that all accesses to the 
object pointed to are done through the pointer. For example:

void *memcpy(void * restrict s1, void * restrict s2, size_t n);

By specifying s1 and s2 as pointers that are restricted, the programmer is specifying that the 
source and destination objects (for the memory copy) do not overlap. 

Another directive is __builtin_expect. Since branch mispredicts are relatively expensive, 
__builtin_expect provides a way for the programmer to direct branch prediction. This example:

int __builtin_expect(int exp, int value)

returns the result of evaluating exp, and means that the programmer expects exp to equal value. 
The value can be a constant for compile-time prediction, or a variable used for run-time predic-
tion. 

Two more directives are the aligned attribute, and the _align_hint directive. The aligned 
attribute is used to ensure proper DMA alignment, for efficient data transfer. The syntax is the 
same as in many implementations of gcc:

float factor __attribute__((aligned (16)); //aligns “factor” to a quadword

The _align_hint directive helps compilers auto-vectorize. Although it looks like an intrinsic, it is 
more properly described as a compiler directive, since no code is generated as a result of using 
the directive. The example

_align_hint(ptr, base, offset)

informs the compiler that the pointer, ptr, points to data with a base alignment of base, with a 
byte offset from the base alignment of offset. The base alignment must be a power of two. 
Giving 0 as the base alignment implies that the pointer has no known alignment. The offset must 
be less than the base, or, zero. The _align_hint directive should not be used with pointers that 
are not naturally aligned. 

3.4 MFC Commands

The MFC, described in Section 3.1.2 on page 62, supports a set of MFC commands. These 
commands provide the main mechanism that enables code executing in an SPU to access main 
storage and maintain synchronization with other processors and devices in the system. MFC 
commands can be issued either by code running on the MFC’s associated SPU or by code 
running on the PPE or other device, as follows:

• Code running on the SPU issues an MFC command by executing a series of writes and/or 
reads using channel instructions, described in Table 3-4 on page 65. 

• Code running on the PPE or other devices issues an MFC command by performing a series 
of stores and/or loads to memory-mapped I/O (MMIO) registers in the MFC. 
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The commands are queued in one of two independent MFC command queues: 

• MFC SPU Command Queue—For channel-initiated commands by the associated SPU

• MFC Proxy Command Queue—For MMIO-initiated commands by the PPE or other device

MFC commands that transfer data are referred to as DMA commands. The data-transfer direc-
tion for MFC DMA commands is always referenced from the perspective of an SPE. Therefore, 
commands that transfer data into an SPE (from main storage to local store), are considered get 
commands, and transfers of data out of an SPE (from local store to main storage) are considered 
put commands.

The MFC DMA commands are shown in Table 3-15. This table also indicates whether the 
commands are supported for SPEs (by means of a corresponding channel) and for the PPE (by 
means of a corresponding MMIO register), or both. The suffixes associated with the MFC DMA 
commands are shown in Table 3-16 on page 86. The MFC synchronization commands are 
shown in Table 3-17 on page 87. The MFC atomic commands are shown in Table 3-18 on 
page 87. 

Table 3-15. MFC DMA Commands  (Page 1 of 2)

Mnemonic Supported By1 Description

Put Commands

put PPE, SPE Moves data from local store to the effective address.

puts PPE Moves data from local store to the effective address and starts the SPU after the 
DMA operation completes. 

putf PPE, SPE
Moves data from local store to the effective address with fence (this command is 
locally ordered with respect to all previously issued commands within the same tag 
group and command queue).

putb PPE, SPE

Moves data from local store to the effective address with barrier (this command 
and all subsequent commands with the same tag ID as this command are locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue).

putfs PPE

Moves data from local store to the effective address with fence (this command is 
locally ordered with respect to all previously issued commands within the same tag 
group and command queue) and starts the SPU after the DMA operation com-
pletes. 

putbs PPE

Moves data from local store to the effective address with barrier (this command 
and all subsequent commands with the same tag ID as this command are locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue) and starts the SPU after the DMA operation completes. 

putl SPE Moves data from local store to the effective address using an MFC list. 

putlf SPE
Moves data from local store to the effective address using an MFC list with fence 
(this command is locally ordered with respect to all previously issued commands 
within the same tag group and command queue). 

putlb SPE

Moves data from local store to the effective address using an MFC list with barrier 
(this command and all subsequent commands with the same tag ID as this com-
mand are locally ordered with respect to all previously issued commands within the 
same tag group and command queue). 

Get Commands

get PPE, SPE Moves data from the effective address to local store.

gets PPE Moves data from the effective address to local store, and starts the SPU after the 
DMA operation completes. 
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The suffixes in Table 3-16 are associated with the MFC DMA commands, and extend or refine 
the function of a command. For example, a put command moves data from local store to the 
effective address. A puts command moves data from local store to the effective address and 
starts the SPU after the DMA operation completes. Commands with an “s” suffix can only be 
issued to the MFC Proxy command queue. Commands with an “l” suffix and all the MFC atomic 
commands can only be issued by the SPE (to the MFC SPU command queue). All other 
commands described in this section can be issued by either the SPE or the PPE. Commands 
issued by the PPE are issued on behalf of the SPE and are sent to the MFC Proxy command 
queue.

getf PPE, SPE
Moves data from the effective address to local store with fence (this command is 
locally ordered with respect to all previously issued commands within the same tag 
group and command queue).

getb PPE, SPE

Moves data from the effective address to local store with barrier (this command 
and all subsequent commands with the same tag ID as this command are locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue).

getfs PPE
Moves data from the effective address to local store with fence (this command is 
locally ordered with respect to all previously issued commands within the same tag 
group), and starts the SPU after the DMA operation completes. 

getbs PPE

Moves data from the effective address to local store with barrier (this command 
and all subsequent commands with the same tag ID as this command are locally 
ordered with respect to all previously issued commands within the same tag group 
and command queue), and starts the SPU after the DMA operation completes. 

getl SPE Moves data from the effective address to local store using an MFC list. 

getlf SPE
Moves data from the effective address to local store using an MFC list with fence 
(this command is locally ordered with respect to all previously issued commands 
within the same tag group and command queue). 

getlb SPE

Moves data from the effective address to local store using an MFC list with barrier 
(this command and all subsequent commands with the same tag ID as this com-
mand are locally ordered with respect to all previously issued commands within the 
same tag group and command queue). 

1. There is a channel (for SPEs) and/or MMIO register (for PPE) to support the operation. 

Table 3-16. MFC Command Suffixes  

Suffix Description

s Starts the execution of the SPU at the current location indicated by the SPU Next Program Counter 
Register after the data has been transferred into or out of the local store.

f Tag-specific fence. Commands with a tag-specific fence are locally ordered with respect to all previ-
ously-issued commands within the same tag group and command queue.

b
Tag-specific barrier. Commands with a tag-specific barrier are locally ordered with respect to all previ-
ously-issued commands within the same tag group and command queue and all subsequently-issued 
commands to the same command queue with the same tag.

l List command. Executes a list of DMA transfer elements located in local store. The maximum number 
of elements is 2,048, and each element describes a transfer of up to 16 KB.

Table 3-15. MFC DMA Commands  (Page 2 of 2)

Mnemonic Supported By1 Description
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3.4.1 DMA-Command Tag Groups

All DMA commands except getllar, putllc, and putlluc can be tagged with a 5-bit Tag Group ID. 
By assigning a DMA command or group of commands to different tag groups, the status of the 
entire tag group can be determined within a single command queue (the MFC SPU Command 
Queue or the MFC Proxy Command Queue). 

Software can use this identifier to check or wait on the completion of all queued commands in 
one or more tag groups. Tagging is optional but can be useful when using barriers to control the 
ordering of MFC commands within a single command queue. 

DMA commands within a tag group can be synchronized with a fence or barrier option by 
appending an f or b, respectively, to the command mnemonic. Execution of a fenced command 
option is delayed until all previously issued commands within the same tag group have been 
performed. Execution of a barrier command option and all subsequent commands is delayed 
until all previously issued commands in the same tag group have been performed. 

Table 3-17. MFC Synchronization Commands  

Command Supported By1

1. There is a channel (for SPEs) and/or MMIO register (for PPE) to support the operation. 

Description

barrier PPE, SPE

Barrier type ordering. Ensures ordering of all preceding, nonimmediate DMA com-
mands with respect to all commands following the barrier command within the 
same command queue. The barrier command has no effect on the immediate DMA 
commands: getllar, putllc, and putlluc. 

mfceieio PPE, SPE

Controls the ordering of get commands with respect to put commands, and of get 
commands with respect to get commands accessing storage that is caching inhib-
ited and guarded. Also controls the ordering of put commands with respect to put 
commands accessing storage that is memory coherence required and not caching 
inhibited.

mfcsync PPE, SPE Controls the ordering of DMA put and get operations within the specified tag group 
with respect to other processing units and mechanisms in the system.

sndsig PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE.

sndsigb PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE with bar-
rier.

sndsigf PPE, SPE Update SPU Signal Notification Registers in an I/O device or another SPE with 
fence.

Table 3-18. MFC Atomic Commands  

Command Supported By1

1. There is a channel to support the operation. 

Description

getllar SPE Get lock line and create a reservation (executed immediately). 

putllc SPE Put lock line conditional on a reservation (executed immediately). 

putlluc SPE Put lock line unconditional (executed immediately). 

putqlluc SPE Put lock line unconditional (queued form).
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3.4.2 Synchronizing DMA Transfers

The MFC synchronization commands are shown inTable 3-17 on page 87. These commands 
can be used to control the order in which DMA storage accesses are performed. There are four 
atomic commands (getllar, putllc, putlluc, and putqlluc), three send-signal commands 
(sndsig, sndsigf, and sndsigb), and three barrier commands (barrier, mfcsync, and 
mfceieio).

3.5 Coding Methods and Examples

The sections below describe some coding methods, with examples in SPU assembly language, 
C language, SPU C-language intrinsics, and MFC commands, or in a combination thereof. These 
instruction and command sets are summarized in:

• SPU assembly language—Section 3.2 on page 68 

• SPU C-language intrinsics—Section 3.3 on page 72

• MFC commands—Section 3.4 on page 84

3.5.1 DMA Transfers

DMA commands transfer data between the LS and main storage. Main storage is addressed by 
an effective address (EA) operand in a DMA command. The LS is addressed by the local store 
address (LSA) operand in a DMA command. The size of a single DMA transfer is limited to 16 
KB. put commands move data from LS to main storage, and get commands move data from 
main storage to LS. The LS data is accessed sequentially with a minimum step of one quadword. 

Software on an SPE accesses its MFC’s DMA-transfer facilities through the channels listed in 
Table 3-3 on page 63. To enqueue a DMA command, SPE software writes the MFC Command 
Parameter Channel Registers with the wrch instruction (Section 3.1.3.1 on page 65) in the 
following sequence:

1. Write the LS address to the MFC_LSA channel.

2. Write the EA-high (EAH) to the MFC_EAH channel.

3. Write the EA-low (EAL) to the MFC_EAL channel.

4. Write the transfer size to the MFC_Size channel. 

5. Write the tag ID to the MFC_TagID channel. 

6. Write the class ID and command opcode to the MFC_Cmd channel.

The following examples shows how to initiate a DMA transfer from an SPE. 

extern void dma_transfer(volatile void *lsa,     // local store address
                        unsigned int eah,        // high 32-bit effective address
                        unsigned int eal,        // low 32-bit effective address
                        unsigned int size,       // transfer size in bytes
                        unsigned int tag_id,     // tag identifier (0-31)
                        unsigned int cmd);       // DMA command
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An ABI-compliant assembly-language implementation of the subroutine is: 

       .text
       .global      dma_transfer
dma_transfer:
       wrch         $MFC_LSA, $3
       wrch         $MFC_EAH, $4
       wrch         $MFC_EAL, $5
       wrch         $MFC_Size, $6
       wrch         $MFC_TagID, $7
       wrch         $MFC_Cmd, $8
       bi           $0 

A comparable C implementation using the SPU composite intrinsic, spu_mfcdma64, is:

#include <spu_intrinsics.h> 

void dma_transfer(volatile void *lsa, unsigned int eah, unsigned int eal, 
                        unsigned int size, unsigned int tag_id, unsigned int cmd)
{
       spu_mfcdma64(lsa, eah, eal, size, tag_id, cmd);
} 

The performance of a DMA data transfer is best when the source and destination addresses 
have the same quadword offsets within a PPE cache line. Quadword-offset-aligned data trans-
fers generate full cache-line bus requests for every unrolling, except possibly the first and last 
unrolling. Transfers that start or end in the middle of a cache line transfer a partial cache line 
(less than 8 quadwords) in the first or last bus request, respectively.

3.5.2 DMA-List Transfers

A DMA list is a sequence of transfer elements (or list elements) that, together with an initiating 
DMA-list command, specifies a sequence of DMA transfers between a single area of LS and 
possibly discontinuous areas in main storage. Such lists are stored in an SPE’s LS, and the 
sequence of transfers is initiated with a DMA-list command such as getl or putl. DMA-list 
commands can only be issued by programs running on an SPE, but the PPE or other devices 
can create and store the lists in an SPE’s LS. DMA lists can be used to implement scatter-gather 
functions between main storage and the LS. 

3.5.2.1 Creating the List

Each transfer element in the list contains a transfer size, the low half of an effective address, and 
a stall-and-notify bit that can be used to suspend list execution after transferring a list element 
whose stall-and-notify bit is set. Each DMA transfer specified in a list can transfer up to 16 KB of 
data, and the list can have up to 2,048 (2 K) transfer elements. 

Software creates the list and stores it in the LS. Lists must be stored in the LS on an 8-byte 
boundary. The form of a transfer element is {LTS, EAL}. The first word (LTS) is the list transfer 
size, the most-significant bit of which serves as an optional stall-and-notify flag. The second word 
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(EAL) is the low-order 32-bits of an EA. Transfer elements are processed sequentially, in the 
order they are stored. If the stall-and-notify flag is set for a transfer element, the MFC will stop 
processing the DMA list after performing the transfer for that element until the SPE program 
clears the DMA List Command Stall-And-Notify Event from the SPU Read Event Status Channel. 
This gives programs an opportunity to modify subsequent transfer elements before they are 
processed by the MFC. 

3.5.2.2 Initiating the Transfers Specified in the List

After the list is stored in the LS, the execution of the list is initiated by a DMA-list command, such 
as getl or putl, from the SPE whose LS contains the list. DMA-list commands, like single-transfer 
DMA commands, require that parameters be written to the MFC Command Parameter channels 
in the manner described in Section 3.5.1 on page 88. However, a DMA-list command requires 
two different types of parameters than those required by a single-transfer DMA command:

• MFC_EAL: This parameter must be written with the starting local store address (LSA) of the 
list, rather then with the EAL. (The EAL is specified in each transfer element.) 

• MFC_Size: This parameter must be written with the size of the list, rather then the transfer 
size. (The transfer size is specified in each transfer element.) The list size is equal to the 
number of transfer elements, multiplied by the size of the transfer-element structure (8 bytes). 

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list command that 
initiates the transfers. The LSA is internally incremented based on the amount of data transferred 
by each transfer element. However, if the starting LSA for each transfer element in a list does not 
begin on a 16-byte boundary, then hardware automatically increments the LSA to the next 16-
byte boundary. 

The EAL for each transfer element is in the 4-GB area defined by EAH. Although each EAL 
starting address is in a single 4-GB area, individual transfers may cross the 4-GB boundary.

3.5.2.3 Programming Example

This C-language sample program creates a DMA list and, in the last line, uses an spu_mfcdma32 
intrinsic to issue a single DMA-list command  (getl) to transfer a main-storage region into LS. 

/* dma_list_sample.c - SPU MFC-DMA list sample code.
 *
 * This sample defines a transfer-element data structure, which 
 * contains the element's transfer size and low-order 32 bytes of the effective 
 * address. Also defined in the structure, but not used by this sample, 
 * is the DMA-list stall-and-notify bit, which can be used to indicate 
 * that the MFC should suspend list execution after transferring a list 
 * element whose stall-and-notify bit is set.
 */

#include <cbe_mfc.h>

struct dma_list_elem {
    union {

unsigned int all32;
struct {
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    unsigned nbytes: 31;
    unsigned stall:  1;

        } bits;
    } size;
    unsigned int ea_low;
};

struct dma_list_elem list[16] __attribute__ ((aligned (8)));

void get_large_region(void *dst, unsigned int ea_low, unsigned int nbytes)
{
    unsigned int i = 0;
    unsigned int tagid = 0;
    unsigned int listsize;

    /* get_large_region
     *    Use a single DMA list command request to transfer 
     *    a "large" memory region into LS. The total size to 
     *    be copied may be larger than the MFC's single element 
     *    transfer limit of 16kb.
     */

    if (!nbytes)
return;

    while (nbytes > 0) {
unsigned int sz;

sz = (nbytes < 16384) ? nbytes : 16384;
list[i].size.all32 = sz;
list[i].ea_low = ea_low;

nbytes -= sz;
ea_low += sz;
i++;

    }

/* Specify the list size and initiate the list transfer */

    listsize = i * sizeof(struct dma_list_elem);
    spu_mfcdma32(dst, (unsigned int) &list[0], listsize, tagid, MFC_GETL_CMD);
}

3.5.3 Moving Double-Buffered Data

SPE programs use DMA transfers to move data and instructions between main storage and the 
local store (LS) in the SPE. Consider an SPE program that requires large amounts of data from 
main storage. The following is a simple scheme to achieve that data transfer:
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1. Start a DMA data transfer from main storage to buffer B in the LS.

2. Wait for the transfer to complete.

3. Use the data in buffer B.

4. Repeat.

This method wastes a great deal of time waiting for DMA transfers to complete. We can speed up 
the process significantly by allocating two buffers, B0 and B1, and overlapping computation on 
one buffer with data transfer in the other. This technique is called double buffering. Figure 3-7 
shows a flow diagram for this double buffering scheme. Double buffering is a form of multi-
buffering, which is the method of using multiple buffers in a circular queue to overlap processing 
and data transfer. 

The following C-language example illustrates double buffering:

/* Example C code demonstrating double buffering using 
 * buffers B[0] and B[1]. In this example, an array of data 
 * starting at the effective address eahi|ealow is DMAed 
 * into the SPU's local store in 4-KB chunks and processed 
 * by the use_data subroutine.
 */
#include <spu_intrinsics.h>
#include "cbe_mfc.h"

#define BUFFER_SIZE 4096

volatile unsigned char B[2][BUFFER_SIZE] __attribute__ ((aligned(128)));

void double_buffer_example(unsigned int eahi, unsigned int ealow, int buffers)
{
  int next_idx, buf_idx = 0;

  // Initiate DMA transfer
  spu_mfcdma64(B[buf_idx], eahi, ealow, BUFFER_SIZE, buf_idx, MFC_GET_CMD);
  ealow += BUFFER_SIZE;

Figure 3-7. DMA Transfers Using a Double-Buffering Method  
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  while (--buffers) {
    next_idx = buf_idx ^ 1;

    // Initiate next DMA transfer
    spu_mfcdma64(B[next_idx], eahi, ealow, BUFFER_SIZE, next_idx, MFC_GET_CMD);
    ealow += BUFFER_SIZE;

    // Wait for previous transfer to complete
    spu_writech(MFC_WrTagMask, 1 << buf_idx);
    (void)spu_mfcstat(2);

    // Use the data from the previous transfer
    use_data(B[buf_idx]);

    buf_idx = next_idx;
  }

  // Wait for last transfer to complete
  spu_writech(MFC_WrTagMask, 1 << buf_idx);
  (void)spu_mfcstat(2);

  // Use the data from the last transfer
  use_data(B[buf_idx]);
}

To use double buffering effectively, follow these rules for DMA transfers on the SPE:

• Use multiple LS buffers.

• Use unique DMA tag IDs, one for each LS buffer.

• Use fenced command options to order the DMA transfers within a tag group.

• Use barrier command options to order DMA transfers within the MFC’s DMA controller.

The purpose of double buffering is to maximize the time spent in the compute phase of a 
program and minimize the time spent waiting for DMA transfers to complete. Let τt represent the 
time required to transfer a buffer B, and let τc represent the time required to compute on data 
contained in that buffer. In general, the higher the ratio τt/τc, the more performance benefit an 
application will realize from a double-buffering scheme.

3.5.4 Vectorizing a Loop

A compiler that automatically merges scalar data into a parallel-packed SIMD data structure is 
called an auto-vectorizing compiler. Such compilers must handle all the high-level language 
constructs, and therefore do not always produce optimal code. 

A simple example of vectorizing a loop is shown below. The original loop multiplies two arrays, 
term by term. The arrays are assumed to remain scalar outside of the subroutine vmult. 

/* Scalar version */
int mult(float *array1, float *array2, float *out, int arraySize) {
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int i;
for (i = 0; i < arraySize; i++) {

out[i] = array1[i] * array2[i];
}
return 0;

}

/* Vectorized version */
int vmult(float *array1, float *array2, float *out, int arraySize) {

/* This code assumes that the arrays are quadword-aligned. */
/* This code assumes that the arraySize is divisible by 4. */

int i, arraySizebyfour;
arraySizebyfour = arraySize >> 2;  /* arraySize/4 vectors */
vector float *varray1 = (vector float *) (array1);
vector float *varray2 = (vector float *) (array2);
vector float *vout = (vector float *) (out);

for (i = 0; i < arraySizebyfour; i++) {
/*spu_mul is an intrinsic that multiplies vectors */
vout[i] = spu_mul(varray1[i], varray2[i]); 

}

return 0;
}

3.5.5 Reducing the Impact of Branches

The SPU hardware assumes linear instruction flow and no stall penalties from sequential instruc-
tion execution. A branch instruction has the potential of disrupting the assumed sequential flow. 
Correctly predicted branches execute in one cycle, but a mispredicted branch (conditional or 
unconditional) incurs a penalty of approximately 20 cycles. Considering the typical SPU instruc-
tion latency of two-to-seven cycles, mispredicted branches can seriously degrade program 
performance. Branches also create scheduling barriers. 

The most effective means of reducing the impact of branches is to eliminate them using three 
primary methods—inlining, unrolling, and predication. The next effective means of reducing the 
impact of branches is to use the branch-hint instructions. 

If a branch hint is provided, software speculates that the instruction branches to the target path. If 
a hint is not provided, software speculates that the branch is not taken (that is, instruction execu-
tion continues sequentially). If either speculation is incorrect, there is a large penalty (flush and 
refetch). 

3.5.5.1 Function-Inlining and Loop-Unrolling

Function-inlining and loop-unrolling are two techniques often used to increase the size of basic 
blocks (sequences of consecutive instructions without branches), which increases scheduling 
opportunities. 
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Function-inlining eliminates the two branches associated with function-call linkage. These 
include the branch and set link for function-call entry, and the branch indirect for function-call 
return. Loop-unrolling eliminates branches by decreasing the number of loop iterations. Loop 
unrolling can be manual, compiler directed, or compiler automated. Typically, branches associ-
ated with looping are inexpensive because they are highly predictable. However, if a loop can be 
fully unrolled, then all branches can be eliminated—including the final nonpredicted branch.

Care should be taken when exploiting function inlining and loop unrolling. Over-aggressive use of 
these techniques can result in code that is too large to fit in the LS.

3.5.5.2 Predication Using Select-Bits Instruction

The select-bits (selb) instruction is the key to eliminating branches for simple control-flow state-
ments (for example, if and if-then-else constructs). An if-then-else statement can be made 
branchless by computing the results of both the then and else clauses and using select bits 
(selb) to choose the result as a function of the conditional. If computing both results costs less 
than a mispredicted branch, then there are additional savings. 

For example, consider the following simple if-then-else statement:

unsigned int a, b, c;
. . .
if (a > b) d += a;
else d += 1;

This code sequence when directly converted to an SPU instruction sequence without branch 
optimizations would look like:

clgt cc, a, b
brz cc, else

then:
a d, d, a
br done

else:
ai d, d, 1

done:

Using the select bits instruction, this simple conditional becomes:

clgt cc, a, b                   /* compute the greater-than condition */
a d_plus_a, d, a             /* add d + a */
ai d_plus_1, d, 1             /* add d + 1 */
selb d, d_plus_1, d_plus_a, cc  /* select proper result */

This example shows:

• Both branches were eliminated, and the correct result was placed in d.
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• New registers were needed to maintain potential values of d (d_plus_a and d_plus_1). This 
does not put significant pressure on the register file because the register file is so large and 
the life of these variables is very short.

• The rewritten code sequence is smaller.

• The latency of the operations permits the scheduler to cover most of the cost of computing 
both conditions. Further scheduling these instructions with those before and after this code 
sequence will likely improve performance even further.

Here is another example of using the select bit—this time with C intrinsics. This code fragment 
shows how to use SPU intrinsics, including spu_cmpgt, spu_add, and spu_sel, to eliminate condi-
tional branches. 

The following sequence generates four instructions, assuming a, b, c are already in registers 
(because we are promoting and extracting to and from the preferred integer element, the 
spu_promote and spu_extract intrinsics produce no additional instructions): 

        unsigned int a,b,c; 
        vector unsigned int vc1, vab, va, vb, vc; 

        va = spu_promote(a, 0); 
        vb = spu_promote(b, 0); 
        vc = spu_promote(c, 0); 
        vc1 = spu_add(vc, 1); 
        vab = spu_add(va, vb); 
        vc  = spu_select(vab, vc1, spu_cmpgt(va, vb)); 
        c = spu_extract(c, 0); 

Instead of using the above sequence, use this:

select = spu_cmpgt(a, b); /* element-wise compare between two vectors */
c1 = spu_add(c, 1);
ab = spu_add(a, b);
c = spu_sel(ab, c1, select);

3.5.5.3 Reducing Branch Mispredicts with Branch Hint

General-purpose processors have typically addressed branch prediction by supporting hardware 
look-asides with branch history tables (BHT), branch target address caches (BTAC), or branch 
target instruction caches (BTIC).

The SPU addresses branch prediction through a set of hint for branch (HBR) instructions that 
facilitate efficient branch processing by allowing programs to avoid the penalty of taken 
branches. If a branch hint is provided, software speculates that the instruction branches to the 
target path. If a hint is not provided, software speculates that the instruction does not branch to a 
new location (that is, it stays inline). If speculation is incorrect, the speculated branch is flushed 
and refetched. It is possible to sequence multiple hints in advance of multiple branches. As with 
all programmer-provided hints, care must be exercised when using branch hints because, if the 
information provided is incorrect, performance might degrade.
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Branch-hint instructions can provide three kinds of advance knowledge about future branches:

• Address of the branch target (that is, where will the branch take the flow of control)

• Address of the actual branch instruction (known as the hint-trigger address)

• Prefetch schedule (when to initiate prefetching instructions at the branch target)

Branch-hint instructions load a branch-target buffer (BTB) in the SPU. When the BTB is loaded 
with a branch target, the hint-trigger address and branch address are also loaded into the BTB. 
After loading, the BTB monitors the instruction stream as it goes into the issue stage of the pipe-
line. When the address of the instruction going into issue matches the hint trigger address, the 
hint is triggered, and the SPU speculates to the target address in the hint buffer.

Branch-hint instructions have no program-visible effects. They provide a hint to the SPE architec-
ture about a future branch instruction, with the intention that the information be used to improve 
performance by prefetching the branch target. The SPE branch-hint instructions are shown in 
Table 3-19. There are immediate and indirect forms for this instruction class. The location of the 
branch is always specified by an immediate operand in the instruction.

The following rules apply to the hint for branch (HBR) instructions:

• An HBR instruction should be placed at least 11 cycles followed by four instruction pairs 
before the branch instructions being hinted by the HBR instruction. In other words, an HBR 
instruction must be followed by at least 11 cycles of instructions, followed by eight instruc-
tions aligned on an even address boundary. More separation between the hint and branch 
improves the performance of applications on future SPU implementations.

• If an HBR instruction is placed too close to the branch, then a hint stall will result. This results 
in the branch instruction stalling until the timing requirement of the HBR instruction is satis-
fied.

• If an HBR instruction is placed closer to the hint-trigger address than four instruction pairs 
plus one cycle, then the hint stall does not occur and the HBR is not used.

• Only one HBR instruction can be active at a time. Issuing another HBR cancels the current 
one.

• An HBR instruction can be moved outside of a loop and will be effective on each loop itera-
tion as long as another HBR instruction is not executed.

• The HBR instruction must be placed within 64 instructions of the branch instruction.

Table 3-19. Branch-Hint Instructions 

Instruction Description

hbr s11, ra

Hint for branch (r-form). Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended, 11-bit value s11 
will branch to the address contained in word element 0 of register ra. This form 
is used to hint function returns, pointer function calls, and other situations that 
give rise to indirect branches.

hbra s11, s18
Hint for branch (a-form). Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended, 11-bit value s11 
will branch to the address specified by the sign extended, 18-bit value s18.

hbrr s11, s18

Hint for branch relative. Hint that the instruction addressed by the sum of the 
address of the current instruction and the signed extended, 11-bit value s11 
will branch to the address specified by the sum of the address of the current 
instruction and sign extended, 18-bit value s18.
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• The HBR instruction only affects performance.

The HBR instructions can be used to support multiple strategies of branch prediction. These 
include:

• Static Branch Prediction—Prediction based upon branch type or displacement, and predic-
tion based upon profiling or linguistic hints.

• Dynamic Branch Prediction—Software caching of branch-target addresses, and using con-
trol flow to record branching history.

A common approach to generating static branch prediction is to use expert knowledge that is 
obtained either by feedback-directed optimization techniques or using linguistic hints supplied by 
the programmer.

The SPU C/C++ Language Extensions define a mechanism for directing branch prediction. The 
__builtin_expect directive allows programmers to predict conditional program statements. The 
following example demonstrates how a programmer can predict that a conditional statement is 
false (a is not larger than b).

if(__builtin_expect((a>b),0))
  c += a;
else
  d += 1;

Not only can the __builtin_expect directive be used for static branch prediction, it can be used for 
dynamic branch prediction.

3.6 Porting SIMD Code from the PPE to the SPEs

It is often easier to write SIMD programs by writing them first for the PPE, and then porting them 
to the SPEs. This approach postpones some SPE-related considerations of dealing with the local 
store (LS) size, data movements, and debug until after the port. The approach can also allow 
partitioning of the work into simpler (perhaps more digestible) steps on the SPEs. 

After the Vector/SIMD Multimedia Extension code is working properly on the PPE, a strategy for 
parallelizing the algorithm across multiple SPEs can be developed. This is often, but not always, 
a data-partitioning method. The effort might involve converting from Vector/SIMD Multimedia 
Extension intrinsics to SPU intrinsics, adding data-transfer and synchronization constructs, and 
tuning for performance. It might be useful to test the impact of various techniques, such as DMA 
double buffering, loop unrolling, branch elimination, alternative intrinsics, number of SPEs, and 
so forth. Debugging tools such as the static timing-analysis tool and the IBM Full System Simu-
lator for the Cell Broadband Engine are available to assist this effort, as described in Section 3.7 
on page 112.

Alternatively, experienced Cell Broadband Engine programmers may prefer to skip the 
Vector/SIMD Multimedia Extension coding phase and go directly to SPU programming. In some 
cases, SIMD programming can be easier on an SPE than the PPE because of the SPE’s unified 
register file. 
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The earlier chapters in this tutorial describe the Vector/SIMD Multimedia Extension and SPU 
programming environments and some of their differences. Armed with knowledge of these differ-
ences, one can devise a strategy for developing code that is portable between the PPE and the 
SPEs. The strategy one should employ depends upon the type of instructions to be executed, the 
variety of vector data types, and the performance objectives. Solutions span the range of simple 
macro translation to full functional mapping.

3.6.1 Code-Mapping Considerations

There are several challenges associated with mapping code designed for one instruction set and 
compiled for another instruction set. These including performance, unmappable constructs, 
limited size of LS, and equivalent precision, as described below.

3.6.1.1 Performance

Simple remapping of low-level intrinsics can result in less-than-optimal performance, depending 
upon the intrinsics used. Understanding the dynamic range of the remapping’s operands can 
reduce the performance impact of simple remapping.

3.6.1.2 Unmappable Constructs

Differences in the processing of intrinsics make simple translation of certain intrinsics unmap-
pable. The unmappable SPU intrinsics include:

• stop and stopd

• conditional halt

• interrupt enable and disable

• move to and from status control and special-purpose registers

• channel instructions

• branch on external data

3.6.1.3 Limited Size of LS

Vector/SIMD Multimedia Extension programs mapped to SPU programs might not fit within the 
LS of the SPE, either because the program is initially too big or because mapping expands the 
code. 

3.6.1.4 Equivalent Precision

The SPU instruction set does not fully implement the IEEE 754 single-precision floating-point 
standard (default rounding mode is round to zero, denormals are treated as zero, and there are 
no infinities or NaNs). Therefore, floating-point results on an SPE may differ slightly from floating-
point results using the PPE’s PowerPC instruction set. In addition, all estimation intrinsics (for 
example, ceiling, floor, reciprocal estimate, reciprocal square root estimate, exponent estimate, 
and log estimate) do not have equivalent accuracy on the SPU and PPE PowerPC instruction 
sets. 
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However, the instructions in the PPE’s Vector/SIMD Multimedia Extension have a graphics 
rounding mode (enabled by default) that allows programs written with Vector/SIMD Multimedia 
Extension instructions to produce floating-point results that are equivalent in precision to those 
written in the SPU instruction set. In this Vector/SIMD Multimedia Extension mode, as in the SPU 
environment, the default rounding mode is round to zero, denormals are treated as zero, and 
there are no infinities or NaNs. Details on the graphics rounding mode can be found in 
Vector/SIMD Multimedia Extension chapter of the PowerPC Processor Element, Book IV. This 
document is confidential; your IBM representative can give you access to the document. 

3.6.2 Simple Macro Translation

For many programs, it is possible to use a simple macro translation strategy for developing code 
that is portable between the Vector/SIMD Multimedia Extension and SPU instruction sets. The 
keys to simple macro translation are:

• Use a Compatible Vector-Literal Construction Format—The PPE Vector/SIMD Multimedia 
Extension and the SPE’s SPU instruction set support two styles of constructing literal vec-
tors: curly brace and parenthesis. Most compilers support both styles. A set of construction 
macros can be used to insulate programs from any differences in the tools.

• Use Single-Token Vector Data Types—The SPU C/C++ Language Extensions document 
specifies a set of single-token vector data types. Because these are single-token, the data 
types can be easily redefined by a preprocessor to the desired target processor. Additional 
single-token data types must be standardized for the unique Vector/SIMD Multimedia Exten-
sion data types. Table 3-20 lists the proposed data types. Also, see Table 3-13 on page 82 
and Table 3-14 on page 83.

• Use Intrinsics that Map One-to-One—Regardless of the technique used to provide portability, 
performance will be optimized if the operations map one-to-one between Vector/SIMD Multi-
media Extension intrinsics and SPU intrinsics. The SPU intrinsics that map one-to-one with 
Vector/SIMD Multimedia Extension (except Specific Intrinsics, Section 3.3.2 on page 74) are 
shown in Table 3-21. The Vector/SIMD Multimedia Extension intrinsics that map one-to-one 
with SPU are shown in Table 3-22. 

Table 3-20. Proposed Vector/SIMD Multimedia Extension Single-Token Data Types  

Vector Data Type Single-Token Data Type

vector bool char vec_bchar16

vector bool short vec_bshort8

vector bool int vec_bint4

vector pixel vec_pixel8

Table 3-21. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping   (Page 
1 of 2)

SPU 
Intrinsic

Vector/SIMD Multimedia Extension
Intrinsic For Data Types

spu_add vec_add vector operands only, no scalar operands

spu_genc vec_addc all

spu_and vec_and vector operands only, no scalar operands

spu_andc vec_andc all
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spu_avg vec_avg all

spu_cmpeq vec_cmpeq vector operands only, no scalar operands

spu_cmpgt vec_cmpgt vector operands only, no scalar operands

spu_convtf vec_ctf limited scale range (5 bits)

spu_convts vec_cts limited scale range (5 bits)

spu_convtu vec_ctu limited scale range (5 bits)

spu_madd vec_madd float only

spu_mulhh vec_mule all

spu_mulo vec_mulo halfword vector operands only, no scalar operands

spu_nmsub vec_nmsub float only

spu_nor vec_nor all

spu_or vec_or vector operands only, no scalar operands

spu_re vec_re all

spu_rl vec_rl vector operands only, no scalar operands

spu_rsqrte vec_rsqrte all

spu_sel vec_sel all

spu_sub vec_sub vector operands only, no scalar operands

spu_genb vec_subc vector operands only, no scalar operands

spu_xor vec_xor vector operands only, no scalar operands

Table 3-22. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping  (Page 1 
of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types

vec_add spu_add halfwords, words, and floats only (not bytes)

vec_addc spu_genc all

vec_and spu_and all

vec_andc spu_andc all

vec_avg spu_avg unsigned chars only

vec_cmpeq spu_cmpeq all

vec_cmpgt spu_cmpgt all

vec_ctf spu_convtf all

vec_cts spu_convts all

vec_ctu spu_convtu all

vec_madd spu_madd all

vec_mulo spu_mulo halfwords only (not bytes)

Table 3-21. SPU Intrinsics with One-to-One Vector/SIMD Multimedia Extension Mapping   (Page 
2 of 2)

SPU 
Intrinsic

Vector/SIMD Multimedia Extension
Intrinsic For Data Types
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3.6.3 Example 1: Euler Particle-System Simulation

This programming example illustrates many of the concepts discussed earlier in this chapter. It 
can be found in the SDK under src/samples/tutorial/euler. 

This programming example—a simple Euler-based particle-system simulation—illustrates the 
following steps involved in coding for the Cell Broadband Engine:

1. Transform scaler code to vector code (SIMDize) for execution on the PPE’s VXU.

2. Port the code for execution on the SPE’s SPU unit.

3. Parallelize the code for execution across multiple SPEs.

A subsequent step—tuning the code for performance on the SPE—is covered in Section 3.7 on 
page 112. The above steps are only one example of coding for the Cell Broadband Engine. The 
steps can be reordered or combined, depending upon the skill and comfort level of the 
programmer. 

This example shows a particle-system simulation using numerical integration techniques to 
animate a large set of particles. Numerical integration is implemented using Euler's method of 
integration. It computes the next value of a function of time, F(t), by incrementing the current 
value of the function by the product of the time step and the derivative of the function:

F(t + dt) = F(t) + dt*F'(t);

Our simple particle system consists of:

• An array of 3-D positions for each particle (pos[])

• An array of 3-D velocities for each particle (vel[])

• An array of masses for each particle (mass[])

• A force vector that varies over time (force)

vec_nmsub spu_nmsub all

vec_nor spu_nor all

vec_or spu_or all

vec_re spu_re all

vec_rl spu_rl halfwords and words only (not bytes)

vec_rsqrte spu_rsqrte all

vec_sel spu_sel all

vec_sub spu_sub halfwords, words, and floats only

vec_subc spu_genb all

vec_xor spu_xor all

Table 3-22. Vector/SIMD Multimedia Extension Intrinsics with One-to-One SPU Mapping  (Page 2 
of 2)

Vector/SIMD Multimedia Extension
Intrinsic

SPU
Intrinsic For Data Types
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This programming example is intended to illustrate programming concepts for the Cell Broad-
band Engine, and is not meant to be a physically realistic simulation. For example, it does not 
consider how the time-variant force function and the time step, dt, is computed; instead, the 
example treats them as constants. Nor does the example consider particle collisions. In addition, 
we assume that all 3-D vectors (x,y,z) are expressed as 4-D homogeneous coordinates (x,y,z,1).

3.6.3.1 Initial Scalar Code

The following code shows a C implementation of the Euler algorithm, implemented for a unipro-
cessor using scalar data. There are no intrinsics calls in this listing.

#define END_OF_TIME     10
#define PARTICLES       100000

typedef struct {
  float x, y, z, w;  
} vec4D;

vec4D pos[PARTICLES];           // particle positions
vec4D vel[PARTICLES];           // particle velocities
vec4D force;                    // current force being applied to the particles
float inv_mass[PARTICLES];      // inverse mass of the particles
float dt = 1.0f;                // step in time

int main()
{
  int i;
  float time;
  float dt_inv_mass;

  // For each step in time
  for (time=0; time<END_OF_TIME; time += dt) {
    // For each particle
    for (i=0; i<PARTICLES; i++) {
      // Compute the new position and velocity as acted upon by the force f.
      pos[i].x = vel[i].x * dt + pos[i].x;
      pos[i].y = vel[i].y * dt + pos[i].y;
      pos[i].z = vel[i].z * dt + pos[i].z;

      dt_inv_mass = dt * inv_mass[i];

      vel[i].x = dt_inv_mass * force.x + vel[i].x;
      vel[i].y = dt_inv_mass * force.y + vel[i].y;
      vel[i].z = dt_inv_mass * force.z + vel[i].z;
    }
  }
  return (0);
}
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3.6.3.2 Step 1: SIMDize the Code for Execution on the PPE

There are multiple strategies for SIMDizing code for execution either on the PPE’s VXU or on an 
SPE’s SPU unit. The technique chosen depends upon the type of data being operated on and 
the interdependencies of the data computations. There are several strategies to consider:

• Let the Compiler Do It—This will work effectively for some code samples (like this simple 
example), but it tends to be unsuccessful for more complicated code. Results will vary 
depending upon the algorithm, the language the code is expressed in, coding style, and 
capabilities of the compiler.

• Array-of-Structures (AOS) Form—This is the most common technique when the input data is 
naturally expressed as a vector (also call vector-across form). 3-D graphic applications 
express geometry as 3-component or 4-component vectors. These components naturally fit 
within a 4-component, single-precision floating-point vector. (See Figure 3-5 on page 71.) 

• Structure-of-Arrays (SOA) Form—In this form, you collect the individual elements of the natu-
ral vectors into separate arrays (also called parallel-array form). The code is then written as if 
it were to execute scalar instructions, but it will be executing SIMD instructions. This results in 
code that computes four single-precision floats results simultaneously. (Figure 3-6 on 
page 72.)

• Hybrid Forms—Often it is important that the input vector format remain unchanged. But SOA 
solutions are easier to code and more efficient than the AOS solutions. In this case, one can:

– Input the data in its natural, AOS form.

– Transform each data element on the fly into SOA form, using either the vec_perm (Vec-
tor/SIMD Multimedia Extension) or the spu_shuffle (SPU) intrinsic.

– Perform computation using the SOA technique.

– Translate each output back into its natural, AOS form.

Assuming the compiler auto-SIMDization is either unavailable or ineffective, you must adjust the 
data structures for efficient SIMD access. This decision cannot be made without also considering 
the SPE data-accessing method and the data-parallelization method. In addition, data should be 
aligned or padded for efficient quadword accesses, using the aligned attribute.

Step 1a: SIMDize in Array-of-Structures Form for Vector/SIMD Multimedia Extension

The following example shows how to SIMDize in the AOS form. Vector/SIMD Multimedia Exten-
sion intrinsics are used, and they can be identified by their prefix, “vec_”. The algorithm assumes 
that the number of particles is a multiple of four. Special code must be included to handle the last 
number of particles that is not a multiple of four.

#define END_OF_TIME     10
#define PARTICLES       100000

typedef struct {
  float x, y, z, w;  
} vec4D;
vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
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float dt __attribute__ ((aligned (16))) = 1.0f;

int main()
{
  int i;
  float time;
  float dt_inv_mass __attribute__ ((aligned (16)));
  vector float dt_v, dt_inv_mass_v;
  vector float *pos_v, *vel_v, force_v;
  vector float zero = (vector float)(0.0f);

  pos_v = (vector float *)pos;
  vel_v = (vector float *)vel;
  force_v = *((vector float *)&force);

  // Replicate the variable time step across elements 0-2 of
  // a floating point vector. Force the last element (3) to zero.
  dt_v = vec_sld(vec_splat(vec_lde(0, &dt), 0), zero, 4);

  // For each step in time
  for (time=0; time<END_OF_TIME; time += dt) {
    // For each particle
    for (i=0; i<PARTICLES; i++) {
      // Compute the new position and velocity as acted upon by the force f.
      pos_v[i] = vec_madd(vel_v[i], dt_v, pos_v[i]);

      dt_inv_mass = dt * inv_mass[i];
      dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

      vel_v[i] = vec_madd(dt_inv_mass_v, force_v, vel_v[i]);
    }
  }
  return (0);
}

Step 1b: SIMDize in Structure-of-Arrays Form for Vector/SIMD Multimedia Extension

The following example shows how to SIMDize in the SOA form. As in Step 1a, the algorithm 
assumes that the number of particles is a multiple of 4. 

#define END_OF_TIME     10
#define PARTICLES       100000

typedef struct {
  float x, y, z, w;  
} vec4D;

// Separate arrays for each component of the vector.
vector float pos_x[PARTICLES/4], pos_y[PARTICLES/4], pos_z[PARTICLES/4];
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vector float vel_x[PARTICLES/4], vel_y[PARTICLES/4], vel_z[PARTICLES/4];
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

int main()
{
  int i;
  float time;
  float dt_inv_mass __attribute__ ((aligned (16)));
  vector float force_v, force_x, force_y, force_z;
  vector float dt_v, dt_inv_mass_v;

  // Create a replicated vector for each component of the force vector.
  force_v = *(vector float *)(&force);
  force_x = vec_splat(force_v, 0);
  force_y = vec_splat(force_v, 1);
  force_z = vec_splat(force_v, 2);

  // Replicate the variable time step across all elements.
  dt_v = vec_splat(vec_lde(0, &dt), 0);

  // For each step in time
  for (time=0; time<END_OF_TIME; time += dt) {
    // For each particle
    for (i=0; i<PARTICLES/4; i++) {
      // Compute the new position and velocity as acted upon by the force f.
      pos_x[i] = vec_madd(vel_x[i], dt_v, pos_x[i]);
      pos_y[i] = vec_madd(vel_y[i], dt_v, pos_y[i]);
      pos_z[i] = vec_madd(vel_z[i], dt_v, pos_z[i]);

      dt_inv_mass = dt * inv_mass[i];
      dt_inv_mass_v = vec_splat(vec_lde(0, &dt_inv_mass), 0);

      vel_x[i] = vec_madd(dt_inv_mass_v, force_x, vel_x[i]);
      vel_y[i] = vec_madd(dt_inv_mass_v, force_y, vel_y[i]);
      vel_z[i] = vec_madd(dt_inv_mass_v, force_z, vel_z[i]);
    }
  }
  return (0);
}

3.6.3.3 Step 2: Port the PPE Code for Execution on the SPE

This step entails:

1. Creating an SPE thread of execution on the PPE

2. Migrating the computation loops from Vector/SIMD Multimedia Extension intrinsics to SPU 
intrinsics
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3. Adding DMA transfers to move data in and out of the SPE's local store (LS)

We assume that the particle data structures cannot be restructured into SOA form. Therefore, we 
use Step 1a on page 104 (the AOS form). SPU intrinsics are used, and they can be identified by 
their prefix, “spu_”. 

Moving the code from the PPE to the SPE requires:

• Creating a control-structure, called context, that defines the parameters to be computed on 
the SPE. This includes pointers to the particle array data, current force information, and so 
forth. The pointer to the context control-structure defined in the PPE is passed to the SPE 
thread by using the parameter passing mechanism in spe_create_thread. Alternatively, this 
information could have been passed via the mailbox.

• Porting the computation for execution on the SPE. The complexity of this operation depends 
upon the types of data and types of intrinsics used. For this case, some of the intrinsics only 
require a simple name translation (for example, vec_madd to spu_madd). The translation of the 
scalar values is a little more extensive.

• Adding an additional looping construct to partition the data arrays into smaller blocks. This is 
required because all the data does not fit within the SPE's local store.

• Adding DMA transfers to move data in and out of the SPE's local store.

Particle.h:

#define END_OF_TIME     10
#define PARTICLES       100000

typedef struct {
  float x, y, z, w;  
} vec4D;

typedef struct {
  int particles;        // number of particles to process
  vector float *pos_v;  // pointer to array of position vectors
  vector float *vel_v;  // pointer to array of velocity vectors
  float *inv_mass;      // pointer to array of mass vectors
  vector float force_v; // force vector
  float dt;             // current step in time
} context;

PPE Makefile:

########################################################################
#                       Subdirectories
########################################################################

DIRS := spu

########################################################################
#                       Target
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########################################################################

PROGRAM_ppu := euler_spe

########################################################################
#                       Local Defines
########################################################################

IMPORTS         := spu/lib_particle_spu.a -lspe

########################################################################
#                       make.footer
########################################################################

include ../../../../../make.footer

PPE Code:

#include <stdio.h>
#include <libspe.h>
#include "particle.h"

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

extern spe_program_handle_t particle;

int main()
{
  int status;
  speid_t spe_id;
  context ctx __attribute__ ((aligned (16)));

  ctx.particles = PARTICLES;
  ctx.pos_v = (vector float *)pos;
  ctx.vel_v = (vector float *)vel;
  ctx.force_v = *((vector float *)&force);
  ctx.inv_mass = inv_mass;
  ctx.dt = dt;

  // Create an SPE thread of execution passing the context as a parameter.
  spe_id = spe_create_thread(0, &particle, &ctx, NULL, -1, 0);
  if (spe_id) {
    // Wait for the SPE to finish
    (void)spe_wait(spe_id, &status, 0);
  } else {
    perror("Unable to create SPE thread");
    return (1);



Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 109 of 183

  }
  return (0);
}

SPE Makefile:

########################################################################
# Target
########################################################################

PROGRAM_spu := particle
LIBRARY_embed := lib_particle_spu.a

########################################################################
# Local Defines
########################################################################

INCLUDE := -I ..

########################################################################
# make.footer
########################################################################

include ../../../../../../make.footer

SPE Code:

#include <spu_intrinsics.h>
#include <cbe_mfc.h>
#include "particle.h"

#define PARTICLES_PER_BLOCK             1024

// Local store structures and buffers.
volatile context ctx;
volatile vector float pos[PARTICLES_PER_BLOCK];
volatile vector float vel[PARTICLES_PER_BLOCK];
volatile float inv_mass[PARTICLES_PER_BLOCK];

int main(unsigned long long spe_id, unsigned long long parm)
{
  int i, j;
  int left, cnt;
  float time;
  unsigned int tag_id = 0;
  vector float dt_v, dt_inv_mass_v;

  spu_writech(MFC_WrTagMask, -1);
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  // Input parameter parm is a pointer to the particle context.
  // Fetch the context, waiting for it to complete.
  spu_mfcdma32((void *)(&ctx), (unsigned int)parm, sizeof(context), tag_id, 

MFC_GET_CMD);
  (void)spu_mfcstat(2);

  dt_v = spu_splats(ctx.dt);

  // For each step in time
  for (time=0; time<END_OF_TIME; time += ctx.dt) {
    // For each block of particles
    for (i=0; i<ctx.particles; i+=PARTICLES_PER_BLOCK) {
      // Determine the number of particles in this block.
      left = ctx.particles - i;
      cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

      // Fetch the data - position, velocity, inverse_mass. Wait for DMA to complete 
      // before performing computation.
      spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * sizeof(vector 

float), tag_id, MFC_GET_CMD);
      spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * sizeof(vector 

float), tag_id, MFC_GET_CMD);
      spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx.inv_mass+i), cnt * 

sizeof(float), tag_id, MFC_GET_CMD);
      (void)spu_mfcstat(2);

      // Compute the step in time for the block of particles
      for (j=0; j<cnt; j++) {
        pos[j] = spu_madd(vel[j], dt_v, pos[j]);
        dt_inv_mass_v = spu_mul(dt_v, spu_splats(inv_mass[j]));
        vel[j] = spu_madd(dt_inv_mass_v, ctx.force_v, vel[j]);
      }

      // Put the position and velocity data back into main storage
      spu_mfcdma32((void *)(pos), (unsigned int)(ctx.pos_v+i), cnt * sizeof(vector 

float), tag_id, MFC_PUT_CMD);
      spu_mfcdma32((void *)(vel), (unsigned int)(ctx.vel_v+i), cnt * sizeof(vector 

float), tag_id, MFC_PUT_CMD);
    }
  }
  // Wait for final DMAs to complete before terminating SPE thread.
  (void)spu_mfcstat(2);
  return (0);
}
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3.6.3.4 Step 3: Parallelize Code For Execution Across Multiple SPEs

The most common and practical method of parallelizing computation across multiple SPEs is to 
partition the data. This works well for applications with little or no data dependency. In our 
example, we can partition the Euler integration of the particle equally among the available SPEs. 
If there are four available SPEs, then the first quarter of the particles is processed by the first 
SPE, the second quarter of the particles is processed by the second SPE, and so forth. 

The SPE code for this step is the same as that in Step 2, so only the PPE code is shown below.

PPE Code:

#include <stdio.h>
#include <libspe.h>
#include "particle.h"

#define SPE_THREADS 7

vec4D pos[PARTICLES] __attribute__ ((aligned (16)));
vec4D vel[PARTICLES] __attribute__ ((aligned (16)));
vec4D force __attribute__ ((aligned (16)));
float inv_mass[PARTICLES] __attribute__ ((aligned (16)));
float dt = 1.0f;

extern spe_program_handle_t particle;

int main()
{
  int i, offset, count;
  int status;
  speid_t spe_ids[SPE_THREADS];
  context ctxs[SPE_THREADS] __attribute__ ((aligned (16)));

  // Construct a context and thread for each SPE thread. Make sure
  // that each SPE’s (excluding the last) particle count is a multiple
  // of 4 so that inv_mass context pointer is always quadword aligned.

  for (i=0, offset=0; i<SPE_THREADS; i++, offset+=count) {
    count = (PARTICLES / SPE_THREADS + 3) & ~3;
    ctxs[i].particles = (i==(SPE_THREADS-1)) ? PARTICLES - offset : count;
    ctxs[i].pos_v = (vector float *)&pos[offset];
    ctxs[i].vel_v = (vector float *)&vel[offset];
    ctxs[i].force_v = *((vector float *)&force);
    ctxs[i].inv_mass = &inv_mass[offset];
    ctxs[i].dt = dt;
    
    // Create an SPE thread of execution passing the context as a parameter.
    spe_ids[i] = spe_create_thread(0, &particle, &ctxs[i], NULL, -1, 0);
    if (spe_ids[i] == -1) {
      perror("Unable to create SPE thread");
      return (1);
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    }
  }

  // Wait for all the SPEs to complete.
  for (i=0; i<SPE_THREADS; i++) {
    (void)spe_wait(spe_ids[i], &status, 0);
  }

  return (0);
}

Now that the program has been migrated to the SPEs, you can analyze and tune its perfor-
mance. This is discussed in Section 3.7.

3.7 Performance Analysis

After a Cell Broadband Engine program executes without errors on the PPE and the SPEs, opti-
mization through parameter-tuning can begin. Programmers typically tune for performance using 
algorithmic methods. This is important for SPE programming also. But equally important for SPE 
programming is performance tuning through the elimination of stalls. There are two forms of 
stalls to consider: instruction dependency stalls and data stalls. Instruction stalls can be analyzed 
statically or dynamically.

3.7.1 Performance Issues

Two software tools are available in the SDK to assist in measuring the performance of programs: 
the spu-gcc_timing static timing analyzer, and the IBM Full System Simulator for the Cell Broad-
band Engine. 

The spu-gcc_timing analyzer performs a static timing analysis of a program by annotating its 
assembly instructions with the instruction-pipeline state. This analysis is useful for coarsely spot-
ting dual-issue rates (odd and even pipeline use) and assessing what program sections may be 
experiencing instruction-dependency and data-dependency stalls. It is useful, for example, for 
determining whether or not dependencies might be mitigated by unrolling, or whether reordering 
of instructions or better placement of no-ops will improve the dual-issue behavior in a loop. 
However, static analysis outputs typically do not provide numerical performance information 
about program execution. Thus, it cannot report anything definitive about cycle counts, branches 
taken or not taken, branches hinted or not hinted, DMA transfers, and so forth. 

The IBM Full System Simulator for the Cell Broadband Engine performs a dynamic analysis of 
program execution. It is available in the SDK. Any part of a program, from a single line to the 
entire program, can be studied. Performance numbers are provided for:

• Instruction histograms (for example, branch, hint, and prefetch)

• Cycles per instruction (CPI)

• Single-issue and dual-issue rates

• Stall statistics

• Register use
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The output of the IBM Full System Simulator for the Cell Broadband Engine can be a text listing 
or a graphic plot.

3.7.2 Example 1: Tuning SPE Performance with Static and Dynamic Timing Analysis 

3.7.2.1 Static Analysis of SPE Threads

The listing below shows an spu-gcc_timing static timing analysis for the inner loop of the SPE 
code illustrated in Section 3.6.3.3 on page 106, the Euler Particle-System Simulation example. 
This listing shows significant dependency stalls (indicated by the “-”) and poor dual-issue rates. 
The inner loop has an instruction mix of eight even-pipeline (pipe 0) instructions and ten odd-
pipeline (pipe 1) instructions. Therefore, any program changes that minimize data dependencies 
will improve dual-issue rates and lower the cycle per instruction (CPI). 

.L19:
0D                                                78       a       $49,$8,$10
1D 012                                            789      lqx     $51,$6,$9
0D                                                 89      ila     $47,66051
1D 0123                                            89      lqx     $52,$6,$11
0  0                                                9      ai      $7,$7,-1
0  ----456789                                              fma     $50,$51,$12,$52
1       -----012345                                        stqx    $50,$6,$11
1             123456                                       lqx     $48,$8,$10
0D             23                                          ai      $8,$8,4
1D             234567                                      lqa     $44,ctx+16
1               345678                                     lqx     $43,$6,$9
1                ---7890                                   rotqby  $46,$48,$49
1                    ---1234                               shufb   $45,$46,$46,$47
0                        ---567890                         fm      $42,$12,$45
0d                           -----123456                   fma     $41,$42,$44,$43
1d                                ------789012              stqx    $41,$6,$9
0D                                       89                 ai      $6,$6,16
                                                         .L39:
1D                                       8901                brnz    $7,.L19

The character columns in the above static-analysis listing have the following meanings:

• Column 1—The first column shows the pipeline that issued an instruction. Pipeline 0 is repre-
sented by “0” in the first column and pipeline 1 is represented by “1.” 

• Column 2—The second column can contain a “D”, “d”, or nothing. A “D” signifies a successful 
dual-issue was accomplished by the two instructions listed in row-pairs. A “d” signifies a dual-
issue was possible, but did not occur due to dependencies; for example, operands being in 
flight. If there is no entry in the second column, dual-issue could not be performed because 
the issue rules were not satisfied (for example, an even-pipeline instruction was fetched from 
an odd LS address or an odd-pipeline instruction was fetched from an even LS address). See 
Section 3.1.1.4 Pipelines and Dual-Issue Rules on page 61. 

• Column 3—The third column is always blank. 
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• Columns 4 through 53—The next 50 columns represent clock cycles and are repeated as 
“0123456789” five times. A digit is displayed in these columns whenever the instruction exe-
cutes during that clock cycle. Therefore, an <n>-cycle instruction will display <n> digits. 
Dependency stalls are flagged by a dash (“-”). 

• Columns 54 through 80—The remaining entries on the row are the assembly-language 
instructions or assembler-line addresses (for example, “.L19”) of the program's assembly 
code. 

Static-analysis timing files can be quickly interpreted by:

• Scanning the columns of digits. Small slopes (more horizontal) are bad. Large slopes (more 
vertical) are good. 

• Looking for instructions with dependencies (those with dashes in the listing). 

• Looking for instructions with poor dual-issue rates—either a “d” or nothing in column 2. 

This information can be used to understand what areas of code are scheduled well and which are 
poorly scheduled.

About SPU_TIMING

If you are using a Bash shell, you can set SPU_TIMING as a shell variable by using the command 
export SPU_TIMING=1. You can also set SPU_TIMING in the makefile and build the .s file by using 
the following statement:

SPU_TIMING=1 make foo.s

This creates the timing file for file foo.c. It sets the SPU_TIMING variable only in the sub-shell of 
the makefile. It generates foo.s and then invokes spu-gcc_timing or spuxlc-timing on foo.s to 
produce a foo.s.timing file. 

Another way to invoke the performance tool is by entering one of the following statements in the 
command prompt, depending on which compiler generated that assembly: 

spu-gcc_timing foo.s
spu-xlc-timing foo.s 
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3.7.2.2 Dynamic Analysis of SPE Threads

The listing below shows a dynamic timing analysis on the same SPE inner loop using the IBM 
Full System Simulator for the Cell Broadband Engine. The results confirm the view of program 
execution from the static timing analysis. It shows poor dual-issue rates (7%) and large depen-
dency stalls (65%), resulting in a overall CPI of 2.39. Most workloads should be capable of 
achieving a CPI of 0.7 to 0.9, roughly 3 times better than this. The number of used registers is 73, 
a 57.03% utilization of the full 128 register set.

  SPU DD1.0
  ***
  Total Cycle count               43120454
  Total Instruction count         18068949
  Total CPI                       2.39
  ***
  Performance Cycle count         43120454
  Performance Instruction count   18068949 (18062968)
  Performance CPI                 2.39 (2.39)
  
  Branch instructions             1001990
  Branch taken                    1000007
  Branch not taken                1983
  
  Hint instructions               1973
  Hint hit                        1000001
  
  Contention at LS between Load/Store and Prefetch 2000986
  
  Single cycle                                          12049144 ( 27.9%)
  Dual cycle                                             3006912 (  7.0%)
  Nop cycle                                                 4003 (  0.0%)
  Stall due to branch miss                                 17977 (  0.0%)
  Stall due to prefetch miss                                   0 (  0.0%)
  Stall due to dependency                               28042299 ( 65.0%)
  Stall due to fp resource conflict                            0 (  0.0%)
  Stall due to waiting for hint target                       110 (  0.0%)
  Stall due to dp pipeline                                     0 (  0.0%)
  Channel stall cycle                                          0 (  0.0%)
  SPU Initialization cycle                                     9 (  0.0%)
  -----------------------------------------------------------------------
  Total cycle                                           43120454 (100.0%)
  
  Stall cycles due to dependency on each pipelines
   FX2        5909
   SHUF       6011772
   FX3        1960
   LS         7022608
   BR         0
   SPR        0
   LNOP       0
   NOP        0
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   FXB        0
   FP6        15000050
   FP7        0
   FPD        0
  
  The number of used registers are 73; the used ratio is 57.03

3.7.2.3 Optimizations

To eliminate stalls and improve the CPI—and ultimately the performance—the compiler needs 
more instructions to schedule, so that the program does not stall. The SPE's large register file 
allows the compiler or the programmer to unroll loops. In our example program, there are no 
inter-loop dependencies (loop-carried dependencies), and our dynamic analysis shows that the 
register usage is fairly small, so moderately aggressive unrolling will not produce register spilling 
(that is, registers having to be written into temporary stack storage). 

Most compilers can automatically unroll loops. Sometimes this is effective. But because auto-
matic loop unrolling is not always effective, or because the programmer wants explicit control to 
manage the limited local store, this example shows how to manually unroll the loop. 

The first pass of optimizations include:

• Unroll the loop to provide additional instructions for interleaving.

• Load DMA-buffer contents into local nonvolatile registers to eliminate volatile migration con-
straints.

• Eliminate scalar loads (the inv_mass variable).

• Eliminate extra multiplies of dt*inv_mass and splat the products after the SIMD multiply, 
instead of before the multiply.

• Interleave DMA transfers with computation by multibuffering the inputs and outputs to elimi-
nate (or reduce) DMA stalls. These stalls are not reflected in the static and dynamic analy-
ses. In the process of adding double buffering, the inner loop is moved into a function, so that 
the code need not be repeated.

The following SPE code results from these optimizations. Among the changes are the addition of 
a GET instruction with a barrier suffix (B), accomplished by the spu_mfcdma32() intrinsic with the 
MFC_GETB_CMD parameter. This GET is the barrier form of MFC_GET_CMD. The barrier form is used to 
ensure that previously computed results are put before the get for the next buffer’s data. 

#include <spu_intrinsics.h>
#include <cbe_mfc.h>
#include "particle.h"

#define PARTICLES_PER_BLOCK             1024

// Local store structures and buffers.
volatile context ctx;
volatile vector float pos[2][PARTICLES_PER_BLOCK];
volatile vector float vel[2][PARTICLES_PER_BLOCK];
volatile float inv_mass[2][PARTICLES_PER_BLOCK/4];
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void process_buffer(int buffer, int cnt, vector float dt_v)
{
  int i;
  volatile vector float *p_inv_mass_v;
  vector float force_v, inv_mass_v;
  vector float pos0, pos1, pos2, pos3;
  vector float vel0, vel1, vel2, vel3;
  vector float dt_inv_mass_v, dt_inv_mass_v_0, dt_inv_mass_v_1, dt_inv_mass_v_2, 

dt_inv_mass_v_3;
  vector unsigned char splat_word_0 = 

(vector unsigned char)(0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3);
  vector unsigned char splat_word_1 = 

(vector unsigned char)(4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7);
  vector unsigned char splat_word_2 = 

(vector unsigned char)(8, 9,10,11, 8, 9,10,11, 8, 9,10,11, 8, 9,10,11);
  vector unsigned char splat_word_3 = 

(vector unsigned char)(12,13,14,15,12,13,14,15,12,13,14,15,12,13,14,15);

  p_inv_mass_v = (volatile vector float *)&inv_mass[buffer][0]; 
  force_v = ctx.force_v;

  // Compute the step in time for the block of particles, four 
  // particle at a time.
  for (i=0; i<cnt; i+=4) {
    inv_mass_v = *p_inv_mass_v++;
    
    pos0 = pos[buffer][i+0];
    pos1 = pos[buffer][i+1];
    pos2 = pos[buffer][i+2];
    pos3 = pos[buffer][i+3];

    vel0 = vel[buffer][i+0];
    vel1 = vel[buffer][i+1];
    vel2 = vel[buffer][i+2];
    vel3 = vel[buffer][i+3];

    dt_inv_mass_v = spu_mul(dt_v, inv_mass_v);

    pos0 = spu_madd(vel0, dt_v, pos0);
    pos1 = spu_madd(vel1, dt_v, pos1);
    pos2 = spu_madd(vel2, dt_v, pos2);
    pos3 = spu_madd(vel3, dt_v, pos3);

    dt_inv_mass_v_0 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_0);
    dt_inv_mass_v_1 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_1);
    dt_inv_mass_v_2 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_2);
    dt_inv_mass_v_3 = spu_shuffle(dt_inv_mass_v, dt_inv_mass_v, splat_word_3);

    vel0 = spu_madd(dt_inv_mass_v_0, force_v, vel0);
    vel1 = spu_madd(dt_inv_mass_v_1, force_v, vel1);
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    vel2 = spu_madd(dt_inv_mass_v_2, force_v, vel2);
    vel3 = spu_madd(dt_inv_mass_v_3, force_v, vel3);

    pos[buffer][i+0] = pos0;
    pos[buffer][i+1] = pos1;
    pos[buffer][i+2] = pos2;
    pos[buffer][i+3] = pos3;

    vel[buffer][i+0] = vel0;
    vel[buffer][i+1] = vel1;
    vel[buffer][i+2] = vel2;
    vel[buffer][i+3] = vel3;
  }
}

int main(unsigned long long spe_id, unsigned long long argv)
{
  int buffer, next_buffer;
  int cnt, next_cnt, left;
  float time, dt;
  vector float dt_v;
  volatile vector float *ctx_pos_v, *ctx_vel_v;
  volatile vector float *next_ctx_pos_v, *next_ctx_vel_v;
  volatile float *ctx_inv_mass, *next_ctx_inv_mass;
  
  // Input parameter argv is a pointer to the particle context.
  // Fetch the context, waiting for it to complete.
  spu_writech(MFC_WrTagMask, 1 << 0);
  spu_mfcdma32((void *)(&ctx), (unsigned int)argv, sizeof(context), 0, MFC_GET_CMD);
  (void)spu_mfcstat(2);

  dt = ctx.dt;
  dt_v = spu_splats(dt);

  // For each step in time
  for (time=0; time<END_OF_TIME; time += dt) {
    // For each double buffered block of particles
    left = ctx.particles;

    cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

    ctx_pos_v = ctx.pos_v;
    ctx_vel_v = ctx.vel_v;
    ctx_inv_mass = ctx.inv_mass;

    // Prefetch first buffer of input data
    buffer = 0;
    spu_mfcdma32((void *)(pos), (unsigned int)(ctx_pos_v), cnt * sizeof(vector float), 

0, MFC_GETB_CMD);
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    spu_mfcdma32((void *)(vel), (unsigned int)(ctx_vel_v), cnt * sizeof(vector float), 
0, MFC_GET_CMD);

    spu_mfcdma32((void *)(inv_mass), (unsigned int)(ctx_inv_mass), cnt * 
sizeof(float), 0, MFC_GET_CMD);

    while (cnt < left) {
      left -= cnt;

      next_ctx_pos_v = ctx_pos_v + cnt;
      next_ctx_vel_v = ctx_vel_v + cnt;
      next_ctx_inv_mass = ctx_inv_mass + cnt;
      next_cnt = (left < PARTICLES_PER_BLOCK) ? left : PARTICLES_PER_BLOCK;

      // Prefetch next buffer so the data is available for computation on next loop 
iteration.

      // The first DMA is barriered so that we don't GET data before the previous iter-
ation's

      // data is PUT.
      next_buffer = buffer^1;

      spu_mfcdma32((void *)(&pos[next_buffer][0]), (unsigned int)(next_ctx_pos_v), 
next_cnt * sizeof(vector float), next_buffer, MFC_GETB_CMD);

      spu_mfcdma32((void *)(&vel[next_buffer][0]), (unsigned int)(next_ctx_vel_v), 
next_cnt * sizeof(vector float), next_buffer, MFC_GET_CMD);

      spu_mfcdma32((void *)(&inv_mass[next_buffer][0]), (unsigned 
int)(next_ctx_inv_mass), next_cnt * sizeof(float), next_buffer, MFC_GET_CMD);

      
      // Wait for previously prefetched data
      spu_writech(MFC_WrTagMask, 1 << buffer);
      (void)spu_mfcstat(2);

      process_buffer(buffer, cnt, dt_v);

      // Put the buffer's position and velocity data back into main storage
      spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt * 

sizeof(vector float), buffer, MFC_PUT_CMD);
      spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt * 

sizeof(vector float), buffer, MFC_PUT_CMD);
      
      ctx_pos_v = next_ctx_pos_v;
      ctx_vel_v = next_ctx_vel_v;
      ctx_inv_mass = next_ctx_inv_mass;

      buffer = next_buffer;
      cnt = next_cnt;             
    }

    // Wait for previously prefetched data
    spu_writech(MFC_WrTagMask, 1 << buffer);
    (void)spu_mfcstat(2);
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    process_buffer(buffer, cnt, dt_v);

    // Put the buffer's position and velocity data back into main storage
    spu_mfcdma32((void *)(&pos[buffer][0]), (unsigned int)(ctx_pos_v), cnt * 

sizeof(vector float), buffer, MFC_PUT_CMD);
    spu_mfcdma32((void *)(&vel[buffer][0]), (unsigned int)(ctx_vel_v), cnt * 

sizeof(vector float), buffer, MFC_PUT_CMD);

    // Wait for DMAs to complete before starting the next step in time.
    spu_writech(MFC_WrTagMask, 1 << buffer);
    (void)spu_mfcstat(2);  
  }

  return (0);
}

3.7.2.4 Static Analysis of Optimizations

The listing below shows a spuxlc_timing static timing analysis for the optimized SPE thread 
(process _buffer subroutine only).

.type   process_buffer, @function
                                                               process_buffer:
0D 0123                                                         shli    $2,$3,10
1D 012345                                                       lqa     $19,ctx+16
0D  12                                                          ori     $6,$3,0
1D  1234                                                        shlqbyi $24,$4,0
0D   23                                                         cgti    $3,$4,0
1D   2345                                                       shlqbyi $18,$5,0
0D    34                                                        ila     $4,inv_mass
1D    3456                                                      fsmbi   $21,0
0      45                                                       ilhu    $27,1029
0       56                                                      ilhu    $26,2057
0        67                                                     ilhu    $25,3085
0         78                                                    ila     $28,66051
0          89                                                   a       $20,$2,$4
0           90                                                  iohl    $27,1543
0D           01                                                 iohl    $26,2571
1D           0                                                  lnop
0D            12                                                iohl    $25,3599
1D            1234                                              brz     $3,.L7
0              2345                                             shli    $17,$6,14
0               34                                              ila     $23,pos
0D               45                                             ila     $22,vel
1D               456789                                         hbra    .L10,.L5
1                 5                                             lnop
0                  6                                            nop     $127
                                                               .L5:
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0D                  78                                          ila     $43,pos
1D                  789012                                      lqd     $41,0($20)
0D                   89                                         ila     $42,vel
1D                   890123                                     lqx     $40,$17,$23
0                     90                                        a       $6,$17,$43
0                      01                                       a       $7,$17,$42
0D                      12                                      ai      $21,$21,4
1D                      123456                                  lqd     $39,16($6)
0D                       23                                     ai      $20,$20,16
1D                       234567                                 lqd     $38,32($6)
0D                        345678                                fm      $36,$18,$41
1D                        345678                                lqd     $37,48($6)
0D                         45                                   cgt     $16,$24,$21
1D                         456789                               lqx     $13,$17,$22
1                           567890                              lqd     $34,16($7)
1                            678901                             lqd     $14,32($7)
1                             789012                            lqd     $15,48($7)
1                              -9012                            shufb   $35,$36,$36,$28
0D                               012345                         fma     $32,$13,$18,$40
1D                               0123                           shufb   $33,$36,$36,$27
0D                                123456                        fma     $10,$34,$18,$39
1D                                1234                          shufb   $31,$36,$36,$26
0D                                 234567                       fma     $11,$14,$18,$38
1D                                 2345                         shufb   $30,$36,$36,$25
0                                   345678                      fma     $8,$15,$18,$37
0                                    456789                     fma     $29,$35,$19,$13
0D                                    567890                    fma     $5,$33,$19,$34
1D                                    5                         lnop
0D                                     678901                   fma     $12,$31,$19,$14
1D                                     678901                   stqx    $32,$17,$23
0D                                      789012                  fma     $9,$30,$19,$15
1D                                      789012                  stqd    $10,16($6)
1                                        890123                 stqd    $11,32($6)
1                                         901234                stqd    $8,48($6)
0D                                         0                    nop     $127
1D                                         012345               stqx    $29,$17,$22
0D                                          12                  ai      $17,$17,64
1D                                          123456              stqd    $5,16($7)
1                                            234567             stqd    $12,32($7)
1                                             345678            stqd    $9,48($7)
0D                                             4                nop     $127
                                                               .L10:
1D                                             4567             brnz    $16,.L5
                                                               .L7:
0D                                              5               nop     $127
1D                                              5678            bi      $lr
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3.7.2.5 Dynamic Analysis of Optimizations

The listing below shows a dynamic timing analysis on the IBM Full System Simulator for the Cell 
Broadband Engine simulator for the optimized SPE thread (process buffer only). It shows that 78 
registers are used, so the used ratio is 60.94. 

  SPU DD1.0
  ***
  Total Cycle count               7134843
  Total Instruction count         10602009
  Total CPI                       0.67
  ***
  Performance Cycle count         7134843
  Performance Instruction count   10602009 (9839265)
  Performance CPI                 0.67 (0.73)
  
  Branch instructions             253940
  Branch taken                    251967
  Branch not taken                1973
  
  Hint instructions               2952
  Hint hit                        250980
  
  Contention at LS between Load/Store and Prefetch 6871
  
  Single cycle                                           3815689 ( 53.5%)
  Dual cycle                                             3011788 ( 42.2%)
  Nop cycle                                                 5898 (  0.1%)
  Stall due to branch miss                                 34655 (  0.5%)
  Stall due to prefetch miss                                   0 (  0.0%)
  Stall due to dependency                                 266732 (  3.7%)
  Stall due to fp resource conflict                            0 (  0.0%)
  Stall due to waiting for hint target                        72 (  0.0%)
  Stall due to dp pipeline                                     0 (  0.0%)
  Channel stall cycle                                          0 (  0.0%)
  SPU Initialization cycle                                     9 (  0.0%)
  -----------------------------------------------------------------------
  Total cycle                                            7134843 (100.0%)
  
  Stall cycles due to dependency on each pipelines
   FX2        8808
   SHUF       1971
   FX3        5870
   LS         32
   BR         0
   SPR        1
   LNOP       0
   NOP        0
   FXB        0



Programming Tutorial

Cell Broadband Engine

Version 1.0
October 21, 2005

Programming the SPEs
Page 123 of 183

   FP6        250050
   FP7        0
   FPD        0

  The number of used registers are 78, the used ratio is 60.94

The above static and dynamic timing analysis of the optimized SPE code reveals:

• Significant increase in dual-issue rate and reduction in dependency stalls. The static analysis 
shows that the process_buffer inner loop still contains a single-cycle stall and some instruc-
tions that are not dual-issued. Further performance improvements could likely be achieved by 
either more loop unrolling or software loop-pipelining.

• The number of instructions has decreased by 41% from the initial instruction count.

• The CPI has dropped from 2.39 to a more typical 0.73.

• The performance of the SPE code, measured in total cycle count, has gone from approxi-
mately 43 M cycles to 7 M cycles, an improvement of more than 6x. This improvement does 
not take into account the DMA latency-hiding (stall elimination) provided by double buffering. 

For details about performance simulation, including examples of coding for simulations, see 
Section 5 on page 137. The IBM Full System Simulator for the Cell Broadband Engine described 
in that chapter supports performance simulation for a full system, including the MFCs, caches, 
bus, and memory controller.

3.8 General SPE Programming Tips

Here is a short summary of general tips for optimizing the performance of SPE programs:

• Local Store

– Design for the LS size. The LS holds up to 256 KB for the program, stack, local data 
structures, and DMA buffers. One can do a lot with 256 KB, but be aware of this size. 

– Use plug-ins (runtime download program kernels) to build complex function servers in 
the LS. See Section 4.8 on page 135. 

• DMA Transfers

– Use SPE-initiated DMA transfers rather than PPE-initiated DMA transfers. There are 
more SPEs than the one PPE, and the PPE can enqueue only eight DMA requests 
whereas each SPE can enqueue 16.

– Overlap DMA with computation by double buffering or multibuffering (see Section 3.5.3 
on page 91). Multibuffer code or (typically) data. 

– Use double buffering to hide memory latency.

– Use fence command options to order DMA transfers within a tag group.

– Use barrier command options to order DMA transfers within the queue. 

• Loops

– Unroll loops to reduce dependencies and increase dual-issue rates. This exploits the 
large SPU register file.
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– Compiler auto-unrolling is not perfect, but pretty good.

• SIMD Strategy

– Choose an SIMD strategy appropriate for your algorithm. For example:

• Evaluate array-of-structure (AOS) organization. For graphics vertices, this organiza-
tion (also called or vector-across) can have more-efficient code size and simpler 
DMA needs, but less-efficient computation unless the code is unrolled.

• Evaluate structure-of-arrays (SOA) organization. For graphics vertices, this organiza-
tion (also called parallel-array) can be easier to SIMDize, but the data must be main-
tained in separate arrays or the SPU must shuffle AOS data into an SOA form.

– Consider the effects of unrolling when choosing an SIMD strategy.

• Load/Store

– Scalar loads and stores are slow, with long latency.

– SPUs only support quadword loads and stores.

– Consider making scalars into quadword integer vectors.

– Load or store scalar arrays as quadwords, and perform your own extraction and insertion 
to eliminate load and store instructions.

• Branches

– Eliminate nonpredicted branches.

– Use feedback-directed optimization.

– Use the __builtin_expect language directive when you can explicitly direct branch predic-
tion.

• Multiplies

– Avoid integer multiplies on operands greater than 16 bits in size. The SPU supports only 
a 16-bit x16-bit multiply. A 32-bit multiply requires five instructions (three 16-bit multiplies 
and two adds). 

– Keep array elements sized to a power-of-2 to avoid multiplies when indexing.

– Cast operands to unsigned short prior to multiplying. Constants are of type int and also 
require casting. Use a macro to explicitly perform 16-bit multiplies. This can avoid inad-
vertent introduction of signed extends and masks due to casting. 

• Pointers

– Use the PPE’s load/store with update instructions. These allow sequential indexing 
through an array without the need of additional instructions to increment the array 
pointer. 

– For the SPEs (which do not support load/store with update instructions), use the d-form 
instructions to specify an immediate offset from a base array pointer.
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• Dual-Issue

– Choose intrinsics carefully to maximize dual-issue rates or reduce latencies. 

– Dual issue will occur if a pipe-0 instruction is even-addressed, a pipe-1 instruction is odd-
addressed, and there are no dependencies (operands are available). 

– Code generators use nops to align instructions for dual-issue. 

– Use software pipeline loops to improve dual-issues rates.
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4. Programming Models

On any processor, coding optimizations are achieved by exploiting the unique features of the 
hardware. In the case of the Cell Broadband Engine, the large number of SPEs, their large 
register file, and their ability to hide main-storage latency with concurrent computation and DMA 
transfers support many interesting programming models. With the computational efficiency of the 
SPEs, software developers can create programs that manage dataflow as opposed to leaving 
dataflow to a compiler or to later optimizations. 

Many of the unique features of the SPE are handled by the compiler, although programmers 
looking for the best performance can take advantage of the features independently of the 
compiler. It is almost never necessary to program the SPE in assembly language. C intrinsics 
provide a convenient way to program the efficient movement and buffering of data. 

Section 1.3.6 on page 24 introduced some concepts for application programming. This chapter 
introduces seven types of programming models—the Function-Offload Model, the Device-Exten-
sion Model, the Computation-Acceleration Model, the Streaming Model, the Shared-Memory 
Multiprocessor Model, the Asymmetric-Thread Runtime Model, and the User-Mode Thread 
Model. 

4.1 Function-Offload Model

In the Function-Offload Model, the SPEs are used as accelerators for performance-critical proce-
dures. This model is the quickest way to effectively use the Cell Broadband Engine with an 
existing application. In this model, the main application runs on the PPE and calls selected proce-
dures to run on one or more SPEs.

The Function-Offload Model is sometimes called the Remote Procedure Call (RPC) Model. The 
model allows a PPE program to call a procedure located on an SPE as if it were calling a local 
procedure on the PPE. This provides an easy way for programmers to use the asynchronous 
parallelism of the SPEs without having to understand the low-level workings of the MFC DMA 
layer. 

In this model, you identify which procedures should execute on the PPE and which should 
execute on the SPEs. The PPE and SPE source modules must be compiled separately, by 
different compilers. 

4.1.1 Remote Procedure Call

The Function Offload or Remote Procedure Call (RPC) Model is implemented using stubs as 
proxies. A method stub, or simply stub, is a small piece of code used to stand in for some other 
code. The stub or proxy acts as a local surrogate for the remote procedure, hiding the details of 
server communication. The main code on the PPE contains a stub for each remote procedure on 
the SPEs. Each procedure on an SPE has a stub that takes care of running the procedure and 
communicating with the PPE. 
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The Interface Definition Language (IDL) compiler, available in the SDK, facilitates the RPC func-
tion offload. The stub code, together with the runtime code, controls the execution, data transfer, 
and program coordination between the PPE and SPE during program execution. A procedure is 
loaded onto an SPE only once, and the program on the PPE can then make multiple calls to that 
procedure without having to reload it. 

When the program on the PPE calls a remote procedure, it actually calls that procedure’s stub 
located on the PPE. The stub code initializes the SPE with the necessary data and code, packs 
the procedure’s parameters, and sends a mailbox message to the SPE to start its stub proce-
dure.

The SPE stub retrieves the parameters and executes the procedure locally on the SPE. The PPE 
program then retrieves the output parameters. Figure 4-1 shows an example of a program using 
this method. 

Converting a PPE program to use RPCs requires the following steps:

1. Determine which parts of the program will run on the PPE, and which procedures and func-
tions will run on the SPEs. (Functions return in-place values; procedures do not.)

2. For any function chosen in step 1 to run on the SPEs, change the function to a procedure by 
changing the return value to an output parameter. These procedures will become RPC func-
tions, but the return values will be used for RPC synchronization rather than as computa-
tional values.

3. Produce an Interface Definition Language file (IDL file). The IDL file defines the interface 
between the main program on the PPE and the remote procedures on the SPEs. This speci-
fication of the program’s remote procedures is defined using the Cell Broadband Engine’s 
IDL. For more information, see Section 4.1.2 on page 130.

4. Process the IDL file using the IDL compiler. The IDL compiler produces three files to be used 
in the program-compilation phase. One file is a C header file and the other two are C source 
files—one to be compiled with the PPE program and the other to be compiled with the SPE 
procedures. The generated header file contains the declarations and data structures required 
by both stubs for data transfer between the PPE and the SPE.

5. Compile the PPE and SPE code into separate programs. The PPE code must be compiled 
with the PPE stub code produced by the IDL compiler, and the SPE code must be compiled 
with its stub code, thus producing two program files.

Figure 4-2 on page 129 shows the production flow for producing an application. Boxes with bold 
borders represent source-code files.

Figure 4-1. Example of the Function-Offload (or RPC) Model 
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4.1.1.1 The RPC Runtime Library

The RPC runtime library coordinates the interaction between the PPE and the SPEs, and it 
manages the task queues. PPE requests for SPE executions are represented in the RPC runtime 
code as task structures. As each remote procedure is invoked, a new task is created and placed 
in a task queue. Each SPE has its own task queue, so having the procedure loaded on multiple 
SPEs does not increase the size of the queue, it only enables the procedure to execute on 
multiple SPEs at the same time. The number of slots in a queue is fixed. If the PPE requests a 
remote procedure call and the queue is full, the application must wait for a free slot in the queue. 
When a remote procedure call returns, a slot in the queue becomes available. 

On invocation of a remote procedure call, the PPE program can either wait for the procedure to 
return (synchronous execution), or continue processing and synchronize with the procedure later 
(asynchronous execution). Whether a remote procedure is synchronous or asynchronous is 
specified by the procedure’s definition in the IDL file.

All remote procedure calls are RPC functions that return a value of type idl_id_t. The value 
returned is unique, and identifies that instance of the procedure call. This value is used by the 
PPE program to synchronize with asynchronous procedure calls.

If the main program has called a procedure asynchronously, it must, at some point, synchronize 
with the procedure and read the return values. There are three synchronization functions used 
for this purpose: join, poll, and join all.

The actual names of the synchronization functions are created by the IDL compiler and contain 
the embedded name of the remote procedure. If, for example, the name of the remote procedure 
is foo, then the following would be the signatures of foo’s synchronization functions:

int idl_join_foo( idl_id_t id )

This function blocks until the remote procedure with the idl_id_t value of id completes 
execution on the SPE. When the SPE function finishes, it sends a signal to the PPE. 

Figure 4-2. Production Flow for Function Offload (or RPC) Model 
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int idl_poll_foo( idl_id_t id )

This function polls to see if the SPE remote procedure with the idl_id_t value of id has 
finished. 

int idl_join_all_foo( )

This function blocks and waits for all instances of remote procedure foo to complete.

When the PPE program will issue no more calls to remote procedure foo and all current invoca-
tions of the program have completed, the program should call the idl_foo_interface_cleanup() 
function. This function returns void, and releases all of the allocated resources.

4.1.2 IDL Specification and Compilation

The Cell Broadband Engine’s Interface Definition Language (IDL) is a subset of the Distributed 
Computing Environment (DCE) Interface Description Language. DCE is a collection of industry-
standard, vendor-neutral, distributed-computing technologies. DCE is defined and supported by 
the Open Group, http://www.opengroup.org. Because the Open Group was formerly known as 
the Open Systems Foundation, DCE is often known as OSF DCE. The goal of DCE is to provide 
an interoperable and flexible distributed environment for programs running on a large variety of 
systems. 

An IDL file contains the specification of the interfaces between the PPE program and the SPE 
procedures. IDL files are named with an extension of .idl. Here is an example of invoking the 
IDL compiler:

./idl -p ppe_stub_euler.c -s spe_stub_euler.c euler.idl

In this example, the IDL compiler processes file euler.idl and names the PPE stub source file 
ppe_stub_euler.c and the SPE stub source file spe_stub_euler.c

The general structure of an IDL file is:

interface identifier
{

import statements
constant, type and operation declarations

}

Import statements include the contents of other files in a manner similar to include statements in 
C/C++.

http://www.opengroup.org
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4.1.2.1 Operation Declarations

Operation declarations are declarations of the remote procedures. Each operation declaration 
has four main components: the synchronization type, the return type (which is always idl_id_t), 
the name of the procedure, and a description of the parameters. An operation declaration has the 
following form:

[<op_attribute>] idl_id_t <identifier> <parameter_declarators>

• op_attribute—specifies one of the four types of procedure synchronization:

– sync—Specifies synchronous execution. The PPE application must wait for the SPE to 
finish execution of the procedure before continuing.

– async_b—Specifies asynchronous execution. The PPE application returns as soon as 
the input parameters are copied. The program can reuse the input buffer immediately 
after the function returns. The return value of the procedure call, idl_id_t, can be used 
later by the PPE program in the join_func(idl_id_t id) function to read any output 
parameter results.

– async_i—Specifies asynchronous execution. The PPE application returns as soon as 
the input parameters are copied. The return value of the procedure call, idl_id_t, can be 
used later by the PPE program in the join_func(idl_id_t id) function to read any out-
put parameter results. The program cannot reuse the in buffer until after the join_func 
function returns successfully.

– async—Has the same semantics as async_i.

• idl_id_t—The return type for all remote procedures. It is a unique ID used by the program for 
synchronization.

• identifier—The procedure name.

• parameter declarators—The names and types of the parameters and the direction of data 
transfer.

4.1.2.2 Parameter Declarators

A parameter to a remote procedure can be of any standard type or a one-dimension array. A 
parameter can be used for procedure input, output, or both. A parameter declaration takes the 
following form:

[<parameter_attributes>] <type_specifier> <parameter_declarator>

A parameter attribute can be any of the following:

• in—Specifies that the parameter is an input parameter. Data is passed from the PPE pro-
gram to the SPE procedure.

• out—Specifies that the parameter is an output parameter. Data is passed from the SPE pro-
cedure to the PPE program.

An output parameter must be passed by reference and therefore must be declared either as 
an array or a pointer.
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• size_is(val)—Specifies that the parameter has a size of val, where val can be an integer, 
a parameter, or a previously declared constant.

• dbuf_size(val)—If the specified parameter is an array, this parameter is considered for dou-
ble buffering. The parameter has a size of val, where val can be an integer, a parameter, or 
a previously declared constant. This value must agree with the array size or the double buff-
ering request is ignored.

One-dimension arrays can be used as input or output parameters. The size of the array must be 
included in the size_is attribute.

[in, size_is (array_a_size)] int array_a

For arrays whose size is determined at runtime, there must also be an input parameter 
containing the size of the array, prior to the array parameter. For example:

[async] idl_id_t foo ([in] int size, [out, size_is(size)] int ret_array[])

The above example declares an input parameter named size of type int. This value is then refer-
enced in the declaration of the output parameter.

4.1.3 Simple Function-Offload Example

The following program illustrates the components of a function-offload (RPC) program using the 
IDL compiler. The three components include: 

• The SPE program, spu_hello.c, that defines the remote procedure, hello. The hello proce-
dure prints the string passed by the calling function. 

• The interface description, hello.idl, for the remote SPU procedure hello. The hello proce-
dure is defined to be a synchronous call with input parameters, nbytes, specifying the num-
ber of characters in the string, and message, the string of size nbytes to be printed. As a 
synchronous RPC function, the RPC caller will stall while hello is executed. 

• The PPE program, hello.c, that makes a remote procedure call to the SPU procedure, 
hello.

/* file hello.idl */

interface greeting
{

[sync] idl_id_t hello ([in] int nbytes,
 [in, size_is(nbytes)] char message[]);

}

/* file hello.c */
#include <stub.h>

int main( )
{

char* str =  “Hi, from the Cell!”;
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/* ... */

hello( strlen(str), str);
}

/* file spu_hello.c */
#include <stdio.h>
#include <stub.h>

idl_id_t hello( int nbytes, char msg[])
{

printf(“SPE: %s\n”, ms);
return 0;

}

4.2 Device-Extension Model

The Device Extension Model is a special case of the Function-Offload Model in which the SPEs 
act like I/O devices. SPEs can also act as intelligent front ends to an I/O device. Mailboxes can 
be used as command and response FIFOs between the PPE and SPEs. 

The SPEs can interact with I/O devices because all I/O devices are memory-mapped, and the 
SPEs DMA transfers support transfer sizes of a single byte. I/O devices can use an SPE’s signal-
notification facility (Section 3.1.3.3 on page 67) to tell the SPE when commands complete. 

When SPEs are used in the Device-Extension Model, they usually run privileged software that is 
part of the operating system. As such, this code is trusted and may be given access to privileged 
registers for a physical device. For example, a secure file system may be treated as a device. 
The operating system’s device driver can be written to use the SPE for encryption and decryption 
and for responding to disk-controller requests on all file reads and writes to this virtual device.

4.3 Computation-Acceleration Model

The Computation-Acceleration Model is an SPE-centric model that provides a smaller-grained 
and more integrated use of SPEs. The model speeds up applications that use computation-inten-
sive mathematical functions without requiring significant rewrite of the applications. Most compu-
tation-intensive sections of the application run on SPEs. The PPE acts as a control and system-
service facility. Multiple SPEs work in parallel. The work is partitioned manually by the 
programmer, or automatically by the compilers. The SPEs must efficiently schedule MFC DMA 
commands that move instructions and data. This model either uses shared memory to communi-
cate among SPEs, or it uses a message-passing model. 

4.4 Streaming Model

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes data that 
streams through. The PPE acts as a stream controller, and the SPEs act as stream-data proces-
sors. For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-transfer bandwidth 
by an order of magnitude. If each SPE has an equivalent amount of work, this model can be an 
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efficient way to use the Cell Broadband Engine because data remains inside the Cell Broadband 
Engine as long as possible. The PPE and SPEs support message-passing between the PPE, the 
processing SPE, and other SPEs.

Although the SDK does not support a formal streaming language, most of the programs written 
for the Cell Broadband Engine are likely to use the streaming model to some extent. For 
example, the Euler particle-system simulation in Section 3.6.3 on page 102 implements the 
streaming model. This particle-system simulation contains a computational kernel that streams 
packets of data through the kernel for each step in time.

4.5 Shared-Memory Multiprocessor Model

The Cell Broadband Engine can be programmed as a shared-memory multiprocessor, using two 
different instruction sets. The SPEs and the PPE fully interoperate in a cache-coherent Shared-
Memory Multiprocessor Model. All DMA operations in the SPEs are cache-coherent. Shared-
memory load instructions are replaced by DMA operations from shared memory to local store 
(LS), followed by a load from LS to the register file. The DMA operations use an effective address 
that is common to the PPE and all the SPEs. Shared-memory store instructions are replaced by 
a store from the register file to the LS, followed by a DMA operation from LS to shared memory. 
The SPE’s DMA lock-line commands provide the equivalent of the PowerPC Architecture atomic-
update primitives (load with reservation and store conditional). 

A compiler or interpreter could manage part of the LS as a local cache for instructions and data 
obtained from shared memory.

4.6 Asymmetric-Thread Runtime Model

Threads can be scheduled to run on either the PPE or on the SPEs, and threads interact with 
one another in the same way they do in a conventional symmetric multiprocessor. The Asym-
metric-Thread Runtime Model extends thread task models and lightweight task models to include 
the different instruction sets supported by the PPE and SPE. 

Scheduling policies are applied to the PPE and SPE threads to optimize performance. Although 
preemptive task-switching is supported on SPEs for debugging purposes, there is a runtime 
performance and resource-allocation cost. FIFO run-to-completion models, or lightweight coop-
eratively-yielding models, can be used for efficient task-scheduling. A single SPE can run only 
one thread at a time; it cannot support multiple simultaneous threads.

The Asymmetric-Thread Runtime Model is flexible and supports all of the other programming 
models described in this chapter. Any program that explicitly calls spe_create_thread is an 
example of the Asymmetric-Thread Runtime Model. (See Section 2.3.3 on page 45 for an 
example of calling spe_create_thread.) This is the fundamental model provided by the SDK’s 
SPU Runtime Management Library, and it is identified by user threads (both PPE and SPE) 
running on the Cell Broadband Engine’s heterogeneous processing complex. 
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4.7 User-Mode Thread Model

The User-Mode Thread Model refers to one SPE thread managing a set of user-level functions 
running in parallel. The user-level functions are called microthreads (and also user threads and 
user-level tasks). The SPE thread is supported by the operating system. The microthreads are 
created and supported by user software; the operating system is not involved. However, the set 
of microthreads can run across a set of SPUs. 

The SPU application schedules tasks in shared memory, and the tasks are processed by avail-
able SPUs. For example, in game programming, the tasks can refer to scene objects that need 
updating. Microthreads can complete at any time, and new microthreads can be spawned at any 
time.

One advantage of this programming model is that the microthreads, running on a set of SPUs 
under the control of an SPE thread, have predictable overhead. A single SPE cannot save and 
restore the MFC commands queues without assistance from the PPE. 

4.8 SPE Plugins

When code does not fit in an SPE’s local store, overlays can be useful. An overlay is SPU code 
that is dynamically loaded and executed by a running SPU program. It cannot be independently 
loaded or run on an SPE. 

SPE Plugins allow the programmer to manage SPU code in a modular fashion. The specific SPU 
code that is needed at runtime is dynamically loaded. This differs from other SPE programming 
models in that the required code cannot be known ahead of time. The SPE Plugin uses the stack 
of the running SPU program, and it cannot make global external references. The SPE Plugin 
cannot communicate with the running SPU program other than through parameters passed in 
and out. 
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5. The Simulator

The IBM Full System Simulator for the Cell Broadband Engine is a generalized simulator that can 
be configured to simulate a broad range of full-system configurations. It supports both functional 
simulation and cycle-accurate simulation (performance or timing simulation) of full systems, 
including the PPE, SPEs, MFCs, PPE caches, bus, and memory controller. It can simulate and 
capture many levels of operational details on instruction execution, cache and memory 
subsystems, interrupt subsystems, communications, and other important system functions.

Figure 5-1 shows the simulation stack. The simulator is part of the software development kit 
(SDK), which is available through developerWorks at http://www-128.ibm.com/developer-
works/power/cell

If accurate timing and cycle-level simulation are not required, the simulator can be used in its 
functional-only mode, running as a debugger to test the functions and features of a program. If 
cycle-level analysis is required, it can be used in performance simulation (or timing simulation) 
mode, to get accurate performance analyses. Simulator configurations are extensible and can be 
modified using Tool Command Language (Tcl) commands to produce the type and level of anal-
ysis required. 

The simulator itself is a general tool that can be configured for a broad range of microprocessors 
and hardware simulations. The SDK, however, provides a ready-made configuration of the simu-
lator for Cell Broadband Engine system development and analysis. 

Figure 5-1. Simulation Stack 
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5.1 Simulator Basics

5.1.1 Operating-System Modes

The simulator has two modes of operation, with regard to operating systems: Linux mode and 
standalone mode. 

5.1.1.1 Linux Mode

In Linux mode, after the simulator is configured and loaded, the simulator boots the Linux oper-
ating system on the simulated system. At runtime, the operating system is simulated along with 
the running programs. The simulated operating system takes care of all the system calls, just as 
it would in a nonsimulation (real) environment.

5.1.1.2 Standalone Mode

In standalone mode, the application is loaded without an operating system. Standalone applica-
tions are user-mode applications that are normally run on an operating system. On a real system, 
these applications rely on the operating system to perform certain tasks, including loading the 
program, address translation, and system-call support. In standalone mode, the simulator 
provides some of this support, allowing applications to run without having to first boot an oper-
ating system on the simulator.

There are, however, limitations that apply when building an application to be loaded and run by 
the simulator without an operating system. Typically, the operating system provides address-
translation support. Since an operating system is not present in this mode, the simulator loads 
executables without address translation, so that the effective address is the same as the real 
address. Therefore, all addresses referenced in the executable must be valid real addresses. If 
the simulator has been configured with 64 MB of memory, all addresses must fit in the range of 
x‘0’ to x‘3FFFFFF’.

5.1.2 Interacting with the Simulator

There are two ways to interact with the simulator: 

• Issuing commands to the simulated system

• Issuing commands to the simulator

The simulated system is the Linux environment on top of the simulated Cell Broadband Engine, 
where you run and debug programs. You interact with it by entering commands at the Linux 
command prompt, in the console window. The console window is a Linux shell of the simulated 
Linux operating system.

You can also control the simulator itself, configuring it to do such tasks as collect and display 
performance statistics on particular SPEs, or set breakpoints in code. These commands are 
entered at the simulator command line in the simulator command window, or using the equivalent 
actions in the graphical user interface (GUI). The GUI is a graphical means of interacting with the 
simulator. The GUI is described in Section 5.3 on page 140.
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Figure 5-2 shows the simulator windows, and the layers with which they communicate.

5.2 Command-Line Interface

Before starting the simulator, move to the Linux run directory located in the SDK at systemsim-
sti-release/run/cell/linux. To start the simulator in command-line mode, enter the following 
command:

../run_cmdline

This command starts the simulator, which initializes the simulation and displays the prompt:

systemsim %

The window displaying the simulator prompt is the command window. While starting the simula-
tion, the simulator creates the console window, which is initially labeled UART0 in the window’s 
title bar. 

All commands must be entered at the prompt in the command window (that is, the window in 
which the simulator was started). Some of the important commands are shown in Table 5-1 on 
page 140.

Figure 5-2. Simulator Structure and Screens 
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The simulator prompt is displayed in the command window when the simulation is stopped, or 
paused. When the simulation is running, the command window, instead, displays a copy of the 
output to the console window and simulation-cycle information every few seconds, and the 
prompt is not available. To stop the simulation and get back the prompt—use the Ctrl-c key 
sequence. This will stop the simulation, and the prompt will reappear.

5.3 Graphical User Interface

The simulator’s GUI offers a visual display of the state of the simulated system, including the 
PPE and the eight SPEs. You can view the values of the registers, memory, and channels, as 
well as viewing performance statistics. The GUI also offers an alternate method of interacting 
with the simulator. Figure 5-3 on page 141 shows the main GUI window that appears when the 
GUI is launched.

Table 5-1. Important Commands for the IBM Full System Simulator for the Cell Broadband 
Engine  

Simulator Command Meaning

quit Closes the simulation and exits the simulator.

help Displays a list of the available simulator commands.

mysim go Starts or continues the simulation. The first time it is issued, the simulator boots 
the Linux operating system on the simulation.

mysim spu n set model mode Sets SPEn into model mode, where n is a value from 0 to 7 and mode is either 
pipeline or instruction.

mysim spu n display statistics
Displays to the simulator command window, the performance analysis statistics 
collected on SPEn, where n is a value from 0 to 7. Statistics are only collected 
when the SPE is executing in pipeline mode.
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The main GUI window has two basic areas: the vertical panel on the left, and the rows of buttons 
on the right. The vertical panel represents the simulated system and its components. The rows of 
buttons are used to control the simulator.

To start the GUI from the Linux run directory, enter:

../run_gui

The simulator will then configure the simulator as a Cell Broadband Engine and display the main 
GUI window, labeled with the name of the application program. When the GUI window first 
appears, click the Go button to boot the Linux operating system. For a detailed description of 
starting the simulator and running a program see Section 2.4.2 Running the Program in the 
Simulator on page 51.

5.3.1 The Simulation Panel

When the main GUI window first appears, the vertical panel contains a single folder labeled 
mysim. To see its contents, click on the plus sign (+) in front of the folder icon. When the folder is 
expanded, you can see its contents; these include a PPE (labelled PPE0 and PPE1, the two 
threads of the PPE), and eight SPEs (SPE0... SPE7). The folders representing the processors 
can be further expanded to show the viewable objects and the options and actions available. 
Figure 5-4 on page 142 shows the vertical panel with several of the processor folders expanded.

Figure 5-3. Main Graphical User Interface for the Simulator 
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5.3.1.1 PPE Components

There are five PPE components visible in the expanded PPE folder: PCTrack, PCCCore, 
GPRegs, FPRegs and PCAddressing. Double-clicking a folder icon brings up a window 
displaying the program-state data. Several of the available windows are shown in the following 
figures.

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be viewed 
separately by double-clicking on the GPRegs and the FPRegs folders respectively. Figure 5-5 
shows the GPR window, and Figure 5-6 on page 143 shows the FPR window. As data changes 
in the simulated registers, the data in the windows is updated and registers that have changed 
state are highlighted.

Figure 5-4. Project and Processor Folders 

Figure 5-5. PPE General-Purpose Registers Window 
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The PPE Core window (PPCCore) shows the contents of all the registers of the PPE, including 
the Vector/SIMD Multimedia Extension registers. Figure 5-7 shows the PPE Core window.

5.3.1.2 SPE Components

The SPE folders (SPE0 ... SPE7) each have ten subitems. Five of the subitems—(SPUTrack, 
SPUCore, SPEChannel, LS_Stats, and SPUMemory)—represent windows that show data in the 
registers, channels, and memory. Two of the sub-items, MFC and MFC_XLate, represent 
windows that show state information on the MFC. The last three sub-items—SPUStats, Mode, 
and Load-Exec—represent actions to perform on the SPE. 

Several interesting SPE data windows are shown in the following figures. Figure 5-8 on page 144 
shows the MFC window, which provides internal MFC state information. Figure 5-9 on page 144 
shows the MFC_XLate window, which provides translation structure state information. 
Figure 5-10 on page 145 shows the SPEChannel window, which provides information about the 
SPE’s channels. Figure 5-11 on page 146 shows the LS_Stats window, which brings up the new 
local store display map.

Figure 5-6. PPE Floating-Point Registers Window 

Figure 5-7. PPE Core Window 
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Figure 5-8. SPE MFC Window 

Figure 5-9.  SPE MFC Address Translation Window 
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Figure 5-10. SPE Channels Window 
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The last three items in an SPE folder represent actions to perform, with respect to the associated 
SPE. The first of these is SPUStats. When the system is stopped and you double-click on this 
item, the simulator displays program performance statistics in its own pop-up window. 
Figure 5-12 on page 147 shows an example of a statistics dump. These statistics are only 
collected when the Model is set to pipeline mode.

Figure 5-11. SPE Local Store Statistics Window 
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The next item in the SPE folder is labelled either Model: instruction or Model: pipeline. The label 
indicates whether the simulation is in instruction mode, for checking and debugging the function-
ality of a program, or pipeline mode, for collecting performance statistics on the program. The 
mode can be toggled by double-clicking the item. The SPU Modes button on the GUI can also be 
used as a more efficient way to set the modes of all of the SPEs simultaneously.

The last item in the SPE folder, Load-Exec, is used for loading an executable onto an SPE. When 
you double-click the item, a file-browsing window is displayed, allowing you to find and select the 
executable file to load.

Figure 5-12. SPU Statistics 
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5.3.2 GUI Buttons

On the right side of the GUI screen (Figure 5-3 on page 141) are five rows of buttons. These are 
used to manipulate the simulation process. The buttons do the following:

• Advance Cycle—Advances the simulation by a set number of cycles. The default value is 1 
cycle, but it can be changed by entering an integer value in the textbox above the buttons, or 
by moving the slider next to the textbox. The drop-down menu at the top of the GUI allows the 
user to select the time domain for cycle stepping. The time units to use for cycles are 
expressed in terms of various system components. The simulation must be stopped for this 
button to work; if the simulation is not stopped, the button is inactive.

• Go—Starts or continues the simulation. In the SDK’s simulator, the first time the Go button is 
clicked it initiates the Linux boot process. (In general, the action of the Go button is deter-
mined by the startup tcl file located in the directory from which the simulator is started.)

• Stop—Pauses the simulation.

• Service GDB—Allows the external gdb debugger to attach to the running program. This but-
ton is also inactive while the simulation is running.

• Triggers/Breakpoints—Displays a window showing the current triggers and breakpoints.

• Update GUI—Refreshes all of the GUI screens. By default, the GUI screens are updated 
automatically every four seconds. Click this button to force an update.

• Debug Controls—Displays a window of the available debug controls and allows you to select 
which ones should be active. Once enabled, corresponding information messages will be dis-
played. Figure 5-13 on page 149 shows the Debug Controls window.

• Options—Displays a window allowing you to select fonts for the GUI display. On a separate 
tab, you can enter the memory size for the simulated system and the gdb debugger port.

• Emitters—Displays a window with the defined emitters, with separate tabs for writers and 
readers. Figure 5-21 on page 160 shows the Emitters window. For more on emitters, see 
Section 5.4.4 on page 159. 

• Cycle Mode—This button is not functional in the current release.

• Fast Mode—Toggles fast mode on and off. Fast mode accelerates the execution of the PPE 
at the expense of disabling certain system-analysis features. It is useful for quickly advancing 
the simulation to a point of interest. When fast mode is on, the button appears depressed; 
otherwise it appears normal. Fast mode can also be enabled with the “mysim fast on” com-
mand and disabled with the “mysim fast off” command. 

• SPE Visualization—Plots histograms of SPU and DMA event counts. The counts are sam-
pled at user defined intervals, and are continuously displayed. Two modes of display are pro-
vided: a “scroll” view, which tracks only the most recent time segment, and a “compress” 
view, which accumulates samples to provide an overview of the event counts during the time 
elapsed. Users can view collected data in either detail or summary panels. The detailed, sin-
gle-SPE panel tracks SPU pipeline phenomena (such as stalls, instructions executed by 
type, and issue events), and DMA transaction counts by type (gets, puts, atomics, and so 
forth). The summary panel tracks all eight SPEs for the CBE, with each plot showing a subset 
of the detailed event count data available. Figure 5-14 on page 150 shows the SPE Visual-
ization window. 

• Process-Tree-Stats—Figure 5-15 on page 151 shows the Process Tree Statistics window. 

• Track All PCs—Figure 5-16 on page 152 shows the Track All PCs window. 
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• SPU Modes—Provides a convenient means to set each SPU's simulation mode to either 
cycle accurate pipeline mode or fast functional-only mode. The same capabilities are avail-
able using the Model:instruction or Model:pipeline toggle menu sub-item under each SPE in 
the tree menu at the left of the main control panel. Figure 5-17 on page 153 shows the SPU 
Modes window. 

• Exit—Exits the simulator and closes the GUI window.

Figure 5-13. Debug Controls 
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Figure 5-14. SPE Visualization Window 
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Figure 5-15. Process Tree Statistics Window 
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Figure 5-16. Track All PCs Window 
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5.4 Performance Monitoring

The simulator provides both functional-only and cycle-accurate simulation modes. 

Functional-only mode models the effects of instructions, without accurately modeling the time 
required to execute the instructions. In functional-only mode, a fixed latency is assigned to each 
instruction; the latency can be arbitrarily altered by the user. Since latency is fixed, it does not 
account for processor implementation and resource conflict effects that cause instruction laten-
cies to vary. Functional-only mode assumes that memory accesses are synchronous and instan-
taneous. This mode is useful for software development and debugging, when a precise measure 
of execution time is not required.

The cycle-accurate mode models not only functional accuracy but also timing. It considers 
internal execution and timing policies as well as the mechanisms of system components, such as 
arbiters, queues, and pipelines. Operations may take several cycles to complete, accounting for 
both processing time and resource constraints. 

The cycle-accurate mode allows you to:

• Gather and compare performance statistics on full systems, including the PPE, SPEs, MFCs, 
PPE caches, bus, and memory controller.

• Determine precise values for system validation and tuning parameters, such as cache 
latency.

• Characterize the system workload.

Figure 5-17. SPU Modes Window 
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• Forecast performance at future loads, and fine-tune performance benchmarks for future vali-
dation.

In the cycle-accurate mode, the simulator automatically collects many performance statistics. 
Some of the more important SPE statistics are:

• Total cycle count

• Count of branch instructions

• Count of branches taken

• Count of branches not taken

• Count of branch-hint instructions

• Count of branch-hints taken

• Contention for an SPE’s local store

• Stall cycles due to dependencies on various pipelines

5.4.1 Displaying Performance Statistics

You can collect and display simple performance statistics on a program without performing any 
instrumentation of the program code. Collection of more complex statistics requires program 
instrumentation.

The following steps demonstrate how to collect and display simple performance statistics. The 
example PPE program starts (spawns) the same thread on three SPEs. When an SPE thread is 
spawned, its SPE number (any number between 0 and 7) is passed in a data structure as a 
parameter to the main function. The SPE program contains a for-loop that is executed zero or 
more times. The number of times it is executed is equal to three times the value passed to its 
main function.

The names of the PPE and SPE programs are tpa1 and tpa1_spu, respectively. Excerpts of the 
noteworthy sections of the programs are shown in Section 5.4.3 on page 159.

The following steps are marked as to whether they are performed in the simulator’s command 
window or its console window. To collect and display simple performance statistics, do the 
following:

1. Start the simulator. While in the Linux run directory, start the simulator by entering the fol-
lowing command:

../run_cmdline

This command starts the simulator in command-line mode, and displays the simulator 
prompt.

systemsim %

2. In the command window, set the SPUs to pipeline mode. An SPU must be in pipeline 
mode to collect performance statistics from that SPU. If, instead, the SPU is in instruction 
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mode, it will only report the total instruction count. Use the mysim spu command to set those 
processors to pipeline mode, as follows:

mysim spu 0 set model pipeline
mysim spu 1 set model pipeline
mysim spu 2 set model pipeline

Note:  The specific SPU numbers are only examples. The operating system may assign the 
SPU programs to execute on a different set of SPUs. You can also use the “SPU Modes” 
button or the folder under each SPE labled “Model” to set the model to pipeline mode.

3. In the command window, boot Linux. Boot the Linux operating system on the simulated 
PPE by entering:

mysim go

4. In the console window, load the executables. Load the PPE and SPE executables from 
the base environment into the simulated environment, and set their file permissions to exe-
cutable, as follows:

callthru source tpa1 > tpa1
callthru source tpa1_spu > tpa1_spu
chmod +x tpa1
chmod +x tpa1_spu

5. In the console window, run the PPE program. Run the PPE program in the simulation by 
entering the name of the executable file, as follows:

tpa1

6. In the command window, pause the simulation and display statistics. When the pro-
gram finishes execution, select the simulator control window. Pause the simulator by entering 
the Ctrl-c key sequence. To display the performance statistics for the three SPEs, enter the 
following commands:

mysim spu 0 display statistics
mysim spu 1 display statistics
mysim spu 2 display statistics

As each command is entered, the simulator displays the performance statistics in the simula-
tor command window. Figure 5-18 on page 156 shows a screen image of the SPE 0 perfor-
mance statistics.
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Although the programs on SPE 0 and SPE 2 are the same, the program on SPE 0 executed 
the loop zero times, but the program on SPE 2 executed the loop six times. You can com-
pare the performance statistics of SPE 0 (Figure 5-18) with those of SPE 2, which are shown 
in Figure 5-19 on page 157. 

Note:  The statistics collected in this manner include the SPU cycles required to load the 
SPE thread, start the SPE thread, and cleanup the SPE thread upon completion. 

Figure 5-18. tpa1 Statistics for SPE 0 

systemsim % mysim spu 0 display statistics
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5.4.2 Performance Profile Checkpoints

The simulator can automatically capture system-wide performance statistics that are useful in 
determining the sources of performance degradation, such as channel stalls and instruction-
scheduling problems. You can also use performance profile checkpoints to delimit a specific 
region of code over which performance statistics are to be gathered. 

Performance profile checkpoints (such as prof_clear, prof_start and prof_stop in the code 
samples below) can be used to capture higher-level statistics such as the total number of instruc-
tions, the number of instructions other than no-op instructions, and the total number of cycles 
executed by the profiled code segment. The checkpoints are special no-op instructions that indi-
cate to the simulator that some special action should be performed. No-op instructions are used 
because they allow the same program to be executed on real hardware. A header file, profile.h, 
provides a convenient function-call-like interface to invoke these instructions. In addition to 
displaying performance information, certain performance profile checkpoints can control the 
statistics-gathering functions of the SPU.

For example, profile checkpoints can be used to capture the total cycle count on a specific SPE. 
The resulting statistic can then be used to further guide the tuning of an algorithm or structure of 
the SPE. The following example illustrates the profile-checkpoint code that can be added to an 
SPE program in order to clear, start, and stop a performance counter:

Figure 5-19. tpa1 Statistics for SPE 2 

systemsim % mysim spu 2 display statistics
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#include <profile.h>
. . .
prof_clear();     // clear performance counter
prof_start();     // start recording performance statistics
. . .

<code_to_be_profiled>
. . .
prof_stop();     // stop recording performance statistics

When a profile checkpoint is encountered in the code, an instruction is issued to the simulator, 
causing the simulator to print data identifying the calling SPE and the associated timing event. 
The data is displayed on the simulator control window in the following format:

SPUn: CPm, xxxxx(yyyyy), zzzzzzz

where n is the number of the SPE on which the profile checkpoint has been issued, m is the 
checkpoint number, xxxxx is the instruction counter, yyyyy is the instruction count excluding no-
ops, and zzzzzz is the cycle counter.

The following example uses the tpa1_spu program and instruments the loop with the prof_clear, 
prof_start and prof_stop profile checkpoints. The relevant code is shown here.

// file tpa2_spu.c

#include <sim_printf.h>
#include <profile.h>

...

prof_clear();
prof_start();
for( i=0; i<tinfo.spe_num*3; i++ )

sim_printf("SPE#: %d, Count: %d\n", tinfo.spe_num, i);
prof_stop();

Figure 5-20 shows the output produced by the program.

Figure 5-20. Profile Checkpoint Output for SPE 2 
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5.4.3 Example Program: tpa1 

The following example program, tpa1, is used in the sections above to show the basic perfor-
mance statistics that can be collected and displayed without instrumentation of the code. tpa1.c 
is the source code for the PPE, which spawns three copies of program tpa1_spu on SPEs 0, 1 
and 2. The code in tpa1_spu executes the for-loop a different number of times in each of the 
SPEs. For each SPE, the loop is executed three times the number passed in as the parameter.

// file tpa1.c

#include <sim_printf.h>

...

// the value of nr_spus is 3
for (i = 0; i < nr_spus; i++)
{

tinfo.spe_num = i;
sim_printf("Spawning thread:  %d\n", i);
spuids[i] =

spe_create_thread(gid, &tpa1_spu, (void*) &tinfo, NULL, -1, 0);
}

// file tpa1_spu.c

...

for( i=0; i<tinfo.spe_num*3; i++ )
sim_printf("SPE#: %d, Count: %d\n", tinfo.spe_num, i);

5.4.4 Emitters

In addition to the basic cycle-count and summary statistics provided by its profile checkpoints 
and triggers, the simulator also supports a user-extensible event-analysis system, called emit-
ters. The emitters, selected on the GUI screen (Figure 5-3 on page 141), decouple performance 
event-collection from performance analysis tools. The emitter event-analysis system has two 
primary functions:

• Event Data Production—During simulation, the simulator can identify a wide variety of archi-
tectural and programmatic events that influence system and software performance. Using 
configuration commands, you can request the simulator to emit records for a specific set of 
events into a circular, shared memory buffer. Reader programs attach to the shared memory 
buffer to consume these event records. Examples of emitter events include instruction execu-
tion, memory-reference addresses, and cache hits and misses. 

• Event Processing—There are one or more readers that analyze event records from this 
buffer. The readers typically compute performance measurements and statistics, visualize 
system and application behavior, and capture traces for post-processing. The simulator is 



Programming Tutorial

Cell Broadband Engine

The Simulator
Page 160 of 183

Version 1.0
October 21, 2005

prepackaged with a set of prebuilt sample emitter readers, and users can develop and cus-
tomize their own emitter readers.

Figure 5-21 shows the emitter selections available by clicking the Emitters button on the GUI 
screen. Figure 5-22 on page 161 shows the emitter architecture. Emitters can be used in any 
simulator mode. The writer toggle buttons in the GUI are used to enable or disable production of 
the associated event to the circular buffer. An emitter reader program is needed to receive the 
events from the circular buffer using the emitter reader API.

The emitter framework is meant for programmers who wish to conduct performance analyses or 
capture traces by developing custom reader programs. 

Figure 5-21. Emitters 
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The types of events that can be tracked are described in systemsim-sti-
release/emitter/systemsim-sti-release/emitter/emitter/sti_emitter_data_t.h. The cate-
gories of events are:

• Begin/end markers (Header, Footer)

• PPU and SPU instructions

• Cache hits or misses

• Process/thread state (create, resume, kill, and so forth)

• Translation Lookaside Buffer (TLB), Segment Lookaside Buffer (SLB), Effective-to-Real 
Address Translation (ERAT) operations

• Device operations (disk)

• Annotations

• Transactions

5.5 SPU Performance Statistics and Semantics

The simulator collects several statistics related to SPU performance. Table 5-2 lists the perfor-
mance statistics that are available in the public SDK.

Figure 5-22. Emitter Architecture 
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Table 5-2. Simulator Performance Statistics for the SPU (Page 1 of 3) 

Statistic Name Meaning

performance_inst_count Instruction count (profile checkpoint sensitive), including and not including 
no-ops.

performance_cycle_count Cycle count (profile checkpoint sensitive).

branch_taken Count of branch instructions taken.

branch_not_taken Count of branch instructions not taken.
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hint_instructions Count of branch hint instructions.

hint_instruction_hits Number of times a hint instruction predicted correctly.

ls_contention Number of cycles in which local store load/store instructions prevented 
prefetch. 

sbi_contention Number of cycles in which the Synergistic Bus Interface (SBI) DMA operations 
prevented SPU local store access.

single_cycle Number of cycles in which only one pipeline executed an instruction.

dual_cycle Number of cycles in which both pipelines executed an instruction.

sp_issue_block Number of cycles in which dual-issue was prevented, due to an SP-class 
instruction not being available to issue. 

dp_issue_block Number of cycles in which dual-issue was prevented, due to a DP-class 
instruction not being available to issue. 

cross_issue_cycle Number of cycles in which issue pipe{0,1} sent an instruction to the opposite 
issue pipe{1, 0}.

nop_inst_count Number of NOP instructions executed (NOP, LNOP, HBR, and HBC). 

src0_dep_cycle Number of cycles in which dual-issue was prevented, due to operand depen-
dencies between the two instructions that were ready to issue simultaneously.

nop_cycle Number of cycles in which a NOP was executed in either pipeline. 

branch_stall_cycles Number of cycles stalled due to branch miss.

prefetch_miss_stall_cycles Number of cycles instruction issue stalled due to prefetch miss.

pipe_dep_stall_cycles Number of cycles instruction issue stalled, due to source operand dependen-
cies on target operands in any execution pipeline. 

pipe_busy_cycles Number of cycles all execution pipelines were expected to be busy processing 
in-flight instructions (unaffected by flush).

fp_resource_conflict_stall_cycles Number of cycles stalled due to floating-point unit resource conflict.

hint_stall_cycles Number of cycles stalled due to waiting for hint target.

siss_stall_cycles Number of cycles stalled due to structural execution pipe dependencies.

channel_stall_cycles Number of cycles stalled waiting for a channel operation to complete.

XXX_inst_count (see below) Number of XXX instructions executed.

XXX_dep_stall_cycles Number of cycles stalled due to a source operand dependency on a target 
operand of an in-flight instruction in the XXX execution pipeline.

XXX_iss_stall_cycles Number of cycles stalled due to a structural dependency on an XXX class 
instruction.

XXX_busy_cycle Total cycles the XXX execution pipeline was expected to be busy processing 
in-flight instructions (unaffected by flush).

Where XXX_ (above) is one of: 

FX2 SPX fixed-point unit (fixed [FX] class) instructions. 

SHUF SFS shuffle and quad-rotate fixed-point unit (shuffle [SH] class) instructions.

FX3 SFX 4-cycle fixed-point unit (word rotate and shift [WS] class) instructions.

LS SLS load and store unit (load and store [LS] class) instructions.

BR SCN branch and control unit and sequencer (branch resolution [BR] class) 
instructions.

Table 5-2. Simulator Performance Statistics for the SPU (Page 2 of 3) 

Statistic Name Meaning
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SPR SSC Channel and DMA unit (channel interface [CH] class) instructions.

LNOP Odd pipeline (load no operation [LNOP] class) no-ops.

NOP Even pipeline (NOP class) no-ops.

FXB SFP byte operations (byte operations [BO] class) instructions.

FP6 SFP FPU single-precision (single-precision floating-point [SP] class) instruc-
tions.

FP7 SFP integer (floating-point integer [FI] class) instructions.

FPD SFP FPU double-precision (double-precision floating-point [DP] class) instruc-
tions.

Table 5-2. Simulator Performance Statistics for the SPU (Page 3 of 3) 

Statistic Name Meaning
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6. Glossary

ABI Application Binary Interface. This is the standard that a program follows to 
ensure that code generated by different compilers (and perhaps linking 
with various, third-party libraries) will run correctly on the Cell Broadband 
Engine. The ABI defines data types, register use, calling conventions, 
object formats. 

API Application Program Interface. 

AOS Array of structures. A method of organizing related data values. Also 
called vector-across form. See SOA. 

ATO Atomic Unit. Part of an SPE’s MFC. It is used to synchronize with other 
processor units. 

atomic operation A set of operations, such as read-write, that are performed as an uninter-
rupted unit. 

atomic access A bus access that attempts to be part of an atomic operation. 

b Bit.

B Byte.

BIC Bus Interface Controller. Part of the Cell Broadband Engine Interface 
(BEI) to I/O. 

BIF Cell Broadband Engine Interface. The EIB’s internal communication 
protocol. It supports coherent interconnection to other Cell Broadband 
Engines and BIF-compliant I/O devices, such as memory subsystems, 
switches, and bridge chips. See IOIF. 

BIU Bus Interface Unit. Part of the PPE’s interface to the EIB. 

branch hint A type of branch instruction that provides a hint of the address of the 
branch instruction and the address of the target instruction. Hints are 
coded by the programmer or inserted by the compiler. The branch is 
assumed taken to the target. Hints are used in place of branch prediction 
in the SPU. 

built-ins A type of C and C++ programming language intrinsic that is similar to 
generic intrinsics, except built-ins map to more than one SPU instruction. 
These intrinsics are prefaced by spu_. 

cache High-speed memory close to a processor. A cache usually contains 
recently-accessed data or instructions, but certain cache-control instruc-
tions can lock, evict, or otherwise modify the caching of data or instruc-
tions. 

caching-inhibited A memory update policy in which the cache is bypassed, and the load or 
store is performed to or from main memory. 
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CBEA Cell Broadband Engine Architecture. The Cell Broadband Engine is one 
implementation of the Cell Broadband Engine Architecture.

Cell Broadband 
Engine Linux task

A task running on the PPE and SPE. Each such task has one or more 
Linux threads and some number of SPE threads. All the Linux threads 
within the task share the task’s resources, including access to the SPE 
threads.

Cell Broadband 
Engine program

A PPE program with one or more embedded SPE programs. 

channel Channels are unidirectional, function-specific registers or queues. They 
are the primary means of communication between an SPE’s SPU and its 
MFC, which in turn mediates communication with the PPE, other SPEs, 
and other devices. These other devices use MMIO registers in the desti-
nation SPE to transfer information on the channel interface of that desti-
nation SPE.

Specific channels have read or write properties, and blocking or 
nonblocking properties. Software on the SPU uses channel commands to 
enqueue DMA commands, query DMA and processor status, perform 
MFC synchronization, access auxiliary resources such as the decre-
menter (timer), and perform interprocessor-communication via mailboxes 
and signal-notification.

CL The class-ID parameter in an MFC command. 

coherence Refers to memory and cache coherence. The correct ordering of stores to 
a memory address, and the enforcement of any required cache write-
backs during accesses to that memory address. Cache coherence is 
implemented by a hardware snoop (or inquire) method, which compares 
the memory addresses of a load request with all cached copies of the 
data at that address. If a cache contains a modified copy of the requested 
data, the modified data is written back to memory before the pending load 
request is serviced. 

control plane Refers to software or hardware that manages the operation of data-plane 
software or hardware, by allocating resources, updating tables, handling 
errors, and so forth. See data-plane.

cycle Unless otherwise specified, one tick of the PPE clock.

data plane Refers to software or hardware that operates on a stream or other large 
body of data and is managed by control-plane software or hardware. See 
control-plane. 

decrementer A register that counts down each time an event occurs. Each SPU 
contains dedicated 32-bit decrementers for scheduling or performance 
monitoring, by the program or by the SPU itself. 

D-ERAT Data ERAT.
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DMA Direct Memory Access. A technique for using a special-purpose controller 
to generate the source and destination addresses for a memory or I/O 
transfer. 

DMAC Direct Memory Access Controller. A controller that performs DMA trans-
fers. 

DMA command A type of MFC command that transfers or controls the transfer of a 
memory location containing data or instructions. See MFC command.

DMA list A sequence of transfer elements (or list entries) that, together with an 
initiating DMA-list command, specifies a sequence of DMA transfers 
between a single area of LS and discontinuous areas in main storage. 
Such lists are stored in an SPE’s LS, and the sequence of transfers is 
initiated with a DMA-list command such as getl or putl. DMA-list 
commands can only be issued by programs running on an SPE, but the 
PPE or other devices can create and store the lists in an SPE’s LS. DMA 
lists can be used to implement scatter-gather functions between main 
storage and the LS. 

DMA-list command A type of MFC command that initiates a sequence of DMA transfers spec-
ified by a DMA list stored in an SPE’s LS. See DMA list.

DMA queue A set of two queues for holding DMA-transfer commands. The SPE’s 
queue has 16 entries. The PPE’s queue has four entries (two plus an 
additional two for the L2 cache) for SPE-requested DMA commands, and 
eight entries for PPE-requested DMA commands.

dual-issue Issuing two instructions at once, under certain conditions. See fetch 
group. 

EA Effective address. 

ECC Error-Correcting Code. 

effective address An address generated or used by a program to reference memory. A 
memory-management unit translates an effective address (EA) to a 
virtual address (VA), which it then translates to a real address (RA) that 
accesses real (physical) memory. The maximum size of the effective-
address space is 264 bytes. 

EIB Element Interconnect Bus. The on-chip coherent bus that handles 
communication between the PPE, SPEs, memory, and I/O devices (or a 
second Cell Broadband Engine). The EIB is organized as four unidirec-
tional data rings (two clockwise and two counterclockwise). 

ELF Executable and Linking Format. The standard object format for many 
UNIX operating systems, including Linux. Originally defined by AT&T and 
placed in public domain. Compilers generate ELF files. Linkers link to files 
with ELF files in libraries. Systems run ELF files. 

ERAT Effective-to-Real Address Translation, or a buffer or table that contains 
such translations, or a table entry that contains such a translation. 
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even pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 0.

exception An error, unusual condition, or external signal that may alter a status bit 
and will cause a corresponding interrupt, if the interrupt is enabled. See 
interrupt. 

fence An option for a barrier ordering command that causes the processor to 
wait for completion of all MFC commands before starting any commands 
queued after the fence command. It does not apply to these immediate 
commands: getllar, putllc, and putlluc. 

fetch group A doubleword-aligned instruction pair. Dual-issue occurs when a fetch 
group has two instructions that are ready to issue, and when the first 
instruction can be issued on the even pipeline and the second instruction 
can be issued on the odd pipeline. 

FIFO First In First Out. Refers to one way elements in a queue are processed. 
It is analogous to “people standing in line.” 

flat register 
architecture

An architecture with only one register file, in which all types of operands 
are stored. Also called a unified register file. By contrast, conventional 
register architectures have separate sets of special-purpose registers for 
such things as scalar operands, floating-point operands, vectors, branch-
and-link values, conditions, and so forth. The SPEs have a flat register 
architecture. The PPE has a conventional register architecture. 

FlexIO Rambus FlexIO bus, a high performance I/O bus. 

FPU Floating-point unit.

FXU In the PPE, the fixed-point integer unit. In the SPU, the fixed-point excep-
tion unit.

gdb GNU debugger. A modified version of gdb, ppu-gdb, starts a Cell Broad-
band Engine program. The PPE component runs first and uses system 
calls, hidden by the SPU programming library, to move the SPU compo-
nent of the Cell Broadband Engine program into the local store of the 
SPU and start it running.

generic intrinsics C and C++ language extensions that map to one or more specific intrin-
sics. (See intrinsic.) All generic SPU intrinsics are prefaced by the string, 
spu_. For example, the generic intrinsic that implements the stop 
assembly instruction is named spu_stop. 

guarded Prevented from responding to speculative loads and instruction fetches. 
The operating system typically implements guarding, for example, on all 
I/O devices. 
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hypervisor A control (or virtualization) layer between hardware and the operating 
system. It allocates resources, reserves resources, and protects 
resources among (for example) sets of SPEs that may be running under 
different operating systems. 

The Cell Broadband Engine has three operating modes: user, supervisor 
and hypervisor. The hypervisor performs a meta-supervisor role that 
allows multiple independent supervisors’ software to run on the same 
hardware platform.

For example, the hypervisor allows both a real-time operating system and 
a traditional operating system to run on a single PPE. The PPE can then 
operate a subset of the SPEs in the Cell Broadband Engine with the real-
time operating system, while the other SPEs run under the traditional 
operating system. 

IEEE 754 The IEEE 754 floating-point standard. A standard written by the Institute 
of Electrical and Electronics Engineers that defines operations and repre-
sentations of binary floating-point arithmetic.

I-ERAT Instruction ERAT. 

imprecise exception A synchronous exception that does not adhere to the precise exception 
model. In the Cell Broadband Engine, single-precision floating-point oper-
ations generate imprecise exceptions. See precise exception. 

in-order In program order. The PPE and SPEs execute instructions in-order; that 
is, they do not rearrange them (out-of-order). 

instruction latency The total number of clock cycles necessary to execute an instruction and 
produce the results of that instruction. 

interrupt A change in machine state in response to an exception. See exception. 

intrinsic A C-language command, in the form of a function call, that is a convenient 
substitute for one or more inline assembly-language instructions. Intrin-
sics make the underlying ISA accessible from the C and C++ program-
ming languages. 

IOC I/O Interface Controller.

I/O device Input/output device. From software’s viewpoint, I/O devices exist as 
memory-mapped registers that are accessed in main-storage space by 
load/store instructions. The operating system typically configures access 
to I/O devices as caching-inhibited and guarded. 

IOIF Cell Broadband Engine I/O Interface. The EIB’s noncoherent protocol for 
interconnection to I/O devices. See BIF. 

JSRE Joint Software Reference Environment. An organization of the Cell 
Broadband Engine developers pursuing the development of reference 
software and standards for the Cell Broadband Engine.
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JTAG Joint Test Action Group. A test-access port defined by the IEEE 1149 
standard. 

KB Kilobyte.

L1 Level-1 cache memory. The closest cache to a processor, measured in 
access time. 

L2 Level-2 cache memory. The second-closest cache to a processor, 
measured in access time. An L2 cache is typically larger than an L1 
cache. 

LA An LS address of a DMA list. It is used as a parameter in an MFC 
command. 

latency The time between when a function (or instruction) is called and when it 
returns. Programmers often optimize code so that functions return as 
quickly as possible; this is referred to as the low-latency approach to opti-
mization. Low-latency designs often leave the processor data-starved, 
and performance can suffer. 

libspe.a An SPU-thread runtime management library. 

list element See transfer element.

lnop A NOP in an SPU’s odd pipeline. It can be inserted in code to align for 
dual issue of subsequent instructions. 

local store The 256-KB local store (LS) associated with each SPE. It holds both 
instructions and data. 

loop unrolling A programming optimization that increases the step of a loop, and dupli-
cates the expressions within a loop to reflect the increase in the step. This 
can improve instruction scheduling and memory access time.

LS See local store.

LSA Local Store Address. An address in the LS of an SPU, by which programs 
running in the SPU and DMA transfers managed by the MFC access the 
LS. 

Linux thread A thread running on the PPE in the Linux operating-system environment.

list element Same as transfer element. See DMA list.

mailbox A queue in an SPE’s MFC for exchanging 32-bit messages between the 
SPE and the PPE or other devices. Two mailboxes (the SPU Write 
Outbound Mailbox and SPU Write Outbound Interrupt Mailbox) are 
provided for sending messages from the SPE. One mailbox (the SPU 
Read Inbound Mailbox) is provided for sending messages to the SPE. 

main memory See main storage. 
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main storage The effective-address (EA) space. It consists physically of real memory 
(whatever is external to the memory-interface controller, including both 
volatile and nonvolatile memory), SPU LSs, memory-mapped registers 
and arrays, memory-mapped I/O devices (all I/O is memory-mapped), 
and pages of virtual memory that reside on disk. It does not include 
caches or execution-unit register files.

See local store.

makefile A descriptive file used by the make command in which the user specifies: 
(a) target program or library, (b) rules about how the target is to be built, 
(c) dependencies which, if updated, require that the target be rebuilt.

MB Megabyte.

memory channel An interface to external memory chips. The Cell Broadband Engine 
supports two Rambus Extreme Data Rate (XDR) memory channels. 

memory-mapped Mapped into the Cell Broadband Engine’s addressable-memory space. 
Registers, SPE local stores (LSs), I/O devices, and other readable or writ-
able storage can be memory-mapped. Privileged software does the 
mapping. 

method stub A small piece of code used to stand in for some other code. 

MIC Memory Interface Controller. The Cell Broadband Engine’s MIC supports 
two memory channels. 

MFC Memory Flow Controller. It is part of an SPE and provides two main func-
tions: moves data via DMA between the SPE’s local store (LS) and main 
storage, and synchronizes the SPU with the rest of the processing units in 
the system.

MFC proxy 
commands

MFC commands issued using the MMIO interface.

MMIO Memory-Mapped Input/Output. See memory-mapped. 

MMU Memory Management Unit. A functional unit that translates between 
effective addresses (EAs) used by programs and real addresses (RAs) 
used by physical memory. The MMU also provides protection mecha-
nisms and other functions. 

M:N thread model A programming model in which M threads are distributed over N 
processor elements.

MPI Message Passing Interface.

MSR Machine State Register.

MT Multithreading. See multithreading. 
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multithreading Simultaneous execution of more than one program thread. It is imple-
mented by sharing one software process and set of execution resources 
but duplicating the architectural state (registers, program counter, flags, 
and so forth) of each thread. 

NaN Not-a-Number. A special string of bits encoded according to the IEEE 754 
Floating-Point Standard. A NaN is the proper result for certain arithmetic 
operations; for example, 0/0 = NaN. There are two types of NaNs, quiet 
NaNs and signaling NaNs. Only the signaling NaN raises a floating-point 
exception when it is generated.

NCU Non-Cacheable Unit. 

odd pipeline Part of an SPE’s dual-issue execution pipeline. Also referred to as pipe-
line 1. 

OpenMP An API that supports multiplatform, shared-memory parallel program-
ming. 

overlay SPU code that is dynamically loaded and executed by a running SPU 
program.

page table A table that maps virtual addresses (VAs) to real addresses (RA) and 
contains related protection parameters and other information about 
memory locations. 

PC Personal Computer. 

performance 
simulation

Simulation by the IBM Full System Simulator for the Cell Broadband 
Engine in which both the functional behavior of operations and the time 
required to perform the operations is simulated. Also called cycle-accu-
rate simulation. 

pervasive logic Logic that provides power management, thermal management, clock 
control, software-performance monitoring, trace analysis, and so forth. 

pipelining A technique that breaks operations, such as instruction processing or bus 
transactions, into smaller stages so that a subsequent stage in the pipe-
line can begin before the previous stage has completed. 

plugin SPU code that is dynamically loaded and executed by running an SPU 
program. Plugins facilitate code overlays.

PMD Power Management and Debug.

POSIX Portable Operating System Interface. 

PowerPC Of or relating to the PowerPC Architecture or the microprocessors that 
implement this architecture. 

PowerPC 
Architecture

A computer architecture that is based on the third generation of RISC 
processors. The PowerPC architecture was developed jointly by Apple, 
Motorola, and IBM.
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PowerPC 970 A 64-bit microprocessor from IBM in the PowerPC family. It supports both 
the PowerPC and Vector/SIMD Multimedia Extension instruction sets. 

PPE PowerPC Processor Element. The general-purpose processor in the Cell 
Broadband Engine.

PPSS PowerPC Processor Storage Subsystem. Part of the PPE. It operates at 
half the frequency of the PPU and includes an L2 cache and Bus Inter-
face Unit (BIU). 

PPU PowerPC Processor Unit. The part of the PPE that includes the execution 
units, memory-management unit, and L1 cache. 

precise exception An exception for which the pipeline can be stopped, so instructions that 
preceded the faulting instruction can complete, and subsequent instruc-
tions can be flushed and redispatched after exception handling has 
completed. 

preferred slot The left-most word (bytes 0, 1, 2, and 3) of a 128-bit register in an SPE. 
The SIMD element in which scalar values are naturally maintained. 

privileged mode Also known as supervisor mode. The permission level of operating 
system instructions. The instructions are described in PowerPC Architec-
ture, Book III and are required of software that accesses system-critical 
resources.

problem state The permission level of user instructions. The instructions are described 
in PowerPC Architecture, Books I and II and are required of software that 
implements application programs.

PTE Page Table Entry. See page table. 

QoS Quality of Service. It usually relates to a guarantee of minimum bandwidth 
for streaming applications. 

RA Real Address. 

real address An address for physical storage, which includes physical memory, the 
PPE’s L1 and L2 caches, and the SPE’s local stores (LSs) if the operating 
system has mapped the LSs to the real-address space. The maximum 
size of the real-address space is 242 bytes. 

scalar An instruction operand characterized by a single value.

scarf hint A performance hint for DMA put operations. The hint is intended to allow 
another processor or device, such as the PPE, to capture the data into its 
cache as the data is transferred to storage. 

SCN SPU Control Unit. A unit in the SPU that handles branches and program 
control. 

SDK Software Development Kit. Sample software for the Cell Broadband 
Engine that includes the Linux operating system. 
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semi-pipelined A processor is semi-pipelined if it fetches the next instruction while 
decoding and executing the current instruction. 

SFP SPU Floating-Point Unit. It handles single-precision and double-precision 
floating-point operations. 

SFX SPU Even Fixed-Point Unit. It handles arithmetic, logical, and shift opera-
tions. 

SFS SPU Odd Fixed-Point Unit. It handles shuffle operations.

signal Information sent on a signal-notification channel. These channels are 
inbound (to an SPE) registers. They can be used by the PPE or other 
processor to send information to an SPE. Each SPE has two 32-bit 
signal-notification registers, each of which has a corresponding memory-
mapped I/O (MMIO) register into which the signal-notification data is 
written by the sending processor. Unlike mailboxes, they can be config-
ured for either one-to-one or many-to-one signalling. 

These signals are unrelated to UNIX signals. See channel and mailbox. 

signal notification See signal. 

SIMD Single Instruction Multiple Data. Processing in which a single instruction 
operates on multiple data elements that make up a vector data-type. Also 
known as vector processing. This style of programming implements data-
level parallelism. 

SIMDize Transform scaler code to vector code. 

single-ported Single-ported memory allows only one access at a time.

SLB Segment Lookaside Buffer. It is used to map an effective address (EA) to 
a virtual address (VA). 

SLS SPU Load and Store Unit. It handles loads, stores, and branch hints, and 
it includes the SPE’s local store (LS). 

SMM Synergistic Memory Management Unit. It translates EAs to RAs in an 
SPU. 

snoop To compare an address on a bus with a tag in a cache, in order to detect 
operations that violate memory coherency. Also called inquire.

SOA Structure of arrays. A method of organizing related data values. Also 
called parallel-array form. See AOS. 
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software-managed 
memory

An SPE’s local store (LS), which is filled from main memory using soft-
ware-initiated DMA transfers. Although most processors reduce latency 
to memory by using caches, an SPE uses its DMA-filled LS. This 
approach provides a high degree of control for real-time programming. 
However, this approach is advantageous only if the DMA transfer-size is 
sufficiently large and the DMA command is issued well before the data is 
needed, because the latency and instruction overhead associated with 
DMA transfers exceeds the latency of servicing a cache miss. 

specific intrinsic A type of C and C++ language extension that maps one-to-one with a 
single SPU assembly instruction. All SPU specific intrinsics are named by 
prefacing the SPU assembly instruction with si_. 

SPE Synergistic Processor Element. It includes an SPU, an MFC, and an LS.

SPE thread A thread running on an SPE. Each such thread has its own 128 x 128-bit 
register file, program counter, and MFC Command Queues, and it can 
communicate with other execution units (or with effective-address 
memory through the MFC channel interface).

SPI Serial Peripheral Interface. Connects to pervasive logic elements. 

splat To replicate, as when a single scalar value is replicated across all 
elements of an SIMD vector. 

SPR Special-Purpose Register

SPU Synergistic Processor Unit. The part of an SPE that executes instructions 
from its local store (LS).

SPU ISA SPU Instruction Set Architecture. An SIMD instruction set executed in 
SPEs that is similar to the Vector/SIMD Multimedia Extension instruction 
set executed by the PPE. 

spulet A standalone SPU program that is managed by a PPE executive. 

SPE thread A thread scheduled and run on an SPE. A program has one or more SPE 
threads. Each thread has its own SPU local store (LS), register file, 
program counter, and MFC command queues.

SSC SPU Channel and DMA Unit. It handles all input and output functions for 
an SPU. 

SSE Single SIMD Extensions. An Intel instruction set. 

sticky bit A bit that is set by hardware and remains set until cleared by software.

stub See method stub.

supervisor mode See privileged mode.

synchronization The order in which storage accesses are performed. 
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system storage All program-addressable memory in a system, including main storage 
(main memory), the PPE’s L1 and L2 caches, and the SPE’s local store 
(LS). 

tag group A group of DMA commands. Each DMA command is tagged with a 5-bit 
tag group identifier. Software can use this identifier to check or wait on the 
completion of all queued commands in one or more tag groups. All DMA 
commands except getllar, putllc, and putlluc are associated with a Tag 
Group.

Tcl Tool Command Language. An interpreted script language used to 
develop GUIs, application prototypes, Common Gateway Interface (CGI) 
scripts, and other scripts.

TG A tag-group ID parameter in an MFC command. 

thread A sequence of instructions executed within the global context (shared 
memory space and other global resources) of a process that has created 
(spawned) the thread. Multiple threads (including multiple instances of the 
same sequence of instructions) can run simultaneously, if each thread 
has its own architectural state (registers, program counter, flags, and 
other program-visible state). 

Each SPE can support only a single thread at any one time. The multiple 
SPEs can simultaneously support multiple threads. The PPE supports 
two threads at any one time, without the need for software to create the 
threads. The PPE does this by duplicating architectural state.

throughput The number of instructions completed per cycle. A high-throughput appli-
cation design seeks to keep pipelines full. To improve throughput, func-
tions may need to do nontrivial amounts of work and operate with good 
locality of data reference. 

TKM Token Management Unit. Part of the Element Interconnect Bus (EIB) that 
software can program to regulate the rate at which particular devices are 
allowed to make EIB command requests.

TLB Translation Lookaside Buffer. An on-chip cache that translates virtual 
addresses (VAs) to real addresses (RAs). A TLB caches page-table 
entries for the most recently accessed pages, thereby eliminating the 
necessity to access the page table from memory during load/store opera-
tions. 

transfer element See DMA list.

TS The transfer-size parameter in an MFC command. 

unified register file A register file in which all data types—integer, single-precision and 
double- floating-point, logicals, bytes, and others—use the same register 
file. The SPEs (but not the PPE) have unified register files. 

user mode The mode in which problem state software runs. See problem state. 
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VA Virtual Address. 

vector An instruction operand containing a set of data elements packed into a 
one-dimensional array. The elements can be fixed-point or floating-point 
values. Most Vector/SIMD Multimedia Extension and SPU SIMD instruc-
tions operate on vector operands. Vectors are also called SIMD operands 
or packed operands. 

Vector/SIMD 
Multimedia
Extension 

The SIMD instruction set of the PowerPC Architecture, supported on the 
PPE.

virtual address An address to the virtual-memory space, which is much larger than the 
physical address space and includes pages stored on disk. It is translated 
from an effective address (EA) by a segmentation mechanism and used 
by the paging mechanism to obtain the real address (RA). The maximum 
size of the virtual-address space is 265 bytes. 

virtual memory The address space created using the memory management facilities of a 
processor. 

virtual mode The mode in which virtual-address translation is enabled. 

VPN Virtual Page Number. The number of the page in virtual memory. 

VXU Vector/SIMD Multimedia Extension unit. 

word Four bytes. 

workload A set of code samples in the SDK that characterizes the performance of 
the architecture, algorithms, libraries, tools, and compilers. 

writeback flag A flag written by an SPE to main storage that notifies the PPE of a 
specific event.

XDR Rambus XDR DRAM memory technology

XIO A Rambus XDR Extreme Data Rate I/O (XIO) memory channel. 

xlc An IBM optimizing C compiler. 
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7. Index

Symbols

__builtin_expect, 84
_align_hint, 84

A

ABI (Application Binary Interface), 73, 89
addressing modes, 31, 34
aligned, 84
AOS (array of structures), 70, 104
Application Binary Interface (ABI), 73, 89
array of structures (AOS), 70, 104
asymmetric-thread runtime model, 134
asynchronous execution, 129
auto-vectorizing compiler, 93

B

barrier commands, 93
barriers and fences, 87
basic blocks, 94
BHT (branch history table), 96
big-endian ordering, 21, 68
blocking channel, 65
branch hints, 94, 96
branch history table (BHT), 96
branch mispredicts, 96
branch target instruction cache (BTIC), 96
BTIC (branch target instruction cache), 96
built-Ins, 74
byte ordering, 21

C

C/C++ language extensions, 35
CBEA (Cell Broadband Engine Architecture), 13, 20
Cell Broadband Engine Architecture (CBEA), 13, 20
Cell Broadband Engine Linux task, 23
channel domains, 43
channels, 63
checkpoints, 157
clamping, 34
clock cycles, 114
command-line mode, 154
commands, 85, 87
communication between PPE and SPEs, 46
compatibility, 33
compiler directives, 84
composite intrinsics, 74, 80

computation acceleration model, 133
Condition Register (CR), 30
console window, 138
control plane, 15
Count Register (CTR), 30
CR (Condition Register), 30
CTR (Count Register), 30
cycle-accurate simulation, 137, 153

D

data plane, 15
data types, 35
DCE (Distributed Computing Environment), 130
debugging, 55
decrementer, 63
denormals, 60
dependencies, 113, 116
device extension model, 133
Direct Memory Access Controller (DMAC), 62
directives, 84
directory structure, 48
Distributed Computing Environment (DCE), 130
DMA commands, 45, 85
DMA list, 89
DMA list programming examples, 89
DMA transfers, 43, 57, 116
DMAC (Direct Memory Access Controller), 62
double buffering, 92
dual-issue, 62, 113
dynamic branch prediction, 98
dynamic timing analysis, 115

E

EA (effective address), 30, 31, 44, 73, 88, 138
ECC (error-correcting code), 62
effective address (EA), 30, 31, 44, 73, 88, 138
Effective-to-Real Address Translation, 161
EIB (element interconnect bus), 17
element interconnect bus (EIB), 17
emitters, 159
error-correcting code (ECC), 62
executables, 47

F

fast mode, 148
fenced command option, 93
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fetch group, 62
Fixed-Point Exception Register (XER), 30
Floating-Point Registers (FPRs), 30
Floating-Point Status and Control Register (FPSCR), 30, 

59
FPRegs, 142
FPRs (Floating-Point Registers), 30
FPSCR (Floating-Point Status and Control Register), 30, 

59
frequency, 15
fscrrd instruction, 60
fscrwr instruction, 60
function offload model, 127
functional simulation, 137
functions, 128

G

General-Purpose Registers (GPRs), 30, 59
generic intrinsics, 36, 74, 77
get commands, 85
GPRegs, 142
GPRs (General-Purpose Registers), 30, 59
graphics rounding mode, 100

H, I, J, K

HBR (hint for branch), 97
hint for branch (HBR), 97
hint-trigger address, 97
I/O devices, 18
IBM Full System Simulator for the Cell Broadband Engine, 

51, 122, 137
IDL (Interface Definition Language), 128, 130
IEEE 754, 59, 99
in-order, 19, 32, 62, 64
instruction mode, 147
instruction types, 32, 34
Interface Definition Language (IDL), 128, 130
inter-loop dependencies, 116
intrinsics, 22, 35, 40
issue, 113
Joint Software Reference Environment (JSRE), 74
JSRE (Joint Software Reference Environment), 74

L

latency, 61
libraries, 27, 129
Link Register (LR), 30
Linux, 11
Linux command prompt, 138
Linux mode, 138

Linux run directory, 51, 139, 141, 154
Linux task, 23
Linux threads, 23
list element, 89
Load-Exec, 147
local store domains, 43
loop unrolling, 116
loop-carried dependencies, 116
LR (Link Register), 30

M

M:N thread model, 24
mailboxes, 66
main storage domain, 43
many-to-one signaling, 67
mapping PPE to SPEs, 99
memory, 15
Memory Flow Controller (MFC), 43, 57
method stub, 127
MFC (Memory Flow Controller), 43, 57
MFC Command-Parameter Registers, 44
MFC commands, 84
microthreads, 135
model instruction, 147
model pipeline, 147
multibuffering, 92, 116
multi-stage pipeline model, 25

N

NaN (not-a-number), 60
non-blocking channel, 65
not-a-number (NaN), 60

O

one-to-one signaling, 67
Open Group, 130
Open Systems Foundation, 130
optimizations, 116
OR mode, 67
OSF DCE, 130
overlay, 135
overwrite mode, 67

P

packed operands, 21
parallel-array form, 104
parallel-stages model, 25
partitioning, 24
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PCAddressing, 142
PCC Core window, 143
PCCCore, 142
PCTrack, 142
performance, 14
performance monitoring, 153
performance simulation, 137
pipeline, 113
pipeline mode, 147
plugin, 135
power, 14
PowerPC instructions, 31
PowerPC Processor Element (PPE), 18
PPE (PowerPC Processor Element), 18
PPE instruction set, 31
PPE registers, 29
PPE vs. SPE, 81
PPE-centric models, 25
ppu-gdb, 55
precise trap, 60
precision, 99
predication, 95
preferred slot, 68, 80
problem-state registers, 29, 59
procedures, 128
profile checkpoints, 157
programming, 20
programming models, 127
programming tips, 123
put commands, 85

R

registers, 29, 59
remote procedure call (RPC) model, 127
restrict, 84
rounding, 60
RPC (remote procedure call), 127
RPC runtime library, 129
runtime environment, 24

S

saturation, 34
scalar loads, 116
scalar operands, 80
scatter-gather, 89
SDK (software development kit), 26
Segment Lookaside Buffer, 161
select-bits (selb) instruction, 95
select-bits intrinsic, 95
service model, 25, 26
SFP (SPU Floating-Point Unit), 59
shared-memory multiprocessor model, 134

signal notification, 47, 67
signals, 67, 133
SIMD (single-instruction, multiple-data vectorization), 21
SIMD operands, 21
SIMDization, 22
SIMDize, 102
simulation, 137
simulator, 51, 122, 137
simulator command window, 138
simulator prompt, 154
single-instruction, multiple-data vectorization (SIMD), 21
SOA (structure of arrays), 71, 104, 105
software development kit (SDK), 26
Sony, Toshiba, and IBM (STI), 13
SPE (Synergistic Processor Element), 19, 57
SPE channels, 63
SPE plugins, 135
SPE programming, 45
SPE registers, 59
SPE thread, 23, 135
SPE vs. PPE, 81
SPE-centric model, 25
specific intrinsics, 36, 74
SPU (Synergistic Processor Unit), 57
SPU Floating-Point Unit (SFP), 59
SPU instruction set, 68
SPU Instruction Set Architecture (SPU ISA), 68
SPU ISA (SPU Instruction Set Architecture), 68
spu_mffpscr intrinsic, 60
spu_mtfpscr intrinsic, 60
SPUChannel, 143
SPUCore, 143
spu-gdb, 55
SPUMemory, 143
SPUStats, 146
SPUTrack, 143
standalone mode, 138
static branch prediction, 98
static timing analysis, 113
STI (Sony, Toshiba, and IBM), 13
sticky bit, 60
storage barriers, 47
storage domains, 43
streaming model, 133
structure of arrays (SOA), 71, 104, 105
stub, 127
synchronization commands, 87
synchronous execution, 129
Synergistic Processor Element (SPE), 19, 57
Synergistic Processor Unit (SPU), 57

T

tag group, 87
task, 23
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Tcl (Tool Command Language), 137
Tcl commands, 137
thread, 23, 135
thread model, 23, 24
timing analysis, 113, 115
timing simulation, 137
Tool Command Language (Tcl), 137
transfer elements, 86, 89
truncation, 60

U, V, W

unified register file, 58
user threads, 135
user-level tasks, 135
user-mode thread model, 135
vector, 21
vector data types, 35, 36
Vector Multimedia Registers (VMRs), 30
vector operands, 21

Vector Save Register (VRSAVE), 30
Vector Status and Control Register (VSCR), 30
vector types, 35
vector/SIMD multimedia extension intrinsics, 40
vector/SIMD multimedia extension vector types, 35
vector/SIMD multimedia extensions, 18
vector-across form, 104
vectorization, 22
VMRs (Vector Multimedia Registers), 30
VRSAVE (Vector Save Register), 30
VSCR (Vector Status and Control Register), 30

X

XER (Fixed-Point Exception Register), 30

Z

zero, 60
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